[Midnightbsd-cvs] src: dev/em: sync intel gigabit ethernet

laffer1 at midnightbsd.org laffer1 at midnightbsd.org
Tue Nov 25 12:13:36 EST 2008


Log Message:
-----------
sync intel gigabit ethernet

Modified Files:
--------------
    src/sys/dev/em:
        LICENSE (r1.2 -> r1.3)
        README (r1.2 -> r1.3)
        if_em.c (r1.4 -> r1.5)
        if_em.h (r1.3 -> r1.4)

Added Files:
-----------
    src/sys/dev/em:
        e1000_80003es2lan.c (r1.1)
        e1000_80003es2lan.h (r1.1)
        e1000_82540.c (r1.1)
        e1000_82541.c (r1.1)
        e1000_82541.h (r1.1)
        e1000_82542.c (r1.1)
        e1000_82543.c (r1.1)
        e1000_82543.h (r1.1)
        e1000_82571.c (r1.1)
        e1000_82571.h (r1.1)
        e1000_82575.c (r1.1)
        e1000_82575.h (r1.1)
        e1000_api.c (r1.1)
        e1000_api.h (r1.1)
        e1000_defines.h (r1.1)
        e1000_hw.h (r1.1)
        e1000_ich8lan.c (r1.1)
        e1000_ich8lan.h (r1.1)
        e1000_mac.c (r1.1)
        e1000_mac.h (r1.1)
        e1000_manage.c (r1.1)
        e1000_manage.h (r1.1)
        e1000_nvm.c (r1.1)
        e1000_nvm.h (r1.1)
        e1000_osdep.h (r1.1)
        e1000_phy.c (r1.1)
        e1000_phy.h (r1.1)
        e1000_regs.h (r1.1)

Removed Files:
-------------
    src/sys/dev/em:
        if_em_hw.c
        if_em_hw.h
        if_em_osdep.h

-------------- next part --------------
--- /dev/null
+++ sys/dev/em/e1000_nvm.h
@@ -0,0 +1,66 @@
+/*******************************************************************************
+
+  Copyright (c) 2001-2007, Intel Corporation 
+  All rights reserved.
+  
+  Redistribution and use in source and binary forms, with or without 
+  modification, are permitted provided that the following conditions are met:
+  
+   1. Redistributions of source code must retain the above copyright notice, 
+      this list of conditions and the following disclaimer.
+  
+   2. Redistributions in binary form must reproduce the above copyright 
+      notice, this list of conditions and the following disclaimer in the 
+      documentation and/or other materials provided with the distribution.
+  
+   3. Neither the name of the Intel Corporation nor the names of its 
+      contributors may be used to endorse or promote products derived from 
+      this software without specific prior written permission.
+  
+  THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
+  AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 
+  IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 
+  ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE 
+  LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 
+  CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 
+  SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 
+  INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 
+  CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 
+  ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
+  POSSIBILITY OF SUCH DAMAGE.
+
+*******************************************************************************/
+/* $FreeBSD: src/sys/dev/em/e1000_nvm.h,v 1.3.4.1 2007/11/28 23:24:38 jfv Exp $ */
+
+
+#ifndef _E1000_NVM_H_
+#define _E1000_NVM_H_
+
+s32  e1000_acquire_nvm_generic(struct e1000_hw *hw);
+
+s32  e1000_poll_eerd_eewr_done(struct e1000_hw *hw, int ee_reg);
+s32  e1000_read_mac_addr_generic(struct e1000_hw *hw);
+s32  e1000_read_pba_num_generic(struct e1000_hw *hw, u32 *pba_num);
+s32  e1000_read_nvm_spi(struct e1000_hw *hw, u16 offset, u16 words, u16 *data);
+s32  e1000_read_nvm_microwire(struct e1000_hw *hw, u16 offset,
+                              u16 words, u16 *data);
+s32  e1000_read_nvm_eerd(struct e1000_hw *hw, u16 offset, u16 words, u16 *data);
+s32  e1000_valid_led_default_generic(struct e1000_hw *hw, u16 *data);
+s32  e1000_validate_nvm_checksum_generic(struct e1000_hw *hw);
+s32  e1000_write_nvm_eewr(struct e1000_hw *hw, u16 offset,
+                          u16 words, u16 *data);
+s32  e1000_write_nvm_microwire(struct e1000_hw *hw, u16 offset,
+                               u16 words, u16 *data);
+s32  e1000_write_nvm_spi(struct e1000_hw *hw, u16 offset, u16 words, u16 *data);
+s32  e1000_update_nvm_checksum_generic(struct e1000_hw *hw);
+void e1000_stop_nvm(struct e1000_hw *hw);
+void e1000_release_nvm_generic(struct e1000_hw *hw);
+void e1000_reload_nvm_generic(struct e1000_hw *hw);
+
+/* Function pointers */
+s32  e1000_acquire_nvm(struct e1000_hw *hw);
+void e1000_release_nvm(struct e1000_hw *hw);
+
+#define E1000_STM_OPCODE  0xDB00
+
+#endif
--- /dev/null
+++ sys/dev/em/e1000_phy.h
@@ -0,0 +1,173 @@
+/*******************************************************************************
+
+  Copyright (c) 2001-2007, Intel Corporation 
+  All rights reserved.
+  
+  Redistribution and use in source and binary forms, with or without 
+  modification, are permitted provided that the following conditions are met:
+  
+   1. Redistributions of source code must retain the above copyright notice, 
+      this list of conditions and the following disclaimer.
+  
+   2. Redistributions in binary form must reproduce the above copyright 
+      notice, this list of conditions and the following disclaimer in the 
+      documentation and/or other materials provided with the distribution.
+  
+   3. Neither the name of the Intel Corporation nor the names of its 
+      contributors may be used to endorse or promote products derived from 
+      this software without specific prior written permission.
+  
+  THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
+  AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 
+  IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 
+  ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE 
+  LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 
+  CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 
+  SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 
+  INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 
+  CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 
+  ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
+  POSSIBILITY OF SUCH DAMAGE.
+
+*******************************************************************************/
+/* $FreeBSD: src/sys/dev/em/e1000_phy.h,v 1.3.4.1 2007/11/28 23:24:38 jfv Exp $ */
+
+
+#ifndef _E1000_PHY_H_
+#define _E1000_PHY_H_
+
+typedef enum {
+	e1000_ms_hw_default = 0,
+	e1000_ms_force_master,
+	e1000_ms_force_slave,
+	e1000_ms_auto
+} e1000_ms_type;
+
+typedef enum {
+	e1000_smart_speed_default = 0,
+	e1000_smart_speed_on,
+	e1000_smart_speed_off
+} e1000_smart_speed;
+
+s32  e1000_check_downshift_generic(struct e1000_hw *hw);
+s32  e1000_check_polarity_m88(struct e1000_hw *hw);
+s32  e1000_check_polarity_igp(struct e1000_hw *hw);
+s32  e1000_check_reset_block_generic(struct e1000_hw *hw);
+s32  e1000_copper_link_autoneg(struct e1000_hw *hw);
+s32  e1000_phy_force_speed_duplex(struct e1000_hw *hw);
+s32  e1000_copper_link_setup_igp(struct e1000_hw *hw);
+s32  e1000_copper_link_setup_m88(struct e1000_hw *hw);
+s32  e1000_phy_force_speed_duplex_igp(struct e1000_hw *hw);
+s32  e1000_phy_force_speed_duplex_m88(struct e1000_hw *hw);
+s32  e1000_get_cable_length_m88(struct e1000_hw *hw);
+s32  e1000_get_cable_length_igp_2(struct e1000_hw *hw);
+s32  e1000_get_cfg_done_generic(struct e1000_hw *hw);
+s32  e1000_get_phy_id(struct e1000_hw *hw);
+s32  e1000_get_phy_info_igp(struct e1000_hw *hw);
+s32  e1000_get_phy_info_m88(struct e1000_hw *hw);
+s32  e1000_phy_sw_reset_generic(struct e1000_hw *hw);
+void e1000_phy_force_speed_duplex_setup(struct e1000_hw *hw, u16 *phy_ctrl);
+s32  e1000_phy_hw_reset_generic(struct e1000_hw *hw);
+s32  e1000_phy_reset_dsp_generic(struct e1000_hw *hw);
+s32  e1000_phy_setup_autoneg(struct e1000_hw *hw);
+s32  e1000_read_kmrn_reg_generic(struct e1000_hw *hw, u32 offset, u16 *data);
+s32  e1000_read_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 *data);
+s32  e1000_read_phy_reg_m88(struct e1000_hw *hw, u32 offset, u16 *data);
+s32  e1000_set_d3_lplu_state_generic(struct e1000_hw *hw, bool active);
+s32  e1000_setup_copper_link_generic(struct e1000_hw *hw);
+s32  e1000_wait_autoneg_generic(struct e1000_hw *hw);
+s32  e1000_write_kmrn_reg_generic(struct e1000_hw *hw, u32 offset, u16 data);
+s32  e1000_write_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 data);
+s32  e1000_write_phy_reg_m88(struct e1000_hw *hw, u32 offset, u16 data);
+s32  e1000_phy_reset_dsp(struct e1000_hw *hw);
+s32  e1000_phy_has_link_generic(struct e1000_hw *hw, u32 iterations,
+                                u32 usec_interval, bool *success);
+s32  e1000_phy_init_script_igp3(struct e1000_hw *hw);
+e1000_phy_type e1000_get_phy_type_from_id(u32 phy_id);
+void e1000_power_up_phy_copper(struct e1000_hw *hw);
+void e1000_power_down_phy_copper(struct e1000_hw *hw);
+
+#define E1000_MAX_PHY_ADDR                4
+
+/* IGP01E1000 Specific Registers */
+#define IGP01E1000_PHY_PORT_CONFIG        0x10 /* Port Config */
+#define IGP01E1000_PHY_PORT_STATUS        0x11 /* Status */
+#define IGP01E1000_PHY_PORT_CTRL          0x12 /* Control */
+#define IGP01E1000_PHY_LINK_HEALTH        0x13 /* PHY Link Health */
+#define IGP01E1000_GMII_FIFO              0x14 /* GMII FIFO */
+#define IGP01E1000_PHY_CHANNEL_QUALITY    0x15 /* PHY Channel Quality */
+#define IGP02E1000_PHY_POWER_MGMT         0x19 /* Power Management */
+#define IGP01E1000_PHY_PAGE_SELECT        0x1F /* Page Select */
+#define BM_PHY_PAGE_SELECT                22   /* Page Select for BM */
+#define IGP_PAGE_SHIFT                    5
+#define PHY_REG_MASK                      0x1F
+
+
+#define IGP01E1000_PHY_PCS_INIT_REG       0x00B4
+#define IGP01E1000_PHY_POLARITY_MASK      0x0078
+
+#define IGP01E1000_PSCR_AUTO_MDIX         0x1000
+#define IGP01E1000_PSCR_FORCE_MDI_MDIX    0x2000 /* 0=MDI, 1=MDIX */
+
+#define IGP01E1000_PSCFR_SMART_SPEED      0x0080
+
+/* Enable flexible speed on link-up */
+#define IGP01E1000_GMII_FLEX_SPD          0x0010
+#define IGP01E1000_GMII_SPD               0x0020 /* Enable SPD */
+
+#define IGP02E1000_PM_SPD                 0x0001 /* Smart Power Down */
+#define IGP02E1000_PM_D0_LPLU             0x0002 /* For D0a states */
+#define IGP02E1000_PM_D3_LPLU             0x0004 /* For all other states */
+
+#define IGP01E1000_PLHR_SS_DOWNGRADE      0x8000
+
+#define IGP01E1000_PSSR_POLARITY_REVERSED 0x0002
+#define IGP01E1000_PSSR_MDIX              0x0008
+#define IGP01E1000_PSSR_SPEED_MASK        0xC000
+#define IGP01E1000_PSSR_SPEED_1000MBPS    0xC000
+
+#define IGP02E1000_PHY_CHANNEL_NUM        4
+#define IGP02E1000_PHY_AGC_A              0x11B1
+#define IGP02E1000_PHY_AGC_B              0x12B1
+#define IGP02E1000_PHY_AGC_C              0x14B1
+#define IGP02E1000_PHY_AGC_D              0x18B1
+
+#define IGP02E1000_AGC_LENGTH_SHIFT       9   /* Course - 15:13, Fine - 12:9 */
+#define IGP02E1000_AGC_LENGTH_MASK        0x7F
+#define IGP02E1000_AGC_RANGE              15
+
+#define IGP03E1000_PHY_MISC_CTRL          0x1B
+#define IGP03E1000_PHY_MISC_DUPLEX_MANUAL_SET  0x1000 /* Manually Set Duplex */
+
+#define E1000_CABLE_LENGTH_UNDEFINED      0xFF
+
+#define E1000_KMRNCTRLSTA_OFFSET          0x001F0000
+#define E1000_KMRNCTRLSTA_OFFSET_SHIFT    16
+#define E1000_KMRNCTRLSTA_REN             0x00200000
+#define E1000_KMRNCTRLSTA_DIAG_OFFSET     0x3    /* Kumeran Diagnostic */
+#define E1000_KMRNCTRLSTA_DIAG_NELPBK     0x1000 /* Nearend Loopback mode */
+
+#define IFE_PHY_EXTENDED_STATUS_CONTROL 0x10
+#define IFE_PHY_SPECIAL_CONTROL     0x11 /* 100BaseTx PHY Special Control */
+#define IFE_PHY_SPECIAL_CONTROL_LED 0x1B /* PHY Special and LED Control */
+#define IFE_PHY_MDIX_CONTROL        0x1C /* MDI/MDI-X Control */
+
+/* IFE PHY Extended Status Control */
+#define IFE_PESC_POLARITY_REVERSED    0x0100
+
+/* IFE PHY Special Control */
+#define IFE_PSC_AUTO_POLARITY_DISABLE      0x0010
+#define IFE_PSC_FORCE_POLARITY             0x0020
+#define IFE_PSC_DISABLE_DYNAMIC_POWER_DOWN 0x0100
+
+/* IFE PHY Special Control and LED Control */
+#define IFE_PSCL_PROBE_MODE            0x0020
+#define IFE_PSCL_PROBE_LEDS_OFF        0x0006 /* Force LEDs 0 and 2 off */
+#define IFE_PSCL_PROBE_LEDS_ON         0x0007 /* Force LEDs 0 and 2 on */
+
+/* IFE PHY MDIX Control */
+#define IFE_PMC_MDIX_STATUS      0x0020 /* 1=MDI-X, 0=MDI */
+#define IFE_PMC_FORCE_MDIX       0x0040 /* 1=force MDI-X, 0=force MDI */
+#define IFE_PMC_AUTO_MDIX        0x0080 /* 1=enable auto MDI/MDI-X, 0=disable */
+
+#endif
--- /dev/null
+++ sys/dev/em/e1000_phy.c
@@ -0,0 +1,2114 @@
+/*******************************************************************************
+
+  Copyright (c) 2001-2007, Intel Corporation 
+  All rights reserved.
+  
+  Redistribution and use in source and binary forms, with or without 
+  modification, are permitted provided that the following conditions are met:
+  
+   1. Redistributions of source code must retain the above copyright notice, 
+      this list of conditions and the following disclaimer.
+  
+   2. Redistributions in binary form must reproduce the above copyright 
+      notice, this list of conditions and the following disclaimer in the 
+      documentation and/or other materials provided with the distribution.
+  
+   3. Neither the name of the Intel Corporation nor the names of its 
+      contributors may be used to endorse or promote products derived from 
+      this software without specific prior written permission.
+  
+  THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
+  AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 
+  IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 
+  ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE 
+  LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 
+  CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 
+  SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 
+  INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 
+  CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 
+  ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
+  POSSIBILITY OF SUCH DAMAGE.
+
+*******************************************************************************/
+/* $FreeBSD: src/sys/dev/em/e1000_phy.c,v 1.3.4.1 2007/11/28 23:24:38 jfv Exp $ */
+
+
+#include "e1000_api.h"
+#include "e1000_phy.h"
+
+static s32  e1000_get_phy_cfg_done(struct e1000_hw *hw);
+STATIC void e1000_release_phy(struct e1000_hw *hw);
+STATIC s32  e1000_acquire_phy(struct e1000_hw *hw);
+
+/* Cable length tables */
+static const u16 e1000_m88_cable_length_table[] =
+	{ 0, 50, 80, 110, 140, 140, E1000_CABLE_LENGTH_UNDEFINED };
+#define M88E1000_CABLE_LENGTH_TABLE_SIZE \
+                (sizeof(e1000_m88_cable_length_table) / \
+                 sizeof(e1000_m88_cable_length_table[0]))
+
+static const u16 e1000_igp_2_cable_length_table[] =
+    { 0, 0, 0, 0, 0, 0, 0, 0, 3, 5, 8, 11, 13, 16, 18, 21,
+      0, 0, 0, 3, 6, 10, 13, 16, 19, 23, 26, 29, 32, 35, 38, 41,
+      6, 10, 14, 18, 22, 26, 30, 33, 37, 41, 44, 48, 51, 54, 58, 61,
+      21, 26, 31, 35, 40, 44, 49, 53, 57, 61, 65, 68, 72, 75, 79, 82,
+      40, 45, 51, 56, 61, 66, 70, 75, 79, 83, 87, 91, 94, 98, 101, 104,
+      60, 66, 72, 77, 82, 87, 92, 96, 100, 104, 108, 111, 114, 117, 119, 121,
+      83, 89, 95, 100, 105, 109, 113, 116, 119, 122, 124,
+      104, 109, 114, 118, 121, 124};
+#define IGP02E1000_CABLE_LENGTH_TABLE_SIZE \
+                (sizeof(e1000_igp_2_cable_length_table) / \
+                 sizeof(e1000_igp_2_cable_length_table[0]))
+
+/**
+ *  e1000_check_reset_block_generic - Check if PHY reset is blocked
+ *  @hw: pointer to the HW structure
+ *
+ *  Read the PHY management control register and check whether a PHY reset
+ *  is blocked.  If a reset is not blocked return E1000_SUCCESS, otherwise
+ *  return E1000_BLK_PHY_RESET (12).
+ **/
+s32 e1000_check_reset_block_generic(struct e1000_hw *hw)
+{
+	u32 manc;
+
+	DEBUGFUNC("e1000_check_reset_block");
+
+	manc = E1000_READ_REG(hw, E1000_MANC);
+
+	return (manc & E1000_MANC_BLK_PHY_RST_ON_IDE) ?
+	       E1000_BLK_PHY_RESET : E1000_SUCCESS;
+}
+
+/**
+ *  e1000_get_phy_id - Retrieve the PHY ID and revision
+ *  @hw: pointer to the HW structure
+ *
+ *  Reads the PHY registers and stores the PHY ID and possibly the PHY
+ *  revision in the hardware structure.
+ **/
+s32 e1000_get_phy_id(struct e1000_hw *hw)
+{
+	struct e1000_phy_info *phy = &hw->phy;
+	s32 ret_val = E1000_SUCCESS;
+	u16 phy_id;
+
+	DEBUGFUNC("e1000_get_phy_id");
+
+	ret_val = e1000_read_phy_reg(hw, PHY_ID1, &phy_id);
+	if (ret_val)
+		goto out;
+
+	phy->id = (u32)(phy_id << 16);
+	usec_delay(20);
+	ret_val = e1000_read_phy_reg(hw, PHY_ID2, &phy_id);
+	if (ret_val)
+		goto out;
+
+	phy->id |= (u32)(phy_id & PHY_REVISION_MASK);
+	phy->revision = (u32)(phy_id & ~PHY_REVISION_MASK);
+
+out:
+	return ret_val;
+}
+
+/**
+ *  e1000_phy_reset_dsp_generic - Reset PHY DSP
+ *  @hw: pointer to the HW structure
+ *
+ *  Reset the digital signal processor.
+ **/
+s32 e1000_phy_reset_dsp_generic(struct e1000_hw *hw)
+{
+	s32 ret_val;
+
+	DEBUGFUNC("e1000_phy_reset_dsp_generic");
+
+	ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xC1);
+	if (ret_val)
+		goto out;
+
+	ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0);
+
+out:
+	return ret_val;
+}
+
+/**
+ *  e1000_read_phy_reg_mdic - Read MDI control register
+ *  @hw: pointer to the HW structure
+ *  @offset: register offset to be read
+ *  @data: pointer to the read data
+ *
+ *  Reads the MDI control regsiter in the PHY at offset and stores the
+ *  information read to data.
+ **/
+STATIC s32 e1000_read_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 *data)
+{
+	struct e1000_phy_info *phy = &hw->phy;
+	u32 i, mdic = 0;
+	s32 ret_val = E1000_SUCCESS;
+
+	DEBUGFUNC("e1000_read_phy_reg_mdic");
+
+	if (offset > MAX_PHY_REG_ADDRESS) {
+		DEBUGOUT1("PHY Address %d is out of range\n", offset);
+		ret_val = -E1000_ERR_PARAM;
+		goto out;
+	}
+
+	/*
+	 * Set up Op-code, Phy Address, and register offset in the MDI
+	 * Control register.  The MAC will take care of interfacing with the
+	 * PHY to retrieve the desired data.
+	 */
+	mdic = ((offset << E1000_MDIC_REG_SHIFT) |
+	        (phy->addr << E1000_MDIC_PHY_SHIFT) |
+	        (E1000_MDIC_OP_READ));
+
+	E1000_WRITE_REG(hw, E1000_MDIC, mdic);
+
+	/*
+	 * Poll the ready bit to see if the MDI read completed
+	 * Increasing the time out as testing showed failures with
+	 * the lower time out
+	 */
+	for (i = 0; i < (E1000_GEN_POLL_TIMEOUT * 3); i++) {
+		usec_delay(50);
+		mdic = E1000_READ_REG(hw, E1000_MDIC);
+		if (mdic & E1000_MDIC_READY)
+			break;
+	}
+	if (!(mdic & E1000_MDIC_READY)) {
+		DEBUGOUT("MDI Read did not complete\n");
+		ret_val = -E1000_ERR_PHY;
+		goto out;
+	}
+	if (mdic & E1000_MDIC_ERROR) {
+		DEBUGOUT("MDI Error\n");
+		ret_val = -E1000_ERR_PHY;
+		goto out;
+	}
+	*data = (u16) mdic;
+
+out:
+	return ret_val;
+}
+
+/**
+ *  e1000_write_phy_reg_mdic - Write MDI control register
+ *  @hw: pointer to the HW structure
+ *  @offset: register offset to write to
+ *  @data: data to write to register at offset
+ *
+ *  Writes data to MDI control register in the PHY at offset.
+ **/
+STATIC s32 e1000_write_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 data)
+{
+	struct e1000_phy_info *phy = &hw->phy;
+	u32 i, mdic = 0;
+	s32 ret_val = E1000_SUCCESS;
+
+	DEBUGFUNC("e1000_write_phy_reg_mdic");
+
+	if (offset > MAX_PHY_REG_ADDRESS) {
+		DEBUGOUT1("PHY Address %d is out of range\n", offset);
+		ret_val = -E1000_ERR_PARAM;
+		goto out;
+	}
+
+	/*
+	 * Set up Op-code, Phy Address, and register offset in the MDI
+	 * Control register.  The MAC will take care of interfacing with the
+	 * PHY to retrieve the desired data.
+	 */
+	mdic = (((u32)data) |
+	        (offset << E1000_MDIC_REG_SHIFT) |
+	        (phy->addr << E1000_MDIC_PHY_SHIFT) |
+	        (E1000_MDIC_OP_WRITE));
+
+	E1000_WRITE_REG(hw, E1000_MDIC, mdic);
+
+	/*
+	 * Poll the ready bit to see if the MDI read completed
+	 * Increasing the time out as testing showed failures with
+	 * the lower time out
+	 */
+	for (i = 0; i < (E1000_GEN_POLL_TIMEOUT * 3); i++) {
+		usec_delay(50);
+		mdic = E1000_READ_REG(hw, E1000_MDIC);
+		if (mdic & E1000_MDIC_READY)
+			break;
+	}
+	if (!(mdic & E1000_MDIC_READY)) {
+		DEBUGOUT("MDI Write did not complete\n");
+		ret_val = -E1000_ERR_PHY;
+		goto out;
+	}
+	if (mdic & E1000_MDIC_ERROR) {
+		DEBUGOUT("MDI Error\n");
+		ret_val = -E1000_ERR_PHY;
+		goto out;
+	}
+
+out:
+	return ret_val;
+}
+
+/**
+ *  e1000_read_phy_reg_m88 - Read m88 PHY register
+ *  @hw: pointer to the HW structure
+ *  @offset: register offset to be read
+ *  @data: pointer to the read data
+ *
+ *  Acquires semaphore, if necessary, then reads the PHY register at offset
+ *  and storing the retrieved information in data.  Release any acquired
+ *  semaphores before exiting.
+ **/
+s32 e1000_read_phy_reg_m88(struct e1000_hw *hw, u32 offset, u16 *data)
+{
+	s32 ret_val;
+
+	DEBUGFUNC("e1000_read_phy_reg_m88");
+
+	ret_val = e1000_acquire_phy(hw);
+	if (ret_val)
+		goto out;
+
+	ret_val = e1000_read_phy_reg_mdic(hw,
+	                                  MAX_PHY_REG_ADDRESS & offset,
+	                                  data);
+
+	e1000_release_phy(hw);
+
+out:
+	return ret_val;
+}
+
+/**
+ *  e1000_write_phy_reg_m88 - Write m88 PHY register
+ *  @hw: pointer to the HW structure
+ *  @offset: register offset to write to
+ *  @data: data to write at register offset
+ *
+ *  Acquires semaphore, if necessary, then writes the data to PHY register
+ *  at the offset.  Release any acquired semaphores before exiting.
+ **/
+s32 e1000_write_phy_reg_m88(struct e1000_hw *hw, u32 offset, u16 data)
+{
+	s32 ret_val;
+
+	DEBUGFUNC("e1000_write_phy_reg_m88");
+
+	ret_val = e1000_acquire_phy(hw);
+	if (ret_val)
+		goto out;
+
+	ret_val = e1000_write_phy_reg_mdic(hw,
+	                                   MAX_PHY_REG_ADDRESS & offset,
+	                                   data);
+
+	e1000_release_phy(hw);
+
+out:
+	return ret_val;
+}
+
+/**
+ *  e1000_read_phy_reg_igp - Read igp PHY register
+ *  @hw: pointer to the HW structure
+ *  @offset: register offset to be read
+ *  @data: pointer to the read data
+ *
+ *  Acquires semaphore, if necessary, then reads the PHY register at offset
+ *  and storing the retrieved information in data.  Release any acquired
+ *  semaphores before exiting.
+ **/
+s32 e1000_read_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 *data)
+{
+	s32 ret_val;
+
+	DEBUGFUNC("e1000_read_phy_reg_igp");
+
+	ret_val = e1000_acquire_phy(hw);
+	if (ret_val)
+		goto out;
+
+	if (offset > MAX_PHY_MULTI_PAGE_REG) {
+		ret_val = e1000_write_phy_reg_mdic(hw,
+						   IGP01E1000_PHY_PAGE_SELECT,
+						   (u16)offset);
+		if (ret_val) {
+			e1000_release_phy(hw);
+			goto out;
+		}
+	}
+
+	ret_val = e1000_read_phy_reg_mdic(hw,
+					  MAX_PHY_REG_ADDRESS & offset,
+					  data);
+
+	e1000_release_phy(hw);
+
+out:
+	return ret_val;
+}
+
+/**
+ *  e1000_write_phy_reg_igp - Write igp PHY register
+ *  @hw: pointer to the HW structure
+ *  @offset: register offset to write to
+ *  @data: data to write at register offset
+ *
+ *  Acquires semaphore, if necessary, then writes the data to PHY register
+ *  at the offset.  Release any acquired semaphores before exiting.
+ **/
+s32 e1000_write_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 data)
+{
+	s32 ret_val;
+
+	DEBUGFUNC("e1000_write_phy_reg_igp");
+
+	ret_val = e1000_acquire_phy(hw);
+	if (ret_val)
+		goto out;
+
+	if (offset > MAX_PHY_MULTI_PAGE_REG) {
+		ret_val = e1000_write_phy_reg_mdic(hw,
+						   IGP01E1000_PHY_PAGE_SELECT,
+						   (u16)offset);
+		if (ret_val) {
+			e1000_release_phy(hw);
+			goto out;
+		}
+	}
+
+	ret_val = e1000_write_phy_reg_mdic(hw,
+					   MAX_PHY_REG_ADDRESS & offset,
+					   data);
+
+	e1000_release_phy(hw);
+
+out:
+	return ret_val;
+}
+
+/**
+ *  e1000_read_kmrn_reg_generic - Read kumeran register
+ *  @hw: pointer to the HW structure
+ *  @offset: register offset to be read
+ *  @data: pointer to the read data
+ *
+ *  Acquires semaphore, if necessary.  Then reads the PHY register at offset
+ *  using the kumeran interface.  The information retrieved is stored in data.
+ *  Release any acquired semaphores before exiting.
+ **/
+s32 e1000_read_kmrn_reg_generic(struct e1000_hw *hw, u32 offset, u16 *data)
+{
+	u32 kmrnctrlsta;
+	s32 ret_val;
+
+	DEBUGFUNC("e1000_read_kmrn_reg_generic");
+
+	ret_val = e1000_acquire_phy(hw);
+	if (ret_val)
+		goto out;
+
+	kmrnctrlsta = ((offset << E1000_KMRNCTRLSTA_OFFSET_SHIFT) &
+	               E1000_KMRNCTRLSTA_OFFSET) | E1000_KMRNCTRLSTA_REN;
+	E1000_WRITE_REG(hw, E1000_KMRNCTRLSTA, kmrnctrlsta);
+
+	usec_delay(2);
+
+	kmrnctrlsta = E1000_READ_REG(hw, E1000_KMRNCTRLSTA);
+	*data = (u16)kmrnctrlsta;
+
+	e1000_release_phy(hw);
+
+out:
+	return ret_val;
+}
+
+/**
+ *  e1000_write_kmrn_reg_generic - Write kumeran register
+ *  @hw: pointer to the HW structure
+ *  @offset: register offset to write to
+ *  @data: data to write at register offset
+ *
+ *  Acquires semaphore, if necessary.  Then write the data to PHY register
+ *  at the offset using the kumeran interface.  Release any acquired semaphores
+ *  before exiting.
+ **/
+s32 e1000_write_kmrn_reg_generic(struct e1000_hw *hw, u32 offset, u16 data)
+{
+	u32 kmrnctrlsta;
+	s32 ret_val;
+
+	DEBUGFUNC("e1000_write_kmrn_reg_generic");
+
+	ret_val = e1000_acquire_phy(hw);
+	if (ret_val)
+		goto out;
+
+	kmrnctrlsta = ((offset << E1000_KMRNCTRLSTA_OFFSET_SHIFT) &
+	               E1000_KMRNCTRLSTA_OFFSET) | data;
+	E1000_WRITE_REG(hw, E1000_KMRNCTRLSTA, kmrnctrlsta);
+
+	usec_delay(2);
+	e1000_release_phy(hw);
+
+out:
+	return ret_val;
+}
+
+/**
+ *  e1000_copper_link_setup_m88 - Setup m88 PHY's for copper link
+ *  @hw: pointer to the HW structure
+ *
+ *  Sets up MDI/MDI-X and polarity for m88 PHY's.  If necessary, transmit clock
+ *  and downshift values are set also.
+ **/
+s32 e1000_copper_link_setup_m88(struct e1000_hw *hw)
+{
+	struct e1000_phy_info *phy = &hw->phy;
+	s32 ret_val;
+	u16 phy_data;
+
+	DEBUGFUNC("e1000_copper_link_setup_m88");
+
+	if (phy->reset_disable) {
+		ret_val = E1000_SUCCESS;
+		goto out;
+	}
+
+	/* Enable CRS on TX. This must be set for half-duplex operation. */
+	ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
+	if (ret_val)
+		goto out;
+
+	phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
+
+	/*
+	 * Options:
+	 *   MDI/MDI-X = 0 (default)
+	 *   0 - Auto for all speeds
+	 *   1 - MDI mode
+	 *   2 - MDI-X mode
+	 *   3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
+	 */
+	phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
+
+	switch (phy->mdix) {
+		case 1:
+			phy_data |= M88E1000_PSCR_MDI_MANUAL_MODE;
+			break;
+		case 2:
+			phy_data |= M88E1000_PSCR_MDIX_MANUAL_MODE;
+			break;
+		case 3:
+			phy_data |= M88E1000_PSCR_AUTO_X_1000T;
+			break;
+		case 0:
+		default:
+			phy_data |= M88E1000_PSCR_AUTO_X_MODE;
+			break;
+	}
+
+	/*
+	 * Options:
+	 *   disable_polarity_correction = 0 (default)
+	 *       Automatic Correction for Reversed Cable Polarity
+	 *   0 - Disabled
+	 *   1 - Enabled
+	 */
+	phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL;
+	if (phy->disable_polarity_correction == 1)
+		phy_data |= M88E1000_PSCR_POLARITY_REVERSAL;
+
+	ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
+	if (ret_val)
+		goto out;
+
+	if (phy->revision < E1000_REVISION_4) {
+		/*
+		 * Force TX_CLK in the Extended PHY Specific Control Register
+		 * to 25MHz clock.
+		 */
+		ret_val = e1000_read_phy_reg(hw,
+		                             M88E1000_EXT_PHY_SPEC_CTRL,
+		                             &phy_data);
+		if (ret_val)
+			goto out;
+
+		phy_data |= M88E1000_EPSCR_TX_CLK_25;
+
+		if ((phy->revision == E1000_REVISION_2) &&
+		    (phy->id == M88E1111_I_PHY_ID)) {
+			/* 82573L PHY - set the downshift counter to 5x. */
+			phy_data &= ~M88EC018_EPSCR_DOWNSHIFT_COUNTER_MASK;
+			phy_data |= M88EC018_EPSCR_DOWNSHIFT_COUNTER_5X;
+		} else {
+			/* Configure Master and Slave downshift values */
+			phy_data &= ~(M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK |
+				      M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK);
+			phy_data |= (M88E1000_EPSCR_MASTER_DOWNSHIFT_1X |
+				     M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X);
+		}
+		ret_val = e1000_write_phy_reg(hw,
+		                             M88E1000_EXT_PHY_SPEC_CTRL,
+		                             phy_data);
+		if (ret_val)
+			goto out;
+	}
+
+	/* Commit the changes. */
+	ret_val = e1000_phy_commit(hw);
+	if (ret_val) {
+		DEBUGOUT("Error committing the PHY changes\n");
+		goto out;
+	}
+
+out:
+	return ret_val;
+}
+
+/**
+ *  e1000_copper_link_setup_igp - Setup igp PHY's for copper link
+ *  @hw: pointer to the HW structure
+ *
+ *  Sets up LPLU, MDI/MDI-X, polarity, Smartspeed and Master/Slave config for
+ *  igp PHY's.
+ **/
+s32 e1000_copper_link_setup_igp(struct e1000_hw *hw)
+{
+	struct e1000_phy_info *phy = &hw->phy;
+	s32 ret_val;
+	u16 data;
+
+	DEBUGFUNC("e1000_copper_link_setup_igp");
+
+	if (phy->reset_disable) {
+		ret_val = E1000_SUCCESS;
+		goto out;
+	}
+
+	ret_val = e1000_phy_hw_reset(hw);
+	if (ret_val) {
+		DEBUGOUT("Error resetting the PHY.\n");
+		goto out;
+	}
+
+	/* Wait 15ms for MAC to configure PHY from NVM settings. */
+	msec_delay(15);
+
+	/*
+	 * The NVM settings will configure LPLU in D3 for
+	 * non-IGP1 PHYs.
+	 */
+	if (phy->type == e1000_phy_igp) {
+		/* disable lplu d3 during driver init */
+		ret_val = e1000_set_d3_lplu_state(hw, FALSE);
+		if (ret_val) {
+			DEBUGOUT("Error Disabling LPLU D3\n");
+			goto out;
+		}
+	}
+
+	/* disable lplu d0 during driver init */
+	ret_val = e1000_set_d0_lplu_state(hw, FALSE);
+	if (ret_val) {
+		DEBUGOUT("Error Disabling LPLU D0\n");
+		goto out;
+	}
+	/* Configure mdi-mdix settings */
+	ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, &data);
+	if (ret_val)
+		goto out;
+
+	data &= ~IGP01E1000_PSCR_AUTO_MDIX;
+
+	switch (phy->mdix) {
+	case 1:
+		data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
+		break;
+	case 2:
+		data |= IGP01E1000_PSCR_FORCE_MDI_MDIX;
+		break;
+	case 0:
+	default:
+		data |= IGP01E1000_PSCR_AUTO_MDIX;
+		break;
+	}
+	ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, data);
+	if (ret_val)
+		goto out;
+
+	/* set auto-master slave resolution settings */
+	if (hw->mac.autoneg) {
+		/*
+		 * when autonegotiation advertisement is only 1000Mbps then we
+		 * should disable SmartSpeed and enable Auto MasterSlave
+		 * resolution as hardware default.
+		 */
+		if (phy->autoneg_advertised == ADVERTISE_1000_FULL) {
+			/* Disable SmartSpeed */
+			ret_val = e1000_read_phy_reg(hw,
+			                             IGP01E1000_PHY_PORT_CONFIG,
+			                             &data);
+			if (ret_val)
+				goto out;
+
+			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
+			ret_val = e1000_write_phy_reg(hw,
+			                             IGP01E1000_PHY_PORT_CONFIG,
+			                             data);
+			if (ret_val)
+				goto out;
+
+			/* Set auto Master/Slave resolution process */
+			ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL, &data);
+			if (ret_val)
+				goto out;
+
+			data &= ~CR_1000T_MS_ENABLE;
+			ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL, data);
+			if (ret_val)
+				goto out;
+		}
+
+		ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL, &data);
+		if (ret_val)
+			goto out;
+
+		/* load defaults for future use */
+		phy->original_ms_type = (data & CR_1000T_MS_ENABLE) ?
+			((data & CR_1000T_MS_VALUE) ?
+			e1000_ms_force_master :
+			e1000_ms_force_slave) :
+			e1000_ms_auto;
+
+		switch (phy->ms_type) {
+		case e1000_ms_force_master:
+			data |= (CR_1000T_MS_ENABLE | CR_1000T_MS_VALUE);
+			break;
+		case e1000_ms_force_slave:
+			data |= CR_1000T_MS_ENABLE;
+			data &= ~(CR_1000T_MS_VALUE);
+			break;
+		case e1000_ms_auto:
+			data &= ~CR_1000T_MS_ENABLE;
+		default:
+			break;
+		}
+		ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL, data);
+		if (ret_val)
+			goto out;
+	}
+
+out:
+	return ret_val;
+}
+
+/**
+ *  e1000_copper_link_autoneg - Setup/Enable autoneg for copper link
+ *  @hw: pointer to the HW structure
+ *
+ *  Performs initial bounds checking on autoneg advertisement parameter, then
+ *  configure to advertise the full capability.  Setup the PHY to autoneg
+ *  and restart the negotiation process between the link partner.  If
+ *  autoneg_wait_to_complete, then wait for autoneg to complete before exiting.
+ **/
+s32 e1000_copper_link_autoneg(struct e1000_hw *hw)
+{
+	struct e1000_phy_info *phy = &hw->phy;
+	s32 ret_val;
+	u16 phy_ctrl;
+
+	DEBUGFUNC("e1000_copper_link_autoneg");
+
+	/*
+	 * Perform some bounds checking on the autoneg advertisement
+	 * parameter.
+	 */
+	phy->autoneg_advertised &= phy->autoneg_mask;
+
+	/*
+	 * If autoneg_advertised is zero, we assume it was not defaulted
+	 * by the calling code so we set to advertise full capability.
+	 */
+	if (phy->autoneg_advertised == 0)
+		phy->autoneg_advertised = phy->autoneg_mask;
+
+	DEBUGOUT("Reconfiguring auto-neg advertisement params\n");
+	ret_val = e1000_phy_setup_autoneg(hw);
+	if (ret_val) {
+		DEBUGOUT("Error Setting up Auto-Negotiation\n");
+		goto out;
+	}
+	DEBUGOUT("Restarting Auto-Neg\n");
+
+	/*
+	 * Restart auto-negotiation by setting the Auto Neg Enable bit and
+	 * the Auto Neg Restart bit in the PHY control register.
+	 */
+	ret_val = e1000_read_phy_reg(hw, PHY_CONTROL, &phy_ctrl);
+	if (ret_val)
+		goto out;
+
+	phy_ctrl |= (MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG);
+	ret_val = e1000_write_phy_reg(hw, PHY_CONTROL, phy_ctrl);
+	if (ret_val)
+		goto out;
+
+	/*
+	 * Does the user want to wait for Auto-Neg to complete here, or
+	 * check at a later time (for example, callback routine).
+	 */
+	if (phy->autoneg_wait_to_complete) {
+		ret_val = e1000_wait_autoneg(hw);
+		if (ret_val) {
+			DEBUGOUT("Error while waiting for "
+			         "autoneg to complete\n");
+			goto out;
+		}
+	}
+
+	hw->mac.get_link_status = TRUE;
+
+out:
+	return ret_val;
+}
+
+/**
+ *  e1000_phy_setup_autoneg - Configure PHY for auto-negotiation
+ *  @hw: pointer to the HW structure
+ *
+ *  Reads the MII auto-neg advertisement register and/or the 1000T control
+ *  register and if the PHY is already setup for auto-negotiation, then
+ *  return successful.  Otherwise, setup advertisement and flow control to
+ *  the appropriate values for the wanted auto-negotiation.
+ **/
+s32 e1000_phy_setup_autoneg(struct e1000_hw *hw)
+{
+	struct e1000_phy_info *phy = &hw->phy;
+	s32 ret_val;
+	u16 mii_autoneg_adv_reg;
+	u16 mii_1000t_ctrl_reg = 0;
+
+	DEBUGFUNC("e1000_phy_setup_autoneg");
+
+	phy->autoneg_advertised &= phy->autoneg_mask;
+
+	/* Read the MII Auto-Neg Advertisement Register (Address 4). */
+	ret_val = e1000_read_phy_reg(hw, PHY_AUTONEG_ADV, &mii_autoneg_adv_reg);
+	if (ret_val)
+		goto out;
+
+	if (phy->autoneg_mask & ADVERTISE_1000_FULL) {
+		/* Read the MII 1000Base-T Control Register (Address 9). */
+		ret_val = e1000_read_phy_reg(hw,
+		                            PHY_1000T_CTRL,
+		                            &mii_1000t_ctrl_reg);
+		if (ret_val)
+			goto out;
+	}
+
+	/*
+	 * Need to parse both autoneg_advertised and fc and set up
+	 * the appropriate PHY registers.  First we will parse for
+	 * autoneg_advertised software override.  Since we can advertise
+	 * a plethora of combinations, we need to check each bit
+	 * individually.
+	 */
+
+	/*
+	 * First we clear all the 10/100 mb speed bits in the Auto-Neg
+	 * Advertisement Register (Address 4) and the 1000 mb speed bits in
+	 * the  1000Base-T Control Register (Address 9).
+	 */
+	mii_autoneg_adv_reg &= ~(NWAY_AR_100TX_FD_CAPS |
+	                         NWAY_AR_100TX_HD_CAPS |
+	                         NWAY_AR_10T_FD_CAPS   |
+	                         NWAY_AR_10T_HD_CAPS);
+	mii_1000t_ctrl_reg &= ~(CR_1000T_HD_CAPS | CR_1000T_FD_CAPS);
+
+	DEBUGOUT1("autoneg_advertised %x\n", phy->autoneg_advertised);
+
+	/* Do we want to advertise 10 Mb Half Duplex? */
+	if (phy->autoneg_advertised & ADVERTISE_10_HALF) {
+		DEBUGOUT("Advertise 10mb Half duplex\n");
+		mii_autoneg_adv_reg |= NWAY_AR_10T_HD_CAPS;
+	}
+
+	/* Do we want to advertise 10 Mb Full Duplex? */
+	if (phy->autoneg_advertised & ADVERTISE_10_FULL) {
+		DEBUGOUT("Advertise 10mb Full duplex\n");
+		mii_autoneg_adv_reg |= NWAY_AR_10T_FD_CAPS;
+	}
+
+	/* Do we want to advertise 100 Mb Half Duplex? */
+	if (phy->autoneg_advertised & ADVERTISE_100_HALF) {
+		DEBUGOUT("Advertise 100mb Half duplex\n");
+		mii_autoneg_adv_reg |= NWAY_AR_100TX_HD_CAPS;
+	}
+
+	/* Do we want to advertise 100 Mb Full Duplex? */
+	if (phy->autoneg_advertised & ADVERTISE_100_FULL) {
+		DEBUGOUT("Advertise 100mb Full duplex\n");
+		mii_autoneg_adv_reg |= NWAY_AR_100TX_FD_CAPS;
+	}
+
+	/* We do not allow the Phy to advertise 1000 Mb Half Duplex */
+	if (phy->autoneg_advertised & ADVERTISE_1000_HALF) {
+		DEBUGOUT("Advertise 1000mb Half duplex request denied!\n");
+	}
+
+	/* Do we want to advertise 1000 Mb Full Duplex? */
+	if (phy->autoneg_advertised & ADVERTISE_1000_FULL) {
+		DEBUGOUT("Advertise 1000mb Full duplex\n");
+		mii_1000t_ctrl_reg |= CR_1000T_FD_CAPS;
+	}
+
+	/*
+	 * Check for a software override of the flow control settings, and
+	 * setup the PHY advertisement registers accordingly.  If
+	 * auto-negotiation is enabled, then software will have to set the
+	 * "PAUSE" bits to the correct value in the Auto-Negotiation
+	 * Advertisement Register (PHY_AUTONEG_ADV) and re-start auto-
+	 * negotiation.
+	 *
+	 * The possible values of the "fc" parameter are:
+	 *      0:  Flow control is completely disabled
+	 *      1:  Rx flow control is enabled (we can receive pause frames
+	 *          but not send pause frames).
+	 *      2:  Tx flow control is enabled (we can send pause frames
+	 *          but we do not support receiving pause frames).
+	 *      3:  Both Rx and Tx flow control (symmetric) are enabled.
+	 *  other:  No software override.  The flow control configuration
+	 *          in the EEPROM is used.
+	 */
+	switch (hw->fc.type) {
+	case e1000_fc_none:
+		/*
+		 * Flow control (Rx & Tx) is completely disabled by a
+		 * software over-ride.
+		 */
+		mii_autoneg_adv_reg &= ~(NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
+		break;
+	case e1000_fc_rx_pause:
+		/*
+		 * Rx Flow control is enabled, and Tx Flow control is
+		 * disabled, by a software over-ride.
+		 *
+		 * Since there really isn't a way to advertise that we are
+		 * capable of Rx Pause ONLY, we will advertise that we
+		 * support both symmetric and asymmetric Rx PAUSE.  Later
+		 * (in e1000_config_fc_after_link_up) we will disable the
+		 * hw's ability to send PAUSE frames.
+		 */
+		mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
+		break;
+	case e1000_fc_tx_pause:
+		/*
+		 * Tx Flow control is enabled, and Rx Flow control is
+		 * disabled, by a software over-ride.
+		 */
+		mii_autoneg_adv_reg |= NWAY_AR_ASM_DIR;
+		mii_autoneg_adv_reg &= ~NWAY_AR_PAUSE;
+		break;
+	case e1000_fc_full:
+		/*
+		 * Flow control (both Rx and Tx) is enabled by a software
+		 * over-ride.
+		 */
+		mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
+		break;
+	default:
+		DEBUGOUT("Flow control param set incorrectly\n");
+		ret_val = -E1000_ERR_CONFIG;
+		goto out;
+	}
+
+	ret_val = e1000_write_phy_reg(hw, PHY_AUTONEG_ADV, mii_autoneg_adv_reg);
+	if (ret_val)
+		goto out;
+
+	DEBUGOUT1("Auto-Neg Advertising %x\n", mii_autoneg_adv_reg);
+
+	if (phy->autoneg_mask & ADVERTISE_1000_FULL) {
+		ret_val = e1000_write_phy_reg(hw,
+		                              PHY_1000T_CTRL,
+		                              mii_1000t_ctrl_reg);
+		if (ret_val)
+			goto out;
+	}
+
+out:
+	return ret_val;
+}
+
+/**
+ *  e1000_setup_copper_link_generic - Configure copper link settings
+ *  @hw: pointer to the HW structure
+ *
+ *  Calls the appropriate function to configure the link for auto-neg or forced
+ *  speed and duplex.  Then we check for link, once link is established calls
+ *  to configure collision distance and flow control are called.  If link is
+ *  not established, we return -E1000_ERR_PHY (-2).
+ **/
+s32 e1000_setup_copper_link_generic(struct e1000_hw *hw)
+{
+	s32 ret_val;
+	bool link;
+
+	DEBUGFUNC("e1000_setup_copper_link_generic");
+
+	if (hw->mac.autoneg) {
+		/*
+		 * Setup autoneg and flow control advertisement and perform
+		 * autonegotiation.
+		 */
+		ret_val = e1000_copper_link_autoneg(hw);
+		if (ret_val)
+			goto out;
+	} else {
+		/*
+		 * PHY will be set to 10H, 10F, 100H or 100F
+		 * depending on user settings.
+		 */
+		DEBUGOUT("Forcing Speed and Duplex\n");
+		ret_val = e1000_phy_force_speed_duplex(hw);
+		if (ret_val) {
+			DEBUGOUT("Error Forcing Speed and Duplex\n");
+			goto out;
+		}
+	}
+
+	/*
+	 * Check link status. Wait up to 100 microseconds for link to become
+	 * valid.
+	 */
+	ret_val = e1000_phy_has_link_generic(hw,
+	                                     COPPER_LINK_UP_LIMIT,
+	                                     10,
+	                                     &link);
+	if (ret_val)
+		goto out;
+
+	if (link) {
+		DEBUGOUT("Valid link established!!!\n");
+		e1000_config_collision_dist_generic(hw);
+		ret_val = e1000_config_fc_after_link_up_generic(hw);
+	} else {
+		DEBUGOUT("Unable to establish link!!!\n");
+	}
+
+out:
+	return ret_val;
+}
+
+/**
+ *  e1000_phy_force_speed_duplex_igp - Force speed/duplex for igp PHY
+ *  @hw: pointer to the HW structure
+ *
+ *  Calls the PHY setup function to force speed and duplex.  Clears the
+ *  auto-crossover to force MDI manually.  Waits for link and returns
+ *  successful if link up is successful, else -E1000_ERR_PHY (-2).
+ **/
+s32 e1000_phy_force_speed_duplex_igp(struct e1000_hw *hw)
+{
+	struct e1000_phy_info *phy = &hw->phy;
+	s32 ret_val;
+	u16 phy_data;
+	bool link;
+
+	DEBUGFUNC("e1000_phy_force_speed_duplex_igp");
+
+	ret_val = e1000_read_phy_reg(hw, PHY_CONTROL, &phy_data);
+	if (ret_val)
+		goto out;
+
+	e1000_phy_force_speed_duplex_setup(hw, &phy_data);
+
+	ret_val = e1000_write_phy_reg(hw, PHY_CONTROL, phy_data);
+	if (ret_val)
+		goto out;
+
+	/*
+	 * Clear Auto-Crossover to force MDI manually.  IGP requires MDI
+	 * forced whenever speed and duplex are forced.
+	 */
+	ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data);
+	if (ret_val)
+		goto out;
+
+	phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX;
+	phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
+
+	ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, phy_data);
+	if (ret_val)
+		goto out;
+
+	DEBUGOUT1("IGP PSCR: %X\n", phy_data);
+
+	usec_delay(1);
+
+	if (phy->autoneg_wait_to_complete) {
+		DEBUGOUT("Waiting for forced speed/duplex link on IGP phy.\n");
+
+		ret_val = e1000_phy_has_link_generic(hw,
+		                                     PHY_FORCE_LIMIT,
+		                                     100000,
+		                                     &link);
+		if (ret_val)
+			goto out;
+
+		if (!link) {
+			DEBUGOUT("Link taking longer than expected.\n");
+		}
+
+		/* Try once more */
+		ret_val = e1000_phy_has_link_generic(hw,
+		                                     PHY_FORCE_LIMIT,
+		                                     100000,
+		                                     &link);
+		if (ret_val)
+			goto out;
+	}
+
+out:
+	return ret_val;
+}
+
+/**
+ *  e1000_phy_force_speed_duplex_m88 - Force speed/duplex for m88 PHY
+ *  @hw: pointer to the HW structure
+ *
+ *  Calls the PHY setup function to force speed and duplex.  Clears the
+ *  auto-crossover to force MDI manually.  Resets the PHY to commit the
+ *  changes.  If time expires while waiting for link up, we reset the DSP.
+ *  After reset, TX_CLK and CRS on Tx must be set.  Return successful upon
+ *  successful completion, else return corresponding error code.
+ **/
+s32 e1000_phy_force_speed_duplex_m88(struct e1000_hw *hw)
+{
+	struct e1000_phy_info *phy = &hw->phy;
+	s32 ret_val;
+	u16 phy_data;
+	bool link;
+
+	DEBUGFUNC("e1000_phy_force_speed_duplex_m88");
+
+	/*
+	 * Clear Auto-Crossover to force MDI manually.  M88E1000 requires MDI
+	 * forced whenever speed and duplex are forced.
+	 */
+	ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
+	if (ret_val)
+		goto out;
+
+	phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
+	ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
+	if (ret_val)
+		goto out;
+
+	DEBUGOUT1("M88E1000 PSCR: %X\n", phy_data);
+
+	ret_val = e1000_read_phy_reg(hw, PHY_CONTROL, &phy_data);
+	if (ret_val)
+		goto out;
+
+	e1000_phy_force_speed_duplex_setup(hw, &phy_data);
+
+	/* Reset the phy to commit changes. */
+	phy_data |= MII_CR_RESET;
+
+	ret_val = e1000_write_phy_reg(hw, PHY_CONTROL, phy_data);
+	if (ret_val)
+		goto out;
+
+	usec_delay(1);
+
+	if (phy->autoneg_wait_to_complete) {
+		DEBUGOUT("Waiting for forced speed/duplex link on M88 phy.\n");
+
+		ret_val = e1000_phy_has_link_generic(hw,
+		                                     PHY_FORCE_LIMIT,
+		                                     100000,
+		                                     &link);
+		if (ret_val)
+			goto out;
+
+		if (!link) {
+			/*
+			 * We didn't get link.
+			 * Reset the DSP and cross our fingers.
+			 */
+			ret_val = e1000_write_phy_reg(hw,
+			                              M88E1000_PHY_PAGE_SELECT,
+			                              0x001d);
+			if (ret_val)
+				goto out;
+			ret_val = e1000_phy_reset_dsp_generic(hw);
+			if (ret_val)
+				goto out;
+		}
+
+		/* Try once more */
+		ret_val = e1000_phy_has_link_generic(hw,
+		                                     PHY_FORCE_LIMIT,
+		                                     100000,
+		                                     &link);
+		if (ret_val)
+			goto out;
+	}
+
+	ret_val = e1000_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data);
+	if (ret_val)
+		goto out;
+
+	/*
+	 * Resetting the phy means we need to re-force TX_CLK in the
+	 * Extended PHY Specific Control Register to 25MHz clock from
+	 * the reset value of 2.5MHz.
+	 */
+	phy_data |= M88E1000_EPSCR_TX_CLK_25;
+	ret_val = e1000_write_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
+	if (ret_val)
+		goto out;
+
+	/*
+	 * In addition, we must re-enable CRS on Tx for both half and full
+	 * duplex.
+	 */
+	ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
+	if (ret_val)
+		goto out;
+
+	phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
+	ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
+
+out:
+	return ret_val;
+}
+
+/**
+ *  e1000_phy_force_speed_duplex_setup - Configure forced PHY speed/duplex
+ *  @hw: pointer to the HW structure
+ *  @phy_ctrl: pointer to current value of PHY_CONTROL
+ *
+ *  Forces speed and duplex on the PHY by doing the following: disable flow
+ *  control, force speed/duplex on the MAC, disable auto speed detection,
+ *  disable auto-negotiation, configure duplex, configure speed, configure
+ *  the collision distance, write configuration to CTRL register.  The
+ *  caller must write to the PHY_CONTROL register for these settings to
+ *  take affect.
+ **/
+void e1000_phy_force_speed_duplex_setup(struct e1000_hw *hw, u16 *phy_ctrl)
+{
+	struct e1000_mac_info *mac = &hw->mac;
+	u32 ctrl;
+
+	DEBUGFUNC("e1000_phy_force_speed_duplex_setup");
+
+	/* Turn off flow control when forcing speed/duplex */
+	hw->fc.type = e1000_fc_none;
+
+	/* Force speed/duplex on the mac */
+	ctrl = E1000_READ_REG(hw, E1000_CTRL);
+	ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
+	ctrl &= ~E1000_CTRL_SPD_SEL;
+
+	/* Disable Auto Speed Detection */
+	ctrl &= ~E1000_CTRL_ASDE;
+
+	/* Disable autoneg on the phy */
+	*phy_ctrl &= ~MII_CR_AUTO_NEG_EN;
+
+	/* Forcing Full or Half Duplex? */
+	if (mac->forced_speed_duplex & E1000_ALL_HALF_DUPLEX) {
+		ctrl &= ~E1000_CTRL_FD;
+		*phy_ctrl &= ~MII_CR_FULL_DUPLEX;
+		DEBUGOUT("Half Duplex\n");
+	} else {
+		ctrl |= E1000_CTRL_FD;
+		*phy_ctrl |= MII_CR_FULL_DUPLEX;
+		DEBUGOUT("Full Duplex\n");
+	}
+
+	/* Forcing 10mb or 100mb? */
+	if (mac->forced_speed_duplex & E1000_ALL_100_SPEED) {
+		ctrl |= E1000_CTRL_SPD_100;
+		*phy_ctrl |= MII_CR_SPEED_100;
+		*phy_ctrl &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_10);
+		DEBUGOUT("Forcing 100mb\n");
+	} else {
+		ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
+		*phy_ctrl |= MII_CR_SPEED_10;
+		*phy_ctrl &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_100);
+		DEBUGOUT("Forcing 10mb\n");
+	}
+
+	e1000_config_collision_dist_generic(hw);
+
+	E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
+}
+
+/**
+ *  e1000_set_d3_lplu_state_generic - Sets low power link up state for D3
+ *  @hw: pointer to the HW structure
+ *  @active: boolean used to enable/disable lplu
+ *
+ *  Success returns 0, Failure returns 1
+ *
+ *  The low power link up (lplu) state is set to the power management level D3
+ *  and SmartSpeed is disabled when active is true, else clear lplu for D3
+ *  and enable Smartspeed.  LPLU and Smartspeed are mutually exclusive.  LPLU
+ *  is used during Dx states where the power conservation is most important.
+ *  During driver activity, SmartSpeed should be enabled so performance is
+ *  maintained.
+ **/
+s32 e1000_set_d3_lplu_state_generic(struct e1000_hw *hw, bool active)
+{
+	struct e1000_phy_info *phy = &hw->phy;
+	s32 ret_val;
+	u16 data;
+
+	DEBUGFUNC("e1000_set_d3_lplu_state_generic");
+
+	ret_val = e1000_read_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, &data);
+	if (ret_val)
+		goto out;
+
+	if (!active) {
+		data &= ~IGP02E1000_PM_D3_LPLU;
+		ret_val = e1000_write_phy_reg(hw,
+		                             IGP02E1000_PHY_POWER_MGMT,
+		                             data);
+		if (ret_val)
+			goto out;
+		/*
+		 * LPLU and SmartSpeed are mutually exclusive.  LPLU is used
+		 * during Dx states where the power conservation is most
+		 * important.  During driver activity we should enable
+		 * SmartSpeed, so performance is maintained.
+		 */
+		if (phy->smart_speed == e1000_smart_speed_on) {
+			ret_val = e1000_read_phy_reg(hw,
+			                            IGP01E1000_PHY_PORT_CONFIG,
+			                            &data);
+			if (ret_val)
+				goto out;
+
+			data |= IGP01E1000_PSCFR_SMART_SPEED;
+			ret_val = e1000_write_phy_reg(hw,
+			                             IGP01E1000_PHY_PORT_CONFIG,
+			                             data);
+			if (ret_val)
+				goto out;
+		} else if (phy->smart_speed == e1000_smart_speed_off) {
+			ret_val = e1000_read_phy_reg(hw,
+			                             IGP01E1000_PHY_PORT_CONFIG,
+			                             &data);
+			if (ret_val)
+				goto out;
+
+			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
+			ret_val = e1000_write_phy_reg(hw,
+			                             IGP01E1000_PHY_PORT_CONFIG,
+			                             data);
+			if (ret_val)
+				goto out;
+		}
+	} else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
+	           (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
+	           (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
+		data |= IGP02E1000_PM_D3_LPLU;
+		ret_val = e1000_write_phy_reg(hw,
+		                              IGP02E1000_PHY_POWER_MGMT,
+		                              data);
+		if (ret_val)
+			goto out;
+
+		/* When LPLU is enabled, we should disable SmartSpeed */
+		ret_val = e1000_read_phy_reg(hw,
+		                             IGP01E1000_PHY_PORT_CONFIG,
+		                             &data);
+		if (ret_val)
+			goto out;
+
+		data &= ~IGP01E1000_PSCFR_SMART_SPEED;
+		ret_val = e1000_write_phy_reg(hw,
+		                              IGP01E1000_PHY_PORT_CONFIG,
+		                              data);
+	}
+
+out:
+	return ret_val;
+}
+
+/**
+ *  e1000_check_downshift_generic - Checks whether a downshift in speed occured
+ *  @hw: pointer to the HW structure
+ *
+ *  Success returns 0, Failure returns 1
+ *
+ *  A downshift is detected by querying the PHY link health.
+ **/
+s32 e1000_check_downshift_generic(struct e1000_hw *hw)
+{
+	struct e1000_phy_info *phy = &hw->phy;
+	s32 ret_val;
+	u16 phy_data, offset, mask;
+
+	DEBUGFUNC("e1000_check_downshift_generic");
+
+	switch (phy->type) {
+	case e1000_phy_m88:
+	case e1000_phy_gg82563:
+		offset	= M88E1000_PHY_SPEC_STATUS;
+		mask	= M88E1000_PSSR_DOWNSHIFT;
+		break;
+	case e1000_phy_igp_2:
+	case e1000_phy_igp:
+	case e1000_phy_igp_3:
+		offset	= IGP01E1000_PHY_LINK_HEALTH;
+		mask	= IGP01E1000_PLHR_SS_DOWNGRADE;
+		break;
+	default:
+		/* speed downshift not supported */
+		phy->speed_downgraded = FALSE;
+		ret_val = E1000_SUCCESS;
+		goto out;
+	}
+
+	ret_val = e1000_read_phy_reg(hw, offset, &phy_data);
+
+	if (!ret_val)
+		phy->speed_downgraded = (phy_data & mask) ? TRUE : FALSE;
+
+out:
+	return ret_val;
+}
+
+/**
+ *  e1000_check_polarity_m88 - Checks the polarity.
+ *  @hw: pointer to the HW structure
+ *
+ *  Success returns 0, Failure returns -E1000_ERR_PHY (-2)
+ *
+ *  Polarity is determined based on the PHY specific status register.
+ **/
+s32 e1000_check_polarity_m88(struct e1000_hw *hw)
+{
+	struct e1000_phy_info *phy = &hw->phy;
+	s32 ret_val;
+	u16 data;
+
+	DEBUGFUNC("e1000_check_polarity_m88");
+
+	ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &data);
+
+	if (!ret_val)
+		phy->cable_polarity = (data & M88E1000_PSSR_REV_POLARITY)
+		                      ? e1000_rev_polarity_reversed
+		                      : e1000_rev_polarity_normal;
+
+	return ret_val;
+}
+
+/**
+ *  e1000_check_polarity_igp - Checks the polarity.
+ *  @hw: pointer to the HW structure
+ *
+ *  Success returns 0, Failure returns -E1000_ERR_PHY (-2)
+ *
+ *  Polarity is determined based on the PHY port status register, and the
+ *  current speed (since there is no polarity at 100Mbps).
+ **/
+s32 e1000_check_polarity_igp(struct e1000_hw *hw)
+{
+	struct e1000_phy_info *phy = &hw->phy;
+	s32 ret_val;
+	u16 data, offset, mask;
+
+	DEBUGFUNC("e1000_check_polarity_igp");
+
+	/*
+	 * Polarity is determined based on the speed of
+	 * our connection.
+	 */
+	ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_STATUS, &data);
+	if (ret_val)
+		goto out;
+
+	if ((data & IGP01E1000_PSSR_SPEED_MASK) ==
+	    IGP01E1000_PSSR_SPEED_1000MBPS) {
+		offset	= IGP01E1000_PHY_PCS_INIT_REG;
+		mask	= IGP01E1000_PHY_POLARITY_MASK;
+	} else {
+		/*
+		 * This really only applies to 10Mbps since
+		 * there is no polarity for 100Mbps (always 0).
+		 */
+		offset	= IGP01E1000_PHY_PORT_STATUS;
+		mask	= IGP01E1000_PSSR_POLARITY_REVERSED;
+	}
+
+	ret_val = e1000_read_phy_reg(hw, offset, &data);
+
+	if (!ret_val)
+		phy->cable_polarity = (data & mask)
+		                      ? e1000_rev_polarity_reversed
+		                      : e1000_rev_polarity_normal;
+
+out:
+	return ret_val;
+}
+
+/**
+ *  e1000_wait_autoneg_generic - Wait for auto-neg compeletion
+ *  @hw: pointer to the HW structure
+ *
+ *  Waits for auto-negotiation to complete or for the auto-negotiation time
+ *  limit to expire, which ever happens first.
+ **/
+s32 e1000_wait_autoneg_generic(struct e1000_hw *hw)
+{
+	s32 ret_val = E1000_SUCCESS;
+	u16 i, phy_status;
+
+	DEBUGFUNC("e1000_wait_autoneg_generic");
+
+	/* Break after autoneg completes or PHY_AUTO_NEG_LIMIT expires. */
+	for (i = PHY_AUTO_NEG_LIMIT; i > 0; i--) {
+		ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_status);
+		if (ret_val)
+			break;
+		ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_status);
+		if (ret_val)
+			break;
+		if (phy_status & MII_SR_AUTONEG_COMPLETE)
+			break;
+		msec_delay(100);
+	}
+
+	/*
+	 * PHY_AUTO_NEG_TIME expiration doesn't guarantee auto-negotiation
+	 * has completed.
+	 */
+	return ret_val;
+}
+
+/**
+ *  e1000_phy_has_link_generic - Polls PHY for link
+ *  @hw: pointer to the HW structure
+ *  @iterations: number of times to poll for link
+ *  @usec_interval: delay between polling attempts
+ *  @success: pointer to whether polling was successful or not
+ *
+ *  Polls the PHY status register for link, 'iterations' number of times.
+ **/
+s32 e1000_phy_has_link_generic(struct e1000_hw *hw, u32 iterations,
+                               u32 usec_interval, bool *success)
+{
+	s32 ret_val = E1000_SUCCESS;
+	u16 i, phy_status;
+
+	DEBUGFUNC("e1000_phy_has_link_generic");
+
+	for (i = 0; i < iterations; i++) {
+		/*
+		 * Some PHYs require the PHY_STATUS register to be read
+		 * twice due to the link bit being sticky.  No harm doing
+		 * it across the board.
+		 */
+		ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_status);
+		if (ret_val)
+			break;
+		ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_status);
+		if (ret_val)
+			break;
+		if (phy_status & MII_SR_LINK_STATUS)
+			break;
+		if (usec_interval >= 1000)
+			msec_delay_irq(usec_interval/1000);
+		else
+			usec_delay(usec_interval);
+	}
+
+	*success = (i < iterations) ? TRUE : FALSE;
+
+	return ret_val;
+}
+
+/**
+ *  e1000_get_cable_length_m88 - Determine cable length for m88 PHY
+ *  @hw: pointer to the HW structure
+ *
+ *  Reads the PHY specific status register to retrieve the cable length
+ *  information.  The cable length is determined by averaging the minimum and
+ *  maximum values to get the "average" cable length.  The m88 PHY has four
+ *  possible cable length values, which are:
+ *	Register Value		Cable Length
+ *	0			< 50 meters
+ *	1			50 - 80 meters
+ *	2			80 - 110 meters
+ *	3			110 - 140 meters
+ *	4			> 140 meters
+ **/
+s32 e1000_get_cable_length_m88(struct e1000_hw *hw)
+{
+	struct e1000_phy_info *phy = &hw->phy;
+	s32 ret_val;
+	u16 phy_data, index;
+
+	DEBUGFUNC("e1000_get_cable_length_m88");
+
+	ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
+	if (ret_val)
+		goto out;
+
+	index = (phy_data & M88E1000_PSSR_CABLE_LENGTH) >>
+	        M88E1000_PSSR_CABLE_LENGTH_SHIFT;
+	phy->min_cable_length = e1000_m88_cable_length_table[index];
+	phy->max_cable_length = e1000_m88_cable_length_table[index+1];
+
+	phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2;
+
+out:
+	return ret_val;
+}
+
+/**
+ *  e1000_get_cable_length_igp_2 - Determine cable length for igp2 PHY
+ *  @hw: pointer to the HW structure
+ *
+ *  The automatic gain control (agc) normalizes the amplitude of the
+ *  received signal, adjusting for the attenuation produced by the
+ *  cable.  By reading the AGC registers, which reperesent the
+ *  cobination of course and fine gain value, the value can be put
+ *  into a lookup table to obtain the approximate cable length
+ *  for each channel.
+ **/
+s32 e1000_get_cable_length_igp_2(struct e1000_hw *hw)
+{
+	struct e1000_phy_info *phy = &hw->phy;
+	s32 ret_val = E1000_SUCCESS;
+	u16 phy_data, i, agc_value = 0;
+	u16 cur_agc_index, max_agc_index = 0;
+	u16 min_agc_index = IGP02E1000_CABLE_LENGTH_TABLE_SIZE - 1;
+	u16 agc_reg_array[IGP02E1000_PHY_CHANNEL_NUM] =
+	                                                 {IGP02E1000_PHY_AGC_A,
+	                                                  IGP02E1000_PHY_AGC_B,
+	                                                  IGP02E1000_PHY_AGC_C,
+	                                                  IGP02E1000_PHY_AGC_D};
+
+	DEBUGFUNC("e1000_get_cable_length_igp_2");
+
+	/* Read the AGC registers for all channels */
+	for (i = 0; i < IGP02E1000_PHY_CHANNEL_NUM; i++) {
+		ret_val = e1000_read_phy_reg(hw, agc_reg_array[i], &phy_data);
+		if (ret_val)
+			goto out;
+
+		/*
+		 * Getting bits 15:9, which represent the combination of
+		 * course and fine gain values.  The result is a number
+		 * that can be put into the lookup table to obtain the
+		 * approximate cable length.
+		 */
+		cur_agc_index = (phy_data >> IGP02E1000_AGC_LENGTH_SHIFT) &
+		                IGP02E1000_AGC_LENGTH_MASK;
+
+		/* Array index bound check. */
+		if ((cur_agc_index >= IGP02E1000_CABLE_LENGTH_TABLE_SIZE) ||
+		    (cur_agc_index == 0)) {
+			ret_val = -E1000_ERR_PHY;
+			goto out;
+		}
+
+		/* Remove min & max AGC values from calculation. */
+		if (e1000_igp_2_cable_length_table[min_agc_index] >
+		    e1000_igp_2_cable_length_table[cur_agc_index])
+			min_agc_index = cur_agc_index;
+		if (e1000_igp_2_cable_length_table[max_agc_index] <
+		    e1000_igp_2_cable_length_table[cur_agc_index])
+			max_agc_index = cur_agc_index;
+
+		agc_value += e1000_igp_2_cable_length_table[cur_agc_index];
+	}
+
+	agc_value -= (e1000_igp_2_cable_length_table[min_agc_index] +
+	              e1000_igp_2_cable_length_table[max_agc_index]);
+	agc_value /= (IGP02E1000_PHY_CHANNEL_NUM - 2);
+
+	/* Calculate cable length with the error range of +/- 10 meters. */
+	phy->min_cable_length = ((agc_value - IGP02E1000_AGC_RANGE) > 0) ?
+	                         (agc_value - IGP02E1000_AGC_RANGE) : 0;
+	phy->max_cable_length = agc_value + IGP02E1000_AGC_RANGE;
+
+	phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2;
+
+out:
+	return ret_val;
+}
+
+/**
+ *  e1000_get_phy_info_m88 - Retrieve PHY information
+ *  @hw: pointer to the HW structure
+ *
+ *  Valid for only copper links.  Read the PHY status register (sticky read)
+ *  to verify that link is up.  Read the PHY special control register to
+ *  determine the polarity and 10base-T extended distance.  Read the PHY
+ *  special status register to determine MDI/MDIx and current speed.  If
+ *  speed is 1000, then determine cable length, local and remote receiver.
+ **/
+s32 e1000_get_phy_info_m88(struct e1000_hw *hw)
+{
+	struct e1000_phy_info *phy = &hw->phy;
+	s32  ret_val;
+	u16 phy_data;
+	bool link;
+
+	DEBUGFUNC("e1000_get_phy_info_m88");
+
+	if (hw->phy.media_type != e1000_media_type_copper) {
+		DEBUGOUT("Phy info is only valid for copper media\n");
+		ret_val = -E1000_ERR_CONFIG;
+		goto out;
+	}
+
+	ret_val = e1000_phy_has_link_generic(hw, 1, 0, &link);
+	if (ret_val)
+		goto out;
+
+	if (!link) {
+		DEBUGOUT("Phy info is only valid if link is up\n");
+		ret_val = -E1000_ERR_CONFIG;
+		goto out;
+	}
+
+	ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
+	if (ret_val)
+		goto out;
+
+	phy->polarity_correction = (phy_data & M88E1000_PSCR_POLARITY_REVERSAL)
+	                           ? TRUE
+	                           : FALSE;
+
+	ret_val = e1000_check_polarity_m88(hw);
+	if (ret_val)
+		goto out;
+
+	ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
+	if (ret_val)
+		goto out;
+
+	phy->is_mdix = (phy_data & M88E1000_PSSR_MDIX) ? TRUE : FALSE;
+
+	if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS) {
+		ret_val = e1000_get_cable_length(hw);
+		if (ret_val)
+			goto out;
+
+		ret_val = e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_data);
+		if (ret_val)
+			goto out;
+
+		phy->local_rx = (phy_data & SR_1000T_LOCAL_RX_STATUS)
+		                ? e1000_1000t_rx_status_ok
+		                : e1000_1000t_rx_status_not_ok;
+
+		phy->remote_rx = (phy_data & SR_1000T_REMOTE_RX_STATUS)
+		                 ? e1000_1000t_rx_status_ok
+		                 : e1000_1000t_rx_status_not_ok;
+	} else {
+		/* Set values to "undefined" */
+		phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
+		phy->local_rx = e1000_1000t_rx_status_undefined;
+		phy->remote_rx = e1000_1000t_rx_status_undefined;
+	}
+
+out:
+	return ret_val;
+}
+
+/**
+ *  e1000_get_phy_info_igp - Retrieve igp PHY information
+ *  @hw: pointer to the HW structure
+ *
+ *  Read PHY status to determine if link is up.  If link is up, then
+ *  set/determine 10base-T extended distance and polarity correction.  Read
+ *  PHY port status to determine MDI/MDIx and speed.  Based on the speed,
+ *  determine on the cable length, local and remote receiver.
+ **/
+s32 e1000_get_phy_info_igp(struct e1000_hw *hw)
+{
+	struct e1000_phy_info *phy = &hw->phy;
+	s32 ret_val;
+	u16 data;
+	bool link;
+
+	DEBUGFUNC("e1000_get_phy_info_igp");
+
+	ret_val = e1000_phy_has_link_generic(hw, 1, 0, &link);
+	if (ret_val)
+		goto out;
+
+	if (!link) {
+		DEBUGOUT("Phy info is only valid if link is up\n");
+		ret_val = -E1000_ERR_CONFIG;
+		goto out;
+	}
+
+	phy->polarity_correction = TRUE;
+
+	ret_val = e1000_check_polarity_igp(hw);
+	if (ret_val)
+		goto out;
+
+	ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_STATUS, &data);
+	if (ret_val)
+		goto out;
+
+	phy->is_mdix = (data & IGP01E1000_PSSR_MDIX) ? TRUE : FALSE;
+
+	if ((data & IGP01E1000_PSSR_SPEED_MASK) ==
+	    IGP01E1000_PSSR_SPEED_1000MBPS) {
+		ret_val = e1000_get_cable_length(hw);
+		if (ret_val)
+			goto out;
+
+		ret_val = e1000_read_phy_reg(hw, PHY_1000T_STATUS, &data);
+		if (ret_val)
+			goto out;
+
+		phy->local_rx = (data & SR_1000T_LOCAL_RX_STATUS)
+		                ? e1000_1000t_rx_status_ok
+		                : e1000_1000t_rx_status_not_ok;
+
+		phy->remote_rx = (data & SR_1000T_REMOTE_RX_STATUS)
+		                 ? e1000_1000t_rx_status_ok
+		                 : e1000_1000t_rx_status_not_ok;
+	} else {
+		phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
+		phy->local_rx = e1000_1000t_rx_status_undefined;
+		phy->remote_rx = e1000_1000t_rx_status_undefined;
+	}
+
+out:
+	return ret_val;
+}
+
+/**
+ *  e1000_phy_sw_reset_generic - PHY software reset
+ *  @hw: pointer to the HW structure
+ *
+ *  Does a software reset of the PHY by reading the PHY control register and
+ *  setting/write the control register reset bit to the PHY.
+ **/
+s32 e1000_phy_sw_reset_generic(struct e1000_hw *hw)
+{
+	s32 ret_val;
+	u16 phy_ctrl;
+
+	DEBUGFUNC("e1000_phy_sw_reset_generic");
+
+	ret_val = e1000_read_phy_reg(hw, PHY_CONTROL, &phy_ctrl);
+	if (ret_val)
+		goto out;
+
+	phy_ctrl |= MII_CR_RESET;
+	ret_val = e1000_write_phy_reg(hw, PHY_CONTROL, phy_ctrl);
+	if (ret_val)
+		goto out;
+
+	usec_delay(1);
+
+out:
+	return ret_val;
+}
+
+/**
+ *  e1000_phy_hw_reset_generic - PHY hardware reset
+ *  @hw: pointer to the HW structure
+ *
+ *  Verify the reset block is not blocking us from resetting.  Acquire
+ *  semaphore (if necessary) and read/set/write the device control reset
+ *  bit in the PHY.  Wait the appropriate delay time for the device to
+ *  reset and relase the semaphore (if necessary).
+ **/
+s32 e1000_phy_hw_reset_generic(struct e1000_hw *hw)
+{
+	struct e1000_phy_info *phy = &hw->phy;
+	s32  ret_val;
+	u32 ctrl;
+
+	DEBUGFUNC("e1000_phy_hw_reset_generic");
+
+	ret_val = e1000_check_reset_block(hw);
+	if (ret_val) {
+		ret_val = E1000_SUCCESS;
+		goto out;
+	}
+
+	ret_val = e1000_acquire_phy(hw);
+	if (ret_val)
+		goto out;
+
+	ctrl = E1000_READ_REG(hw, E1000_CTRL);
+	E1000_WRITE_REG(hw, E1000_CTRL, ctrl | E1000_CTRL_PHY_RST);
+	E1000_WRITE_FLUSH(hw);
+
+	usec_delay(phy->reset_delay_us);
+
+	E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
+	E1000_WRITE_FLUSH(hw);
+
+	usec_delay(150);
+
+	e1000_release_phy(hw);
+
+	ret_val = e1000_get_phy_cfg_done(hw);
+
+out:
+	return ret_val;
+}
+
+/**
+ *  e1000_get_cfg_done_generic - Generic configuration done
+ *  @hw: pointer to the HW structure
+ *
+ *  Generic function to wait 10 milli-seconds for configuration to complete
+ *  and return success.
+ **/
+s32 e1000_get_cfg_done_generic(struct e1000_hw *hw)
+{
+	DEBUGFUNC("e1000_get_cfg_done_generic");
+	UNREFERENCED_PARAMETER(hw);
+
+	msec_delay_irq(10);
+
+	return E1000_SUCCESS;
+}
+
+/* Internal function pointers */
+
+/**
+ *  e1000_get_phy_cfg_done - Generic PHY configuration done
+ *  @hw: pointer to the HW structure
+ *
+ *  Return success if silicon family did not implement a family specific
+ *  get_cfg_done function.
+ **/
+s32 e1000_get_phy_cfg_done(struct e1000_hw *hw)
+{
+	if (hw->func.get_cfg_done)
+		return hw->func.get_cfg_done(hw);
+
+	return E1000_SUCCESS;
+}
+
+/**
+ *  e1000_release_phy - Generic release PHY
+ *  @hw: pointer to the HW structure
+ *
+ *  Return if silicon family does not require a semaphore when accessing the
+ *  PHY.
+ **/
+void e1000_release_phy(struct e1000_hw *hw)
+{
+	if (hw->func.release_phy)
+		hw->func.release_phy(hw);
+}
+
+/**
+ *  e1000_acquire_phy - Generic acquire PHY
+ *  @hw: pointer to the HW structure
+ *
+ *  Return success if silicon family does not require a semaphore when
+ *  accessing the PHY.
+ **/
+s32 e1000_acquire_phy(struct e1000_hw *hw)
+{
+	if (hw->func.acquire_phy)
+		return hw->func.acquire_phy(hw);
+
+	return E1000_SUCCESS;
+}
+
+/**
+ *  e1000_phy_force_speed_duplex - Generic force PHY speed/duplex
+ *  @hw: pointer to the HW structure
+ *
+ *  When the silicon family has not implemented a forced speed/duplex
+ *  function for the PHY, simply return E1000_SUCCESS.
+ **/
+s32 e1000_phy_force_speed_duplex(struct e1000_hw *hw)
+{
+	if (hw->func.force_speed_duplex)
+		return hw->func.force_speed_duplex(hw);
+
+	return E1000_SUCCESS;
+}
+
+/**
+ *  e1000_phy_init_script_igp3 - Inits the IGP3 PHY
+ *  @hw: pointer to the HW structure
+ *
+ *  Initializes a Intel Gigabit PHY3 when an EEPROM is not present.
+ **/
+s32 e1000_phy_init_script_igp3(struct e1000_hw *hw)
+{
+	DEBUGOUT("Running IGP 3 PHY init script\n");
+
+	/* PHY init IGP 3 */
+	/* Enable rise/fall, 10-mode work in class-A */
+	e1000_write_phy_reg(hw, 0x2F5B, 0x9018);
+	/* Remove all caps from Replica path filter */
+	e1000_write_phy_reg(hw, 0x2F52, 0x0000);
+	/* Bias trimming for ADC, AFE and Driver (Default) */
+	e1000_write_phy_reg(hw, 0x2FB1, 0x8B24);
+	/* Increase Hybrid poly bias */
+	e1000_write_phy_reg(hw, 0x2FB2, 0xF8F0);
+	/* Add 4% to Tx amplitude in Giga mode */
+	e1000_write_phy_reg(hw, 0x2010, 0x10B0);
+	/* Disable trimming (TTT) */
+	e1000_write_phy_reg(hw, 0x2011, 0x0000);
+	/* Poly DC correction to 94.6% + 2% for all channels */
+	e1000_write_phy_reg(hw, 0x20DD, 0x249A);
+	/* ABS DC correction to 95.9% */
+	e1000_write_phy_reg(hw, 0x20DE, 0x00D3);
+	/* BG temp curve trim */
+	e1000_write_phy_reg(hw, 0x28B4, 0x04CE);
+	/* Increasing ADC OPAMP stage 1 currents to max */
+	e1000_write_phy_reg(hw, 0x2F70, 0x29E4);
+	/* Force 1000 ( required for enabling PHY regs configuration) */
+	e1000_write_phy_reg(hw, 0x0000, 0x0140);
+	/* Set upd_freq to 6 */
+	e1000_write_phy_reg(hw, 0x1F30, 0x1606);
+	/* Disable NPDFE */
+	e1000_write_phy_reg(hw, 0x1F31, 0xB814);
+	/* Disable adaptive fixed FFE (Default) */
+	e1000_write_phy_reg(hw, 0x1F35, 0x002A);
+	/* Enable FFE hysteresis */
+	e1000_write_phy_reg(hw, 0x1F3E, 0x0067);
+	/* Fixed FFE for short cable lengths */
+	e1000_write_phy_reg(hw, 0x1F54, 0x0065);
+	/* Fixed FFE for medium cable lengths */
+	e1000_write_phy_reg(hw, 0x1F55, 0x002A);
+	/* Fixed FFE for long cable lengths */
+	e1000_write_phy_reg(hw, 0x1F56, 0x002A);
+	/* Enable Adaptive Clip Threshold */
+	e1000_write_phy_reg(hw, 0x1F72, 0x3FB0);
+	/* AHT reset limit to 1 */
+	e1000_write_phy_reg(hw, 0x1F76, 0xC0FF);
+	/* Set AHT master delay to 127 msec */
+	e1000_write_phy_reg(hw, 0x1F77, 0x1DEC);
+	/* Set scan bits for AHT */
+	e1000_write_phy_reg(hw, 0x1F78, 0xF9EF);
+	/* Set AHT Preset bits */
+	e1000_write_phy_reg(hw, 0x1F79, 0x0210);
+	/* Change integ_factor of channel A to 3 */
+	e1000_write_phy_reg(hw, 0x1895, 0x0003);
+	/* Change prop_factor of channels BCD to 8 */
+	e1000_write_phy_reg(hw, 0x1796, 0x0008);
+	/* Change cg_icount + enable integbp for channels BCD */
+	e1000_write_phy_reg(hw, 0x1798, 0xD008);
+	/*
+	 * Change cg_icount + enable integbp + change prop_factor_master
+	 * to 8 for channel A
+	 */
+	e1000_write_phy_reg(hw, 0x1898, 0xD918);
+	/* Disable AHT in Slave mode on channel A */
+	e1000_write_phy_reg(hw, 0x187A, 0x0800);
+	/*
+	 * Enable LPLU and disable AN to 1000 in non-D0a states,
+	 * Enable SPD+B2B
+	 */
+	e1000_write_phy_reg(hw, 0x0019, 0x008D);
+	/* Enable restart AN on an1000_dis change */
+	e1000_write_phy_reg(hw, 0x001B, 0x2080);
+	/* Enable wh_fifo read clock in 10/100 modes */
+	e1000_write_phy_reg(hw, 0x0014, 0x0045);
+	/* Restart AN, Speed selection is 1000 */
+	e1000_write_phy_reg(hw, 0x0000, 0x1340);
+
+	return E1000_SUCCESS;
+}
+
+/**
+ *  e1000_get_phy_type_from_id - Get PHY type from id
+ *  @phy_id: phy_id read from the phy
+ *
+ *  Returns the phy type from the id.
+ **/
+e1000_phy_type e1000_get_phy_type_from_id(u32 phy_id)
+{
+	e1000_phy_type phy_type = e1000_phy_unknown;
+
+	switch (phy_id)	{
+	case M88E1000_I_PHY_ID:
+	case M88E1000_E_PHY_ID:
+	case M88E1111_I_PHY_ID:
+	case M88E1011_I_PHY_ID:
+		phy_type = e1000_phy_m88;
+		break;
+	case IGP01E1000_I_PHY_ID: /* IGP 1 & 2 share this */
+		phy_type = e1000_phy_igp_2;
+		break;
+	case GG82563_E_PHY_ID:
+		phy_type = e1000_phy_gg82563;
+		break;
+	case IGP03E1000_E_PHY_ID:
+		phy_type = e1000_phy_igp_3;
+		break;
+	case IFE_E_PHY_ID:
+	case IFE_PLUS_E_PHY_ID:
+	case IFE_C_E_PHY_ID:
+		phy_type = e1000_phy_ife;
+		break;
+	default:
+		phy_type = e1000_phy_unknown;
+		break;
+	}
+	return phy_type;
+}
+
+/**
+ * e1000_power_up_phy_copper - Restore copper link in case of PHY power down
+ * @hw: pointer to the HW structure
+ *
+ * In the case of a PHY power down to save power, or to turn off link during a
+ * driver unload, or wake on lan is not enabled, restore the link to previous
+ * settings.
+ **/
+void e1000_power_up_phy_copper(struct e1000_hw *hw)
+{
+	u16 mii_reg = 0;
+
+	/* The PHY will retain its settings across a power down/up cycle */
+	e1000_read_phy_reg(hw, PHY_CONTROL, &mii_reg);
+	mii_reg &= ~MII_CR_POWER_DOWN;
+	e1000_write_phy_reg(hw, PHY_CONTROL, mii_reg);
+}
+
+/**
+ * e1000_power_down_phy_copper - Restore copper link in case of PHY power down
+ * @hw: pointer to the HW structure
+ *
+ * In the case of a PHY power down to save power, or to turn off link during a
+ * driver unload, or wake on lan is not enabled, restore the link to previous
+ * settings.
+ **/
+void e1000_power_down_phy_copper(struct e1000_hw *hw)
+{
+	u16 mii_reg = 0;
+
+	/* The PHY will retain its settings across a power down/up cycle */
+	e1000_read_phy_reg(hw, PHY_CONTROL, &mii_reg);
+	mii_reg |= MII_CR_POWER_DOWN;
+	e1000_write_phy_reg(hw, PHY_CONTROL, mii_reg);
+	msec_delay(1);
+}
--- /dev/null
+++ sys/dev/em/e1000_osdep.h
@@ -0,0 +1,189 @@
+/**************************************************************************
+
+Copyright (c) 2001-2007, Intel Corporation
+All rights reserved.
+
+Redistribution and use in source and binary forms, with or without
+modification, are permitted provided that the following conditions are met:
+
+ 1. Redistributions of source code must retain the above copyright notice,
+    this list of conditions and the following disclaimer.
+
+ 2. Redistributions in binary form must reproduce the above copyright
+    notice, this list of conditions and the following disclaimer in the
+    documentation and/or other materials provided with the distribution.
+
+ 3. Neither the name of the Intel Corporation nor the names of its
+    contributors may be used to endorse or promote products derived from
+    this software without specific prior written permission.
+
+THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
+AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
+LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
+CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
+SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
+INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
+CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
+ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
+POSSIBILITY OF SUCH DAMAGE.
+
+***************************************************************************/
+/* $FreeBSD: src/sys/dev/em/e1000_osdep.h,v 1.3.4.1 2007/11/28 23:24:38 jfv Exp $ */
+
+
+#ifndef _FREEBSD_OS_H_
+#define _FREEBSD_OS_H_
+
+#include <sys/types.h>
+#include <sys/param.h>
+#include <sys/systm.h>
+#include <sys/mbuf.h>
+#include <sys/protosw.h>
+#include <sys/socket.h>
+#include <sys/malloc.h>
+#include <sys/kernel.h>
+#include <sys/bus.h>
+#include <machine/bus.h>
+#include <sys/rman.h>
+#include <machine/resource.h>
+#include <vm/vm.h>
+#include <vm/pmap.h>
+#include <machine/clock.h>
+#include <dev/pci/pcivar.h>
+#include <dev/pci/pcireg.h>
+
+
+#define ASSERT(x) if(!(x)) panic("EM: x")
+
+/* The happy-fun DELAY macro is defined in /usr/src/sys/i386/include/clock.h */
+#define usec_delay(x) DELAY(x)
+#define msec_delay(x) DELAY(1000*(x))
+/* TODO: Should we be paranoid about delaying in interrupt context? */
+#define msec_delay_irq(x) DELAY(1000*(x))
+
+#define MSGOUT(S, A, B)     printf(S "\n", A, B)
+#define DEBUGFUNC(F)        DEBUGOUT(F);
+	#define DEBUGOUT(S)
+	#define DEBUGOUT1(S,A)
+	#define DEBUGOUT2(S,A,B)
+	#define DEBUGOUT3(S,A,B,C)
+	#define DEBUGOUT7(S,A,B,C,D,E,F,G)
+
+#define STATIC				static
+#define FALSE               0
+#define TRUE                1
+#define CMD_MEM_WRT_INVALIDATE          0x0010  /* BIT_4 */
+#define PCI_COMMAND_REGISTER            PCIR_COMMAND
+
+/*
+** These typedefs are necessary due to the new
+** shared code, they are native to Linux.
+*/
+typedef uint64_t	u64;
+typedef uint32_t	u32;
+typedef uint16_t	u16;
+typedef uint8_t		u8;
+typedef int64_t		s64;
+typedef int32_t		s32;
+typedef int16_t		s16;
+typedef int8_t		s8;
+typedef boolean_t	bool;
+
+struct e1000_osdep
+{
+	bus_space_tag_t    mem_bus_space_tag;
+	bus_space_handle_t mem_bus_space_handle;
+	bus_space_tag_t    io_bus_space_tag;
+	bus_space_handle_t io_bus_space_handle;
+	bus_space_tag_t    flash_bus_space_tag;
+	bus_space_handle_t flash_bus_space_handle;
+	struct device     *dev;
+};
+
+#ifdef NO_82542_SUPPORT
+#define E1000_REGISTER(hw, reg) reg
+#else
+#define E1000_REGISTER(hw, reg) (((hw)->mac.type >= e1000_82543) \
+    ? reg : e1000_translate_register_82542(reg))
+#endif
+
+#define E1000_WRITE_FLUSH(a) E1000_READ_REG(a, E1000_STATUS)
+
+/* Read from an absolute offset in the adapter's memory space */
+#define E1000_READ_OFFSET(hw, offset) \
+    bus_space_read_4(((struct e1000_osdep *)(hw)->back)->mem_bus_space_tag, \
+    ((struct e1000_osdep *)(hw)->back)->mem_bus_space_handle, offset)
+
+/* Write to an absolute offset in the adapter's memory space */
+#define E1000_WRITE_OFFSET(hw, offset, value) \
+    bus_space_write_4(((struct e1000_osdep *)(hw)->back)->mem_bus_space_tag, \
+    ((struct e1000_osdep *)(hw)->back)->mem_bus_space_handle, offset, value)
+
+/* Register READ/WRITE macros */
+
+#define E1000_READ_REG(hw, reg) \
+    bus_space_read_4(((struct e1000_osdep *)(hw)->back)->mem_bus_space_tag, \
+        ((struct e1000_osdep *)(hw)->back)->mem_bus_space_handle, \
+        E1000_REGISTER(hw, reg))
+
+#define E1000_WRITE_REG(hw, reg, value) \
+    bus_space_write_4(((struct e1000_osdep *)(hw)->back)->mem_bus_space_tag, \
+        ((struct e1000_osdep *)(hw)->back)->mem_bus_space_handle, \
+        E1000_REGISTER(hw, reg), value)
+
+#define E1000_READ_REG_ARRAY(hw, reg, index) \
+    bus_space_read_4(((struct e1000_osdep *)(hw)->back)->mem_bus_space_tag, \
+        ((struct e1000_osdep *)(hw)->back)->mem_bus_space_handle, \
+        E1000_REGISTER(hw, reg) + ((index)<< 2))
+
+#define E1000_WRITE_REG_ARRAY(hw, reg, index, value) \
+    bus_space_write_4(((struct e1000_osdep *)(hw)->back)->mem_bus_space_tag, \
+        ((struct e1000_osdep *)(hw)->back)->mem_bus_space_handle, \
+        E1000_REGISTER(hw, reg) + ((index)<< 2), value)
+
+#define E1000_READ_REG_ARRAY_DWORD E1000_READ_REG_ARRAY
+#define E1000_WRITE_REG_ARRAY_DWORD E1000_WRITE_REG_ARRAY
+
+#define E1000_READ_REG_ARRAY_BYTE(hw, reg, index) \
+    bus_space_read_1(((struct e1000_osdep *)(hw)->back)->mem_bus_space_tag, \
+        ((struct e1000_osdep *)(hw)->back)->mem_bus_space_handle, \
+        E1000_REGISTER(hw, reg) + index)
+
+#define E1000_WRITE_REG_ARRAY_BYTE(hw, reg, index, value) \
+    bus_space_write_1(((struct e1000_osdep *)(hw)->back)->mem_bus_space_tag, \
+        ((struct e1000_osdep *)(hw)->back)->mem_bus_space_handle, \
+        E1000_REGISTER(hw, reg) + index, value)
+
+#define E1000_WRITE_REG_ARRAY_WORD(hw, reg, index, value) \
+    bus_space_write_2(((struct e1000_osdep *)(hw)->back)->mem_bus_space_tag, \
+        ((struct e1000_osdep *)(hw)->back)->mem_bus_space_handle, \
+        E1000_REGISTER(hw, reg) + (index << 1), value)
+
+#define E1000_WRITE_REG_IO(hw, reg, value) do {\
+    bus_space_write_4(((struct e1000_osdep *)(hw)->back)->io_bus_space_tag, \
+        ((struct e1000_osdep *)(hw)->back)->io_bus_space_handle, \
+        (hw)->io_base, reg); \
+    bus_space_write_4(((struct e1000_osdep *)(hw)->back)->io_bus_space_tag, \
+        ((struct e1000_osdep *)(hw)->back)->io_bus_space_handle, \
+        (hw)->io_base + 4, value); } while (0)
+
+#define E1000_READ_FLASH_REG(hw, reg) \
+    bus_space_read_4(((struct e1000_osdep *)(hw)->back)->flash_bus_space_tag, \
+        ((struct e1000_osdep *)(hw)->back)->flash_bus_space_handle, reg)
+
+#define E1000_READ_FLASH_REG16(hw, reg) \
+    bus_space_read_2(((struct e1000_osdep *)(hw)->back)->flash_bus_space_tag, \
+        ((struct e1000_osdep *)(hw)->back)->flash_bus_space_handle, reg)
+
+#define E1000_WRITE_FLASH_REG(hw, reg, value) \
+    bus_space_write_4(((struct e1000_osdep *)(hw)->back)->flash_bus_space_tag, \
+        ((struct e1000_osdep *)(hw)->back)->flash_bus_space_handle, reg, value)
+
+#define E1000_WRITE_FLASH_REG16(hw, reg, value) \
+    bus_space_write_2(((struct e1000_osdep *)(hw)->back)->flash_bus_space_tag, \
+        ((struct e1000_osdep *)(hw)->back)->flash_bus_space_handle, reg, value)
+
+#endif  /* _FREEBSD_OS_H_ */
+
--- /dev/null
+++ sys/dev/em/e1000_ich8lan.h
@@ -0,0 +1,117 @@
+/*******************************************************************************
+
+  Copyright (c) 2001-2007, Intel Corporation 
+  All rights reserved.
+  
+  Redistribution and use in source and binary forms, with or without 
+  modification, are permitted provided that the following conditions are met:
+  
+   1. Redistributions of source code must retain the above copyright notice, 
+      this list of conditions and the following disclaimer.
+  
+   2. Redistributions in binary form must reproduce the above copyright 
+      notice, this list of conditions and the following disclaimer in the 
+      documentation and/or other materials provided with the distribution.
+  
+   3. Neither the name of the Intel Corporation nor the names of its 
+      contributors may be used to endorse or promote products derived from 
+      this software without specific prior written permission.
+  
+  THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
+  AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 
+  IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 
+  ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE 
+  LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 
+  CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 
+  SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 
+  INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 
+  CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 
+  ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
+  POSSIBILITY OF SUCH DAMAGE.
+
+*******************************************************************************/
+/* $FreeBSD: src/sys/dev/em/e1000_ich8lan.h,v 1.3.4.1 2007/11/28 23:24:38 jfv Exp $ */
+
+
+#ifndef _E1000_ICH8LAN_H_
+#define _E1000_ICH8LAN_H_
+
+#define ICH_FLASH_GFPREG                 0x0000
+#define ICH_FLASH_HSFSTS                 0x0004
+#define ICH_FLASH_HSFCTL                 0x0006
+#define ICH_FLASH_FADDR                  0x0008
+#define ICH_FLASH_FDATA0                 0x0010
+
+#define ICH_FLASH_READ_COMMAND_TIMEOUT   500
+#define ICH_FLASH_WRITE_COMMAND_TIMEOUT  500
+#define ICH_FLASH_ERASE_COMMAND_TIMEOUT  3000000
+#define ICH_FLASH_LINEAR_ADDR_MASK       0x00FFFFFF
+#define ICH_FLASH_CYCLE_REPEAT_COUNT     10
+
+#define ICH_CYCLE_READ                   0
+#define ICH_CYCLE_WRITE                  2
+#define ICH_CYCLE_ERASE                  3
+
+#define FLASH_GFPREG_BASE_MASK           0x1FFF
+#define FLASH_SECTOR_ADDR_SHIFT          12
+
+#define E1000_SHADOW_RAM_WORDS           2048
+
+#define ICH_FLASH_SEG_SIZE_256           256
+#define ICH_FLASH_SEG_SIZE_4K            4096
+#define ICH_FLASH_SEG_SIZE_8K            8192
+#define ICH_FLASH_SEG_SIZE_64K           65536
+#define ICH_FLASH_SECTOR_SIZE            4096
+
+#define ICH_FLASH_REG_MAPSIZE            0x00A0
+
+#define E1000_ICH_FWSM_RSPCIPHY          0x00000040 /* Reset PHY on PCI Reset */
+#define E1000_ICH_FWSM_DISSW             0x10000000 /* FW Disables SW Writes */
+/* FW established a valid mode */
+#define E1000_ICH_FWSM_FW_VALID          0x00008000
+
+#define E1000_ICH_MNG_IAMT_MODE          0x2
+
+#define ID_LED_DEFAULT_ICH8LAN  ((ID_LED_DEF1_DEF2 << 12) | \
+                                 (ID_LED_DEF1_OFF2 <<  8) | \
+                                 (ID_LED_DEF1_ON2  <<  4) | \
+                                 (ID_LED_DEF1_DEF2))
+
+#define E1000_ICH_NVM_SIG_WORD           0x13
+#define E1000_ICH_NVM_SIG_MASK           0xC000
+
+#define E1000_ICH8_LAN_INIT_TIMEOUT      1500
+
+#define E1000_FEXTNVM_SW_CONFIG        1
+#define E1000_FEXTNVM_SW_CONFIG_ICH8M (1 << 27) /* Bit redefined for ICH8M :/ */
+
+#define PCIE_ICH8_SNOOP_ALL   PCIE_NO_SNOOP_ALL
+
+#define E1000_ICH_RAR_ENTRIES            7
+
+#define PHY_PAGE_SHIFT 5
+#define PHY_REG(page, reg) (((page) << PHY_PAGE_SHIFT) | \
+                           ((reg) & MAX_PHY_REG_ADDRESS))
+#define IGP3_KMRN_DIAG  PHY_REG(770, 19) /* KMRN Diagnostic */
+#define IGP3_VR_CTRL    PHY_REG(776, 18) /* Voltage Regulator Control */
+#define IGP3_CAPABILITY PHY_REG(776, 19) /* Capability */
+#define IGP3_PM_CTRL    PHY_REG(769, 20) /* Power Management Control */
+
+#define IGP3_KMRN_DIAG_PCS_LOCK_LOSS         0x0002
+#define IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK 0x0300
+#define IGP3_VR_CTRL_MODE_SHUTDOWN           0x0200
+#define IGP3_PM_CTRL_FORCE_PWR_DOWN          0x0020
+
+/*
+ * Additional interrupts need to be handled for ICH family:
+ *  DSW = The FW changed the status of the DISSW bit in FWSM
+ *  PHYINT = The LAN connected device generates an interrupt
+ *  EPRST = Manageability reset event
+ */
+#define IMS_ICH_ENABLE_MASK (\
+    E1000_IMS_DSW   | \
+    E1000_IMS_PHYINT | \
+    E1000_IMS_EPRST)
+
+
+#endif
--- /dev/null
+++ sys/dev/em/e1000_80003es2lan.c
@@ -0,0 +1,1370 @@
+/*******************************************************************************
+
+  Copyright (c) 2001-2007, Intel Corporation 
+  All rights reserved.
+  
+  Redistribution and use in source and binary forms, with or without 
+  modification, are permitted provided that the following conditions are met:
+  
+   1. Redistributions of source code must retain the above copyright notice, 
+      this list of conditions and the following disclaimer.
+  
+   2. Redistributions in binary form must reproduce the above copyright 
+      notice, this list of conditions and the following disclaimer in the 
+      documentation and/or other materials provided with the distribution.
+  
+   3. Neither the name of the Intel Corporation nor the names of its 
+      contributors may be used to endorse or promote products derived from 
+      this software without specific prior written permission.
+  
+  THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
+  AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 
+  IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 
+  ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE 
+  LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 
+  CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 
+  SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 
+  INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 
+  CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 
+  ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
+  POSSIBILITY OF SUCH DAMAGE.
+
+*******************************************************************************/
+/* $FreeBSD: src/sys/dev/em/e1000_80003es2lan.c,v 1.3.4.1 2007/11/28 23:24:37 jfv Exp $ */
+
+/* e1000_80003es2lan
+ */
+
+#include "e1000_api.h"
+#include "e1000_80003es2lan.h"
+
+void e1000_init_function_pointers_80003es2lan(struct e1000_hw *hw);
+
+STATIC s32  e1000_init_phy_params_80003es2lan(struct e1000_hw *hw);
+STATIC s32  e1000_init_nvm_params_80003es2lan(struct e1000_hw *hw);
+STATIC s32  e1000_init_mac_params_80003es2lan(struct e1000_hw *hw);
+STATIC s32  e1000_acquire_phy_80003es2lan(struct e1000_hw *hw);
+STATIC void e1000_release_phy_80003es2lan(struct e1000_hw *hw);
+STATIC s32  e1000_acquire_nvm_80003es2lan(struct e1000_hw *hw);
+STATIC void e1000_release_nvm_80003es2lan(struct e1000_hw *hw);
+STATIC s32  e1000_read_phy_reg_gg82563_80003es2lan(struct e1000_hw *hw,
+                                                   u32 offset,
+                                                   u16 *data);
+STATIC s32  e1000_write_phy_reg_gg82563_80003es2lan(struct e1000_hw *hw,
+                                                    u32 offset,
+                                                    u16 data);
+STATIC s32  e1000_write_nvm_80003es2lan(struct e1000_hw *hw, u16 offset,
+                                        u16 words, u16 *data);
+STATIC s32  e1000_get_cfg_done_80003es2lan(struct e1000_hw *hw);
+STATIC s32  e1000_phy_force_speed_duplex_80003es2lan(struct e1000_hw *hw);
+STATIC s32  e1000_get_cable_length_80003es2lan(struct e1000_hw *hw);
+STATIC s32  e1000_get_link_up_info_80003es2lan(struct e1000_hw *hw, u16 *speed,
+                                               u16 *duplex);
+STATIC s32  e1000_reset_hw_80003es2lan(struct e1000_hw *hw);
+STATIC s32  e1000_init_hw_80003es2lan(struct e1000_hw *hw);
+STATIC s32  e1000_setup_copper_link_80003es2lan(struct e1000_hw *hw);
+STATIC void e1000_clear_hw_cntrs_80003es2lan(struct e1000_hw *hw);
+static s32  e1000_acquire_swfw_sync_80003es2lan(struct e1000_hw *hw, u16 mask);
+static s32  e1000_cfg_kmrn_10_100_80003es2lan(struct e1000_hw *hw, u16 duplex);
+static s32  e1000_cfg_kmrn_1000_80003es2lan(struct e1000_hw *hw);
+static s32  e1000_copper_link_setup_gg82563_80003es2lan(struct e1000_hw *hw);
+static void e1000_initialize_hw_bits_80003es2lan(struct e1000_hw *hw);
+static void e1000_release_swfw_sync_80003es2lan(struct e1000_hw *hw, u16 mask);
+STATIC void e1000_power_down_phy_copper_80003es2lan(struct e1000_hw *hw);
+
+/*
+ * A table for the GG82563 cable length where the range is defined
+ * with a lower bound at "index" and the upper bound at
+ * "index + 5".
+ */
+static const u16 e1000_gg82563_cable_length_table[] =
+         { 0, 60, 115, 150, 150, 60, 115, 150, 180, 180, 0xFF };
+#define GG82563_CABLE_LENGTH_TABLE_SIZE \
+                (sizeof(e1000_gg82563_cable_length_table) / \
+                 sizeof(e1000_gg82563_cable_length_table[0]))
+
+/**
+ *  e1000_init_phy_params_80003es2lan - Init ESB2 PHY func ptrs.
+ *  @hw: pointer to the HW structure
+ *
+ *  This is a function pointer entry point called by the api module.
+ **/
+STATIC s32 e1000_init_phy_params_80003es2lan(struct e1000_hw *hw)
+{
+	struct e1000_phy_info *phy = &hw->phy;
+	struct e1000_functions *func = &hw->func;
+	s32 ret_val = E1000_SUCCESS;
+
+	DEBUGFUNC("e1000_init_phy_params_80003es2lan");
+
+	if (hw->phy.media_type != e1000_media_type_copper) {
+		phy->type        = e1000_phy_none;
+		goto out;
+	} else {
+		func->power_up_phy = e1000_power_up_phy_copper;
+		func->power_down_phy = e1000_power_down_phy_copper_80003es2lan;
+	}
+
+	phy->addr                = 1;
+	phy->autoneg_mask        = AUTONEG_ADVERTISE_SPEED_DEFAULT;
+	phy->reset_delay_us      = 100;
+	phy->type                = e1000_phy_gg82563;
+
+	func->acquire_phy        = e1000_acquire_phy_80003es2lan;
+	func->check_polarity     = e1000_check_polarity_m88;
+	func->check_reset_block  = e1000_check_reset_block_generic;
+	func->commit_phy         = e1000_phy_sw_reset_generic;
+	func->get_cfg_done       = e1000_get_cfg_done_80003es2lan;
+	func->get_phy_info       = e1000_get_phy_info_m88;
+	func->release_phy        = e1000_release_phy_80003es2lan;
+	func->reset_phy          = e1000_phy_hw_reset_generic;
+	func->set_d3_lplu_state  = e1000_set_d3_lplu_state_generic;
+
+	func->force_speed_duplex = e1000_phy_force_speed_duplex_80003es2lan;
+	func->get_cable_length   = e1000_get_cable_length_80003es2lan;
+	func->read_phy_reg       = e1000_read_phy_reg_gg82563_80003es2lan;
+	func->write_phy_reg      = e1000_write_phy_reg_gg82563_80003es2lan;
+
+	/* This can only be done after all function pointers are setup. */
+	ret_val = e1000_get_phy_id(hw);
+
+	/* Verify phy id */
+	if (phy->id != GG82563_E_PHY_ID) {
+		ret_val = -E1000_ERR_PHY;
+		goto out;
+	}
+
+out:
+	return ret_val;
+}
+
+/**
+ *  e1000_init_nvm_params_80003es2lan - Init ESB2 NVM func ptrs.
+ *  @hw: pointer to the HW structure
+ *
+ *  This is a function pointer entry point called by the api module.
+ **/
+STATIC s32 e1000_init_nvm_params_80003es2lan(struct e1000_hw *hw)
+{
+	struct e1000_nvm_info *nvm = &hw->nvm;
+	struct e1000_functions *func = &hw->func;
+	u32 eecd = E1000_READ_REG(hw, E1000_EECD);
+	u16 size;
+
+	DEBUGFUNC("e1000_init_nvm_params_80003es2lan");
+
+	nvm->opcode_bits        = 8;
+	nvm->delay_usec         = 1;
+	switch (nvm->override) {
+	case e1000_nvm_override_spi_large:
+		nvm->page_size    = 32;
+		nvm->address_bits = 16;
+		break;
+	case e1000_nvm_override_spi_small:
+		nvm->page_size    = 8;
+		nvm->address_bits = 8;
+		break;
+	default:
+		nvm->page_size    = eecd & E1000_EECD_ADDR_BITS ? 32 : 8;
+		nvm->address_bits = eecd & E1000_EECD_ADDR_BITS ? 16 : 8;
+		break;
+	}
+
+	nvm->type               = e1000_nvm_eeprom_spi;
+
+	size = (u16)((eecd & E1000_EECD_SIZE_EX_MASK) >>
+	                  E1000_EECD_SIZE_EX_SHIFT);
+
+	/*
+	 * Added to a constant, "size" becomes the left-shift value
+	 * for setting word_size.
+	 */
+	size += NVM_WORD_SIZE_BASE_SHIFT;
+
+	/* EEPROM access above 16k is unsupported */
+	if (size > 14)
+		size = 14;
+	nvm->word_size	= 1 << size;
+
+	/* Function Pointers */
+	func->acquire_nvm       = e1000_acquire_nvm_80003es2lan;
+	func->read_nvm          = e1000_read_nvm_eerd;
+	func->release_nvm       = e1000_release_nvm_80003es2lan;
+	func->update_nvm        = e1000_update_nvm_checksum_generic;
+	func->valid_led_default = e1000_valid_led_default_generic;
+	func->validate_nvm      = e1000_validate_nvm_checksum_generic;
+	func->write_nvm         = e1000_write_nvm_80003es2lan;
+
+	return E1000_SUCCESS;
+}
+
+/**
+ *  e1000_init_mac_params_80003es2lan - Init ESB2 MAC func ptrs.
+ *  @hw: pointer to the HW structure
+ *
+ *  This is a function pointer entry point called by the api module.
+ **/
+STATIC s32 e1000_init_mac_params_80003es2lan(struct e1000_hw *hw)
+{
+	struct e1000_mac_info *mac = &hw->mac;
+	struct e1000_functions *func = &hw->func;
+	s32 ret_val = E1000_SUCCESS;
+
+	DEBUGFUNC("e1000_init_mac_params_80003es2lan");
+
+	/* Set media type */
+	switch (hw->device_id) {
+	case E1000_DEV_ID_80003ES2LAN_SERDES_DPT:
+		hw->phy.media_type = e1000_media_type_internal_serdes;
+		break;
+	default:
+		hw->phy.media_type = e1000_media_type_copper;
+		break;
+	}
+
+	/* Set mta register count */
+	mac->mta_reg_count = 128;
+	/* Set rar entry count */
+	mac->rar_entry_count = E1000_RAR_ENTRIES;
+	/* Set if part includes ASF firmware */
+	mac->asf_firmware_present = TRUE;
+	/* Set if manageability features are enabled. */
+	mac->arc_subsystem_valid =
+	        (E1000_READ_REG(hw, E1000_FWSM) & E1000_FWSM_MODE_MASK)
+	                ? TRUE : FALSE;
+
+	/* Function pointers */
+
+	/* bus type/speed/width */
+	func->get_bus_info = e1000_get_bus_info_pcie_generic;
+	/* reset */
+	func->reset_hw = e1000_reset_hw_80003es2lan;
+	/* hw initialization */
+	func->init_hw = e1000_init_hw_80003es2lan;
+	/* link setup */
+	func->setup_link = e1000_setup_link_generic;
+	/* physical interface link setup */
+	func->setup_physical_interface =
+	        (hw->phy.media_type == e1000_media_type_copper)
+	                ? e1000_setup_copper_link_80003es2lan
+	                : e1000_setup_fiber_serdes_link_generic;
+	/* check for link */
+	switch (hw->phy.media_type) {
+	case e1000_media_type_copper:
+		func->check_for_link = e1000_check_for_copper_link_generic;
+		break;
+	case e1000_media_type_fiber:
+		func->check_for_link = e1000_check_for_fiber_link_generic;
+		break;
+	case e1000_media_type_internal_serdes:
+		func->check_for_link = e1000_check_for_serdes_link_generic;
+		break;
+	default:
+		ret_val = -E1000_ERR_CONFIG;
+		goto out;
+		break;
+	}
+	/* check management mode */
+	func->check_mng_mode = e1000_check_mng_mode_generic;
+	/* multicast address update */
+	func->update_mc_addr_list = e1000_update_mc_addr_list_generic;
+	/* writing VFTA */
+	func->write_vfta = e1000_write_vfta_generic;
+	/* clearing VFTA */
+	func->clear_vfta = e1000_clear_vfta_generic;
+	/* setting MTA */
+	func->mta_set = e1000_mta_set_generic;
+	/* blink LED */
+	func->blink_led = e1000_blink_led_generic;
+	/* setup LED */
+	func->setup_led = e1000_setup_led_generic;
+	/* cleanup LED */
+	func->cleanup_led = e1000_cleanup_led_generic;
+	/* turn on/off LED */
+	func->led_on = e1000_led_on_generic;
+	func->led_off = e1000_led_off_generic;
+	/* remove device */
+	func->remove_device = e1000_remove_device_generic;
+	/* clear hardware counters */
+	func->clear_hw_cntrs = e1000_clear_hw_cntrs_80003es2lan;
+	/* link info */
+	func->get_link_up_info = e1000_get_link_up_info_80003es2lan;
+
+out:
+	return ret_val;
+}
+
+/**
+ *  e1000_init_function_pointers_80003es2lan - Init ESB2 func ptrs.
+ *  @hw: pointer to the HW structure
+ *
+ *  The only function explicitly called by the api module to initialize
+ *  all function pointers and parameters.
+ **/
+void e1000_init_function_pointers_80003es2lan(struct e1000_hw *hw)
+{
+	DEBUGFUNC("e1000_init_function_pointers_80003es2lan");
+
+	hw->func.init_mac_params = e1000_init_mac_params_80003es2lan;
+	hw->func.init_nvm_params = e1000_init_nvm_params_80003es2lan;
+	hw->func.init_phy_params = e1000_init_phy_params_80003es2lan;
+}
+
+/**
+ *  e1000_acquire_phy_80003es2lan - Acquire rights to access PHY
+ *  @hw: pointer to the HW structure
+ *
+ *  A wrapper to acquire access rights to the correct PHY.  This is a
+ *  function pointer entry point called by the api module.
+ **/
+STATIC s32 e1000_acquire_phy_80003es2lan(struct e1000_hw *hw)
+{
+	u16 mask;
+
+	DEBUGFUNC("e1000_acquire_phy_80003es2lan");
+
+	mask = hw->bus.func ? E1000_SWFW_PHY1_SM : E1000_SWFW_PHY0_SM;
+
+	return e1000_acquire_swfw_sync_80003es2lan(hw, mask);
+}
+
+/**
+ *  e1000_release_phy_80003es2lan - Release rights to access PHY
+ *  @hw: pointer to the HW structure
+ *
+ *  A wrapper to release access rights to the correct PHY.  This is a
+ *  function pointer entry point called by the api module.
+ **/
+STATIC void e1000_release_phy_80003es2lan(struct e1000_hw *hw)
+{
+	u16 mask;
+
+	DEBUGFUNC("e1000_release_phy_80003es2lan");
+
+	mask = hw->bus.func ? E1000_SWFW_PHY1_SM : E1000_SWFW_PHY0_SM;
+	e1000_release_swfw_sync_80003es2lan(hw, mask);
+}
+
+/**
+ *  e1000_acquire_nvm_80003es2lan - Acquire rights to access NVM
+ *  @hw: pointer to the HW structure
+ *
+ *  Acquire the semaphore to access the EEPROM.  This is a function
+ *  pointer entry point called by the api module.
+ **/
+STATIC s32 e1000_acquire_nvm_80003es2lan(struct e1000_hw *hw)
+{
+	s32 ret_val;
+
+	DEBUGFUNC("e1000_acquire_nvm_80003es2lan");
+
+	ret_val = e1000_acquire_swfw_sync_80003es2lan(hw, E1000_SWFW_EEP_SM);
+	if (ret_val)
+		goto out;
+
+	ret_val = e1000_acquire_nvm_generic(hw);
+
+	if (ret_val)
+		e1000_release_swfw_sync_80003es2lan(hw, E1000_SWFW_EEP_SM);
+
+out:
+	return ret_val;
+}
+
+/**
+ *  e1000_release_nvm_80003es2lan - Relinquish rights to access NVM
+ *  @hw: pointer to the HW structure
+ *
+ *  Release the semaphore used to access the EEPROM.  This is a
+ *  function pointer entry point called by the api module.
+ **/
+STATIC void e1000_release_nvm_80003es2lan(struct e1000_hw *hw)
+{
+	DEBUGFUNC("e1000_release_nvm_80003es2lan");
+
+	e1000_release_nvm_generic(hw);
+	e1000_release_swfw_sync_80003es2lan(hw, E1000_SWFW_EEP_SM);
+}
+
+/**
+ *  e1000_acquire_swfw_sync_80003es2lan - Acquire SW/FW semaphore
+ *  @hw: pointer to the HW structure
+ *  @mask: specifies which semaphore to acquire
+ *
+ *  Acquire the SW/FW semaphore to access the PHY or NVM.  The mask
+ *  will also specify which port we're acquiring the lock for.
+ **/
+static s32 e1000_acquire_swfw_sync_80003es2lan(struct e1000_hw *hw, u16 mask)
+{
+	u32 swfw_sync;
+	u32 swmask = mask;
+	u32 fwmask = mask << 16;
+	s32 ret_val = E1000_SUCCESS;
+	s32 i = 0, timeout = 200;
+
+	DEBUGFUNC("e1000_acquire_swfw_sync_80003es2lan");
+
+	while (i < timeout) {
+		if (e1000_get_hw_semaphore_generic(hw)) {
+			ret_val = -E1000_ERR_SWFW_SYNC;
+			goto out;
+		}
+
+		swfw_sync = E1000_READ_REG(hw, E1000_SW_FW_SYNC);
+		if (!(swfw_sync & (fwmask | swmask)))
+			break;
+
+		/*
+		 * Firmware currently using resource (fwmask)
+		 * or other software thread using resource (swmask)
+		 */
+		e1000_put_hw_semaphore_generic(hw);
+		msec_delay_irq(5);
+		i++;
+	}
+
+	if (i == timeout) {
+		DEBUGOUT("Driver can't access resource, SW_FW_SYNC timeout.\n");
+		ret_val = -E1000_ERR_SWFW_SYNC;
+		goto out;
+	}
+
+	swfw_sync |= swmask;
+	E1000_WRITE_REG(hw, E1000_SW_FW_SYNC, swfw_sync);
+
+	e1000_put_hw_semaphore_generic(hw);
+
+out:
+	return ret_val;
+}
+
+/**
+ *  e1000_release_swfw_sync_80003es2lan - Release SW/FW semaphore
+ *  @hw: pointer to the HW structure
+ *  @mask: specifies which semaphore to acquire
+ *
+ *  Release the SW/FW semaphore used to access the PHY or NVM.  The mask
+ *  will also specify which port we're releasing the lock for.
+ **/
+static void e1000_release_swfw_sync_80003es2lan(struct e1000_hw *hw, u16 mask)
+{
+	u32 swfw_sync;
+
+	DEBUGFUNC("e1000_release_swfw_sync_80003es2lan");
+
+	while (e1000_get_hw_semaphore_generic(hw) != E1000_SUCCESS);
+	/* Empty */
+
+	swfw_sync = E1000_READ_REG(hw, E1000_SW_FW_SYNC);
+	swfw_sync &= ~mask;
+	E1000_WRITE_REG(hw, E1000_SW_FW_SYNC, swfw_sync);
+
+	e1000_put_hw_semaphore_generic(hw);
+}
+
+/**
+ *  e1000_read_phy_reg_gg82563_80003es2lan - Read GG82563 PHY register
+ *  @hw: pointer to the HW structure
+ *  @offset: offset of the register to read
+ *  @data: pointer to the data returned from the operation
+ *
+ *  Read the GG82563 PHY register.  This is a function pointer entry
+ *  point called by the api module.
+ **/
+STATIC s32 e1000_read_phy_reg_gg82563_80003es2lan(struct e1000_hw *hw,
+                                                  u32 offset, u16 *data)
+{
+	s32 ret_val;
+	u32 page_select;
+	u16 temp;
+
+	DEBUGFUNC("e1000_read_phy_reg_gg82563_80003es2lan");
+
+	/* Select Configuration Page */
+	if ((offset & MAX_PHY_REG_ADDRESS) < GG82563_MIN_ALT_REG) {
+		page_select = GG82563_PHY_PAGE_SELECT;
+	} else {
+		/*
+		 * Use Alternative Page Select register to access
+		 * registers 30 and 31
+		 */
+		page_select = GG82563_PHY_PAGE_SELECT_ALT;
+	}
+
+	temp = (u16)((u16)offset >> GG82563_PAGE_SHIFT);
+	ret_val = e1000_write_phy_reg_m88(hw, page_select, temp);
+	if (ret_val)
+		goto out;
+
+	/*
+	 * The "ready" bit in the MDIC register may be incorrectly set
+	 * before the device has completed the "Page Select" MDI
+	 * transaction.  So we wait 200us after each MDI command...
+	 */
+	usec_delay(200);
+
+	/* ...and verify the command was successful. */
+	ret_val = e1000_read_phy_reg_m88(hw, page_select, &temp);
+
+	if (((u16)offset >> GG82563_PAGE_SHIFT) != temp) {
+		ret_val = -E1000_ERR_PHY;
+		goto out;
+	}
+
+	usec_delay(200);
+
+	ret_val = e1000_read_phy_reg_m88(hw,
+	                                 MAX_PHY_REG_ADDRESS & offset,
+	                                 data);
+
+	usec_delay(200);
+
+out:
+	return ret_val;
+}
+
+/**
+ *  e1000_write_phy_reg_gg82563_80003es2lan - Write GG82563 PHY register
+ *  @hw: pointer to the HW structure
+ *  @offset: offset of the register to read
+ *  @data: value to write to the register
+ *
+ *  Write to the GG82563 PHY register.  This is a function pointer entry
+ *  point called by the api module.
+ **/
+STATIC s32 e1000_write_phy_reg_gg82563_80003es2lan(struct e1000_hw *hw,
+                                                   u32 offset, u16 data)
+{
+	s32 ret_val;
+	u32 page_select;
+	u16 temp;
+
+	DEBUGFUNC("e1000_write_phy_reg_gg82563_80003es2lan");
+
+	/* Select Configuration Page */
+	if ((offset & MAX_PHY_REG_ADDRESS) < GG82563_MIN_ALT_REG) {
+		page_select = GG82563_PHY_PAGE_SELECT;
+	} else {
+		/*
+		 * Use Alternative Page Select register to access
+		 * registers 30 and 31
+		 */
+		page_select = GG82563_PHY_PAGE_SELECT_ALT;
+	}
+
+	temp = (u16)((u16)offset >> GG82563_PAGE_SHIFT);
+	ret_val = e1000_write_phy_reg_m88(hw, page_select, temp);
+	if (ret_val)
+		goto out;
+
+
+	/*
+	 * The "ready" bit in the MDIC register may be incorrectly set
+	 * before the device has completed the "Page Select" MDI
+	 * transaction.  So we wait 200us after each MDI command...
+	 */
+	usec_delay(200);
+
+	/* ...and verify the command was successful. */
+	ret_val = e1000_read_phy_reg_m88(hw, page_select, &temp);
+
+	if (((u16)offset >> GG82563_PAGE_SHIFT) != temp) {
+		ret_val = -E1000_ERR_PHY;
+		goto out;
+	}
+
+	usec_delay(200);
+
+	ret_val = e1000_write_phy_reg_m88(hw,
+	                                  MAX_PHY_REG_ADDRESS & offset,
+	                                  data);
+
+	usec_delay(200);
+
+out:
+	return ret_val;
+}
+
+/**
+ *  e1000_write_nvm_80003es2lan - Write to ESB2 NVM
+ *  @hw: pointer to the HW structure
+ *  @offset: offset of the register to read
+ *  @words: number of words to write
+ *  @data: buffer of data to write to the NVM
+ *
+ *  Write "words" of data to the ESB2 NVM.  This is a function
+ *  pointer entry point called by the api module.
+ **/
+STATIC s32 e1000_write_nvm_80003es2lan(struct e1000_hw *hw, u16 offset,
+                            u16 words, u16 *data)
+{
+	DEBUGFUNC("e1000_write_nvm_80003es2lan");
+
+	return e1000_write_nvm_spi(hw, offset, words, data);
+}
+
+/**
+ *  e1000_get_cfg_done_80003es2lan - Wait for configuration to complete
+ *  @hw: pointer to the HW structure
+ *
+ *  Wait a specific amount of time for manageability processes to complete.
+ *  This is a function pointer entry point called by the phy module.
+ **/
+STATIC s32 e1000_get_cfg_done_80003es2lan(struct e1000_hw *hw)
+{
+	s32 timeout = PHY_CFG_TIMEOUT;
+	s32 ret_val = E1000_SUCCESS;
+	u32 mask = E1000_NVM_CFG_DONE_PORT_0;
+
+	DEBUGFUNC("e1000_get_cfg_done_80003es2lan");
+
+	if (hw->bus.func == 1)
+		mask = E1000_NVM_CFG_DONE_PORT_1;
+
+	while (timeout) {
+		if (E1000_READ_REG(hw, E1000_EEMNGCTL) & mask)
+			break;
+		msec_delay(1);
+		timeout--;
+	}
+	if (!timeout) {
+		DEBUGOUT("MNG configuration cycle has not completed.\n");
+		ret_val = -E1000_ERR_RESET;
+		goto out;
+	}
+
+out:
+	return ret_val;
+}
+
+/**
+ *  e1000_phy_force_speed_duplex_80003es2lan - Force PHY speed and duplex
+ *  @hw: pointer to the HW structure
+ *
+ *  Force the speed and duplex settings onto the PHY.  This is a
+ *  function pointer entry point called by the phy module.
+ **/
+STATIC s32 e1000_phy_force_speed_duplex_80003es2lan(struct e1000_hw *hw)
+{
+	s32 ret_val;
+	u16 phy_data;
+	bool link;
+
+	DEBUGFUNC("e1000_phy_force_speed_duplex_80003es2lan");
+
+	/*
+	 * Clear Auto-Crossover to force MDI manually.  M88E1000 requires MDI
+	 * forced whenever speed and duplex are forced.
+	 */
+	ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
+	if (ret_val)
+		goto out;
+
+	phy_data &= ~GG82563_PSCR_CROSSOVER_MODE_AUTO;
+	ret_val = e1000_write_phy_reg(hw, GG82563_PHY_SPEC_CTRL, phy_data);
+	if (ret_val)
+		goto out;
+
+	DEBUGOUT1("GG82563 PSCR: %X\n", phy_data);
+
+	ret_val = e1000_read_phy_reg(hw, PHY_CONTROL, &phy_data);
+	if (ret_val)
+		goto out;
+
+	e1000_phy_force_speed_duplex_setup(hw, &phy_data);
+
+	/* Reset the phy to commit changes. */
+	phy_data |= MII_CR_RESET;
+
+	ret_val = e1000_write_phy_reg(hw, PHY_CONTROL, phy_data);
+	if (ret_val)
+		goto out;
+
+	usec_delay(1);
+
+	if (hw->phy.autoneg_wait_to_complete) {
+		DEBUGOUT("Waiting for forced speed/duplex link "
+		         "on GG82563 phy.\n");
+
+		ret_val = e1000_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
+		                                     100000, &link);
+		if (ret_val)
+			goto out;
+
+		if (!link) {
+			/*
+			 * We didn't get link.
+			 * Reset the DSP and cross our fingers.
+			 */
+			ret_val = e1000_phy_reset_dsp_generic(hw);
+			if (ret_val)
+				goto out;
+		}
+
+		/* Try once more */
+		ret_val = e1000_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
+		                                     100000, &link);
+		if (ret_val)
+			goto out;
+	}
+
+	ret_val = e1000_read_phy_reg(hw, GG82563_PHY_MAC_SPEC_CTRL, &phy_data);
+	if (ret_val)
+		goto out;
+
+	/*
+	 * Resetting the phy means we need to verify the TX_CLK corresponds
+	 * to the link speed.  10Mbps -> 2.5MHz, else 25MHz.
+	 */
+	phy_data &= ~GG82563_MSCR_TX_CLK_MASK;
+	if (hw->mac.forced_speed_duplex & E1000_ALL_10_SPEED)
+		phy_data |= GG82563_MSCR_TX_CLK_10MBPS_2_5;
+	else
+		phy_data |= GG82563_MSCR_TX_CLK_100MBPS_25;
+
+	/*
+	 * In addition, we must re-enable CRS on Tx for both half and full
+	 * duplex.
+	 */
+	phy_data |= GG82563_MSCR_ASSERT_CRS_ON_TX;
+	ret_val = e1000_write_phy_reg(hw, GG82563_PHY_MAC_SPEC_CTRL, phy_data);
+
+out:
+	return ret_val;
+}
+
+/**
+ *  e1000_get_cable_length_80003es2lan - Set approximate cable length
+ *  @hw: pointer to the HW structure
+ *
+ *  Find the approximate cable length as measured by the GG82563 PHY.
+ *  This is a function pointer entry point called by the phy module.
+ **/
+STATIC s32 e1000_get_cable_length_80003es2lan(struct e1000_hw *hw)
+{
+	struct e1000_phy_info *phy = &hw->phy;
+	s32 ret_val;
+	u16 phy_data, index;
+
+	DEBUGFUNC("e1000_get_cable_length_80003es2lan");
+
+	ret_val = e1000_read_phy_reg(hw, GG82563_PHY_DSP_DISTANCE, &phy_data);
+	if (ret_val)
+		goto out;
+
+	index = phy_data & GG82563_DSPD_CABLE_LENGTH;
+	phy->min_cable_length = e1000_gg82563_cable_length_table[index];
+	phy->max_cable_length = e1000_gg82563_cable_length_table[index+5];
+
+	phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2;
+
+out:
+	return ret_val;
+}
+
+/**
+ *  e1000_get_link_up_info_80003es2lan - Report speed and duplex
+ *  @hw: pointer to the HW structure
+ *  @speed: pointer to speed buffer
+ *  @duplex: pointer to duplex buffer
+ *
+ *  Retrieve the current speed and duplex configuration.
+ *  This is a function pointer entry point called by the api module.
+ **/
+STATIC s32 e1000_get_link_up_info_80003es2lan(struct e1000_hw *hw, u16 *speed,
+                                              u16 *duplex)
+{
+	s32 ret_val;
+
+	DEBUGFUNC("e1000_get_link_up_info_80003es2lan");
+
+	if (hw->phy.media_type == e1000_media_type_copper) {
+		ret_val = e1000_get_speed_and_duplex_copper_generic(hw,
+		                                                    speed,
+		                                                    duplex);
+		if (ret_val)
+			goto out;
+		if (*speed == SPEED_1000)
+			ret_val = e1000_cfg_kmrn_1000_80003es2lan(hw);
+		else
+			ret_val = e1000_cfg_kmrn_10_100_80003es2lan(hw,
+			                                      *duplex);
+	} else {
+		ret_val = e1000_get_speed_and_duplex_fiber_serdes_generic(hw,
+		                                                  speed,
+		                                                  duplex);
+	}
+
+out:
+	return ret_val;
+}
+
+/**
+ *  e1000_reset_hw_80003es2lan - Reset the ESB2 controller
+ *  @hw: pointer to the HW structure
+ *
+ *  Perform a global reset to the ESB2 controller.
+ *  This is a function pointer entry point called by the api module.
+ **/
+STATIC s32 e1000_reset_hw_80003es2lan(struct e1000_hw *hw)
+{
+	u32 ctrl, icr;
+	s32 ret_val;
+
+	DEBUGFUNC("e1000_reset_hw_80003es2lan");
+
+	/*
+	 * Prevent the PCI-E bus from sticking if there is no TLP connection
+	 * on the last TLP read/write transaction when MAC is reset.
+	 */
+	ret_val = e1000_disable_pcie_master_generic(hw);
+	if (ret_val) {
+		DEBUGOUT("PCI-E Master disable polling has failed.\n");
+	}
+
+	DEBUGOUT("Masking off all interrupts\n");
+	E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff);
+
+	E1000_WRITE_REG(hw, E1000_RCTL, 0);
+	E1000_WRITE_REG(hw, E1000_TCTL, E1000_TCTL_PSP);
+	E1000_WRITE_FLUSH(hw);
+
+	msec_delay(10);
+
+	ctrl = E1000_READ_REG(hw, E1000_CTRL);
+
+	DEBUGOUT("Issuing a global reset to MAC\n");
+	E1000_WRITE_REG(hw, E1000_CTRL, ctrl | E1000_CTRL_RST);
+
+	ret_val = e1000_get_auto_rd_done_generic(hw);
+	if (ret_val)
+		/* We don't want to continue accessing MAC registers. */
+		goto out;
+
+	/* Clear any pending interrupt events. */
+	E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff);
+	icr = E1000_READ_REG(hw, E1000_ICR);
+
+out:
+	return ret_val;
+}
+
+/**
+ *  e1000_init_hw_80003es2lan - Initialize the ESB2 controller
+ *  @hw: pointer to the HW structure
+ *
+ *  Initialize the hw bits, LED, VFTA, MTA, link and hw counters.
+ *  This is a function pointer entry point called by the api module.
+ **/
+STATIC s32 e1000_init_hw_80003es2lan(struct e1000_hw *hw)
+{
+	struct e1000_mac_info *mac = &hw->mac;
+	u32 reg_data;
+	s32 ret_val;
+	u16 i;
+
+	DEBUGFUNC("e1000_init_hw_80003es2lan");
+
+	e1000_initialize_hw_bits_80003es2lan(hw);
+
+	/* Initialize identification LED */
+	ret_val = e1000_id_led_init_generic(hw);
+	if (ret_val) {
+		DEBUGOUT("Error initializing identification LED\n");
+		/* This is not fatal and we should not stop init due to this */
+	}
+
+	/* Disabling VLAN filtering */
+	DEBUGOUT("Initializing the IEEE VLAN\n");
+	e1000_clear_vfta(hw);
+
+	/* Setup the receive address. */
+	e1000_init_rx_addrs_generic(hw, mac->rar_entry_count);
+
+	/* Zero out the Multicast HASH table */
+	DEBUGOUT("Zeroing the MTA\n");
+	for (i = 0; i < mac->mta_reg_count; i++)
+		E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
+
+	/* Setup link and flow control */
+	ret_val = e1000_setup_link(hw);
+
+	/* Set the transmit descriptor write-back policy */
+	reg_data = E1000_READ_REG(hw, E1000_TXDCTL(0));
+	reg_data = (reg_data & ~E1000_TXDCTL_WTHRESH) |
+	           E1000_TXDCTL_FULL_TX_DESC_WB | E1000_TXDCTL_COUNT_DESC;
+	E1000_WRITE_REG(hw, E1000_TXDCTL(0), reg_data);
+
+	/* ...for both queues. */
+	reg_data = E1000_READ_REG(hw, E1000_TXDCTL(1));
+	reg_data = (reg_data & ~E1000_TXDCTL_WTHRESH) |
+	           E1000_TXDCTL_FULL_TX_DESC_WB | E1000_TXDCTL_COUNT_DESC;
+	E1000_WRITE_REG(hw, E1000_TXDCTL(1), reg_data);
+
+	/* Enable retransmit on late collisions */
+	reg_data = E1000_READ_REG(hw, E1000_TCTL);
+	reg_data |= E1000_TCTL_RTLC;
+	E1000_WRITE_REG(hw, E1000_TCTL, reg_data);
+
+	/* Configure Gigabit Carry Extend Padding */
+	reg_data = E1000_READ_REG(hw, E1000_TCTL_EXT);
+	reg_data &= ~E1000_TCTL_EXT_GCEX_MASK;
+	reg_data |= DEFAULT_TCTL_EXT_GCEX_80003ES2LAN;
+	E1000_WRITE_REG(hw, E1000_TCTL_EXT, reg_data);
+
+	/* Configure Transmit Inter-Packet Gap */
+	reg_data = E1000_READ_REG(hw, E1000_TIPG);
+	reg_data &= ~E1000_TIPG_IPGT_MASK;
+	reg_data |= DEFAULT_TIPG_IPGT_1000_80003ES2LAN;
+	E1000_WRITE_REG(hw, E1000_TIPG, reg_data);
+
+	reg_data = E1000_READ_REG_ARRAY(hw, E1000_FFLT, 0x0001);
+	reg_data &= ~0x00100000;
+	E1000_WRITE_REG_ARRAY(hw, E1000_FFLT, 0x0001, reg_data);
+
+	/*
+	 * Clear all of the statistics registers (clear on read).  It is
+	 * important that we do this after we have tried to establish link
+	 * because the symbol error count will increment wildly if there
+	 * is no link.
+	 */
+	e1000_clear_hw_cntrs_80003es2lan(hw);
+
+	return ret_val;
+}
+
+/**
+ *  e1000_initialize_hw_bits_80003es2lan - Init hw bits of ESB2
+ *  @hw: pointer to the HW structure
+ *
+ *  Initializes required hardware-dependent bits needed for normal operation.
+ **/
+static void e1000_initialize_hw_bits_80003es2lan(struct e1000_hw *hw)
+{
+	u32 reg;
+
+	DEBUGFUNC("e1000_initialize_hw_bits_80003es2lan");
+
+	if (hw->mac.disable_hw_init_bits)
+		goto out;
+
+	/* Transmit Descriptor Control 0 */
+	reg = E1000_READ_REG(hw, E1000_TXDCTL(0));
+	reg |= (1 << 22);
+	E1000_WRITE_REG(hw, E1000_TXDCTL(0), reg);
+
+	/* Transmit Descriptor Control 1 */
+	reg = E1000_READ_REG(hw, E1000_TXDCTL(1));
+	reg |= (1 << 22);
+	E1000_WRITE_REG(hw, E1000_TXDCTL(1), reg);
+
+	/* Transmit Arbitration Control 0 */
+	reg = E1000_READ_REG(hw, E1000_TARC(0));
+	reg &= ~(0xF << 27); /* 30:27 */
+	if (hw->phy.media_type != e1000_media_type_copper)
+		reg &= ~(1 << 20);
+	E1000_WRITE_REG(hw, E1000_TARC(0), reg);
+
+	/* Transmit Arbitration Control 1 */
+	reg = E1000_READ_REG(hw, E1000_TARC(1));
+	if (E1000_READ_REG(hw, E1000_TCTL) & E1000_TCTL_MULR)
+		reg &= ~(1 << 28);
+	else
+		reg |= (1 << 28);
+	E1000_WRITE_REG(hw, E1000_TARC(1), reg);
+
+out:
+	return;
+}
+
+/**
+ *  e1000_copper_link_setup_gg82563_80003es2lan - Configure GG82563 Link
+ *  @hw: pointer to the HW structure
+ *
+ *  Setup some GG82563 PHY registers for obtaining link
+ **/
+static s32 e1000_copper_link_setup_gg82563_80003es2lan(struct e1000_hw *hw)
+{
+	struct   e1000_phy_info *phy = &hw->phy;
+	s32  ret_val;
+	u32 ctrl_ext;
+	u16 data;
+
+	DEBUGFUNC("e1000_copper_link_setup_gg82563_80003es2lan");
+
+	if (!phy->reset_disable) {
+		ret_val = e1000_read_phy_reg(hw, GG82563_PHY_MAC_SPEC_CTRL,
+		                             &data);
+		if (ret_val)
+			goto out;
+
+		data |= GG82563_MSCR_ASSERT_CRS_ON_TX;
+		/* Use 25MHz for both link down and 1000Base-T for Tx clock. */
+		data |= GG82563_MSCR_TX_CLK_1000MBPS_25;
+
+		ret_val = e1000_write_phy_reg(hw, GG82563_PHY_MAC_SPEC_CTRL,
+		                              data);
+		if (ret_val)
+			goto out;
+
+		/*
+		 * Options:
+		 *   MDI/MDI-X = 0 (default)
+		 *   0 - Auto for all speeds
+		 *   1 - MDI mode
+		 *   2 - MDI-X mode
+		 *   3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
+		 */
+		ret_val = e1000_read_phy_reg(hw, GG82563_PHY_SPEC_CTRL, &data);
+		if (ret_val)
+			goto out;
+
+		data &= ~GG82563_PSCR_CROSSOVER_MODE_MASK;
+
+		switch (phy->mdix) {
+		case 1:
+			data |= GG82563_PSCR_CROSSOVER_MODE_MDI;
+			break;
+		case 2:
+			data |= GG82563_PSCR_CROSSOVER_MODE_MDIX;
+			break;
+		case 0:
+		default:
+			data |= GG82563_PSCR_CROSSOVER_MODE_AUTO;
+			break;
+		}
+
+		/*
+		 * Options:
+		 *   disable_polarity_correction = 0 (default)
+		 *       Automatic Correction for Reversed Cable Polarity
+		 *   0 - Disabled
+		 *   1 - Enabled
+		 */
+		data &= ~GG82563_PSCR_POLARITY_REVERSAL_DISABLE;
+		if (phy->disable_polarity_correction)
+			data |= GG82563_PSCR_POLARITY_REVERSAL_DISABLE;
+
+		ret_val = e1000_write_phy_reg(hw, GG82563_PHY_SPEC_CTRL, data);
+		if (ret_val)
+			goto out;
+
+		/* SW Reset the PHY so all changes take effect */
+		ret_val = e1000_phy_commit(hw);
+		if (ret_val) {
+			DEBUGOUT("Error Resetting the PHY\n");
+			goto out;
+		}
+
+	}
+
+	/* Bypass Rx and Tx FIFO's */
+	ret_val = e1000_write_kmrn_reg(hw,
+	                        E1000_KMRNCTRLSTA_OFFSET_FIFO_CTRL,
+	                        E1000_KMRNCTRLSTA_FIFO_CTRL_RX_BYPASS |
+	                                E1000_KMRNCTRLSTA_FIFO_CTRL_TX_BYPASS);
+	if (ret_val)
+		goto out;
+
+	ret_val = e1000_read_kmrn_reg(hw,
+				      E1000_KMRNCTRLSTA_OFFSET_MAC2PHY_OPMODE,
+				      &data);
+	if (ret_val)
+		goto out;
+	data |= E1000_KMRNCTRLSTA_OPMODE_E_IDLE;
+	ret_val = e1000_write_kmrn_reg(hw,
+				       E1000_KMRNCTRLSTA_OFFSET_MAC2PHY_OPMODE,
+				       data);
+	if (ret_val)
+		goto out;
+
+	ret_val = e1000_read_phy_reg(hw, GG82563_PHY_SPEC_CTRL_2, &data);
+	if (ret_val)
+		goto out;
+
+	data &= ~GG82563_PSCR2_REVERSE_AUTO_NEG;
+	ret_val = e1000_write_phy_reg(hw, GG82563_PHY_SPEC_CTRL_2, data);
+	if (ret_val)
+		goto out;
+
+	ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
+	ctrl_ext &= ~(E1000_CTRL_EXT_LINK_MODE_MASK);
+	E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
+
+	ret_val = e1000_read_phy_reg(hw, GG82563_PHY_PWR_MGMT_CTRL, &data);
+	if (ret_val)
+		goto out;
+
+	/*
+	 * Do not init these registers when the HW is in IAMT mode, since the
+	 * firmware will have already initialized them.  We only initialize
+	 * them if the HW is not in IAMT mode.
+	 */
+	if (!(e1000_check_mng_mode(hw))) {
+		/* Enable Electrical Idle on the PHY */
+		data |= GG82563_PMCR_ENABLE_ELECTRICAL_IDLE;
+		ret_val = e1000_write_phy_reg(hw,
+		                             GG82563_PHY_PWR_MGMT_CTRL,
+		                             data);
+		if (ret_val)
+			goto out;
+
+		ret_val = e1000_read_phy_reg(hw,
+		                            GG82563_PHY_KMRN_MODE_CTRL,
+		                            &data);
+		if (ret_val)
+			goto out;
+
+		data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
+		ret_val = e1000_write_phy_reg(hw,
+		                             GG82563_PHY_KMRN_MODE_CTRL,
+		                             data);
+
+		if (ret_val)
+			goto out;
+	}
+
+	/*
+	 * Workaround: Disable padding in Kumeran interface in the MAC
+	 * and in the PHY to avoid CRC errors.
+	 */
+	ret_val = e1000_read_phy_reg(hw, GG82563_PHY_INBAND_CTRL, &data);
+	if (ret_val)
+		goto out;
+
+	data |= GG82563_ICR_DIS_PADDING;
+	ret_val = e1000_write_phy_reg(hw, GG82563_PHY_INBAND_CTRL, data);
+	if (ret_val)
+		goto out;
+
+out:
+	return ret_val;
+}
+
+/**
+ *  e1000_setup_copper_link_80003es2lan - Setup Copper Link for ESB2
+ *  @hw: pointer to the HW structure
+ *
+ *  Essentially a wrapper for setting up all things "copper" related.
+ *  This is a function pointer entry point called by the mac module.
+ **/
+STATIC s32 e1000_setup_copper_link_80003es2lan(struct e1000_hw *hw)
+{
+	u32 ctrl;
+	s32  ret_val;
+	u16 reg_data;
+
+	DEBUGFUNC("e1000_setup_copper_link_80003es2lan");
+
+	ctrl = E1000_READ_REG(hw, E1000_CTRL);
+	ctrl |= E1000_CTRL_SLU;
+	ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
+	E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
+
+	/*
+	 * Set the mac to wait the maximum time between each
+	 * iteration and increase the max iterations when
+	 * polling the phy; this fixes erroneous timeouts at 10Mbps.
+	 */
+	ret_val = e1000_write_kmrn_reg(hw, GG82563_REG(0x34, 4), 0xFFFF);
+	if (ret_val)
+		goto out;
+	ret_val = e1000_read_kmrn_reg(hw, GG82563_REG(0x34, 9), &reg_data);
+	if (ret_val)
+		goto out;
+	reg_data |= 0x3F;
+	ret_val = e1000_write_kmrn_reg(hw, GG82563_REG(0x34, 9), reg_data);
+	if (ret_val)
+		goto out;
+	ret_val = e1000_read_kmrn_reg(hw,
+	                              E1000_KMRNCTRLSTA_OFFSET_INB_CTRL,
+	                              &reg_data);
+	if (ret_val)
+		goto out;
+	reg_data |= E1000_KMRNCTRLSTA_INB_CTRL_DIS_PADDING;
+	ret_val = e1000_write_kmrn_reg(hw,
+	                               E1000_KMRNCTRLSTA_OFFSET_INB_CTRL,
+	                               reg_data);
+	if (ret_val)
+		goto out;
+
+	ret_val = e1000_copper_link_setup_gg82563_80003es2lan(hw);
+	if (ret_val)
+		goto out;
+
+	ret_val = e1000_setup_copper_link_generic(hw);
+
+out:
+	return ret_val;
+}
+
+/**
+ *  e1000_cfg_kmrn_10_100_80003es2lan - Apply "quirks" for 10/100 operation
+ *  @hw: pointer to the HW structure
+ *  @duplex: current duplex setting
+ *
+ *  Configure the KMRN interface by applying last minute quirks for
+ *  10/100 operation.
+ **/
+static s32 e1000_cfg_kmrn_10_100_80003es2lan(struct e1000_hw *hw, u16 duplex)
+{
+	s32 ret_val = E1000_SUCCESS;
+	u32 tipg;
+	u32 i = 0;
+	u16 reg_data, reg_data2;
+
+	DEBUGFUNC("e1000_configure_kmrn_for_10_100");
+
+	reg_data = E1000_KMRNCTRLSTA_HD_CTRL_10_100_DEFAULT;
+	ret_val = e1000_write_kmrn_reg(hw,
+	                               E1000_KMRNCTRLSTA_OFFSET_HD_CTRL,
+	                               reg_data);
+	if (ret_val)
+		goto out;
+
+	/* Configure Transmit Inter-Packet Gap */
+	tipg = E1000_READ_REG(hw, E1000_TIPG);
+	tipg &= ~E1000_TIPG_IPGT_MASK;
+	tipg |= DEFAULT_TIPG_IPGT_10_100_80003ES2LAN;
+	E1000_WRITE_REG(hw, E1000_TIPG, tipg);
+
+
+	do {
+		ret_val = e1000_read_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL,
+		                             &reg_data);
+		if (ret_val)
+			goto out;
+
+		ret_val = e1000_read_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL,
+		                             &reg_data2);
+		if (ret_val)
+			goto out;
+		i++;
+	} while ((reg_data != reg_data2) && (i < GG82563_MAX_KMRN_RETRY));
+
+	if (duplex == HALF_DUPLEX)
+		reg_data |= GG82563_KMCR_PASS_FALSE_CARRIER;
+	else
+		reg_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
+
+	ret_val = e1000_write_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, reg_data);
+
+out:
+	return ret_val;
+}
+
+/**
+ *  e1000_cfg_kmrn_1000_80003es2lan - Apply "quirks" for gigabit operation
+ *  @hw: pointer to the HW structure
+ *
+ *  Configure the KMRN interface by applying last minute quirks for
+ *  gigabit operation.
+ **/
+static s32 e1000_cfg_kmrn_1000_80003es2lan(struct e1000_hw *hw)
+{
+	s32 ret_val = E1000_SUCCESS;
+	u16 reg_data, reg_data2;
+	u32 tipg;
+	u32 i = 0;
+
+	DEBUGFUNC("e1000_configure_kmrn_for_1000");
+
+	reg_data = E1000_KMRNCTRLSTA_HD_CTRL_1000_DEFAULT;
+	ret_val = e1000_write_kmrn_reg(hw,
+	                               E1000_KMRNCTRLSTA_OFFSET_HD_CTRL,
+	                               reg_data);
+	if (ret_val)
+		goto out;
+
+	/* Configure Transmit Inter-Packet Gap */
+	tipg = E1000_READ_REG(hw, E1000_TIPG);
+	tipg &= ~E1000_TIPG_IPGT_MASK;
+	tipg |= DEFAULT_TIPG_IPGT_1000_80003ES2LAN;
+	E1000_WRITE_REG(hw, E1000_TIPG, tipg);
+
+
+	do {
+		ret_val = e1000_read_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL,
+		                             &reg_data);
+		if (ret_val)
+			goto out;
+
+		ret_val = e1000_read_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL,
+		                             &reg_data2);
+		if (ret_val)
+			goto out;
+		i++;
+	} while ((reg_data != reg_data2) && (i < GG82563_MAX_KMRN_RETRY));
+
+	reg_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
+	ret_val = e1000_write_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, reg_data);
+
+out:
+	return ret_val;
+}
+
+/**
+ * e1000_power_down_phy_copper_80003es2lan - Remove link during PHY power down
+ * @hw: pointer to the HW structure
+ *
+ * In the case of a PHY power down to save power, or to turn off link during a
+ * driver unload, or wake on lan is not enabled, remove the link.
+ **/
+STATIC void e1000_power_down_phy_copper_80003es2lan(struct e1000_hw *hw)
+{
+	/* If the management interface is not enabled, then power down */
+	if (!(e1000_check_mng_mode(hw) || e1000_check_reset_block(hw)))
+		e1000_power_down_phy_copper(hw);
+
+	return;
+}
+
+/**
+ *  e1000_clear_hw_cntrs_80003es2lan - Clear device specific hardware counters
+ *  @hw: pointer to the HW structure
+ *
+ *  Clears the hardware counters by reading the counter registers.
+ **/
+STATIC void e1000_clear_hw_cntrs_80003es2lan(struct e1000_hw *hw)
+{
+	volatile u32 temp;
+
+	DEBUGFUNC("e1000_clear_hw_cntrs_80003es2lan");
+
+	e1000_clear_hw_cntrs_base_generic(hw);
+
+	temp = E1000_READ_REG(hw, E1000_PRC64);
+	temp = E1000_READ_REG(hw, E1000_PRC127);
+	temp = E1000_READ_REG(hw, E1000_PRC255);
+	temp = E1000_READ_REG(hw, E1000_PRC511);
+	temp = E1000_READ_REG(hw, E1000_PRC1023);
+	temp = E1000_READ_REG(hw, E1000_PRC1522);
+	temp = E1000_READ_REG(hw, E1000_PTC64);
+	temp = E1000_READ_REG(hw, E1000_PTC127);
+	temp = E1000_READ_REG(hw, E1000_PTC255);
+	temp = E1000_READ_REG(hw, E1000_PTC511);
+	temp = E1000_READ_REG(hw, E1000_PTC1023);
+	temp = E1000_READ_REG(hw, E1000_PTC1522);
+
+	temp = E1000_READ_REG(hw, E1000_ALGNERRC);
+	temp = E1000_READ_REG(hw, E1000_RXERRC);
+	temp = E1000_READ_REG(hw, E1000_TNCRS);
+	temp = E1000_READ_REG(hw, E1000_CEXTERR);
+	temp = E1000_READ_REG(hw, E1000_TSCTC);
+	temp = E1000_READ_REG(hw, E1000_TSCTFC);
+
+	temp = E1000_READ_REG(hw, E1000_MGTPRC);
+	temp = E1000_READ_REG(hw, E1000_MGTPDC);
+	temp = E1000_READ_REG(hw, E1000_MGTPTC);
+
+	temp = E1000_READ_REG(hw, E1000_IAC);
+	temp = E1000_READ_REG(hw, E1000_ICRXOC);
+
+	temp = E1000_READ_REG(hw, E1000_ICRXPTC);
+	temp = E1000_READ_REG(hw, E1000_ICRXATC);
+	temp = E1000_READ_REG(hw, E1000_ICTXPTC);
+	temp = E1000_READ_REG(hw, E1000_ICTXATC);
+	temp = E1000_READ_REG(hw, E1000_ICTXQEC);
+	temp = E1000_READ_REG(hw, E1000_ICTXQMTC);
+	temp = E1000_READ_REG(hw, E1000_ICRXDMTC);
+}
--- /dev/null
+++ sys/dev/em/e1000_manage.h
@@ -0,0 +1,88 @@
+/*******************************************************************************
+
+  Copyright (c) 2001-2007, Intel Corporation 
+  All rights reserved.
+  
+  Redistribution and use in source and binary forms, with or without 
+  modification, are permitted provided that the following conditions are met:
+  
+   1. Redistributions of source code must retain the above copyright notice, 
+      this list of conditions and the following disclaimer.
+  
+   2. Redistributions in binary form must reproduce the above copyright 
+      notice, this list of conditions and the following disclaimer in the 
+      documentation and/or other materials provided with the distribution.
+  
+   3. Neither the name of the Intel Corporation nor the names of its 
+      contributors may be used to endorse or promote products derived from 
+      this software without specific prior written permission.
+  
+  THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
+  AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 
+  IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 
+  ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE 
+  LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 
+  CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 
+  SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 
+  INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 
+  CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 
+  ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
+  POSSIBILITY OF SUCH DAMAGE.
+
+*******************************************************************************/
+/* $FreeBSD: src/sys/dev/em/e1000_manage.h,v 1.3.4.1 2007/11/28 23:24:38 jfv Exp $ */
+
+
+#ifndef _E1000_MANAGE_H_
+#define _E1000_MANAGE_H_
+
+bool e1000_check_mng_mode_generic(struct e1000_hw *hw);
+bool e1000_enable_tx_pkt_filtering_generic(struct e1000_hw *hw);
+s32  e1000_mng_enable_host_if_generic(struct e1000_hw *hw);
+s32  e1000_mng_host_if_write_generic(struct e1000_hw *hw, u8 *buffer,
+                                     u16 length, u16 offset, u8 *sum);
+s32  e1000_mng_write_cmd_header_generic(struct e1000_hw *hw,
+                                    struct e1000_host_mng_command_header *hdr);
+s32  e1000_mng_write_dhcp_info_generic(struct e1000_hw *hw,
+                                       u8 *buffer, u16 length);
+
+typedef enum {
+	e1000_mng_mode_none = 0,
+	e1000_mng_mode_asf,
+	e1000_mng_mode_pt,
+	e1000_mng_mode_ipmi,
+	e1000_mng_mode_host_if_only
+} e1000_mng_mode;
+
+#define E1000_FACTPS_MNGCG    0x20000000
+
+#define E1000_FWSM_MODE_MASK  0xE
+#define E1000_FWSM_MODE_SHIFT 1
+
+#define E1000_MNG_IAMT_MODE                  0x3
+#define E1000_MNG_DHCP_COOKIE_LENGTH         0x10
+#define E1000_MNG_DHCP_COOKIE_OFFSET         0x6F0
+#define E1000_MNG_DHCP_COMMAND_TIMEOUT       10
+#define E1000_MNG_DHCP_TX_PAYLOAD_CMD        64
+#define E1000_MNG_DHCP_COOKIE_STATUS_PARSING 0x1
+#define E1000_MNG_DHCP_COOKIE_STATUS_VLAN    0x2
+
+#define E1000_VFTA_ENTRY_SHIFT               5
+#define E1000_VFTA_ENTRY_MASK                0x7F
+#define E1000_VFTA_ENTRY_BIT_SHIFT_MASK      0x1F
+
+#define E1000_HI_MAX_BLOCK_BYTE_LENGTH       1792 /* Number of bytes in range */
+#define E1000_HI_MAX_BLOCK_DWORD_LENGTH      448 /* Number of dwords in range */
+#define E1000_HI_COMMAND_TIMEOUT             500 /* Process HI command limit */
+
+#define E1000_HICR_EN              0x01  /* Enable bit - RO */
+/* Driver sets this bit when done to put command in RAM */
+#define E1000_HICR_C               0x02
+#define E1000_HICR_SV              0x04  /* Status Validity */
+#define E1000_HICR_FW_RESET_ENABLE 0x40
+#define E1000_HICR_FW_RESET        0x80
+
+/* Intel(R) Active Management Technology signature */
+#define E1000_IAMT_SIGNATURE  0x544D4149
+
+#endif
--- /dev/null
+++ sys/dev/em/e1000_82571.h
@@ -0,0 +1,47 @@
+/*******************************************************************************
+
+  Copyright (c) 2001-2007, Intel Corporation 
+  All rights reserved.
+  
+  Redistribution and use in source and binary forms, with or without 
+  modification, are permitted provided that the following conditions are met:
+  
+   1. Redistributions of source code must retain the above copyright notice, 
+      this list of conditions and the following disclaimer.
+  
+   2. Redistributions in binary form must reproduce the above copyright 
+      notice, this list of conditions and the following disclaimer in the 
+      documentation and/or other materials provided with the distribution.
+  
+   3. Neither the name of the Intel Corporation nor the names of its 
+      contributors may be used to endorse or promote products derived from 
+      this software without specific prior written permission.
+  
+  THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
+  AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 
+  IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 
+  ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE 
+  LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 
+  CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 
+  SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 
+  INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 
+  CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 
+  ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
+  POSSIBILITY OF SUCH DAMAGE.
+
+*******************************************************************************/
+/* $FreeBSD: src/sys/dev/em/e1000_82571.h,v 1.3.4.1 2007/11/28 23:24:37 jfv Exp $ */
+
+
+#ifndef _E1000_82571_H_
+#define _E1000_82571_H_
+
+#define ID_LED_RESERVED_F746 0xF746
+#define ID_LED_DEFAULT_82573 ((ID_LED_DEF1_DEF2 << 12) | \
+                              (ID_LED_OFF1_ON2  <<  8) | \
+                              (ID_LED_DEF1_DEF2 <<  4) | \
+                              (ID_LED_DEF1_DEF2))
+
+#define E1000_GCR_L1_ACT_WITHOUT_L0S_RX 0x08000000
+
+#endif
--- /dev/null
+++ sys/dev/em/e1000_80003es2lan.h
@@ -0,0 +1,102 @@
+/*******************************************************************************
+
+  Copyright (c) 2001-2007, Intel Corporation 
+  All rights reserved.
+  
+  Redistribution and use in source and binary forms, with or without 
+  modification, are permitted provided that the following conditions are met:
+  
+   1. Redistributions of source code must retain the above copyright notice, 
+      this list of conditions and the following disclaimer.
+  
+   2. Redistributions in binary form must reproduce the above copyright 
+      notice, this list of conditions and the following disclaimer in the 
+      documentation and/or other materials provided with the distribution.
+  
+   3. Neither the name of the Intel Corporation nor the names of its 
+      contributors may be used to endorse or promote products derived from 
+      this software without specific prior written permission.
+  
+  THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
+  AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 
+  IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 
+  ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE 
+  LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 
+  CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 
+  SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 
+  INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 
+  CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 
+  ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
+  POSSIBILITY OF SUCH DAMAGE.
+
+*******************************************************************************/
+/* $FreeBSD: src/sys/dev/em/e1000_80003es2lan.h,v 1.3.4.1 2007/11/28 23:24:37 jfv Exp $ */
+
+
+#ifndef _E1000_80003ES2LAN_H_
+#define _E1000_80003ES2LAN_H_
+
+#define E1000_KMRNCTRLSTA_OFFSET_FIFO_CTRL       0x00
+#define E1000_KMRNCTRLSTA_OFFSET_INB_CTRL        0x02
+#define E1000_KMRNCTRLSTA_OFFSET_HD_CTRL         0x10
+#define E1000_KMRNCTRLSTA_OFFSET_MAC2PHY_OPMODE  0x1F
+
+#define E1000_KMRNCTRLSTA_FIFO_CTRL_RX_BYPASS    0x0008
+#define E1000_KMRNCTRLSTA_FIFO_CTRL_TX_BYPASS    0x0800
+#define E1000_KMRNCTRLSTA_INB_CTRL_DIS_PADDING   0x0010
+
+#define E1000_KMRNCTRLSTA_HD_CTRL_10_100_DEFAULT 0x0004
+#define E1000_KMRNCTRLSTA_HD_CTRL_1000_DEFAULT   0x0000
+#define E1000_KMRNCTRLSTA_OPMODE_E_IDLE          0x2000
+
+#define E1000_TCTL_EXT_GCEX_MASK 0x000FFC00 /* Gigabit Carry Extend Padding */
+#define DEFAULT_TCTL_EXT_GCEX_80003ES2LAN        0x00010000
+
+#define DEFAULT_TIPG_IPGT_1000_80003ES2LAN       0x8
+#define DEFAULT_TIPG_IPGT_10_100_80003ES2LAN     0x9
+
+/* GG82563 PHY Specific Status Register (Page 0, Register 16 */
+#define GG82563_PSCR_POLARITY_REVERSAL_DISABLE  0x0002 /* 1=Reversal Disabled */
+#define GG82563_PSCR_CROSSOVER_MODE_MASK        0x0060
+#define GG82563_PSCR_CROSSOVER_MODE_MDI         0x0000 /* 00=Manual MDI */
+#define GG82563_PSCR_CROSSOVER_MODE_MDIX        0x0020 /* 01=Manual MDIX */
+#define GG82563_PSCR_CROSSOVER_MODE_AUTO        0x0060 /* 11=Auto crossover */
+
+/* PHY Specific Control Register 2 (Page 0, Register 26) */
+#define GG82563_PSCR2_REVERSE_AUTO_NEG          0x2000
+                                                /* 1=Reverse Auto-Negotiation */
+
+/* MAC Specific Control Register (Page 2, Register 21) */
+/* Tx clock speed for Link Down and 1000BASE-T for the following speeds */
+#define GG82563_MSCR_TX_CLK_MASK                0x0007
+#define GG82563_MSCR_TX_CLK_10MBPS_2_5          0x0004
+#define GG82563_MSCR_TX_CLK_100MBPS_25          0x0005
+#define GG82563_MSCR_TX_CLK_1000MBPS_2_5        0x0006
+#define GG82563_MSCR_TX_CLK_1000MBPS_25         0x0007
+
+#define GG82563_MSCR_ASSERT_CRS_ON_TX           0x0010 /* 1=Assert */
+
+/* DSP Distance Register (Page 5, Register 26) */
+/*
+ * 0 = <50M
+ * 1 = 50-80M
+ * 2 = 80-100M
+ * 3 = 110-140M
+ * 4 = >140M
+ */
+#define GG82563_DSPD_CABLE_LENGTH               0x0007
+
+/* Kumeran Mode Control Register (Page 193, Register 16) */
+#define GG82563_KMCR_PASS_FALSE_CARRIER         0x0800
+
+/* Max number of times Kumeran read/write should be validated */
+#define GG82563_MAX_KMRN_RETRY                  0x5
+
+/* Power Management Control Register (Page 193, Register 20) */
+#define GG82563_PMCR_ENABLE_ELECTRICAL_IDLE     0x0001
+                                           /* 1=Enable SERDES Electrical Idle */
+
+/* In-Band Control Register (Page 194, Register 18) */
+#define GG82563_ICR_DIS_PADDING                 0x0010 /* Disable Padding */
+
+#endif
--- /dev/null
+++ sys/dev/em/e1000_hw.h
@@ -0,0 +1,726 @@
+/*******************************************************************************
+
+  Copyright (c) 2001-2007, Intel Corporation 
+  All rights reserved.
+  
+  Redistribution and use in source and binary forms, with or without 
+  modification, are permitted provided that the following conditions are met:
+  
+   1. Redistributions of source code must retain the above copyright notice, 
+      this list of conditions and the following disclaimer.
+  
+   2. Redistributions in binary form must reproduce the above copyright 
+      notice, this list of conditions and the following disclaimer in the 
+      documentation and/or other materials provided with the distribution.
+  
+   3. Neither the name of the Intel Corporation nor the names of its 
+      contributors may be used to endorse or promote products derived from 
+      this software without specific prior written permission.
+  
+  THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
+  AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 
+  IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 
+  ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE 
+  LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 
+  CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 
+  SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 
+  INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 
+  CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 
+  ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
+  POSSIBILITY OF SUCH DAMAGE.
+
+*******************************************************************************/
+/* $FreeBSD: src/sys/dev/em/e1000_hw.h,v 1.3.4.1 2007/11/28 23:24:37 jfv Exp $ */
+
+
+#ifndef _E1000_HW_H_
+#define _E1000_HW_H_
+
+#include "e1000_osdep.h"
+#include "e1000_regs.h"
+#include "e1000_defines.h"
+
+struct e1000_hw;
+
+#ifndef NO_82542_SUPPORT
+#define E1000_DEV_ID_82542                    0x1000
+#endif
+#define E1000_DEV_ID_82543GC_FIBER            0x1001
+#define E1000_DEV_ID_82543GC_COPPER           0x1004
+#define E1000_DEV_ID_82544EI_COPPER           0x1008
+#define E1000_DEV_ID_82544EI_FIBER            0x1009
+#define E1000_DEV_ID_82544GC_COPPER           0x100C
+#define E1000_DEV_ID_82544GC_LOM              0x100D
+#define E1000_DEV_ID_82540EM                  0x100E
+#define E1000_DEV_ID_82540EM_LOM              0x1015
+#define E1000_DEV_ID_82540EP_LOM              0x1016
+#define E1000_DEV_ID_82540EP                  0x1017
+#define E1000_DEV_ID_82540EP_LP               0x101E
+#define E1000_DEV_ID_82545EM_COPPER           0x100F
+#define E1000_DEV_ID_82545EM_FIBER            0x1011
+#define E1000_DEV_ID_82545GM_COPPER           0x1026
+#define E1000_DEV_ID_82545GM_FIBER            0x1027
+#define E1000_DEV_ID_82545GM_SERDES           0x1028
+#define E1000_DEV_ID_82546EB_COPPER           0x1010
+#define E1000_DEV_ID_82546EB_FIBER            0x1012
+#define E1000_DEV_ID_82546EB_QUAD_COPPER      0x101D
+#define E1000_DEV_ID_82546GB_COPPER           0x1079
+#define E1000_DEV_ID_82546GB_FIBER            0x107A
+#define E1000_DEV_ID_82546GB_SERDES           0x107B
+#define E1000_DEV_ID_82546GB_PCIE             0x108A
+#define E1000_DEV_ID_82546GB_QUAD_COPPER      0x1099
+#define E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3 0x10B5
+#define E1000_DEV_ID_82541EI                  0x1013
+#define E1000_DEV_ID_82541EI_MOBILE           0x1018
+#define E1000_DEV_ID_82541ER_LOM              0x1014
+#define E1000_DEV_ID_82541ER                  0x1078
+#define E1000_DEV_ID_82541GI                  0x1076
+#define E1000_DEV_ID_82541GI_LF               0x107C
+#define E1000_DEV_ID_82541GI_MOBILE           0x1077
+#define E1000_DEV_ID_82547EI                  0x1019
+#define E1000_DEV_ID_82547EI_MOBILE           0x101A
+#define E1000_DEV_ID_82547GI                  0x1075
+#define E1000_DEV_ID_82571EB_COPPER           0x105E
+#define E1000_DEV_ID_82571EB_FIBER            0x105F
+#define E1000_DEV_ID_82571EB_SERDES           0x1060
+#define E1000_DEV_ID_82571EB_SERDES_DUAL      0x10D9
+#define E1000_DEV_ID_82571EB_SERDES_QUAD      0x10DA
+#define E1000_DEV_ID_82571EB_QUAD_COPPER      0x10A4
+#define E1000_DEV_ID_82571PT_QUAD_COPPER      0x10D5
+#define E1000_DEV_ID_82571EB_QUAD_FIBER       0x10A5
+#define E1000_DEV_ID_82571EB_QUAD_COPPER_LP   0x10BC
+#define E1000_DEV_ID_82572EI_COPPER           0x107D
+#define E1000_DEV_ID_82572EI_FIBER            0x107E
+#define E1000_DEV_ID_82572EI_SERDES           0x107F
+#define E1000_DEV_ID_82572EI                  0x10B9
+#define E1000_DEV_ID_82573E                   0x108B
+#define E1000_DEV_ID_82573E_IAMT              0x108C
+#define E1000_DEV_ID_82573L                   0x109A
+#define E1000_DEV_ID_80003ES2LAN_COPPER_DPT   0x1096
+#define E1000_DEV_ID_80003ES2LAN_SERDES_DPT   0x1098
+#define E1000_DEV_ID_80003ES2LAN_COPPER_SPT   0x10BA
+#define E1000_DEV_ID_80003ES2LAN_SERDES_SPT   0x10BB
+#define E1000_DEV_ID_ICH8_IGP_M_AMT           0x1049
+#define E1000_DEV_ID_ICH8_IGP_AMT             0x104A
+#define E1000_DEV_ID_ICH8_IGP_C               0x104B
+#define E1000_DEV_ID_ICH8_IFE                 0x104C
+#define E1000_DEV_ID_ICH8_IFE_GT              0x10C4
+#define E1000_DEV_ID_ICH8_IFE_G               0x10C5
+#define E1000_DEV_ID_ICH8_IGP_M               0x104D
+#define E1000_DEV_ID_ICH9_IGP_AMT             0x10BD
+#define E1000_DEV_ID_ICH9_IGP_C               0x294C
+#define E1000_DEV_ID_ICH9_IFE                 0x10C0
+#define E1000_DEV_ID_ICH9_IFE_GT              0x10C3
+#define E1000_DEV_ID_ICH9_IFE_G               0x10C2
+#define E1000_DEV_ID_82575EB_COPPER           0x10A7
+#define E1000_DEV_ID_82575EB_FIBER_SERDES     0x10A9
+#define E1000_DEV_ID_82575GB_QUAD_COPPER      0x10D6
+
+#define E1000_REVISION_0 0
+#define E1000_REVISION_1 1
+#define E1000_REVISION_2 2
+#define E1000_REVISION_3 3
+#define E1000_REVISION_4 4
+
+#define E1000_FUNC_0     0
+#define E1000_FUNC_1     1
+
+typedef enum {
+	e1000_undefined = 0,
+#ifndef NO_82542_SUPPORT
+	e1000_82542,
+#endif
+	e1000_82543,
+	e1000_82544,
+	e1000_82540,
+	e1000_82545,
+	e1000_82545_rev_3,
+	e1000_82546,
+	e1000_82546_rev_3,
+	e1000_82541,
+	e1000_82541_rev_2,
+	e1000_82547,
+	e1000_82547_rev_2,
+	e1000_82571,
+	e1000_82572,
+	e1000_82573,
+	e1000_80003es2lan,
+	e1000_ich8lan,
+	e1000_ich9lan,
+	e1000_82575,
+	e1000_num_macs  /* List is 1-based, so subtract 1 for true count. */
+} e1000_mac_type;
+
+typedef enum {
+	e1000_media_type_unknown = 0,
+	e1000_media_type_copper = 1,
+	e1000_media_type_fiber = 2,
+	e1000_media_type_internal_serdes = 3,
+	e1000_num_media_types
+} e1000_media_type;
+
+typedef enum {
+	e1000_nvm_unknown = 0,
+	e1000_nvm_none,
+	e1000_nvm_eeprom_spi,
+	e1000_nvm_eeprom_microwire,
+	e1000_nvm_flash_hw,
+	e1000_nvm_flash_sw
+} e1000_nvm_type;
+
+typedef enum {
+	e1000_nvm_override_none = 0,
+	e1000_nvm_override_spi_small,
+	e1000_nvm_override_spi_large,
+	e1000_nvm_override_microwire_small,
+	e1000_nvm_override_microwire_large
+} e1000_nvm_override;
+
+typedef enum {
+	e1000_phy_unknown = 0,
+	e1000_phy_none,
+	e1000_phy_m88,
+	e1000_phy_igp,
+	e1000_phy_igp_2,
+	e1000_phy_gg82563,
+	e1000_phy_igp_3,
+	e1000_phy_ife,
+} e1000_phy_type;
+
+typedef enum {
+	e1000_bus_type_unknown = 0,
+	e1000_bus_type_pci,
+	e1000_bus_type_pcix,
+	e1000_bus_type_pci_express,
+	e1000_bus_type_reserved
+} e1000_bus_type;
+
+typedef enum {
+	e1000_bus_speed_unknown = 0,
+	e1000_bus_speed_33,
+	e1000_bus_speed_66,
+	e1000_bus_speed_100,
+	e1000_bus_speed_120,
+	e1000_bus_speed_133,
+	e1000_bus_speed_2500,
+	e1000_bus_speed_5000,
+	e1000_bus_speed_reserved
+} e1000_bus_speed;
+
+typedef enum {
+	e1000_bus_width_unknown = 0,
+	e1000_bus_width_pcie_x1,
+	e1000_bus_width_pcie_x2,
+	e1000_bus_width_pcie_x4 = 4,
+	e1000_bus_width_pcie_x8 = 8,
+	e1000_bus_width_32,
+	e1000_bus_width_64,
+	e1000_bus_width_reserved
+} e1000_bus_width;
+
+typedef enum {
+	e1000_1000t_rx_status_not_ok = 0,
+	e1000_1000t_rx_status_ok,
+	e1000_1000t_rx_status_undefined = 0xFF
+} e1000_1000t_rx_status;
+
+typedef enum {
+	e1000_rev_polarity_normal = 0,
+	e1000_rev_polarity_reversed,
+	e1000_rev_polarity_undefined = 0xFF
+} e1000_rev_polarity;
+
+typedef enum {
+	e1000_fc_none = 0,
+	e1000_fc_rx_pause,
+	e1000_fc_tx_pause,
+	e1000_fc_full,
+	e1000_fc_default = 0xFF
+} e1000_fc_type;
+
+typedef enum {
+	e1000_ffe_config_enabled = 0,
+	e1000_ffe_config_active,
+	e1000_ffe_config_blocked
+} e1000_ffe_config;
+
+typedef enum {
+	e1000_dsp_config_disabled = 0,
+	e1000_dsp_config_enabled,
+	e1000_dsp_config_activated,
+	e1000_dsp_config_undefined = 0xFF
+} e1000_dsp_config;
+
+/* Receive Descriptor */
+struct e1000_rx_desc {
+	u64 buffer_addr; /* Address of the descriptor's data buffer */
+	u16 length;      /* Length of data DMAed into data buffer */
+	u16 csum;        /* Packet checksum */
+	u8  status;      /* Descriptor status */
+	u8  errors;      /* Descriptor Errors */
+	u16 special;
+};
+
+/* Receive Descriptor - Extended */
+union e1000_rx_desc_extended {
+	struct {
+		u64 buffer_addr;
+		u64 reserved;
+	} read;
+	struct {
+		struct {
+			u32 mrq;              /* Multiple Rx Queues */
+			union {
+				u32 rss;            /* RSS Hash */
+				struct {
+					u16 ip_id;  /* IP id */
+					u16 csum;   /* Packet Checksum */
+				} csum_ip;
+			} hi_dword;
+		} lower;
+		struct {
+			u32 status_error;     /* ext status/error */
+			u16 length;
+			u16 vlan;             /* VLAN tag */
+		} upper;
+	} wb;  /* writeback */
+};
+
+#define MAX_PS_BUFFERS 4
+/* Receive Descriptor - Packet Split */
+union e1000_rx_desc_packet_split {
+	struct {
+		/* one buffer for protocol header(s), three data buffers */
+		u64 buffer_addr[MAX_PS_BUFFERS];
+	} read;
+	struct {
+		struct {
+			u32 mrq;              /* Multiple Rx Queues */
+			union {
+				u32 rss;              /* RSS Hash */
+				struct {
+					u16 ip_id;    /* IP id */
+					u16 csum;     /* Packet Checksum */
+				} csum_ip;
+			} hi_dword;
+		} lower;
+		struct {
+			u32 status_error;     /* ext status/error */
+			u16 length0;          /* length of buffer 0 */
+			u16 vlan;             /* VLAN tag */
+		} middle;
+		struct {
+			u16 header_status;
+			u16 length[3];        /* length of buffers 1-3 */
+		} upper;
+		u64 reserved;
+	} wb; /* writeback */
+};
+
+/* Transmit Descriptor */
+struct e1000_tx_desc {
+	u64 buffer_addr;      /* Address of the descriptor's data buffer */
+	union {
+		u32 data;
+		struct {
+			u16 length;    /* Data buffer length */
+			u8 cso;        /* Checksum offset */
+			u8 cmd;        /* Descriptor control */
+		} flags;
+	} lower;
+	union {
+		u32 data;
+		struct {
+			u8 status;     /* Descriptor status */
+			u8 css;        /* Checksum start */
+			u16 special;
+		} fields;
+	} upper;
+};
+
+/* Offload Context Descriptor */
+struct e1000_context_desc {
+	union {
+		u32 ip_config;
+		struct {
+			u8 ipcss;      /* IP checksum start */
+			u8 ipcso;      /* IP checksum offset */
+			u16 ipcse;     /* IP checksum end */
+		} ip_fields;
+	} lower_setup;
+	union {
+		u32 tcp_config;
+		struct {
+			u8 tucss;      /* TCP checksum start */
+			u8 tucso;      /* TCP checksum offset */
+			u16 tucse;     /* TCP checksum end */
+		} tcp_fields;
+	} upper_setup;
+	u32 cmd_and_length;
+	union {
+		u32 data;
+		struct {
+			u8 status;     /* Descriptor status */
+			u8 hdr_len;    /* Header length */
+			u16 mss;       /* Maximum segment size */
+		} fields;
+	} tcp_seg_setup;
+};
+
+/* Offload data descriptor */
+struct e1000_data_desc {
+	u64 buffer_addr;   /* Address of the descriptor's buffer address */
+	union {
+		u32 data;
+		struct {
+			u16 length;    /* Data buffer length */
+			u8 typ_len_ext;
+			u8 cmd;
+		} flags;
+	} lower;
+	union {
+		u32 data;
+		struct {
+			u8 status;     /* Descriptor status */
+			u8 popts;      /* Packet Options */
+			u16 special;
+		} fields;
+	} upper;
+};
+
+/* Statistics counters collected by the MAC */
+struct e1000_hw_stats {
+	u64 crcerrs;
+	u64 algnerrc;
+	u64 symerrs;
+	u64 rxerrc;
+	u64 mpc;
+	u64 scc;
+	u64 ecol;
+	u64 mcc;
+	u64 latecol;
+	u64 colc;
+	u64 dc;
+	u64 tncrs;
+	u64 sec;
+	u64 cexterr;
+	u64 rlec;
+	u64 xonrxc;
+	u64 xontxc;
+	u64 xoffrxc;
+	u64 xofftxc;
+	u64 fcruc;
+	u64 prc64;
+	u64 prc127;
+	u64 prc255;
+	u64 prc511;
+	u64 prc1023;
+	u64 prc1522;
+	u64 gprc;
+	u64 bprc;
+	u64 mprc;
+	u64 gptc;
+	u64 gorc;
+	u64 gotc;
+	u64 rnbc;
+	u64 ruc;
+	u64 rfc;
+	u64 roc;
+	u64 rjc;
+	u64 mgprc;
+	u64 mgpdc;
+	u64 mgptc;
+	u64 tor;
+	u64 tot;
+	u64 tpr;
+	u64 tpt;
+	u64 ptc64;
+	u64 ptc127;
+	u64 ptc255;
+	u64 ptc511;
+	u64 ptc1023;
+	u64 ptc1522;
+	u64 mptc;
+	u64 bptc;
+	u64 tsctc;
+	u64 tsctfc;
+	u64 iac;
+	u64 icrxptc;
+	u64 icrxatc;
+	u64 ictxptc;
+	u64 ictxatc;
+	u64 ictxqec;
+	u64 ictxqmtc;
+	u64 icrxdmtc;
+	u64 icrxoc;
+	u64 cbtmpc;
+	u64 htdpmc;
+	u64 cbrdpc;
+	u64 cbrmpc;
+	u64 rpthc;
+	u64 hgptc;
+	u64 htcbdpc;
+	u64 hgorc;
+	u64 hgotc;
+	u64 lenerrs;
+	u64 scvpc;
+	u64 hrmpc;
+};
+
+struct e1000_phy_stats {
+	u32 idle_errors;
+	u32 receive_errors;
+};
+
+struct e1000_host_mng_dhcp_cookie {
+	u32 signature;
+	u8  status;
+	u8  reserved0;
+	u16 vlan_id;
+	u32 reserved1;
+	u16 reserved2;
+	u8  reserved3;
+	u8  checksum;
+};
+
+/* Host Interface "Rev 1" */
+struct e1000_host_command_header {
+	u8 command_id;
+	u8 command_length;
+	u8 command_options;
+	u8 checksum;
+};
+
+#define E1000_HI_MAX_DATA_LENGTH     252
+struct e1000_host_command_info {
+	struct e1000_host_command_header command_header;
+	u8 command_data[E1000_HI_MAX_DATA_LENGTH];
+};
+
+/* Host Interface "Rev 2" */
+struct e1000_host_mng_command_header {
+	u8  command_id;
+	u8  checksum;
+	u16 reserved1;
+	u16 reserved2;
+	u16 command_length;
+};
+
+#define E1000_HI_MAX_MNG_DATA_LENGTH 0x6F8
+struct e1000_host_mng_command_info {
+	struct e1000_host_mng_command_header command_header;
+	u8 command_data[E1000_HI_MAX_MNG_DATA_LENGTH];
+};
+
+#include "e1000_mac.h"
+#include "e1000_phy.h"
+#include "e1000_nvm.h"
+#include "e1000_manage.h"
+
+struct e1000_functions {
+	/* Function pointers for the MAC. */
+	s32  (*init_mac_params)(struct e1000_hw *);
+	s32  (*blink_led)(struct e1000_hw *);
+	s32  (*check_for_link)(struct e1000_hw *);
+	bool (*check_mng_mode)(struct e1000_hw *hw);
+	s32  (*cleanup_led)(struct e1000_hw *);
+	void (*clear_hw_cntrs)(struct e1000_hw *);
+	void (*clear_vfta)(struct e1000_hw *);
+	s32  (*get_bus_info)(struct e1000_hw *);
+	s32  (*get_link_up_info)(struct e1000_hw *, u16 *, u16 *);
+	s32  (*led_on)(struct e1000_hw *);
+	s32  (*led_off)(struct e1000_hw *);
+	void (*update_mc_addr_list)(struct e1000_hw *, u8 *, u32, u32,
+	                            u32);
+	void (*remove_device)(struct e1000_hw *);
+	s32  (*reset_hw)(struct e1000_hw *);
+	s32  (*init_hw)(struct e1000_hw *);
+	s32  (*setup_link)(struct e1000_hw *);
+	s32  (*setup_physical_interface)(struct e1000_hw *);
+	s32  (*setup_led)(struct e1000_hw *);
+	void (*write_vfta)(struct e1000_hw *, u32, u32);
+	void (*mta_set)(struct e1000_hw *, u32);
+	void (*config_collision_dist)(struct e1000_hw*);
+	void (*rar_set)(struct e1000_hw*, u8*, u32);
+	s32  (*read_mac_addr)(struct e1000_hw*);
+	s32  (*validate_mdi_setting)(struct e1000_hw*);
+	s32  (*mng_host_if_write)(struct e1000_hw*, u8*, u16, u16, u8*);
+	s32  (*mng_write_cmd_header)(struct e1000_hw *hw,
+                      struct e1000_host_mng_command_header*);
+	s32  (*mng_enable_host_if)(struct e1000_hw*);
+	s32  (*wait_autoneg)(struct e1000_hw*);
+
+	/* Function pointers for the PHY. */
+	s32  (*init_phy_params)(struct e1000_hw *);
+	s32  (*acquire_phy)(struct e1000_hw *);
+	s32  (*check_polarity)(struct e1000_hw *);
+	s32  (*check_reset_block)(struct e1000_hw *);
+	s32  (*commit_phy)(struct e1000_hw *);
+	s32  (*force_speed_duplex)(struct e1000_hw *);
+	s32  (*get_cfg_done)(struct e1000_hw *hw);
+	s32  (*get_cable_length)(struct e1000_hw *);
+	s32  (*get_phy_info)(struct e1000_hw *);
+	s32  (*read_phy_reg)(struct e1000_hw *, u32, u16 *);
+	void (*release_phy)(struct e1000_hw *);
+	s32  (*reset_phy)(struct e1000_hw *);
+	s32  (*set_d0_lplu_state)(struct e1000_hw *, bool);
+	s32  (*set_d3_lplu_state)(struct e1000_hw *, bool);
+	s32  (*write_phy_reg)(struct e1000_hw *, u32, u16);
+	void (*power_up_phy)(struct e1000_hw *);
+	void (*power_down_phy)(struct e1000_hw *);
+
+	/* Function pointers for the NVM. */
+	s32  (*init_nvm_params)(struct e1000_hw *);
+	s32  (*acquire_nvm)(struct e1000_hw *);
+	s32  (*read_nvm)(struct e1000_hw *, u16, u16, u16 *);
+	void (*release_nvm)(struct e1000_hw *);
+	void (*reload_nvm)(struct e1000_hw *);
+	s32  (*update_nvm)(struct e1000_hw *);
+	s32  (*valid_led_default)(struct e1000_hw *, u16 *);
+	s32  (*validate_nvm)(struct e1000_hw *);
+	s32  (*write_nvm)(struct e1000_hw *, u16, u16, u16 *);
+};
+
+struct e1000_mac_info {
+	u8 addr[6];
+	u8 perm_addr[6];
+
+	e1000_mac_type type;
+
+	u32 collision_delta;
+	u32 ledctl_default;
+	u32 ledctl_mode1;
+	u32 ledctl_mode2;
+	u32 mc_filter_type;
+	u32 tx_packet_delta;
+	u32 txcw;
+
+	u16 current_ifs_val;
+	u16 ifs_max_val;
+	u16 ifs_min_val;
+	u16 ifs_ratio;
+	u16 ifs_step_size;
+	u16 mta_reg_count;
+	u16 rar_entry_count;
+
+	u8  forced_speed_duplex;
+
+	bool adaptive_ifs;
+	bool arc_subsystem_valid;
+	bool asf_firmware_present;
+	bool autoneg;
+	bool autoneg_failed;
+	bool disable_av;
+	bool disable_hw_init_bits;
+	bool get_link_status;
+	bool ifs_params_forced;
+	bool in_ifs_mode;
+	bool report_tx_early;
+	bool serdes_has_link;
+	bool tx_pkt_filtering;
+};
+
+struct e1000_phy_info {
+	e1000_phy_type type;
+
+	e1000_1000t_rx_status local_rx;
+	e1000_1000t_rx_status remote_rx;
+	e1000_ms_type ms_type;
+	e1000_ms_type original_ms_type;
+	e1000_rev_polarity cable_polarity;
+	e1000_smart_speed smart_speed;
+
+	u32 addr;
+	u32 id;
+	u32 reset_delay_us; /* in usec */
+	u32 revision;
+
+	e1000_media_type media_type;
+
+	u16 autoneg_advertised;
+	u16 autoneg_mask;
+	u16 cable_length;
+	u16 max_cable_length;
+	u16 min_cable_length;
+
+	u8 mdix;
+
+	bool disable_polarity_correction;
+	bool is_mdix;
+	bool polarity_correction;
+	bool reset_disable;
+	bool speed_downgraded;
+	bool autoneg_wait_to_complete;
+};
+
+struct e1000_nvm_info {
+	e1000_nvm_type type;
+	e1000_nvm_override override;
+
+	u32 flash_bank_size;
+	u32 flash_base_addr;
+
+	u16 word_size;
+	u16 delay_usec;
+	u16 address_bits;
+	u16 opcode_bits;
+	u16 page_size;
+};
+
+struct e1000_bus_info {
+	e1000_bus_type type;
+	e1000_bus_speed speed;
+	e1000_bus_width width;
+
+	u32 snoop;
+
+	u16 func;
+	u16 pci_cmd_word;
+};
+
+struct e1000_fc_info {
+	u32 high_water;     /* Flow control high-water mark */
+	u32 low_water;      /* Flow control low-water mark */
+	u16 pause_time;     /* Flow control pause timer */
+	bool send_xon;      /* Flow control send XON */
+	bool strict_ieee;   /* Strict IEEE mode */
+	e1000_fc_type type; /* Type of flow control */
+	e1000_fc_type original_type;
+};
+
+struct e1000_hw {
+	void *back;
+	void *dev_spec;
+
+	u8 *hw_addr;
+	u8 *flash_address;
+	unsigned long io_base;
+
+	struct e1000_functions func;
+	struct e1000_mac_info  mac;
+	struct e1000_fc_info   fc;
+	struct e1000_phy_info  phy;
+	struct e1000_nvm_info  nvm;
+	struct e1000_bus_info  bus;
+	struct e1000_host_mng_dhcp_cookie mng_cookie;
+
+	u32 dev_spec_size;
+
+	u16 device_id;
+	u16 subsystem_vendor_id;
+	u16 subsystem_device_id;
+	u16 vendor_id;
+
+	u8  revision_id;
+};
+
+/* These functions must be implemented by drivers */
+void e1000_pci_clear_mwi(struct e1000_hw *hw);
+void e1000_pci_set_mwi(struct e1000_hw *hw);
+s32  e1000_alloc_zeroed_dev_spec_struct(struct e1000_hw *hw, u32 size);
+s32  e1000_read_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value);
+void e1000_free_dev_spec_struct(struct e1000_hw *hw);
+void e1000_read_pci_cfg(struct e1000_hw *hw, u32 reg, u16 *value);
+void e1000_write_pci_cfg(struct e1000_hw *hw, u32 reg, u16 *value);
+
+#endif
--- /dev/null
+++ sys/dev/em/e1000_82543.h
@@ -0,0 +1,51 @@
+/*******************************************************************************
+
+  Copyright (c) 2001-2007, Intel Corporation 
+  All rights reserved.
+  
+  Redistribution and use in source and binary forms, with or without 
+  modification, are permitted provided that the following conditions are met:
+  
+   1. Redistributions of source code must retain the above copyright notice, 
+      this list of conditions and the following disclaimer.
+  
+   2. Redistributions in binary form must reproduce the above copyright 
+      notice, this list of conditions and the following disclaimer in the 
+      documentation and/or other materials provided with the distribution.
+  
+   3. Neither the name of the Intel Corporation nor the names of its 
+      contributors may be used to endorse or promote products derived from 
+      this software without specific prior written permission.
+  
+  THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
+  AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 
+  IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 
+  ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE 
+  LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 
+  CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 
+  SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 
+  INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 
+  CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 
+  ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
+  POSSIBILITY OF SUCH DAMAGE.
+
+*******************************************************************************/
+/* $FreeBSD: src/sys/dev/em/e1000_82543.h,v 1.3.4.1 2007/11/28 23:24:37 jfv Exp $ */
+
+
+#ifndef _E1000_82543_H_
+#define _E1000_82543_H_
+
+#define PHY_PREAMBLE      0xFFFFFFFF
+#define PHY_PREAMBLE_SIZE 32
+#define PHY_SOF           0x1
+#define PHY_OP_READ       0x2
+#define PHY_OP_WRITE      0x1
+#define PHY_TURNAROUND    0x2
+
+#define TBI_COMPAT_ENABLED 0x1 /* Global "knob" for the workaround */
+/* If TBI_COMPAT_ENABLED, then this is the current state (on/off) */
+#define TBI_SBP_ENABLED    0x2 
+                                
+
+#endif
--- sys/dev/em/if_em_osdep.h
+++ /dev/null
@@ -1,177 +0,0 @@
-/**************************************************************************
-
-Copyright (c) 2001-2006, Intel Corporation
-All rights reserved.
-
-Redistribution and use in source and binary forms, with or without
-modification, are permitted provided that the following conditions are met:
-
- 1. Redistributions of source code must retain the above copyright notice,
-    this list of conditions and the following disclaimer.
-
- 2. Redistributions in binary form must reproduce the above copyright
-    notice, this list of conditions and the following disclaimer in the
-    documentation and/or other materials provided with the distribution.
-
- 3. Neither the name of the Intel Corporation nor the names of its
-    contributors may be used to endorse or promote products derived from
-    this software without specific prior written permission.
-
-THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
-AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
-IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
-ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
-LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
-CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
-SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
-INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
-CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
-ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
-POSSIBILITY OF SUCH DAMAGE.
-
-***************************************************************************/
-
-/*$FreeBSD: /repoman/r/ncvs/src/sys/dev/em/if_em_osdep.h,v 1.14.2.2 2006/08/08 09:20:26 glebius Exp $*/
-
-#ifndef _FREEBSD_OS_H_
-#define _FREEBSD_OS_H_
-
-#include <sys/types.h>
-#include <sys/systm.h>
-#include <sys/bus.h>
-#include <sys/mbuf.h>
-#include <sys/malloc.h>
-#include <sys/socket.h>
-
-#include <machine/bus.h>
-#include <sys/rman.h>
-#include <machine/resource.h>
-
-#include <dev/pci/pcivar.h>
-#include <dev/pci/pcireg.h>
-
-#define usec_delay(x) DELAY(x)
-#define msec_delay(x) DELAY(1000*(x))
-/* TODO: Should we be paranoid about delaying in interrupt context? */
-#define msec_delay_irq(x) DELAY(1000*(x))
-
-#define MSGOUT(S, A, B)     printf(S "\n", A, B)
-#define DEBUGFUNC(F)        DEBUGOUT(F);
-#ifdef DBG
-	#define DEBUGOUT(S)         printf(S "\n")
-	#define DEBUGOUT1(S,A)      printf(S "\n",A)
-	#define DEBUGOUT2(S,A,B)    printf(S "\n",A,B)
-	#define DEBUGOUT3(S,A,B,C)  printf(S "\n",A,B,C)
-	#define DEBUGOUT7(S,A,B,C,D,E,F,G)  printf(S "\n",A,B,C,D,E,F,G)
-#else
-	#define DEBUGOUT(S)
-	#define DEBUGOUT1(S,A)
-	#define DEBUGOUT2(S,A,B)
-	#define DEBUGOUT3(S,A,B,C)
-	#define DEBUGOUT7(S,A,B,C,D,E,F,G)
-#endif
-
-#define FALSE               0
-#define TRUE                1
-#define CMD_MEM_WRT_INVALIDATE          0x0010  /* BIT_4 */
-#define PCI_COMMAND_REGISTER            PCIR_COMMAND
-
-struct em_osdep
-{
-	bus_space_tag_t    mem_bus_space_tag;
-	bus_space_handle_t mem_bus_space_handle;
-	bus_space_tag_t    io_bus_space_tag;
-	bus_space_handle_t io_bus_space_handle;
-	bus_space_tag_t    flash_bus_space_tag;
-	bus_space_handle_t flash_bus_space_handle;
-	device_t 	   dev;
-};
-
-#define E1000_WRITE_FLUSH(hw) E1000_READ_REG(hw, STATUS)
-
-/* Read from an absolute offset in the adapter's memory space */
-#define E1000_READ_OFFSET(hw, offset) \
-    bus_space_read_4( ((struct em_osdep *)(hw)->back)->mem_bus_space_tag, \
-    ((struct em_osdep *)(hw)->back)->mem_bus_space_handle, offset)
-
-/* Write to an absolute offset in the adapter's memory space */
-#define E1000_WRITE_OFFSET(hw, offset, value) \
-    bus_space_write_4( ((struct em_osdep *)(hw)->back)->mem_bus_space_tag, \
-    ((struct em_osdep *)(hw)->back)->mem_bus_space_handle, offset, value)
-
-/* Convert a register name to its offset in the adapter's memory space */
-#define E1000_REG_OFFSET(hw, reg) \
-    ((hw)->mac_type >= em_82543 ? E1000_##reg : E1000_82542_##reg)
-
-/*
- * Register READ/WRITE macros.
- *
- * XXXGL: Due to define's namespace mangling in recent version of
- * if_em_hw.*, we prepend "_" to the register name in all macros,
- * to prevent reg from being substituted, and then, in E1000_REG_OFFSET()
- * we prepend either "E1000" or "E1000_82542".
- *
- * P.S. The problematic defines are E1000_PHY_CTRL and PHY_CTRL.
- *
- * P.P.S. Intel has removed E1000_REG_OFFSET() and copy-pasted it to all
- * macros.
- */
-#define _E1000_REG_OFFSET(hw, reg) \
-    ((hw)->mac_type >= em_82543 ? E1000##reg : E1000_82542##reg)
-
-#define E1000_READ_REG(hw, reg) \
-    E1000_READ_OFFSET(hw, _E1000_REG_OFFSET(hw, _##reg))
-
-#define E1000_WRITE_REG(hw, reg, value) \
-    E1000_WRITE_OFFSET(hw, _E1000_REG_OFFSET(hw, _##reg), value)
-
-#define E1000_READ_REG_ARRAY(hw, reg, index) \
-    E1000_READ_OFFSET(hw, _E1000_REG_OFFSET(hw, _##reg) + ((index) << 2))
-
-#define E1000_READ_REG_ARRAY_DWORD E1000_READ_REG_ARRAY
-
-#define E1000_WRITE_REG_ARRAY(hw, reg, index, value) \
-    E1000_WRITE_OFFSET(hw, _E1000_REG_OFFSET(hw, _##reg) + ((index) << 2), value)
-
-#define E1000_WRITE_REG_ARRAY_BYTE(hw, reg, index, value) \
-    bus_space_write_1( ((struct em_osdep *)(hw)->back)->mem_bus_space_tag, \
-                       ((struct em_osdep *)(hw)->back)->mem_bus_space_handle, \
-                       _E1000_REG_OFFSET(hw, _##reg) + (index), \
-                       value)
-
-#define E1000_WRITE_REG_ARRAY_WORD(hw, reg, index, value) \
-    bus_space_write_2( ((struct em_osdep *)(hw)->back)->mem_bus_space_tag, \
-                       ((struct em_osdep *)(hw)->back)->mem_bus_space_handle, \
-                       _E1000_REG_OFFSET(hw, _##reg) + (index), \
-                       value)
-
-#define E1000_WRITE_REG_ARRAY_DWORD(hw, reg, index, value) \
-    E1000_WRITE_OFFSET(hw, _E1000_REG_OFFSET(hw, _##reg) + ((index) << 2), value)
-
-#define E1000_READ_ICH8_REG(hw, reg) \
-    bus_space_read_4(((struct em_osdep *)(hw)->back)->flash_bus_space_tag, \
-        ((struct em_osdep *)(hw)->back)->flash_bus_space_handle, reg)
-
-#define E1000_READ_ICH8_REG16(hw, reg) \
-    bus_space_read_2(((struct em_osdep *)(hw)->back)->flash_bus_space_tag, \
-        ((struct em_osdep *)(hw)->back)->flash_bus_space_handle, reg)
-
-#define E1000_WRITE_ICH8_REG(hw, reg, value) \
-    bus_space_write_4(((struct em_osdep *)(hw)->back)->flash_bus_space_tag, \
-        ((struct em_osdep *)(hw)->back)->flash_bus_space_handle, reg, value)
-
-#define E1000_WRITE_ICH8_REG16(hw, reg, value) \
-    bus_space_write_2(((struct em_osdep *)(hw)->back)->flash_bus_space_tag, \
-        ((struct em_osdep *)(hw)->back)->flash_bus_space_handle, reg, value)
- 
-#define em_io_read(hw, port)						\
-    bus_space_read_4(((struct em_osdep *)(hw)->back)->io_bus_space_tag, \
-	((struct em_osdep *)(hw)->back)->io_bus_space_handle, (port))
-
-#define em_io_write(hw, port, value)					 \
-    bus_space_write_4(((struct em_osdep *)(hw)->back)->io_bus_space_tag, \
-	((struct em_osdep *)(hw)->back)->io_bus_space_handle, (port),	 \
-	(value))
-
-#endif  /* _FREEBSD_OS_H_ */
-
--- /dev/null
+++ sys/dev/em/e1000_nvm.c
@@ -0,0 +1,900 @@
+/*******************************************************************************
+
+  Copyright (c) 2001-2007, Intel Corporation 
+  All rights reserved.
+  
+  Redistribution and use in source and binary forms, with or without 
+  modification, are permitted provided that the following conditions are met:
+  
+   1. Redistributions of source code must retain the above copyright notice, 
+      this list of conditions and the following disclaimer.
+  
+   2. Redistributions in binary form must reproduce the above copyright 
+      notice, this list of conditions and the following disclaimer in the 
+      documentation and/or other materials provided with the distribution.
+  
+   3. Neither the name of the Intel Corporation nor the names of its 
+      contributors may be used to endorse or promote products derived from 
+      this software without specific prior written permission.
+  
+  THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
+  AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 
+  IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 
+  ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE 
+  LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 
+  CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 
+  SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 
+  INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 
+  CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 
+  ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
+  POSSIBILITY OF SUCH DAMAGE.
+
+*******************************************************************************/
+/* $FreeBSD: src/sys/dev/em/e1000_nvm.c,v 1.3.4.1 2007/11/28 23:24:38 jfv Exp $ */
+
+
+#include "e1000_api.h"
+#include "e1000_nvm.h"
+
+/**
+ *  e1000_raise_eec_clk - Raise EEPROM clock
+ *  @hw: pointer to the HW structure
+ *  @eecd: pointer to the EEPROM
+ *
+ *  Enable/Raise the EEPROM clock bit.
+ **/
+static void e1000_raise_eec_clk(struct e1000_hw *hw, u32 *eecd)
+{
+	*eecd = *eecd | E1000_EECD_SK;
+	E1000_WRITE_REG(hw, E1000_EECD, *eecd);
+	E1000_WRITE_FLUSH(hw);
+	usec_delay(hw->nvm.delay_usec);
+}
+
+/**
+ *  e1000_lower_eec_clk - Lower EEPROM clock
+ *  @hw: pointer to the HW structure
+ *  @eecd: pointer to the EEPROM
+ *
+ *  Clear/Lower the EEPROM clock bit.
+ **/
+static void e1000_lower_eec_clk(struct e1000_hw *hw, u32 *eecd)
+{
+	*eecd = *eecd & ~E1000_EECD_SK;
+	E1000_WRITE_REG(hw, E1000_EECD, *eecd);
+	E1000_WRITE_FLUSH(hw);
+	usec_delay(hw->nvm.delay_usec);
+}
+
+/**
+ *  e1000_shift_out_eec_bits - Shift data bits our to the EEPROM
+ *  @hw: pointer to the HW structure
+ *  @data: data to send to the EEPROM
+ *  @count: number of bits to shift out
+ *
+ *  We need to shift 'count' bits out to the EEPROM.  So, the value in the
+ *  "data" parameter will be shifted out to the EEPROM one bit at a time.
+ *  In order to do this, "data" must be broken down into bits.
+ **/
+static void e1000_shift_out_eec_bits(struct e1000_hw *hw, u16 data, u16 count)
+{
+	struct e1000_nvm_info *nvm = &hw->nvm;
+	u32 eecd = E1000_READ_REG(hw, E1000_EECD);
+	u32 mask;
+
+	DEBUGFUNC("e1000_shift_out_eec_bits");
+
+	mask = 0x01 << (count - 1);
+	if (nvm->type == e1000_nvm_eeprom_microwire)
+		eecd &= ~E1000_EECD_DO;
+	else if (nvm->type == e1000_nvm_eeprom_spi)
+		eecd |= E1000_EECD_DO;
+
+	do {
+		eecd &= ~E1000_EECD_DI;
+
+		if (data & mask)
+			eecd |= E1000_EECD_DI;
+
+		E1000_WRITE_REG(hw, E1000_EECD, eecd);
+		E1000_WRITE_FLUSH(hw);
+
+		usec_delay(nvm->delay_usec);
+
+		e1000_raise_eec_clk(hw, &eecd);
+		e1000_lower_eec_clk(hw, &eecd);
+
+		mask >>= 1;
+	} while (mask);
+
+	eecd &= ~E1000_EECD_DI;
+	E1000_WRITE_REG(hw, E1000_EECD, eecd);
+}
+
+/**
+ *  e1000_shift_in_eec_bits - Shift data bits in from the EEPROM
+ *  @hw: pointer to the HW structure
+ *  @count: number of bits to shift in
+ *
+ *  In order to read a register from the EEPROM, we need to shift 'count' bits
+ *  in from the EEPROM.  Bits are "shifted in" by raising the clock input to
+ *  the EEPROM (setting the SK bit), and then reading the value of the data out
+ *  "DO" bit.  During this "shifting in" process the data in "DI" bit should
+ *  always be clear.
+ **/
+static u16 e1000_shift_in_eec_bits(struct e1000_hw *hw, u16 count)
+{
+	u32 eecd;
+	u32 i;
+	u16 data;
+
+	DEBUGFUNC("e1000_shift_in_eec_bits");
+
+	eecd = E1000_READ_REG(hw, E1000_EECD);
+
+	eecd &= ~(E1000_EECD_DO | E1000_EECD_DI);
+	data = 0;
+
+	for (i = 0; i < count; i++) {
+		data <<= 1;
+		e1000_raise_eec_clk(hw, &eecd);
+
+		eecd = E1000_READ_REG(hw, E1000_EECD);
+
+		eecd &= ~E1000_EECD_DI;
+		if (eecd & E1000_EECD_DO)
+			data |= 1;
+
+		e1000_lower_eec_clk(hw, &eecd);
+	}
+
+	return data;
+}
+
+/**
+ *  e1000_poll_eerd_eewr_done - Poll for EEPROM read/write completion
+ *  @hw: pointer to the HW structure
+ *  @ee_reg: EEPROM flag for polling
+ *
+ *  Polls the EEPROM status bit for either read or write completion based
+ *  upon the value of 'ee_reg'.
+ **/
+s32 e1000_poll_eerd_eewr_done(struct e1000_hw *hw, int ee_reg)
+{
+	u32 attempts = 100000;
+	u32 i, reg = 0;
+	s32 ret_val = -E1000_ERR_NVM;
+
+	DEBUGFUNC("e1000_poll_eerd_eewr_done");
+
+	for (i = 0; i < attempts; i++) {
+		if (ee_reg == E1000_NVM_POLL_READ)
+			reg = E1000_READ_REG(hw, E1000_EERD);
+		else
+			reg = E1000_READ_REG(hw, E1000_EEWR);
+
+		if (reg & E1000_NVM_RW_REG_DONE) {
+			ret_val = E1000_SUCCESS;
+			break;
+		}
+
+		usec_delay(5);
+	}
+
+	return ret_val;
+}
+
+/**
+ *  e1000_acquire_nvm_generic - Generic request for access to EEPROM
+ *  @hw: pointer to the HW structure
+ *
+ *  Set the EEPROM access request bit and wait for EEPROM access grant bit.
+ *  Return successful if access grant bit set, else clear the request for
+ *  EEPROM access and return -E1000_ERR_NVM (-1).
+ **/
+s32 e1000_acquire_nvm_generic(struct e1000_hw *hw)
+{
+	u32 eecd = E1000_READ_REG(hw, E1000_EECD);
+	s32 timeout = E1000_NVM_GRANT_ATTEMPTS;
+	s32 ret_val = E1000_SUCCESS;
+
+	DEBUGFUNC("e1000_acquire_nvm_generic");
+
+	E1000_WRITE_REG(hw, E1000_EECD, eecd | E1000_EECD_REQ);
+	eecd = E1000_READ_REG(hw, E1000_EECD);
+
+	while (timeout) {
+		if (eecd & E1000_EECD_GNT)
+			break;
+		usec_delay(5);
+		eecd = E1000_READ_REG(hw, E1000_EECD);
+		timeout--;
+	}
+
+	if (!timeout) {
+		eecd &= ~E1000_EECD_REQ;
+		E1000_WRITE_REG(hw, E1000_EECD, eecd);
+		DEBUGOUT("Could not acquire NVM grant\n");
+		ret_val = -E1000_ERR_NVM;
+	}
+
+	return ret_val;
+}
+
+/**
+ *  e1000_standby_nvm - Return EEPROM to standby state
+ *  @hw: pointer to the HW structure
+ *
+ *  Return the EEPROM to a standby state.
+ **/
+static void e1000_standby_nvm(struct e1000_hw *hw)
+{
+	struct e1000_nvm_info *nvm = &hw->nvm;
+	u32 eecd = E1000_READ_REG(hw, E1000_EECD);
+
+	DEBUGFUNC("e1000_standby_nvm");
+
+	if (nvm->type == e1000_nvm_eeprom_microwire) {
+		eecd &= ~(E1000_EECD_CS | E1000_EECD_SK);
+		E1000_WRITE_REG(hw, E1000_EECD, eecd);
+		E1000_WRITE_FLUSH(hw);
+		usec_delay(nvm->delay_usec);
+
+		e1000_raise_eec_clk(hw, &eecd);
+
+		/* Select EEPROM */
+		eecd |= E1000_EECD_CS;
+		E1000_WRITE_REG(hw, E1000_EECD, eecd);
+		E1000_WRITE_FLUSH(hw);
+		usec_delay(nvm->delay_usec);
+
+		e1000_lower_eec_clk(hw, &eecd);
+	} else if (nvm->type == e1000_nvm_eeprom_spi) {
+		/* Toggle CS to flush commands */
+		eecd |= E1000_EECD_CS;
+		E1000_WRITE_REG(hw, E1000_EECD, eecd);
+		E1000_WRITE_FLUSH(hw);
+		usec_delay(nvm->delay_usec);
+		eecd &= ~E1000_EECD_CS;
+		E1000_WRITE_REG(hw, E1000_EECD, eecd);
+		E1000_WRITE_FLUSH(hw);
+		usec_delay(nvm->delay_usec);
+	}
+}
+
+/**
+ *  e1000_stop_nvm - Terminate EEPROM command
+ *  @hw: pointer to the HW structure
+ *
+ *  Terminates the current command by inverting the EEPROM's chip select pin.
+ **/
+void e1000_stop_nvm(struct e1000_hw *hw)
+{
+	u32 eecd;
+
+	DEBUGFUNC("e1000_stop_nvm");
+
+	eecd = E1000_READ_REG(hw, E1000_EECD);
+	if (hw->nvm.type == e1000_nvm_eeprom_spi) {
+		/* Pull CS high */
+		eecd |= E1000_EECD_CS;
+		e1000_lower_eec_clk(hw, &eecd);
+	} else if (hw->nvm.type == e1000_nvm_eeprom_microwire) {
+		/* CS on Microcwire is active-high */
+		eecd &= ~(E1000_EECD_CS | E1000_EECD_DI);
+		E1000_WRITE_REG(hw, E1000_EECD, eecd);
+		e1000_raise_eec_clk(hw, &eecd);
+		e1000_lower_eec_clk(hw, &eecd);
+	}
+}
+
+/**
+ *  e1000_release_nvm_generic - Release exclusive access to EEPROM
+ *  @hw: pointer to the HW structure
+ *
+ *  Stop any current commands to the EEPROM and clear the EEPROM request bit.
+ **/
+void e1000_release_nvm_generic(struct e1000_hw *hw)
+{
+	u32 eecd;
+
+	DEBUGFUNC("e1000_release_nvm_generic");
+
+	e1000_stop_nvm(hw);
+
+	eecd = E1000_READ_REG(hw, E1000_EECD);
+	eecd &= ~E1000_EECD_REQ;
+	E1000_WRITE_REG(hw, E1000_EECD, eecd);
+}
+
+/**
+ *  e1000_ready_nvm_eeprom - Prepares EEPROM for read/write
+ *  @hw: pointer to the HW structure
+ *
+ *  Setups the EEPROM for reading and writing.
+ **/
+static s32 e1000_ready_nvm_eeprom(struct e1000_hw *hw)
+{
+	struct e1000_nvm_info *nvm = &hw->nvm;
+	u32 eecd = E1000_READ_REG(hw, E1000_EECD);
+	s32 ret_val = E1000_SUCCESS;
+	u16 timeout = 0;
+	u8 spi_stat_reg;
+
+	DEBUGFUNC("e1000_ready_nvm_eeprom");
+
+	if (nvm->type == e1000_nvm_eeprom_microwire) {
+		/* Clear SK and DI */
+		eecd &= ~(E1000_EECD_DI | E1000_EECD_SK);
+		E1000_WRITE_REG(hw, E1000_EECD, eecd);
+		/* Set CS */
+		eecd |= E1000_EECD_CS;
+		E1000_WRITE_REG(hw, E1000_EECD, eecd);
+	} else if (nvm->type == e1000_nvm_eeprom_spi) {
+		/* Clear SK and CS */
+		eecd &= ~(E1000_EECD_CS | E1000_EECD_SK);
+		E1000_WRITE_REG(hw, E1000_EECD, eecd);
+		usec_delay(1);
+		timeout = NVM_MAX_RETRY_SPI;
+
+		/*
+		 * Read "Status Register" repeatedly until the LSB is cleared.
+		 * The EEPROM will signal that the command has been completed
+		 * by clearing bit 0 of the internal status register.  If it's
+		 * not cleared within 'timeout', then error out.
+		 */
+		while (timeout) {
+			e1000_shift_out_eec_bits(hw, NVM_RDSR_OPCODE_SPI,
+			                         hw->nvm.opcode_bits);
+			spi_stat_reg = (u8)e1000_shift_in_eec_bits(hw, 8);
+			if (!(spi_stat_reg & NVM_STATUS_RDY_SPI))
+				break;
+
+			usec_delay(5);
+			e1000_standby_nvm(hw);
+			timeout--;
+		}
+
+		if (!timeout) {
+			DEBUGOUT("SPI NVM Status error\n");
+			ret_val = -E1000_ERR_NVM;
+			goto out;
+		}
+	}
+
+out:
+	return ret_val;
+}
+
+/**
+ *  e1000_read_nvm_spi - Read EEPROM's using SPI
+ *  @hw: pointer to the HW structure
+ *  @offset: offset of word in the EEPROM to read
+ *  @words: number of words to read
+ *  @data: word read from the EEPROM
+ *
+ *  Reads a 16 bit word from the EEPROM.
+ **/
+s32 e1000_read_nvm_spi(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
+{
+	struct e1000_nvm_info *nvm = &hw->nvm;
+	u32 i = 0;
+	s32 ret_val;
+	u16 word_in;
+	u8 read_opcode = NVM_READ_OPCODE_SPI;
+
+	DEBUGFUNC("e1000_read_nvm_spi");
+
+	/*
+	 * A check for invalid values:  offset too large, too many words,
+	 * and not enough words.
+	 */
+	if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
+	    (words == 0)) {
+		DEBUGOUT("nvm parameter(s) out of bounds\n");
+		ret_val = -E1000_ERR_NVM;
+		goto out;
+	}
+
+	ret_val = e1000_acquire_nvm(hw);
+	if (ret_val)
+		goto out;
+
+	ret_val = e1000_ready_nvm_eeprom(hw);
+	if (ret_val)
+		goto release;
+
+	e1000_standby_nvm(hw);
+
+	if ((nvm->address_bits == 8) && (offset >= 128))
+		read_opcode |= NVM_A8_OPCODE_SPI;
+
+	/* Send the READ command (opcode + addr) */
+	e1000_shift_out_eec_bits(hw, read_opcode, nvm->opcode_bits);
+	e1000_shift_out_eec_bits(hw, (u16)(offset*2), nvm->address_bits);
+
+	/*
+	 * Read the data.  SPI NVMs increment the address with each byte
+	 * read and will roll over if reading beyond the end.  This allows
+	 * us to read the whole NVM from any offset
+	 */
+	for (i = 0; i < words; i++) {
+		word_in = e1000_shift_in_eec_bits(hw, 16);
+		data[i] = (word_in >> 8) | (word_in << 8);
+	}
+
+release:
+	e1000_release_nvm(hw);
+
+out:
+	return ret_val;
+}
+
+/**
+ *  e1000_read_nvm_microwire - Reads EEPROM's using microwire
+ *  @hw: pointer to the HW structure
+ *  @offset: offset of word in the EEPROM to read
+ *  @words: number of words to read
+ *  @data: word read from the EEPROM
+ *
+ *  Reads a 16 bit word from the EEPROM.
+ **/
+s32 e1000_read_nvm_microwire(struct e1000_hw *hw, u16 offset, u16 words,
+                             u16 *data)
+{
+	struct e1000_nvm_info *nvm = &hw->nvm;
+	u32 i = 0;
+	s32 ret_val;
+	u8 read_opcode = NVM_READ_OPCODE_MICROWIRE;
+
+	DEBUGFUNC("e1000_read_nvm_microwire");
+
+	/*
+	 * A check for invalid values:  offset too large, too many words,
+	 * and not enough words.
+	 */
+	if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
+	    (words == 0)) {
+		DEBUGOUT("nvm parameter(s) out of bounds\n");
+		ret_val = -E1000_ERR_NVM;
+		goto out;
+	}
+
+	ret_val = e1000_acquire_nvm(hw);
+	if (ret_val)
+		goto out;
+
+	ret_val = e1000_ready_nvm_eeprom(hw);
+	if (ret_val)
+		goto release;
+
+	for (i = 0; i < words; i++) {
+		/* Send the READ command (opcode + addr) */
+		e1000_shift_out_eec_bits(hw, read_opcode, nvm->opcode_bits);
+		e1000_shift_out_eec_bits(hw, (u16)(offset + i),
+					nvm->address_bits);
+
+		/*
+		 * Read the data.  For microwire, each word requires the
+		 * overhead of setup and tear-down.
+		 */
+		data[i] = e1000_shift_in_eec_bits(hw, 16);
+		e1000_standby_nvm(hw);
+	}
+
+release:
+	e1000_release_nvm(hw);
+
+out:
+	return ret_val;
+}
+
+/**
+ *  e1000_read_nvm_eerd - Reads EEPROM using EERD register
+ *  @hw: pointer to the HW structure
+ *  @offset: offset of word in the EEPROM to read
+ *  @words: number of words to read
+ *  @data: word read from the EEPROM
+ *
+ *  Reads a 16 bit word from the EEPROM using the EERD register.
+ **/
+s32 e1000_read_nvm_eerd(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
+{
+	struct e1000_nvm_info *nvm = &hw->nvm;
+	u32 i, eerd = 0;
+	s32 ret_val = E1000_SUCCESS;
+
+	DEBUGFUNC("e1000_read_nvm_eerd");
+
+	/*
+	 * A check for invalid values:  offset too large, too many words,
+	 * too many words for the offset, and not enough words.
+	 */
+	if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
+	    (words == 0)) {
+		DEBUGOUT("nvm parameter(s) out of bounds\n");
+		ret_val = -E1000_ERR_NVM;
+		goto out;
+	}
+
+	for (i = 0; i < words; i++) {
+		eerd = ((offset+i) << E1000_NVM_RW_ADDR_SHIFT) +
+		       E1000_NVM_RW_REG_START;
+
+		E1000_WRITE_REG(hw, E1000_EERD, eerd);
+		ret_val = e1000_poll_eerd_eewr_done(hw, E1000_NVM_POLL_READ);
+		if (ret_val)
+			break;
+
+		data[i] = (E1000_READ_REG(hw, E1000_EERD) >>
+		           E1000_NVM_RW_REG_DATA);
+	}
+
+out:
+	return ret_val;
+}
+
+/**
+ *  e1000_write_nvm_spi - Write to EEPROM using SPI
+ *  @hw: pointer to the HW structure
+ *  @offset: offset within the EEPROM to be written to
+ *  @words: number of words to write
+ *  @data: 16 bit word(s) to be written to the EEPROM
+ *
+ *  Writes data to EEPROM at offset using SPI interface.
+ *
+ *  If e1000_update_nvm_checksum is not called after this function , the
+ *  EEPROM will most likley contain an invalid checksum.
+ **/
+s32 e1000_write_nvm_spi(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
+{
+	struct e1000_nvm_info *nvm = &hw->nvm;
+	s32 ret_val;
+	u16 widx = 0;
+
+	DEBUGFUNC("e1000_write_nvm_spi");
+
+	/*
+	 * A check for invalid values:  offset too large, too many words,
+	 * and not enough words.
+	 */
+	if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
+	    (words == 0)) {
+		DEBUGOUT("nvm parameter(s) out of bounds\n");
+		ret_val = -E1000_ERR_NVM;
+		goto out;
+	}
+
+	ret_val = e1000_acquire_nvm(hw);
+	if (ret_val)
+		goto out;
+
+	msec_delay(10);
+
+	while (widx < words) {
+		u8 write_opcode = NVM_WRITE_OPCODE_SPI;
+
+		ret_val = e1000_ready_nvm_eeprom(hw);
+		if (ret_val)
+			goto release;
+
+		e1000_standby_nvm(hw);
+
+		/* Send the WRITE ENABLE command (8 bit opcode) */
+		e1000_shift_out_eec_bits(hw, NVM_WREN_OPCODE_SPI,
+		                         nvm->opcode_bits);
+
+		e1000_standby_nvm(hw);
+
+		/*
+		 * Some SPI eeproms use the 8th address bit embedded in the
+		 * opcode
+		 */
+		if ((nvm->address_bits == 8) && (offset >= 128))
+			write_opcode |= NVM_A8_OPCODE_SPI;
+
+		/* Send the Write command (8-bit opcode + addr) */
+		e1000_shift_out_eec_bits(hw, write_opcode, nvm->opcode_bits);
+		e1000_shift_out_eec_bits(hw, (u16)((offset + widx) * 2),
+		                         nvm->address_bits);
+
+		/* Loop to allow for up to whole page write of eeprom */
+		while (widx < words) {
+			u16 word_out = data[widx];
+			word_out = (word_out >> 8) | (word_out << 8);
+			e1000_shift_out_eec_bits(hw, word_out, 16);
+			widx++;
+
+			if ((((offset + widx) * 2) % nvm->page_size) == 0) {
+				e1000_standby_nvm(hw);
+				break;
+			}
+		}
+	}
+
+	msec_delay(10);
+release:
+	e1000_release_nvm(hw);
+
+out:
+	return ret_val;
+}
+
+/**
+ *  e1000_write_nvm_microwire - Writes EEPROM using microwire
+ *  @hw: pointer to the HW structure
+ *  @offset: offset within the EEPROM to be written to
+ *  @words: number of words to write
+ *  @data: 16 bit word(s) to be written to the EEPROM
+ *
+ *  Writes data to EEPROM at offset using microwire interface.
+ *
+ *  If e1000_update_nvm_checksum is not called after this function , the
+ *  EEPROM will most likley contain an invalid checksum.
+ **/
+s32 e1000_write_nvm_microwire(struct e1000_hw *hw, u16 offset, u16 words,
+                              u16 *data)
+{
+	struct e1000_nvm_info *nvm = &hw->nvm;
+	s32  ret_val;
+	u32 eecd;
+	u16 words_written = 0;
+	u16 widx = 0;
+
+	DEBUGFUNC("e1000_write_nvm_microwire");
+
+	/*
+	 * A check for invalid values:  offset too large, too many words,
+	 * and not enough words.
+	 */
+	if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
+	    (words == 0)) {
+		DEBUGOUT("nvm parameter(s) out of bounds\n");
+		ret_val = -E1000_ERR_NVM;
+		goto out;
+	}
+
+	ret_val = e1000_acquire_nvm(hw);
+	if (ret_val)
+		goto out;
+
+	ret_val = e1000_ready_nvm_eeprom(hw);
+	if (ret_val)
+		goto release;
+
+	e1000_shift_out_eec_bits(hw, NVM_EWEN_OPCODE_MICROWIRE,
+	                         (u16)(nvm->opcode_bits + 2));
+
+	e1000_shift_out_eec_bits(hw, 0, (u16)(nvm->address_bits - 2));
+
+	e1000_standby_nvm(hw);
+
+	while (words_written < words) {
+		e1000_shift_out_eec_bits(hw, NVM_WRITE_OPCODE_MICROWIRE,
+		                         nvm->opcode_bits);
+
+		e1000_shift_out_eec_bits(hw, (u16)(offset + words_written),
+		                         nvm->address_bits);
+
+		e1000_shift_out_eec_bits(hw, data[words_written], 16);
+
+		e1000_standby_nvm(hw);
+
+		for (widx = 0; widx < 200; widx++) {
+			eecd = E1000_READ_REG(hw, E1000_EECD);
+			if (eecd & E1000_EECD_DO)
+				break;
+			usec_delay(50);
+		}
+
+		if (widx == 200) {
+			DEBUGOUT("NVM Write did not complete\n");
+			ret_val = -E1000_ERR_NVM;
+			goto release;
+		}
+
+		e1000_standby_nvm(hw);
+
+		words_written++;
+	}
+
+	e1000_shift_out_eec_bits(hw, NVM_EWDS_OPCODE_MICROWIRE,
+	                         (u16)(nvm->opcode_bits + 2));
+
+	e1000_shift_out_eec_bits(hw, 0, (u16)(nvm->address_bits - 2));
+
+release:
+	e1000_release_nvm(hw);
+
+out:
+	return ret_val;
+}
+
+/**
+ *  e1000_read_pba_num_generic - Read device part number
+ *  @hw: pointer to the HW structure
+ *  @pba_num: pointer to device part number
+ *
+ *  Reads the product board assembly (PBA) number from the EEPROM and stores
+ *  the value in pba_num.
+ **/
+s32 e1000_read_pba_num_generic(struct e1000_hw *hw, u32 *pba_num)
+{
+	s32  ret_val;
+	u16 nvm_data;
+
+	DEBUGFUNC("e1000_read_pba_num_generic");
+
+	ret_val = e1000_read_nvm(hw, NVM_PBA_OFFSET_0, 1, &nvm_data);
+	if (ret_val) {
+		DEBUGOUT("NVM Read Error\n");
+		goto out;
+	}
+	*pba_num = (u32)(nvm_data << 16);
+
+	ret_val = e1000_read_nvm(hw, NVM_PBA_OFFSET_1, 1, &nvm_data);
+	if (ret_val) {
+		DEBUGOUT("NVM Read Error\n");
+		goto out;
+	}
+	*pba_num |= nvm_data;
+
+out:
+	return ret_val;
+}
+
+/**
+ *  e1000_read_mac_addr_generic - Read device MAC address
+ *  @hw: pointer to the HW structure
+ *
+ *  Reads the device MAC address from the EEPROM and stores the value.
+ *  Since devices with two ports use the same EEPROM, we increment the
+ *  last bit in the MAC address for the second port.
+ **/
+s32 e1000_read_mac_addr_generic(struct e1000_hw *hw)
+{
+	s32  ret_val = E1000_SUCCESS;
+	u16 offset, nvm_data, i;
+
+	DEBUGFUNC("e1000_read_mac_addr");
+
+	for (i = 0; i < ETH_ADDR_LEN; i += 2) {
+		offset = i >> 1;
+		ret_val = e1000_read_nvm(hw, offset, 1, &nvm_data);
+		if (ret_val) {
+			DEBUGOUT("NVM Read Error\n");
+			goto out;
+		}
+		hw->mac.perm_addr[i] = (u8)(nvm_data & 0xFF);
+		hw->mac.perm_addr[i+1] = (u8)(nvm_data >> 8);
+	}
+
+	/* Flip last bit of mac address if we're on second port */
+	if (hw->bus.func == E1000_FUNC_1)
+		hw->mac.perm_addr[5] ^= 1;
+
+	for (i = 0; i < ETH_ADDR_LEN; i++)
+		hw->mac.addr[i] = hw->mac.perm_addr[i];
+
+out:
+	return ret_val;
+}
+
+/**
+ *  e1000_validate_nvm_checksum_generic - Validate EEPROM checksum
+ *  @hw: pointer to the HW structure
+ *
+ *  Calculates the EEPROM checksum by reading/adding each word of the EEPROM
+ *  and then verifies that the sum of the EEPROM is equal to 0xBABA.
+ **/
+s32 e1000_validate_nvm_checksum_generic(struct e1000_hw *hw)
+{
+	s32 ret_val = E1000_SUCCESS;
+	u16 checksum = 0;
+	u16 i, nvm_data;
+
+	DEBUGFUNC("e1000_validate_nvm_checksum_generic");
+
+	for (i = 0; i < (NVM_CHECKSUM_REG + 1); i++) {
+		ret_val = e1000_read_nvm(hw, i, 1, &nvm_data);
+		if (ret_val) {
+			DEBUGOUT("NVM Read Error\n");
+			goto out;
+		}
+		checksum += nvm_data;
+	}
+
+	if (checksum != (u16) NVM_SUM) {
+		DEBUGOUT("NVM Checksum Invalid\n");
+		ret_val = -E1000_ERR_NVM;
+		goto out;
+	}
+
+out:
+	return ret_val;
+}
+
+/**
+ *  e1000_update_nvm_checksum_generic - Update EEPROM checksum
+ *  @hw: pointer to the HW structure
+ *
+ *  Updates the EEPROM checksum by reading/adding each word of the EEPROM
+ *  up to the checksum.  Then calculates the EEPROM checksum and writes the
+ *  value to the EEPROM.
+ **/
+s32 e1000_update_nvm_checksum_generic(struct e1000_hw *hw)
+{
+	s32  ret_val;
+	u16 checksum = 0;
+	u16 i, nvm_data;
+
+	DEBUGFUNC("e1000_update_nvm_checksum");
+
+	for (i = 0; i < NVM_CHECKSUM_REG; i++) {
+		ret_val = e1000_read_nvm(hw, i, 1, &nvm_data);
+		if (ret_val) {
+			DEBUGOUT("NVM Read Error while updating checksum.\n");
+			goto out;
+		}
+		checksum += nvm_data;
+	}
+	checksum = (u16) NVM_SUM - checksum;
+	ret_val = e1000_write_nvm(hw, NVM_CHECKSUM_REG, 1, &checksum);
+	if (ret_val) {
+		DEBUGOUT("NVM Write Error while updating checksum.\n");
+	}
+
+out:
+	return ret_val;
+}
+
+/**
+ *  e1000_reload_nvm_generic - Reloads EEPROM
+ *  @hw: pointer to the HW structure
+ *
+ *  Reloads the EEPROM by setting the "Reinitialize from EEPROM" bit in the
+ *  extended control register.
+ **/
+void e1000_reload_nvm_generic(struct e1000_hw *hw)
+{
+	u32 ctrl_ext;
+
+	DEBUGFUNC("e1000_reload_nvm_generic");
+
+	usec_delay(10);
+	ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
+	ctrl_ext |= E1000_CTRL_EXT_EE_RST;
+	E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
+	E1000_WRITE_FLUSH(hw);
+}
+
+/* Function pointers local to this file and not intended for public use */
+
+/**
+ *  e1000_acquire_nvm - Acquire exclusive access to EEPROM
+ *  @hw: pointer to the HW structure
+ *
+ *  For those silicon families which have implemented a NVM acquire function,
+ *  run the defined function else return success.
+ **/
+s32 e1000_acquire_nvm(struct e1000_hw *hw)
+{
+	if (hw->func.acquire_nvm)
+		return hw->func.acquire_nvm(hw);
+
+	return E1000_SUCCESS;
+}
+
+/**
+ *  e1000_release_nvm - Release exclusive access to EEPROM
+ *  @hw: pointer to the HW structure
+ *
+ *  For those silicon families which have implemented a NVM release function,
+ *  run the defined fucntion else return success.
+ **/
+void e1000_release_nvm(struct e1000_hw *hw)
+{
+	if (hw->func.release_nvm)
+		hw->func.release_nvm(hw);
+}
+
--- /dev/null
+++ sys/dev/em/e1000_ich8lan.c
@@ -0,0 +1,2590 @@
+/*******************************************************************************
+
+  Copyright (c) 2001-2007, Intel Corporation 
+  All rights reserved.
+  
+  Redistribution and use in source and binary forms, with or without 
+  modification, are permitted provided that the following conditions are met:
+  
+   1. Redistributions of source code must retain the above copyright notice, 
+      this list of conditions and the following disclaimer.
+  
+   2. Redistributions in binary form must reproduce the above copyright 
+      notice, this list of conditions and the following disclaimer in the 
+      documentation and/or other materials provided with the distribution.
+  
+   3. Neither the name of the Intel Corporation nor the names of its 
+      contributors may be used to endorse or promote products derived from 
+      this software without specific prior written permission.
+  
+  THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
+  AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 
+  IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 
+  ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE 
+  LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 
+  CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 
+  SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 
+  INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 
+  CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 
+  ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
+  POSSIBILITY OF SUCH DAMAGE.
+
+*******************************************************************************/
+/* $FreeBSD: src/sys/dev/em/e1000_ich8lan.c,v 1.3.4.1 2007/11/28 23:24:37 jfv Exp $ */
+
+
+/* e1000_ich8lan
+ * e1000_ich9lan
+ */
+
+#include "e1000_api.h"
+#include "e1000_ich8lan.h"
+
+void e1000_init_function_pointers_ich8lan(struct e1000_hw *hw);
+
+STATIC s32  e1000_init_phy_params_ich8lan(struct e1000_hw *hw);
+STATIC s32  e1000_init_nvm_params_ich8lan(struct e1000_hw *hw);
+STATIC s32  e1000_init_mac_params_ich8lan(struct e1000_hw *hw);
+STATIC s32  e1000_acquire_swflag_ich8lan(struct e1000_hw *hw);
+STATIC void e1000_release_swflag_ich8lan(struct e1000_hw *hw);
+STATIC bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw);
+STATIC s32  e1000_check_polarity_ife_ich8lan(struct e1000_hw *hw);
+STATIC s32  e1000_check_reset_block_ich8lan(struct e1000_hw *hw);
+STATIC s32  e1000_phy_force_speed_duplex_ich8lan(struct e1000_hw *hw);
+STATIC s32  e1000_phy_hw_reset_ich8lan(struct e1000_hw *hw);
+STATIC s32  e1000_get_phy_info_ich8lan(struct e1000_hw *hw);
+STATIC s32  e1000_set_d0_lplu_state_ich8lan(struct e1000_hw *hw,
+                                            bool active);
+STATIC s32  e1000_set_d3_lplu_state_ich8lan(struct e1000_hw *hw,
+                                            bool active);
+STATIC s32  e1000_read_nvm_ich8lan(struct e1000_hw *hw, u16 offset,
+                                   u16 words, u16 *data);
+STATIC s32  e1000_write_nvm_ich8lan(struct e1000_hw *hw, u16 offset,
+                                    u16 words, u16 *data);
+STATIC s32  e1000_validate_nvm_checksum_ich8lan(struct e1000_hw *hw);
+STATIC s32  e1000_update_nvm_checksum_ich8lan(struct e1000_hw *hw);
+STATIC s32  e1000_valid_led_default_ich8lan(struct e1000_hw *hw,
+                                            u16 *data);
+STATIC s32  e1000_get_bus_info_ich8lan(struct e1000_hw *hw);
+STATIC s32  e1000_reset_hw_ich8lan(struct e1000_hw *hw);
+STATIC s32  e1000_init_hw_ich8lan(struct e1000_hw *hw);
+STATIC s32  e1000_setup_link_ich8lan(struct e1000_hw *hw);
+STATIC s32  e1000_setup_copper_link_ich8lan(struct e1000_hw *hw);
+STATIC s32  e1000_get_link_up_info_ich8lan(struct e1000_hw *hw,
+                                           u16 *speed, u16 *duplex);
+STATIC s32  e1000_cleanup_led_ich8lan(struct e1000_hw *hw);
+STATIC s32  e1000_led_on_ich8lan(struct e1000_hw *hw);
+STATIC s32  e1000_led_off_ich8lan(struct e1000_hw *hw);
+STATIC void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw);
+STATIC s32  e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank);
+static s32  e1000_flash_cycle_ich8lan(struct e1000_hw *hw, u32 timeout);
+static s32  e1000_flash_cycle_init_ich8lan(struct e1000_hw *hw);
+static s32  e1000_get_phy_info_ife_ich8lan(struct e1000_hw *hw);
+static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw);
+static s32  e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw);
+static s32  e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
+                                          u8 size, u16* data);
+STATIC s32  e1000_read_flash_word_ich8lan(struct e1000_hw *hw,
+                                          u32 offset, u16 *data);
+static s32  e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
+                                                 u32 offset, u8 byte);
+STATIC s32  e1000_write_flash_byte_ich8lan(struct e1000_hw *hw,
+                                           u32 offset, u8 data);
+static s32  e1000_write_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
+                                           u8 size, u16 data);
+STATIC s32 e1000_get_cfg_done_ich8lan(struct e1000_hw *hw);
+STATIC void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw);
+
+/* ICH GbE Flash Hardware Sequencing Flash Status Register bit breakdown */
+/* Offset 04h HSFSTS */
+union ich8_hws_flash_status {
+	struct ich8_hsfsts {
+		u16 flcdone    :1; /* bit 0 Flash Cycle Done */
+		u16 flcerr     :1; /* bit 1 Flash Cycle Error */
+		u16 dael       :1; /* bit 2 Direct Access error Log */
+		u16 berasesz   :2; /* bit 4:3 Sector Erase Size */
+		u16 flcinprog  :1; /* bit 5 flash cycle in Progress */
+		u16 reserved1  :2; /* bit 13:6 Reserved */
+		u16 reserved2  :6; /* bit 13:6 Reserved */
+		u16 fldesvalid :1; /* bit 14 Flash Descriptor Valid */
+		u16 flockdn    :1; /* bit 15 Flash Config Lock-Down */
+	} hsf_status;
+	u16 regval;
+};
+
+/* ICH GbE Flash Hardware Sequencing Flash control Register bit breakdown */
+/* Offset 06h FLCTL */
+union ich8_hws_flash_ctrl {
+	struct ich8_hsflctl {
+		u16 flcgo      :1;   /* 0 Flash Cycle Go */
+		u16 flcycle    :2;   /* 2:1 Flash Cycle */
+		u16 reserved   :5;   /* 7:3 Reserved  */
+		u16 fldbcount  :2;   /* 9:8 Flash Data Byte Count */
+		u16 flockdn    :6;   /* 15:10 Reserved */
+	} hsf_ctrl;
+	u16 regval;
+};
+
+/* ICH Flash Region Access Permissions */
+union ich8_hws_flash_regacc {
+	struct ich8_flracc {
+		u32 grra      :8; /* 0:7 GbE region Read Access */
+		u32 grwa      :8; /* 8:15 GbE region Write Access */
+		u32 gmrag     :8; /* 23:16 GbE Master Read Access Grant */
+		u32 gmwag     :8; /* 31:24 GbE Master Write Access Grant */
+	} hsf_flregacc;
+	u16 regval;
+};
+
+struct e1000_shadow_ram {
+	u16  value;
+	bool modified;
+};
+
+struct e1000_dev_spec_ich8lan {
+	bool kmrn_lock_loss_workaround_enabled;
+	struct e1000_shadow_ram shadow_ram[E1000_SHADOW_RAM_WORDS];
+};
+
+/**
+ *  e1000_init_phy_params_ich8lan - Initialize PHY function pointers
+ *  @hw: pointer to the HW structure
+ *
+ *  Initialize family-specific PHY parameters and function pointers.
+ **/
+STATIC s32 e1000_init_phy_params_ich8lan(struct e1000_hw *hw)
+{
+	struct e1000_phy_info *phy = &hw->phy;
+	struct e1000_functions *func = &hw->func;
+	s32 ret_val = E1000_SUCCESS;
+	u16 i = 0;
+
+	DEBUGFUNC("e1000_init_phy_params_ich8lan");
+
+	phy->addr                       = 1;
+	phy->reset_delay_us             = 100;
+
+	func->acquire_phy               = e1000_acquire_swflag_ich8lan;
+	func->check_polarity            = e1000_check_polarity_ife_ich8lan;
+	func->check_reset_block         = e1000_check_reset_block_ich8lan;
+	func->force_speed_duplex        = e1000_phy_force_speed_duplex_ich8lan;
+	func->get_cable_length          = e1000_get_cable_length_igp_2;
+	func->get_cfg_done              = e1000_get_cfg_done_ich8lan;
+	func->get_phy_info              = e1000_get_phy_info_ich8lan;
+	func->read_phy_reg              = e1000_read_phy_reg_igp;
+	func->release_phy               = e1000_release_swflag_ich8lan;
+	func->reset_phy                 = e1000_phy_hw_reset_ich8lan;
+	func->set_d0_lplu_state         = e1000_set_d0_lplu_state_ich8lan;
+	func->set_d3_lplu_state         = e1000_set_d3_lplu_state_ich8lan;
+	func->write_phy_reg             = e1000_write_phy_reg_igp;
+	func->power_up_phy              = e1000_power_up_phy_copper;
+	func->power_down_phy            = e1000_power_down_phy_copper_ich8lan;
+
+
+	phy->id = 0;
+	while ((e1000_phy_unknown == e1000_get_phy_type_from_id(phy->id)) &&
+	       (i++ < 100)) {
+		msec_delay(1);
+		ret_val = e1000_get_phy_id(hw);
+		if (ret_val)
+			goto out;
+	}
+
+	/* Verify phy id */
+	switch (phy->id) {
+	case IGP03E1000_E_PHY_ID:
+		phy->type = e1000_phy_igp_3;
+		phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
+		break;
+	case IFE_E_PHY_ID:
+	case IFE_PLUS_E_PHY_ID:
+	case IFE_C_E_PHY_ID:
+		phy->type = e1000_phy_ife;
+		phy->autoneg_mask = E1000_ALL_NOT_GIG;
+		break;
+	default:
+		ret_val = -E1000_ERR_PHY;
+		goto out;
+	}
+
+out:
+	return ret_val;
+}
+
+/**
+ *  e1000_init_nvm_params_ich8lan - Initialize NVM function pointers
+ *  @hw: pointer to the HW structure
+ *
+ *  Initialize family-specific NVM parameters and function
+ *  pointers.
+ **/
+STATIC s32 e1000_init_nvm_params_ich8lan(struct e1000_hw *hw)
+{
+	struct e1000_nvm_info *nvm = &hw->nvm;
+	struct e1000_functions *func = &hw->func;
+	struct e1000_dev_spec_ich8lan *dev_spec;
+	u32 gfpreg, sector_base_addr, sector_end_addr;
+	s32 ret_val = E1000_SUCCESS;
+	u16 i;
+
+	DEBUGFUNC("e1000_init_nvm_params_ich8lan");
+
+	/* Can't read flash registers if the register set isn't mapped. */
+	if (!hw->flash_address) {
+		DEBUGOUT("ERROR: Flash registers not mapped\n");
+		ret_val = -E1000_ERR_CONFIG;
+		goto out;
+	}
+
+	nvm->type               = e1000_nvm_flash_sw;
+
+	gfpreg = E1000_READ_FLASH_REG(hw, ICH_FLASH_GFPREG);
+
+	/*
+	 * sector_X_addr is a "sector"-aligned address (4096 bytes)
+	 * Add 1 to sector_end_addr since this sector is included in
+	 * the overall size.
+	 */
+	sector_base_addr = gfpreg & FLASH_GFPREG_BASE_MASK;
+	sector_end_addr = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK) + 1;
+
+	/* flash_base_addr is byte-aligned */
+	nvm->flash_base_addr    = sector_base_addr << FLASH_SECTOR_ADDR_SHIFT;
+
+	/*
+	 * find total size of the NVM, then cut in half since the total
+	 * size represents two separate NVM banks.
+	 */
+	nvm->flash_bank_size    = (sector_end_addr - sector_base_addr)
+	                          << FLASH_SECTOR_ADDR_SHIFT;
+	nvm->flash_bank_size    /= 2;
+	/* Adjust to word count */
+	nvm->flash_bank_size    /= sizeof(u16);
+
+	nvm->word_size          = E1000_SHADOW_RAM_WORDS;
+
+	dev_spec = (struct e1000_dev_spec_ich8lan *)hw->dev_spec;
+
+	if (!dev_spec) {
+		DEBUGOUT("dev_spec pointer is set to NULL.\n");
+		ret_val = -E1000_ERR_CONFIG;
+		goto out;
+	}
+
+	/* Clear shadow ram */
+	for (i = 0; i < nvm->word_size; i++) {
+		dev_spec->shadow_ram[i].modified = FALSE;
+		dev_spec->shadow_ram[i].value    = 0xFFFF;
+	}
+
+	/* Function Pointers */
+	func->acquire_nvm       = e1000_acquire_swflag_ich8lan;
+	func->read_nvm          = e1000_read_nvm_ich8lan;
+	func->release_nvm       = e1000_release_swflag_ich8lan;
+	func->update_nvm        = e1000_update_nvm_checksum_ich8lan;
+	func->valid_led_default = e1000_valid_led_default_ich8lan;
+	func->validate_nvm      = e1000_validate_nvm_checksum_ich8lan;
+	func->write_nvm         = e1000_write_nvm_ich8lan;
+
+out:
+	return ret_val;
+}
+
+/**
+ *  e1000_init_mac_params_ich8lan - Initialize MAC function pointers
+ *  @hw: pointer to the HW structure
+ *
+ *  Initialize family-specific MAC parameters and function
+ *  pointers.
+ **/
+STATIC s32 e1000_init_mac_params_ich8lan(struct e1000_hw *hw)
+{
+	struct e1000_mac_info *mac = &hw->mac;
+	struct e1000_functions *func = &hw->func;
+	s32 ret_val = E1000_SUCCESS;
+
+	DEBUGFUNC("e1000_init_mac_params_ich8lan");
+
+	/* Set media type function pointer */
+	hw->phy.media_type = e1000_media_type_copper;
+
+	/* Set mta register count */
+	mac->mta_reg_count = 32;
+	/* Set rar entry count */
+	mac->rar_entry_count = E1000_ICH_RAR_ENTRIES;
+	if (mac->type == e1000_ich8lan)
+		mac->rar_entry_count--;
+	/* Set if part includes ASF firmware */
+	mac->asf_firmware_present = TRUE;
+	/* Set if manageability features are enabled. */
+	mac->arc_subsystem_valid = TRUE;
+
+	/* Function pointers */
+
+	/* bus type/speed/width */
+	func->get_bus_info = e1000_get_bus_info_ich8lan;
+	/* reset */
+	func->reset_hw = e1000_reset_hw_ich8lan;
+	/* hw initialization */
+	func->init_hw = e1000_init_hw_ich8lan;
+	/* link setup */
+	func->setup_link = e1000_setup_link_ich8lan;
+	/* physical interface setup */
+	func->setup_physical_interface = e1000_setup_copper_link_ich8lan;
+	/* check for link */
+	func->check_for_link = e1000_check_for_copper_link_generic;
+	/* check management mode */
+	func->check_mng_mode = e1000_check_mng_mode_ich8lan;
+	/* link info */
+	func->get_link_up_info = e1000_get_link_up_info_ich8lan;
+	/* multicast address update */
+	func->update_mc_addr_list = e1000_update_mc_addr_list_generic;
+	/* setting MTA */
+	func->mta_set = e1000_mta_set_generic;
+	/* blink LED */
+	func->blink_led = e1000_blink_led_generic;
+	/* setup LED */
+	func->setup_led = e1000_setup_led_generic;
+	/* cleanup LED */
+	func->cleanup_led = e1000_cleanup_led_ich8lan;
+	/* turn on/off LED */
+	func->led_on = e1000_led_on_ich8lan;
+	func->led_off = e1000_led_off_ich8lan;
+	/* remove device */
+	func->remove_device = e1000_remove_device_generic;
+	/* clear hardware counters */
+	func->clear_hw_cntrs = e1000_clear_hw_cntrs_ich8lan;
+
+	hw->dev_spec_size = sizeof(struct e1000_dev_spec_ich8lan);
+
+	/* Device-specific structure allocation */
+	ret_val = e1000_alloc_zeroed_dev_spec_struct(hw, hw->dev_spec_size);
+	if (ret_val)
+		goto out;
+
+	/* Enable PCS Lock-loss workaround for ICH8 */
+	if (mac->type == e1000_ich8lan)
+		e1000_set_kmrn_lock_loss_workaround_ich8lan(hw, TRUE);
+
+
+out:
+	return ret_val;
+}
+
+/**
+ *  e1000_init_function_pointers_ich8lan - Initialize ICH8 function pointers
+ *  @hw: pointer to the HW structure
+ *
+ *  Initialize family-specific function pointers for PHY, MAC, and NVM.
+ **/
+void e1000_init_function_pointers_ich8lan(struct e1000_hw *hw)
+{
+	DEBUGFUNC("e1000_init_function_pointers_ich8lan");
+
+	hw->func.init_mac_params = e1000_init_mac_params_ich8lan;
+	hw->func.init_nvm_params = e1000_init_nvm_params_ich8lan;
+	hw->func.init_phy_params = e1000_init_phy_params_ich8lan;
+}
+
+/**
+ *  e1000_acquire_swflag_ich8lan - Acquire software control flag
+ *  @hw: pointer to the HW structure
+ *
+ *  Acquires the software control flag for performing NVM and PHY
+ *  operations.  This is a function pointer entry point only called by
+ *  read/write routines for the PHY and NVM parts.
+ **/
+STATIC s32 e1000_acquire_swflag_ich8lan(struct e1000_hw *hw)
+{
+	u32 extcnf_ctrl, timeout = PHY_CFG_TIMEOUT;
+	s32 ret_val = E1000_SUCCESS;
+
+	DEBUGFUNC("e1000_acquire_swflag_ich8lan");
+
+	while (timeout) {
+		extcnf_ctrl = E1000_READ_REG(hw, E1000_EXTCNF_CTRL);
+		extcnf_ctrl |= E1000_EXTCNF_CTRL_SWFLAG;
+		E1000_WRITE_REG(hw, E1000_EXTCNF_CTRL, extcnf_ctrl);
+
+		extcnf_ctrl = E1000_READ_REG(hw, E1000_EXTCNF_CTRL);
+		if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG)
+			break;
+		msec_delay_irq(1);
+		timeout--;
+	}
+
+	if (!timeout) {
+		DEBUGOUT("FW or HW has locked the resource for too long.\n");
+		extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
+		E1000_WRITE_REG(hw, E1000_EXTCNF_CTRL, extcnf_ctrl);
+		ret_val = -E1000_ERR_CONFIG;
+		goto out;
+	}
+
+out:
+	return ret_val;
+}
+
+/**
+ *  e1000_release_swflag_ich8lan - Release software control flag
+ *  @hw: pointer to the HW structure
+ *
+ *  Releases the software control flag for performing NVM and PHY operations.
+ *  This is a function pointer entry point only called by read/write
+ *  routines for the PHY and NVM parts.
+ **/
+STATIC void e1000_release_swflag_ich8lan(struct e1000_hw *hw)
+{
+	u32 extcnf_ctrl;
+
+	DEBUGFUNC("e1000_release_swflag_ich8lan");
+
+	extcnf_ctrl = E1000_READ_REG(hw, E1000_EXTCNF_CTRL);
+	extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
+	E1000_WRITE_REG(hw, E1000_EXTCNF_CTRL, extcnf_ctrl);
+
+	return;
+}
+
+/**
+ *  e1000_check_mng_mode_ich8lan - Checks management mode
+ *  @hw: pointer to the HW structure
+ *
+ *  This checks if the adapter has manageability enabled.
+ *  This is a function pointer entry point only called by read/write
+ *  routines for the PHY and NVM parts.
+ **/
+STATIC bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw)
+{
+	u32 fwsm;
+
+	DEBUGFUNC("e1000_check_mng_mode_ich8lan");
+
+	fwsm = E1000_READ_REG(hw, E1000_FWSM);
+
+	return ((fwsm & E1000_FWSM_MODE_MASK) ==
+	        (E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT));
+}
+
+/**
+ *  e1000_check_reset_block_ich8lan - Check if PHY reset is blocked
+ *  @hw: pointer to the HW structure
+ *
+ *  Checks if firmware is blocking the reset of the PHY.
+ *  This is a function pointer entry point only called by
+ *  reset routines.
+ **/
+STATIC s32 e1000_check_reset_block_ich8lan(struct e1000_hw *hw)
+{
+	u32 fwsm;
+
+	DEBUGFUNC("e1000_check_reset_block_ich8lan");
+
+	fwsm = E1000_READ_REG(hw, E1000_FWSM);
+
+	return (fwsm & E1000_ICH_FWSM_RSPCIPHY) ? E1000_SUCCESS
+	                                        : E1000_BLK_PHY_RESET;
+}
+
+/**
+ *  e1000_phy_force_speed_duplex_ich8lan - Force PHY speed & duplex
+ *  @hw: pointer to the HW structure
+ *
+ *  Forces the speed and duplex settings of the PHY.
+ *  This is a function pointer entry point only called by
+ *  PHY setup routines.
+ **/
+STATIC s32 e1000_phy_force_speed_duplex_ich8lan(struct e1000_hw *hw)
+{
+	struct e1000_phy_info *phy = &hw->phy;
+	s32 ret_val;
+	u16 data;
+	bool link;
+
+	DEBUGFUNC("e1000_phy_force_speed_duplex_ich8lan");
+
+	if (phy->type != e1000_phy_ife) {
+		ret_val = e1000_phy_force_speed_duplex_igp(hw);
+		goto out;
+	}
+
+	ret_val = e1000_read_phy_reg(hw, PHY_CONTROL, &data);
+	if (ret_val)
+		goto out;
+
+	e1000_phy_force_speed_duplex_setup(hw, &data);
+
+	ret_val = e1000_write_phy_reg(hw, PHY_CONTROL, data);
+	if (ret_val)
+		goto out;
+
+	/* Disable MDI-X support for 10/100 */
+	ret_val = e1000_read_phy_reg(hw, IFE_PHY_MDIX_CONTROL, &data);
+	if (ret_val)
+		goto out;
+
+	data &= ~IFE_PMC_AUTO_MDIX;
+	data &= ~IFE_PMC_FORCE_MDIX;
+
+	ret_val = e1000_write_phy_reg(hw, IFE_PHY_MDIX_CONTROL, data);
+	if (ret_val)
+		goto out;
+
+	DEBUGOUT1("IFE PMC: %X\n", data);
+
+	usec_delay(1);
+
+	if (phy->autoneg_wait_to_complete) {
+		DEBUGOUT("Waiting for forced speed/duplex link on IFE phy.\n");
+
+		ret_val = e1000_phy_has_link_generic(hw,
+		                                     PHY_FORCE_LIMIT,
+		                                     100000,
+		                                     &link);
+		if (ret_val)
+			goto out;
+
+		if (!link) {
+			DEBUGOUT("Link taking longer than expected.\n");
+		}
+
+		/* Try once more */
+		ret_val = e1000_phy_has_link_generic(hw,
+		                                     PHY_FORCE_LIMIT,
+		                                     100000,
+		                                     &link);
+		if (ret_val)
+			goto out;
+	}
+
+out:
+	return ret_val;
+}
+
+/**
+ *  e1000_phy_hw_reset_ich8lan - Performs a PHY reset
+ *  @hw: pointer to the HW structure
+ *
+ *  Resets the PHY
+ *  This is a function pointer entry point called by drivers
+ *  or other shared routines.
+ **/
+STATIC s32 e1000_phy_hw_reset_ich8lan(struct e1000_hw *hw)
+{
+	struct e1000_phy_info *phy = &hw->phy;
+	u32 i, data, cnf_size, cnf_base_addr, sw_cfg_mask;
+	s32 ret_val;
+	u16 loop = E1000_ICH8_LAN_INIT_TIMEOUT;
+	u16 word_addr, reg_data, reg_addr, phy_page = 0;
+
+	DEBUGFUNC("e1000_phy_hw_reset_ich8lan");
+
+	ret_val = e1000_phy_hw_reset_generic(hw);
+	if (ret_val)
+		goto out;
+
+	/*
+	 * Initialize the PHY from the NVM on ICH platforms.  This
+	 * is needed due to an issue where the NVM configuration is
+	 * not properly autoloaded after power transitions.
+	 * Therefore, after each PHY reset, we will load the
+	 * configuration data out of the NVM manually.
+	 */
+	if (hw->mac.type == e1000_ich8lan && phy->type == e1000_phy_igp_3) {
+		/* Check if SW needs configure the PHY */
+		if ((hw->device_id == E1000_DEV_ID_ICH8_IGP_M_AMT) ||
+		    (hw->device_id == E1000_DEV_ID_ICH8_IGP_M))
+			sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG_ICH8M;
+		else
+			sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG;
+
+		data = E1000_READ_REG(hw, E1000_FEXTNVM);
+		if (!(data & sw_cfg_mask))
+			goto out;
+
+		/* Wait for basic configuration completes before proceeding*/
+		do {
+			data = E1000_READ_REG(hw, E1000_STATUS);
+			data &= E1000_STATUS_LAN_INIT_DONE;
+			usec_delay(100);
+		} while ((!data) && --loop);
+
+		/*
+		 * If basic configuration is incomplete before the above loop
+		 * count reaches 0, loading the configuration from NVM will
+		 * leave the PHY in a bad state possibly resulting in no link.
+		 */
+		if (loop == 0) {
+			DEBUGOUT("LAN_INIT_DONE not set, increase timeout\n");
+		}
+
+		/* Clear the Init Done bit for the next init event */
+		data = E1000_READ_REG(hw, E1000_STATUS);
+		data &= ~E1000_STATUS_LAN_INIT_DONE;
+		E1000_WRITE_REG(hw, E1000_STATUS, data);
+
+		/*
+		 * Make sure HW does not configure LCD from PHY
+		 * extended configuration before SW configuration
+		 */
+		data = E1000_READ_REG(hw, E1000_EXTCNF_CTRL);
+		if (data & E1000_EXTCNF_CTRL_LCD_WRITE_ENABLE)
+			goto out;
+
+		cnf_size = E1000_READ_REG(hw, E1000_EXTCNF_SIZE);
+		cnf_size &= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_MASK;
+		cnf_size >>= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_SHIFT;
+		if (!cnf_size)
+			goto out;
+
+		cnf_base_addr = data & E1000_EXTCNF_CTRL_EXT_CNF_POINTER_MASK;
+		cnf_base_addr >>= E1000_EXTCNF_CTRL_EXT_CNF_POINTER_SHIFT;
+
+		/*
+		 * Configure LCD from extended configuration
+		 * region.
+		 */
+
+		/* cnf_base_addr is in DWORD */
+		word_addr = (u16)(cnf_base_addr << 1);
+
+		for (i = 0; i < cnf_size; i++) {
+			ret_val = e1000_read_nvm(hw,
+			                        (word_addr + i * 2),
+			                        1,
+			                        &reg_data);
+			if (ret_val)
+				goto out;
+
+			ret_val = e1000_read_nvm(hw,
+			                        (word_addr + i * 2 + 1),
+			                        1,
+			                        &reg_addr);
+			if (ret_val)
+				goto out;
+
+			/* Save off the PHY page for future writes. */
+			if (reg_addr == IGP01E1000_PHY_PAGE_SELECT) {
+				phy_page = reg_data;
+				continue;
+			}
+
+			reg_addr |= phy_page;
+
+			ret_val = e1000_write_phy_reg(hw,
+			                             (u32)reg_addr,
+			                             reg_data);
+			if (ret_val)
+				goto out;
+		}
+	}
+
+out:
+	return ret_val;
+}
+
+/**
+ *  e1000_get_phy_info_ich8lan - Calls appropriate PHY type get_phy_info
+ *  @hw: pointer to the HW structure
+ *
+ *  Wrapper for calling the get_phy_info routines for the appropriate phy type.
+ *  This is a function pointer entry point called by drivers
+ *  or other shared routines.
+ **/
+STATIC s32 e1000_get_phy_info_ich8lan(struct e1000_hw *hw)
+{
+	s32 ret_val = -E1000_ERR_PHY_TYPE;
+
+	DEBUGFUNC("e1000_get_phy_info_ich8lan");
+
+	switch (hw->phy.type) {
+	case e1000_phy_ife:
+		ret_val = e1000_get_phy_info_ife_ich8lan(hw);
+		break;
+	case e1000_phy_igp_3:
+		ret_val = e1000_get_phy_info_igp(hw);
+		break;
+	default:
+		break;
+	}
+
+	return ret_val;
+}
+
+/**
+ *  e1000_get_phy_info_ife_ich8lan - Retrieves various IFE PHY states
+ *  @hw: pointer to the HW structure
+ *
+ *  Populates "phy" structure with various feature states.
+ *  This function is only called by other family-specific
+ *  routines.
+ **/
+static s32 e1000_get_phy_info_ife_ich8lan(struct e1000_hw *hw)
+{
+	struct e1000_phy_info *phy = &hw->phy;
+	s32 ret_val;
+	u16 data;
+	bool link;
+
+	DEBUGFUNC("e1000_get_phy_info_ife_ich8lan");
+
+	ret_val = e1000_phy_has_link_generic(hw, 1, 0, &link);
+	if (ret_val)
+		goto out;
+
+	if (!link) {
+		DEBUGOUT("Phy info is only valid if link is up\n");
+		ret_val = -E1000_ERR_CONFIG;
+		goto out;
+	}
+
+	ret_val = e1000_read_phy_reg(hw, IFE_PHY_SPECIAL_CONTROL, &data);
+	if (ret_val)
+		goto out;
+	phy->polarity_correction = (data & IFE_PSC_AUTO_POLARITY_DISABLE)
+	                           ? FALSE : TRUE;
+
+	if (phy->polarity_correction) {
+		ret_val = e1000_check_polarity_ife_ich8lan(hw);
+		if (ret_val)
+			goto out;
+	} else {
+		/* Polarity is forced */
+		phy->cable_polarity = (data & IFE_PSC_FORCE_POLARITY)
+		                      ? e1000_rev_polarity_reversed
+		                      : e1000_rev_polarity_normal;
+	}
+
+	ret_val = e1000_read_phy_reg(hw, IFE_PHY_MDIX_CONTROL, &data);
+	if (ret_val)
+		goto out;
+
+	phy->is_mdix = (data & IFE_PMC_MDIX_STATUS) ? TRUE : FALSE;
+
+	/* The following parameters are undefined for 10/100 operation. */
+	phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
+	phy->local_rx = e1000_1000t_rx_status_undefined;
+	phy->remote_rx = e1000_1000t_rx_status_undefined;
+
+out:
+	return ret_val;
+}
+
+/**
+ *  e1000_check_polarity_ife_ich8lan - Check cable polarity for IFE PHY
+ *  @hw: pointer to the HW structure
+ *
+ *  Polarity is determined on the polarity reveral feature being enabled.
+ *  This function is only called by other family-specific
+ *  routines.
+ **/
+STATIC s32 e1000_check_polarity_ife_ich8lan(struct e1000_hw *hw)
+{
+	struct e1000_phy_info *phy = &hw->phy;
+	s32 ret_val;
+	u16 phy_data, offset, mask;
+
+	DEBUGFUNC("e1000_check_polarity_ife_ich8lan");
+
+	/*
+	 * Polarity is determined based on the reversal feature
+	 * being enabled.
+	 */
+	if (phy->polarity_correction) {
+		offset	= IFE_PHY_EXTENDED_STATUS_CONTROL;
+		mask	= IFE_PESC_POLARITY_REVERSED;
+	} else {
+		offset	= IFE_PHY_SPECIAL_CONTROL;
+		mask	= IFE_PSC_FORCE_POLARITY;
+	}
+
+	ret_val = e1000_read_phy_reg(hw, offset, &phy_data);
+
+	if (!ret_val)
+		phy->cable_polarity = (phy_data & mask)
+		                      ? e1000_rev_polarity_reversed
+		                      : e1000_rev_polarity_normal;
+
+	return ret_val;
+}
+
+/**
+ *  e1000_set_d0_lplu_state_ich8lan - Set Low Power Linkup D0 state
+ *  @hw: pointer to the HW structure
+ *  @active: TRUE to enable LPLU, FALSE to disable
+ *
+ *  Sets the LPLU D0 state according to the active flag.  When
+ *  activating LPLU this function also disables smart speed
+ *  and vice versa.  LPLU will not be activated unless the
+ *  device autonegotiation advertisement meets standards of
+ *  either 10 or 10/100 or 10/100/1000 at all duplexes.
+ *  This is a function pointer entry point only called by
+ *  PHY setup routines.
+ **/
+STATIC s32 e1000_set_d0_lplu_state_ich8lan(struct e1000_hw *hw,
+                                           bool active)
+{
+	struct e1000_phy_info *phy = &hw->phy;
+	u32 phy_ctrl;
+	s32 ret_val = E1000_SUCCESS;
+	u16 data;
+
+	DEBUGFUNC("e1000_set_d0_lplu_state_ich8lan");
+
+	if (phy->type == e1000_phy_ife)
+		goto out;
+
+	phy_ctrl = E1000_READ_REG(hw, E1000_PHY_CTRL);
+
+	if (active) {
+		phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU;
+		E1000_WRITE_REG(hw, E1000_PHY_CTRL, phy_ctrl);
+
+		/*
+		 * Call gig speed drop workaround on LPLU before accessing
+		 * any PHY registers
+		 */
+		if ((hw->mac.type == e1000_ich8lan) &&
+		    (hw->phy.type == e1000_phy_igp_3))
+			e1000_gig_downshift_workaround_ich8lan(hw);
+
+		/* When LPLU is enabled, we should disable SmartSpeed */
+		ret_val = e1000_read_phy_reg(hw,
+		                            IGP01E1000_PHY_PORT_CONFIG,
+		                            &data);
+		data &= ~IGP01E1000_PSCFR_SMART_SPEED;
+		ret_val = e1000_write_phy_reg(hw,
+		                             IGP01E1000_PHY_PORT_CONFIG,
+		                             data);
+		if (ret_val)
+			goto out;
+	} else {
+		phy_ctrl &= ~E1000_PHY_CTRL_D0A_LPLU;
+		E1000_WRITE_REG(hw, E1000_PHY_CTRL, phy_ctrl);
+
+		/*
+		 * LPLU and SmartSpeed are mutually exclusive.  LPLU is used
+		 * during Dx states where the power conservation is most
+		 * important.  During driver activity we should enable
+		 * SmartSpeed, so performance is maintained.
+		 */
+		if (phy->smart_speed == e1000_smart_speed_on) {
+			ret_val = e1000_read_phy_reg(hw,
+			                            IGP01E1000_PHY_PORT_CONFIG,
+			                            &data);
+			if (ret_val)
+				goto out;
+
+			data |= IGP01E1000_PSCFR_SMART_SPEED;
+			ret_val = e1000_write_phy_reg(hw,
+			                             IGP01E1000_PHY_PORT_CONFIG,
+			                             data);
+			if (ret_val)
+				goto out;
+		} else if (phy->smart_speed == e1000_smart_speed_off) {
+			ret_val = e1000_read_phy_reg(hw,
+			                            IGP01E1000_PHY_PORT_CONFIG,
+			                            &data);
+			if (ret_val)
+				goto out;
+
+			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
+			ret_val = e1000_write_phy_reg(hw,
+			                             IGP01E1000_PHY_PORT_CONFIG,
+			                             data);
+			if (ret_val)
+				goto out;
+		}
+	}
+
+out:
+	return ret_val;
+}
+
+/**
+ *  e1000_set_d3_lplu_state_ich8lan - Set Low Power Linkup D3 state
+ *  @hw: pointer to the HW structure
+ *  @active: TRUE to enable LPLU, FALSE to disable
+ *
+ *  Sets the LPLU D3 state according to the active flag.  When
+ *  activating LPLU this function also disables smart speed
+ *  and vice versa.  LPLU will not be activated unless the
+ *  device autonegotiation advertisement meets standards of
+ *  either 10 or 10/100 or 10/100/1000 at all duplexes.
+ *  This is a function pointer entry point only called by
+ *  PHY setup routines.
+ **/
+STATIC s32 e1000_set_d3_lplu_state_ich8lan(struct e1000_hw *hw,
+                                           bool active)
+{
+	struct e1000_phy_info *phy = &hw->phy;
+	u32 phy_ctrl;
+	s32 ret_val = E1000_SUCCESS;
+	u16 data;
+
+	DEBUGFUNC("e1000_set_d3_lplu_state_ich8lan");
+
+	phy_ctrl = E1000_READ_REG(hw, E1000_PHY_CTRL);
+
+	if (!active) {
+		phy_ctrl &= ~E1000_PHY_CTRL_NOND0A_LPLU;
+		E1000_WRITE_REG(hw, E1000_PHY_CTRL, phy_ctrl);
+		/*
+		 * LPLU and SmartSpeed are mutually exclusive.  LPLU is used
+		 * during Dx states where the power conservation is most
+		 * important.  During driver activity we should enable
+		 * SmartSpeed, so performance is maintained.
+		 */
+		if (phy->smart_speed == e1000_smart_speed_on) {
+			ret_val = e1000_read_phy_reg(hw,
+			                            IGP01E1000_PHY_PORT_CONFIG,
+			                            &data);
+			if (ret_val)
+				goto out;
+
+			data |= IGP01E1000_PSCFR_SMART_SPEED;
+			ret_val = e1000_write_phy_reg(hw,
+			                             IGP01E1000_PHY_PORT_CONFIG,
+			                             data);
+			if (ret_val)
+				goto out;
+		} else if (phy->smart_speed == e1000_smart_speed_off) {
+			ret_val = e1000_read_phy_reg(hw,
+			                            IGP01E1000_PHY_PORT_CONFIG,
+			                            &data);
+			if (ret_val)
+				goto out;
+
+			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
+			ret_val = e1000_write_phy_reg(hw,
+			                             IGP01E1000_PHY_PORT_CONFIG,
+			                             data);
+			if (ret_val)
+				goto out;
+		}
+	} else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
+	           (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
+	           (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
+		phy_ctrl |= E1000_PHY_CTRL_NOND0A_LPLU;
+		E1000_WRITE_REG(hw, E1000_PHY_CTRL, phy_ctrl);
+
+		/*
+		 * Call gig speed drop workaround on LPLU before accessing
+		 * any PHY registers
+		 */
+		if ((hw->mac.type == e1000_ich8lan) &&
+		    (hw->phy.type == e1000_phy_igp_3))
+			e1000_gig_downshift_workaround_ich8lan(hw);
+
+		/* When LPLU is enabled, we should disable SmartSpeed */
+		ret_val = e1000_read_phy_reg(hw,
+		                            IGP01E1000_PHY_PORT_CONFIG,
+		                            &data);
+		if (ret_val)
+			goto out;
+
+		data &= ~IGP01E1000_PSCFR_SMART_SPEED;
+		ret_val = e1000_write_phy_reg(hw,
+		                             IGP01E1000_PHY_PORT_CONFIG,
+		                             data);
+	}
+
+out:
+	return ret_val;
+}
+
+/**
+ *  e1000_valid_nvm_bank_detect_ich8lan - finds out the valid bank 0 or 1
+ *  @hw: pointer to the HW structure
+ *  @bank:  pointer to the variable that returns the active bank
+ *
+ *  Reads signature byte from the NVM using the flash access registers.
+ **/
+STATIC s32 e1000_valid_nvm_bank_detect_ich8lan(struct e1000_hw *hw, u32 *bank)
+{
+	s32 ret_val = E1000_SUCCESS;
+	if (E1000_READ_REG(hw, E1000_EECD) & E1000_EECD_SEC1VAL)
+		*bank = 1;
+	else
+		*bank = 0;
+	
+	return ret_val;
+}
+
+/**
+ *  e1000_read_nvm_ich8lan - Read word(s) from the NVM
+ *  @hw: pointer to the HW structure
+ *  @offset: The offset (in bytes) of the word(s) to read.
+ *  @words: Size of data to read in words
+ *  @data: Pointer to the word(s) to read at offset.
+ *
+ *  Reads a word(s) from the NVM using the flash access registers.
+ **/
+STATIC s32 e1000_read_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
+                                  u16 *data)
+{
+	struct e1000_nvm_info *nvm = &hw->nvm;
+	struct e1000_dev_spec_ich8lan *dev_spec;
+	u32 act_offset;
+	s32 ret_val = E1000_SUCCESS;
+	u32 bank = 0;
+	u16 i, word;
+
+	DEBUGFUNC("e1000_read_nvm_ich8lan");
+
+	dev_spec = (struct e1000_dev_spec_ich8lan *)hw->dev_spec;
+
+	if (!dev_spec) {
+		DEBUGOUT("dev_spec pointer is set to NULL.\n");
+		ret_val = -E1000_ERR_CONFIG;
+		goto out;
+	}
+
+	if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
+	    (words == 0)) {
+		DEBUGOUT("nvm parameter(s) out of bounds\n");
+		ret_val = -E1000_ERR_NVM;
+		goto out;
+	}
+
+	ret_val = e1000_acquire_nvm(hw);
+	if (ret_val)
+		goto out;
+
+	ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
+	if (ret_val != E1000_SUCCESS)
+		goto out;
+
+	act_offset = (bank) ? nvm->flash_bank_size : 0;
+	act_offset += offset;
+
+	for (i = 0; i < words; i++) {
+		if ((dev_spec->shadow_ram) &&
+		    (dev_spec->shadow_ram[offset+i].modified)) {
+			data[i] = dev_spec->shadow_ram[offset+i].value;
+		} else {
+			ret_val = e1000_read_flash_word_ich8lan(hw,
+			                                        act_offset + i,
+			                                        &word);
+			if (ret_val)
+				break;
+			data[i] = word;
+		}
+	}
+
+	e1000_release_nvm(hw);
+
+out:
+	return ret_val;
+}
+
+/**
+ *  e1000_flash_cycle_init_ich8lan - Initialize flash
+ *  @hw: pointer to the HW structure
+ *
+ *  This function does initial flash setup so that a new read/write/erase cycle
+ *  can be started.
+ **/
+static s32 e1000_flash_cycle_init_ich8lan(struct e1000_hw *hw)
+{
+	union ich8_hws_flash_status hsfsts;
+	s32 ret_val = -E1000_ERR_NVM;
+	s32 i = 0;
+
+	DEBUGFUNC("e1000_flash_cycle_init_ich8lan");
+
+	hsfsts.regval = E1000_READ_FLASH_REG16(hw, ICH_FLASH_HSFSTS);
+
+	/* Check if the flash descriptor is valid */
+	if (hsfsts.hsf_status.fldesvalid == 0) {
+		DEBUGOUT("Flash descriptor invalid.  "
+		         "SW Sequencing must be used.");
+		goto out;
+	}
+
+	/* Clear FCERR and DAEL in hw status by writing 1 */
+	hsfsts.hsf_status.flcerr = 1;
+	hsfsts.hsf_status.dael = 1;
+
+	E1000_WRITE_FLASH_REG16(hw, ICH_FLASH_HSFSTS, hsfsts.regval);
+
+	/*
+	 * Either we should have a hardware SPI cycle in progress
+	 * bit to check against, in order to start a new cycle or
+	 * FDONE bit should be changed in the hardware so that it
+	 * is 1 after harware reset, which can then be used as an
+	 * indication whether a cycle is in progress or has been
+	 * completed.
+	 */
+
+	if (hsfsts.hsf_status.flcinprog == 0) {
+		/*
+		 * There is no cycle running at present,
+		 * so we can start a cycle.
+		 * Begin by setting Flash Cycle Done.
+		 */
+		hsfsts.hsf_status.flcdone = 1;
+		E1000_WRITE_FLASH_REG16(hw, ICH_FLASH_HSFSTS, hsfsts.regval);
+		ret_val = E1000_SUCCESS;
+	} else {
+		/*
+		 * Otherwise poll for sometime so the current
+		 * cycle has a chance to end before giving up.
+		 */
+		for (i = 0; i < ICH_FLASH_READ_COMMAND_TIMEOUT; i++) {
+			hsfsts.regval = E1000_READ_FLASH_REG16(hw,
+			                                      ICH_FLASH_HSFSTS);
+			if (hsfsts.hsf_status.flcinprog == 0) {
+				ret_val = E1000_SUCCESS;
+				break;
+			}
+			usec_delay(1);
+		}
+		if (ret_val == E1000_SUCCESS) {
+			/*
+			 * Successful in waiting for previous cycle to timeout,
+			 * now set the Flash Cycle Done.
+			 */
+			hsfsts.hsf_status.flcdone = 1;
+			E1000_WRITE_FLASH_REG16(hw,
+			                        ICH_FLASH_HSFSTS,
+			                        hsfsts.regval);
+		} else {
+			DEBUGOUT("Flash controller busy, cannot get access");
+		}
+	}
+
+out:
+	return ret_val;
+}
+
+/**
+ *  e1000_flash_cycle_ich8lan - Starts flash cycle (read/write/erase)
+ *  @hw: pointer to the HW structure
+ *  @timeout: maximum time to wait for completion
+ *
+ *  This function starts a flash cycle and waits for its completion.
+ **/
+static s32 e1000_flash_cycle_ich8lan(struct e1000_hw *hw, u32 timeout)
+{
+	union ich8_hws_flash_ctrl hsflctl;
+	union ich8_hws_flash_status hsfsts;
+	s32 ret_val = -E1000_ERR_NVM;
+	u32 i = 0;
+
+	DEBUGFUNC("e1000_flash_cycle_ich8lan");
+
+	/* Start a cycle by writing 1 in Flash Cycle Go in Hw Flash Control */
+	hsflctl.regval = E1000_READ_FLASH_REG16(hw, ICH_FLASH_HSFCTL);
+	hsflctl.hsf_ctrl.flcgo = 1;
+	E1000_WRITE_FLASH_REG16(hw, ICH_FLASH_HSFCTL, hsflctl.regval);
+
+	/* wait till FDONE bit is set to 1 */
+	do {
+		hsfsts.regval = E1000_READ_FLASH_REG16(hw, ICH_FLASH_HSFSTS);
+		if (hsfsts.hsf_status.flcdone == 1)
+			break;
+		usec_delay(1);
+	} while (i++ < timeout);
+
+	if (hsfsts.hsf_status.flcdone == 1 && hsfsts.hsf_status.flcerr == 0)
+		ret_val = E1000_SUCCESS;
+
+	return ret_val;
+}
+
+/**
+ *  e1000_read_flash_word_ich8lan - Read word from flash
+ *  @hw: pointer to the HW structure
+ *  @offset: offset to data location
+ *  @data: pointer to the location for storing the data
+ *
+ *  Reads the flash word at offset into data.  Offset is converted
+ *  to bytes before read.
+ **/
+STATIC s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset,
+                                         u16 *data)
+{
+	s32 ret_val;
+
+	DEBUGFUNC("e1000_read_flash_word_ich8lan");
+
+	if (!data) {
+		ret_val = -E1000_ERR_NVM;
+		goto out;
+	}
+
+	/* Must convert offset into bytes. */
+	offset <<= 1;
+
+	ret_val = e1000_read_flash_data_ich8lan(hw, offset, 2, data);
+
+out:
+	return ret_val;
+}
+
+/**
+ *  e1000_read_flash_data_ich8lan - Read byte or word from NVM
+ *  @hw: pointer to the HW structure
+ *  @offset: The offset (in bytes) of the byte or word to read.
+ *  @size: Size of data to read, 1=byte 2=word
+ *  @data: Pointer to the word to store the value read.
+ *
+ *  Reads a byte or word from the NVM using the flash access registers.
+ **/
+static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
+                                         u8 size, u16* data)
+{
+	union ich8_hws_flash_status hsfsts;
+	union ich8_hws_flash_ctrl hsflctl;
+	u32 flash_linear_addr;
+	u32 flash_data = 0;
+	s32 ret_val = -E1000_ERR_NVM;
+	u8 count = 0;
+
+	DEBUGFUNC("e1000_read_flash_data_ich8lan");
+
+	if (size < 1  || size > 2 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
+		goto out;
+
+	flash_linear_addr = (ICH_FLASH_LINEAR_ADDR_MASK & offset) +
+	                    hw->nvm.flash_base_addr;
+
+	do {
+		usec_delay(1);
+		/* Steps */
+		ret_val = e1000_flash_cycle_init_ich8lan(hw);
+		if (ret_val != E1000_SUCCESS)
+			break;
+
+		hsflctl.regval = E1000_READ_FLASH_REG16(hw, ICH_FLASH_HSFCTL);
+		/* 0b/1b corresponds to 1 or 2 byte size, respectively. */
+		hsflctl.hsf_ctrl.fldbcount = size - 1;
+		hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_READ;
+		E1000_WRITE_FLASH_REG16(hw, ICH_FLASH_HSFCTL, hsflctl.regval);
+
+		E1000_WRITE_FLASH_REG(hw, ICH_FLASH_FADDR, flash_linear_addr);
+
+		ret_val = e1000_flash_cycle_ich8lan(hw,
+		                                ICH_FLASH_READ_COMMAND_TIMEOUT);
+
+		/*
+		 * Check if FCERR is set to 1, if set to 1, clear it
+		 * and try the whole sequence a few more times, else
+		 * read in (shift in) the Flash Data0, the order is
+		 * least significant byte first msb to lsb
+		 */
+		if (ret_val == E1000_SUCCESS) {
+			flash_data = E1000_READ_FLASH_REG(hw, ICH_FLASH_FDATA0);
+			if (size == 1) {
+				*data = (u8)(flash_data & 0x000000FF);
+			} else if (size == 2) {
+				*data = (u16)(flash_data & 0x0000FFFF);
+			}
+			break;
+		} else {
+			/*
+			 * If we've gotten here, then things are probably
+			 * completely hosed, but if the error condition is
+			 * detected, it won't hurt to give it another try...
+			 * ICH_FLASH_CYCLE_REPEAT_COUNT times.
+			 */
+			hsfsts.regval = E1000_READ_FLASH_REG16(hw,
+			                                      ICH_FLASH_HSFSTS);
+			if (hsfsts.hsf_status.flcerr == 1) {
+				/* Repeat for some time before giving up. */
+				continue;
+			} else if (hsfsts.hsf_status.flcdone == 0) {
+				DEBUGOUT("Timeout error - flash cycle "
+				         "did not complete.");
+				break;
+			}
+		}
+	} while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
+
+out:
+	return ret_val;
+}
+
+/**
+ *  e1000_write_nvm_ich8lan - Write word(s) to the NVM
+ *  @hw: pointer to the HW structure
+ *  @offset: The offset (in bytes) of the word(s) to write.
+ *  @words: Size of data to write in words
+ *  @data: Pointer to the word(s) to write at offset.
+ *
+ *  Writes a byte or word to the NVM using the flash access registers.
+ **/
+STATIC s32 e1000_write_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
+                                   u16 *data)
+{
+	struct e1000_nvm_info *nvm = &hw->nvm;
+	struct e1000_dev_spec_ich8lan *dev_spec;
+	s32 ret_val = E1000_SUCCESS;
+	u16 i;
+
+	DEBUGFUNC("e1000_write_nvm_ich8lan");
+
+	dev_spec = (struct e1000_dev_spec_ich8lan *)hw->dev_spec;
+
+	if (!dev_spec) {
+		DEBUGOUT("dev_spec pointer is set to NULL.\n");
+		ret_val = -E1000_ERR_CONFIG;
+		goto out;
+	}
+
+	if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
+	    (words == 0)) {
+		DEBUGOUT("nvm parameter(s) out of bounds\n");
+		ret_val = -E1000_ERR_NVM;
+		goto out;
+	}
+
+	ret_val = e1000_acquire_nvm(hw);
+	if (ret_val)
+		goto out;
+
+	for (i = 0; i < words; i++) {
+		dev_spec->shadow_ram[offset+i].modified = TRUE;
+		dev_spec->shadow_ram[offset+i].value = data[i];
+	}
+
+	e1000_release_nvm(hw);
+
+out:
+	return ret_val;
+}
+
+/**
+ *  e1000_update_nvm_checksum_ich8lan - Update the checksum for NVM
+ *  @hw: pointer to the HW structure
+ *
+ *  The NVM checksum is updated by calling the generic update_nvm_checksum,
+ *  which writes the checksum to the shadow ram.  The changes in the shadow
+ *  ram are then committed to the EEPROM by processing each bank at a time
+ *  checking for the modified bit and writing only the pending changes.
+ *  After a succesful commit, the shadow ram is cleared and is ready for
+ *  future writes.
+ **/
+STATIC s32 e1000_update_nvm_checksum_ich8lan(struct e1000_hw *hw)
+{
+	struct e1000_nvm_info *nvm = &hw->nvm;
+	struct e1000_dev_spec_ich8lan *dev_spec;
+	u32 i, act_offset, new_bank_offset, old_bank_offset, bank;
+	s32 ret_val;
+	u16 data;
+
+	DEBUGFUNC("e1000_update_nvm_checksum_ich8lan");
+
+	dev_spec = (struct e1000_dev_spec_ich8lan *)hw->dev_spec;
+
+	ret_val = e1000_update_nvm_checksum_generic(hw);
+	if (ret_val)
+		goto out;
+
+	if (nvm->type != e1000_nvm_flash_sw)
+		goto out;
+
+	ret_val = e1000_acquire_nvm(hw);
+	if (ret_val)
+		goto out;
+
+	/*
+	 * We're writing to the opposite bank so if we're on bank 1,
+	 * write to bank 0 etc.  We also need to erase the segment that
+	 * is going to be written
+	 */
+	ret_val =  e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
+	if (ret_val != E1000_SUCCESS)
+		goto out;
+
+	if (bank == 0) {
+		new_bank_offset = nvm->flash_bank_size;
+		old_bank_offset = 0;
+		e1000_erase_flash_bank_ich8lan(hw, 1);
+	} else {
+		old_bank_offset = nvm->flash_bank_size;
+		new_bank_offset = 0;
+		e1000_erase_flash_bank_ich8lan(hw, 0);
+	}
+
+	for (i = 0; i < E1000_SHADOW_RAM_WORDS; i++) {
+		/*
+		 * Determine whether to write the value stored
+		 * in the other NVM bank or a modified value stored
+		 * in the shadow RAM
+		 */
+		if (dev_spec->shadow_ram[i].modified) {
+			data = dev_spec->shadow_ram[i].value;
+		} else {
+			e1000_read_flash_word_ich8lan(hw,
+			                              i + old_bank_offset,
+			                              &data);
+		}
+
+		/*
+		 * If the word is 0x13, then make sure the signature bits
+		 * (15:14) are 11b until the commit has completed.
+		 * This will allow us to write 10b which indicates the
+		 * signature is valid.  We want to do this after the write
+		 * has completed so that we don't mark the segment valid
+		 * while the write is still in progress
+		 */
+		if (i == E1000_ICH_NVM_SIG_WORD)
+			data |= E1000_ICH_NVM_SIG_MASK;
+
+		/* Convert offset to bytes. */
+		act_offset = (i + new_bank_offset) << 1;
+
+		usec_delay(100);
+		/* Write the bytes to the new bank. */
+		ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
+		                                               act_offset,
+		                                               (u8)data);
+		if (ret_val)
+			break;
+
+		usec_delay(100);
+		ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
+		                                          act_offset + 1,
+		                                          (u8)(data >> 8));
+		if (ret_val)
+			break;
+	}
+
+	/*
+	 * Don't bother writing the segment valid bits if sector
+	 * programming failed.
+	 */
+	if (ret_val) {
+		DEBUGOUT("Flash commit failed.\n");
+		e1000_release_nvm(hw);
+		goto out;
+	}
+
+	/*
+	 * Finally validate the new segment by setting bit 15:14
+	 * to 10b in word 0x13 , this can be done without an
+	 * erase as well since these bits are 11 to start with
+	 * and we need to change bit 14 to 0b
+	 */
+	act_offset = new_bank_offset + E1000_ICH_NVM_SIG_WORD;
+	e1000_read_flash_word_ich8lan(hw, act_offset, &data);
+	data &= 0xBFFF;
+	ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
+	                                               act_offset * 2 + 1,
+	                                               (u8)(data >> 8));
+	if (ret_val) {
+		e1000_release_nvm(hw);
+		goto out;
+	}
+
+	/*
+	 * And invalidate the previously valid segment by setting
+	 * its signature word (0x13) high_byte to 0b. This can be
+	 * done without an erase because flash erase sets all bits
+	 * to 1's. We can write 1's to 0's without an erase
+	 */
+	act_offset = (old_bank_offset + E1000_ICH_NVM_SIG_WORD) * 2 + 1;
+	ret_val = e1000_retry_write_flash_byte_ich8lan(hw, act_offset, 0);
+	if (ret_val) {
+		e1000_release_nvm(hw);
+		goto out;
+	}
+
+	/* Great!  Everything worked, we can now clear the cached entries. */
+	for (i = 0; i < E1000_SHADOW_RAM_WORDS; i++) {
+		dev_spec->shadow_ram[i].modified = FALSE;
+		dev_spec->shadow_ram[i].value = 0xFFFF;
+	}
+
+	e1000_release_nvm(hw);
+
+	/*
+	 * Reload the EEPROM, or else modifications will not appear
+	 * until after the next adapter reset.
+	 */
+	e1000_reload_nvm(hw);
+	msec_delay(10);
+
+out:
+	return ret_val;
+}
+
+/**
+ *  e1000_validate_nvm_checksum_ich8lan - Validate EEPROM checksum
+ *  @hw: pointer to the HW structure
+ *
+ *  Check to see if checksum needs to be fixed by reading bit 6 in word 0x19.
+ *  If the bit is 0, that the EEPROM had been modified, but the checksum was not
+ *  calculated, in which case we need to calculate the checksum and set bit 6.
+ **/
+STATIC s32 e1000_validate_nvm_checksum_ich8lan(struct e1000_hw *hw)
+{
+	s32 ret_val = E1000_SUCCESS;
+	u16 data;
+
+	DEBUGFUNC("e1000_validate_nvm_checksum_ich8lan");
+
+	/*
+	 * Read 0x19 and check bit 6.  If this bit is 0, the checksum
+	 * needs to be fixed.  This bit is an indication that the NVM
+	 * was prepared by OEM software and did not calculate the
+	 * checksum...a likely scenario.
+	 */
+	ret_val = e1000_read_nvm(hw, 0x19, 1, &data);
+	if (ret_val)
+		goto out;
+
+	if ((data & 0x40) == 0) {
+		data |= 0x40;
+		ret_val = e1000_write_nvm(hw, 0x19, 1, &data);
+		if (ret_val)
+			goto out;
+		ret_val = e1000_update_nvm_checksum(hw);
+		if (ret_val)
+			goto out;
+	}
+
+	ret_val = e1000_validate_nvm_checksum_generic(hw);
+
+out:
+	return ret_val;
+}
+
+/**
+ *  e1000_write_flash_data_ich8lan - Writes bytes to the NVM
+ *  @hw: pointer to the HW structure
+ *  @offset: The offset (in bytes) of the byte/word to read.
+ *  @size: Size of data to read, 1=byte 2=word
+ *  @data: The byte(s) to write to the NVM.
+ *
+ *  Writes one/two bytes to the NVM using the flash access registers.
+ **/
+static s32 e1000_write_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
+                                          u8 size, u16 data)
+{
+	union ich8_hws_flash_status hsfsts;
+	union ich8_hws_flash_ctrl hsflctl;
+	u32 flash_linear_addr;
+	u32 flash_data = 0;
+	s32 ret_val = -E1000_ERR_NVM;
+	u8 count = 0;
+
+	DEBUGFUNC("e1000_write_ich8_data");
+
+	if (size < 1 || size > 2 || data > size * 0xff ||
+	    offset > ICH_FLASH_LINEAR_ADDR_MASK)
+		goto out;
+
+	flash_linear_addr = (ICH_FLASH_LINEAR_ADDR_MASK & offset) +
+	                    hw->nvm.flash_base_addr;
+
+	do {
+		usec_delay(1);
+		/* Steps */
+		ret_val = e1000_flash_cycle_init_ich8lan(hw);
+		if (ret_val != E1000_SUCCESS)
+			break;
+
+		hsflctl.regval = E1000_READ_FLASH_REG16(hw, ICH_FLASH_HSFCTL);
+		/* 0b/1b corresponds to 1 or 2 byte size, respectively. */
+		hsflctl.hsf_ctrl.fldbcount = size -1;
+		hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_WRITE;
+		E1000_WRITE_FLASH_REG16(hw, ICH_FLASH_HSFCTL, hsflctl.regval);
+
+		E1000_WRITE_FLASH_REG(hw, ICH_FLASH_FADDR, flash_linear_addr);
+
+		if (size == 1)
+			flash_data = (u32)data & 0x00FF;
+		else
+			flash_data = (u32)data;
+
+		E1000_WRITE_FLASH_REG(hw, ICH_FLASH_FDATA0, flash_data);
+
+		/*
+		 * check if FCERR is set to 1 , if set to 1, clear it
+		 * and try the whole sequence a few more times else done
+		 */
+		ret_val = e1000_flash_cycle_ich8lan(hw,
+		                               ICH_FLASH_WRITE_COMMAND_TIMEOUT);
+		if (ret_val == E1000_SUCCESS) {
+			break;
+		} else {
+			/*
+			 * If we're here, then things are most likely
+			 * completely hosed, but if the error condition
+			 * is detected, it won't hurt to give it another
+			 * try...ICH_FLASH_CYCLE_REPEAT_COUNT times.
+			 */
+			hsfsts.regval = E1000_READ_FLASH_REG16(hw,
+			                                      ICH_FLASH_HSFSTS);
+			if (hsfsts.hsf_status.flcerr == 1) {
+				/* Repeat for some time before giving up. */
+				continue;
+			} else if (hsfsts.hsf_status.flcdone == 0) {
+				DEBUGOUT("Timeout error - flash cycle "
+				         "did not complete.");
+				break;
+			}
+		}
+	} while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
+
+out:
+	return ret_val;
+}
+
+/**
+ *  e1000_write_flash_byte_ich8lan - Write a single byte to NVM
+ *  @hw: pointer to the HW structure
+ *  @offset: The index of the byte to read.
+ *  @data: The byte to write to the NVM.
+ *
+ *  Writes a single byte to the NVM using the flash access registers.
+ **/
+STATIC s32 e1000_write_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
+                                          u8 data)
+{
+	u16 word = (u16)data;
+
+	DEBUGFUNC("e1000_write_flash_byte_ich8lan");
+
+	return e1000_write_flash_data_ich8lan(hw, offset, 1, word);
+}
+
+/**
+ *  e1000_retry_write_flash_byte_ich8lan - Writes a single byte to NVM
+ *  @hw: pointer to the HW structure
+ *  @offset: The offset of the byte to write.
+ *  @byte: The byte to write to the NVM.
+ *
+ *  Writes a single byte to the NVM using the flash access registers.
+ *  Goes through a retry algorithm before giving up.
+ **/
+static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
+                                                u8 byte)
+{
+	s32 ret_val;
+	u16 program_retries;
+
+	DEBUGFUNC("e1000_retry_write_flash_byte_ich8lan");
+
+	ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
+	if (ret_val == E1000_SUCCESS)
+		goto out;
+
+	for (program_retries = 0; program_retries < 100; program_retries++) {
+		DEBUGOUT2("Retrying Byte %2.2X at offset %u\n", byte, offset);
+		usec_delay(100);
+		ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
+		if (ret_val == E1000_SUCCESS)
+			break;
+	}
+	if (program_retries == 100) {
+		ret_val = -E1000_ERR_NVM;
+		goto out;
+	}
+
+out:
+	return ret_val;
+}
+
+/**
+ *  e1000_erase_flash_bank_ich8lan - Erase a bank (4k) from NVM
+ *  @hw: pointer to the HW structure
+ *  @bank: 0 for first bank, 1 for second bank, etc.
+ *
+ *  Erases the bank specified. Each bank is a 4k block. Banks are 0 based.
+ *  bank N is 4096 * N + flash_reg_addr.
+ **/
+STATIC s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank)
+{
+	struct e1000_nvm_info *nvm = &hw->nvm;
+	union ich8_hws_flash_status hsfsts;
+	union ich8_hws_flash_ctrl hsflctl;
+	u32 flash_linear_addr;
+	/* bank size is in 16bit words - adjust to bytes */
+	u32 flash_bank_size = nvm->flash_bank_size * 2;
+	s32  ret_val = E1000_SUCCESS;
+	s32  count = 0;
+	s32  j, iteration, sector_size;
+
+	DEBUGFUNC("e1000_erase_flash_bank_ich8lan");
+
+	hsfsts.regval = E1000_READ_FLASH_REG16(hw, ICH_FLASH_HSFSTS);
+
+	/*
+	 * Determine HW Sector size: Read BERASE bits of hw flash status
+	 * register
+	 * 00: The Hw sector is 256 bytes, hence we need to erase 16
+	 *     consecutive sectors.  The start index for the nth Hw sector
+	 *     can be calculated as = bank * 4096 + n * 256
+	 * 01: The Hw sector is 4K bytes, hence we need to erase 1 sector.
+	 *     The start index for the nth Hw sector can be calculated
+	 *     as = bank * 4096
+	 * 10: The Hw sector is 8K bytes, nth sector = bank * 8192
+	 *     (ich9 only, otherwise error condition)
+	 * 11: The Hw sector is 64K bytes, nth sector = bank * 65536
+	 */
+	switch (hsfsts.hsf_status.berasesz) {
+	case 0:
+		/* Hw sector size 256 */
+		sector_size = ICH_FLASH_SEG_SIZE_256;
+		iteration = flash_bank_size / ICH_FLASH_SEG_SIZE_256;
+		break;
+	case 1:
+		sector_size = ICH_FLASH_SEG_SIZE_4K;
+		iteration = flash_bank_size / ICH_FLASH_SEG_SIZE_4K;
+		break;
+	case 2:
+		if (hw->mac.type == e1000_ich9lan) {
+			sector_size = ICH_FLASH_SEG_SIZE_8K;
+			iteration = flash_bank_size / ICH_FLASH_SEG_SIZE_8K;
+		} else {
+			ret_val = -E1000_ERR_NVM;
+			goto out;
+		}
+		break;
+	case 3:
+		sector_size = ICH_FLASH_SEG_SIZE_64K;
+		iteration = flash_bank_size / ICH_FLASH_SEG_SIZE_64K;
+		break;
+	default:
+		ret_val = -E1000_ERR_NVM;
+		goto out;
+	}
+
+	/* Start with the base address, then add the sector offset. */
+	flash_linear_addr = hw->nvm.flash_base_addr;
+	flash_linear_addr += (bank) ? (sector_size * iteration) : 0;
+
+	for (j = 0; j < iteration ; j++) {
+		do {
+			/* Steps */
+			ret_val = e1000_flash_cycle_init_ich8lan(hw);
+			if (ret_val)
+				goto out;
+
+			/*
+			 * Write a value 11 (block Erase) in Flash
+			 * Cycle field in hw flash control
+			 */
+			hsflctl.regval = E1000_READ_FLASH_REG16(hw,
+			                                      ICH_FLASH_HSFCTL);
+			hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_ERASE;
+			E1000_WRITE_FLASH_REG16(hw,
+			                        ICH_FLASH_HSFCTL,
+			                        hsflctl.regval);
+
+			/*
+			 * Write the last 24 bits of an index within the
+			 * block into Flash Linear address field in Flash
+			 * Address.
+			 */
+			flash_linear_addr += (j * sector_size);
+			E1000_WRITE_FLASH_REG(hw,
+			                      ICH_FLASH_FADDR,
+			                      flash_linear_addr);
+
+			ret_val = e1000_flash_cycle_ich8lan(hw,
+			                       ICH_FLASH_ERASE_COMMAND_TIMEOUT);
+			if (ret_val == E1000_SUCCESS) {
+				break;
+			} else {
+				/*
+				 * Check if FCERR is set to 1.  If 1,
+				 * clear it and try the whole sequence
+				 * a few more times else Done
+				 */
+				hsfsts.regval = E1000_READ_FLASH_REG16(hw,
+				                              ICH_FLASH_HSFSTS);
+				if (hsfsts.hsf_status.flcerr == 1) {
+					/*
+					 * repeat for some time before
+					 * giving up
+					 */
+					continue;
+				} else if (hsfsts.hsf_status.flcdone == 0)
+					goto out;
+			}
+		} while (++count < ICH_FLASH_CYCLE_REPEAT_COUNT);
+	}
+
+out:
+	return ret_val;
+}
+
+/**
+ *  e1000_valid_led_default_ich8lan - Set the default LED settings
+ *  @hw: pointer to the HW structure
+ *  @data: Pointer to the LED settings
+ *
+ *  Reads the LED default settings from the NVM to data.  If the NVM LED
+ *  settings is all 0's or F's, set the LED default to a valid LED default
+ *  setting.
+ **/
+STATIC s32 e1000_valid_led_default_ich8lan(struct e1000_hw *hw, u16 *data)
+{
+	s32 ret_val;
+
+	DEBUGFUNC("e1000_valid_led_default_ich8lan");
+
+	ret_val = e1000_read_nvm(hw, NVM_ID_LED_SETTINGS, 1, data);
+	if (ret_val) {
+		DEBUGOUT("NVM Read Error\n");
+		goto out;
+	}
+
+	if (*data == ID_LED_RESERVED_0000 ||
+	    *data == ID_LED_RESERVED_FFFF)
+		*data = ID_LED_DEFAULT_ICH8LAN;
+
+out:
+	return ret_val;
+}
+
+/**
+ *  e1000_get_bus_info_ich8lan - Get/Set the bus type and width
+ *  @hw: pointer to the HW structure
+ *
+ *  ICH8 use the PCI Express bus, but does not contain a PCI Express Capability
+ *  register, so the the bus width is hard coded.
+ **/
+STATIC s32 e1000_get_bus_info_ich8lan(struct e1000_hw *hw)
+{
+	struct e1000_bus_info *bus = &hw->bus;
+	s32 ret_val;
+
+	DEBUGFUNC("e1000_get_bus_info_ich8lan");
+
+	ret_val = e1000_get_bus_info_pcie_generic(hw);
+
+	/*
+	 * ICH devices are "PCI Express"-ish.  They have
+	 * a configuration space, but do not contain
+	 * PCI Express Capability registers, so bus width
+	 * must be hardcoded.
+	 */
+	if (bus->width == e1000_bus_width_unknown)
+		bus->width = e1000_bus_width_pcie_x1;
+
+	return ret_val;
+}
+
+/**
+ *  e1000_reset_hw_ich8lan - Reset the hardware
+ *  @hw: pointer to the HW structure
+ *
+ *  Does a full reset of the hardware which includes a reset of the PHY and
+ *  MAC.
+ **/
+STATIC s32 e1000_reset_hw_ich8lan(struct e1000_hw *hw)
+{
+	u32 ctrl, icr, kab;
+	s32 ret_val;
+
+	DEBUGFUNC("e1000_reset_hw_ich8lan");
+
+	/*
+	 * Prevent the PCI-E bus from sticking if there is no TLP connection
+	 * on the last TLP read/write transaction when MAC is reset.
+	 */
+	ret_val = e1000_disable_pcie_master_generic(hw);
+	if (ret_val) {
+		DEBUGOUT("PCI-E Master disable polling has failed.\n");
+	}
+
+	DEBUGOUT("Masking off all interrupts\n");
+	E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff);
+
+	/*
+	 * Disable the Transmit and Receive units.  Then delay to allow
+	 * any pending transactions to complete before we hit the MAC
+	 * with the global reset.
+	 */
+	E1000_WRITE_REG(hw, E1000_RCTL, 0);
+	E1000_WRITE_REG(hw, E1000_TCTL, E1000_TCTL_PSP);
+	E1000_WRITE_FLUSH(hw);
+
+	msec_delay(10);
+
+	/* Workaround for ICH8 bit corruption issue in FIFO memory */
+	if (hw->mac.type == e1000_ich8lan) {
+		/* Set Tx and Rx buffer allocation to 8k apiece. */
+		E1000_WRITE_REG(hw, E1000_PBA, E1000_PBA_8K);
+		/* Set Packet Buffer Size to 16k. */
+		E1000_WRITE_REG(hw, E1000_PBS, E1000_PBS_16K);
+	}
+
+	ctrl = E1000_READ_REG(hw, E1000_CTRL);
+
+	if (!e1000_check_reset_block(hw) && !hw->phy.reset_disable) {
+		/*
+		 * PHY HW reset requires MAC CORE reset at the same
+		 * time to make sure the interface between MAC and the
+		 * external PHY is reset.
+		 */
+		ctrl |= E1000_CTRL_PHY_RST;
+	}
+	ret_val = e1000_acquire_swflag_ich8lan(hw);
+	DEBUGOUT("Issuing a global reset to ich8lan");
+	E1000_WRITE_REG(hw, E1000_CTRL, (ctrl | E1000_CTRL_RST));
+	msec_delay(20);
+
+	ret_val = e1000_get_auto_rd_done_generic(hw);
+	if (ret_val) {
+		/*
+		 * When auto config read does not complete, do not
+		 * return with an error. This can happen in situations
+		 * where there is no eeprom and prevents getting link.
+		 */
+		DEBUGOUT("Auto Read Done did not complete\n");
+	}
+
+	E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff);
+	icr = E1000_READ_REG(hw, E1000_ICR);
+
+	kab = E1000_READ_REG(hw, E1000_KABGTXD);
+	kab |= E1000_KABGTXD_BGSQLBIAS;
+	E1000_WRITE_REG(hw, E1000_KABGTXD, kab);
+
+	return ret_val;
+}
+
+/**
+ *  e1000_init_hw_ich8lan - Initialize the hardware
+ *  @hw: pointer to the HW structure
+ *
+ *  Prepares the hardware for transmit and receive by doing the following:
+ *   - initialize hardware bits
+ *   - initialize LED identification
+ *   - setup receive address registers
+ *   - setup flow control
+ *   - setup transmit discriptors
+ *   - clear statistics
+ **/
+STATIC s32 e1000_init_hw_ich8lan(struct e1000_hw *hw)
+{
+	struct e1000_mac_info *mac = &hw->mac;
+	u32 ctrl_ext, txdctl, snoop;
+	s32 ret_val;
+	u16 i;
+
+	DEBUGFUNC("e1000_init_hw_ich8lan");
+
+	e1000_initialize_hw_bits_ich8lan(hw);
+
+	/* Initialize identification LED */
+	ret_val = e1000_id_led_init_generic(hw);
+	if (ret_val) {
+		DEBUGOUT("Error initializing identification LED\n");
+		/* This is not fatal and we should not stop init due to this */
+	}
+
+	/* Setup the receive address. */
+	e1000_init_rx_addrs_generic(hw, mac->rar_entry_count);
+
+	/* Zero out the Multicast HASH table */
+	DEBUGOUT("Zeroing the MTA\n");
+	for (i = 0; i < mac->mta_reg_count; i++)
+		E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
+
+	/* Setup link and flow control */
+	ret_val = e1000_setup_link(hw);
+
+	/* Set the transmit descriptor write-back policy for both queues */
+	txdctl = E1000_READ_REG(hw, E1000_TXDCTL(0));
+	txdctl = (txdctl & ~E1000_TXDCTL_WTHRESH) |
+		 E1000_TXDCTL_FULL_TX_DESC_WB;
+	txdctl = (txdctl & ~E1000_TXDCTL_PTHRESH) |
+	         E1000_TXDCTL_MAX_TX_DESC_PREFETCH;
+	E1000_WRITE_REG(hw, E1000_TXDCTL(0), txdctl);
+	txdctl = E1000_READ_REG(hw, E1000_TXDCTL(1));
+	txdctl = (txdctl & ~E1000_TXDCTL_WTHRESH) |
+		 E1000_TXDCTL_FULL_TX_DESC_WB;
+	txdctl = (txdctl & ~E1000_TXDCTL_PTHRESH) |
+	         E1000_TXDCTL_MAX_TX_DESC_PREFETCH;
+	E1000_WRITE_REG(hw, E1000_TXDCTL(1), txdctl);
+
+	/*
+	 * ICH8 has opposite polarity of no_snoop bits.
+	 * By default, we should use snoop behavior.
+	 */
+	if (mac->type == e1000_ich8lan)
+		snoop = PCIE_ICH8_SNOOP_ALL;
+	else
+		snoop = (u32)~(PCIE_NO_SNOOP_ALL);
+	e1000_set_pcie_no_snoop_generic(hw, snoop);
+
+	ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
+	ctrl_ext |= E1000_CTRL_EXT_RO_DIS;
+	E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
+
+	/*
+	 * Clear all of the statistics registers (clear on read).  It is
+	 * important that we do this after we have tried to establish link
+	 * because the symbol error count will increment wildly if there
+	 * is no link.
+	 */
+	e1000_clear_hw_cntrs_ich8lan(hw);
+
+	return ret_val;
+}
+/**
+ *  e1000_initialize_hw_bits_ich8lan - Initialize required hardware bits
+ *  @hw: pointer to the HW structure
+ *
+ *  Sets/Clears required hardware bits necessary for correctly setting up the
+ *  hardware for transmit and receive.
+ **/
+static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw)
+{
+	u32 reg;
+
+	DEBUGFUNC("e1000_initialize_hw_bits_ich8lan");
+
+	if (hw->mac.disable_hw_init_bits)
+		goto out;
+
+	/* Extended Device Control */
+	reg = E1000_READ_REG(hw, E1000_CTRL_EXT);
+	reg |= (1 << 22);
+	E1000_WRITE_REG(hw, E1000_CTRL_EXT, reg);
+
+	/* Transmit Descriptor Control 0 */
+	reg = E1000_READ_REG(hw, E1000_TXDCTL(0));
+	reg |= (1 << 22);
+	E1000_WRITE_REG(hw, E1000_TXDCTL(0), reg);
+
+	/* Transmit Descriptor Control 1 */
+	reg = E1000_READ_REG(hw, E1000_TXDCTL(1));
+	reg |= (1 << 22);
+	E1000_WRITE_REG(hw, E1000_TXDCTL(1), reg);
+
+	/* Transmit Arbitration Control 0 */
+	reg = E1000_READ_REG(hw, E1000_TARC(0));
+	if (hw->mac.type == e1000_ich8lan)
+		reg |= (1 << 28) | (1 << 29);
+	reg |= (1 << 23) | (1 << 24) | (1 << 26) | (1 << 27);
+	E1000_WRITE_REG(hw, E1000_TARC(0), reg);
+
+	/* Transmit Arbitration Control 1 */
+	reg = E1000_READ_REG(hw, E1000_TARC(1));
+	if (E1000_READ_REG(hw, E1000_TCTL) & E1000_TCTL_MULR)
+		reg &= ~(1 << 28);
+	else
+		reg |= (1 << 28);
+	reg |= (1 << 24) | (1 << 26) | (1 << 30);
+	E1000_WRITE_REG(hw, E1000_TARC(1), reg);
+
+	/* Device Status */
+	if (hw->mac.type == e1000_ich8lan) {
+		reg = E1000_READ_REG(hw, E1000_STATUS);
+		reg &= ~(1 << 31);
+		E1000_WRITE_REG(hw, E1000_STATUS, reg);
+	}
+
+out:
+	return;
+}
+
+/**
+ *  e1000_setup_link_ich8lan - Setup flow control and link settings
+ *  @hw: pointer to the HW structure
+ *
+ *  Determines which flow control settings to use, then configures flow
+ *  control.  Calls the appropriate media-specific link configuration
+ *  function.  Assuming the adapter has a valid link partner, a valid link
+ *  should be established.  Assumes the hardware has previously been reset
+ *  and the transmitter and receiver are not enabled.
+ **/
+STATIC s32 e1000_setup_link_ich8lan(struct e1000_hw *hw)
+{
+	struct e1000_functions *func = &hw->func;
+	s32 ret_val = E1000_SUCCESS;
+
+	DEBUGFUNC("e1000_setup_link_ich8lan");
+
+	if (e1000_check_reset_block(hw))
+		goto out;
+
+	/*
+	 * ICH parts do not have a word in the NVM to determine
+	 * the default flow control setting, so we explicitly
+	 * set it to full.
+	 */
+	if (hw->fc.type == e1000_fc_default)
+		hw->fc.type = e1000_fc_full;
+
+	hw->fc.original_type = hw->fc.type;
+
+	DEBUGOUT1("After fix-ups FlowControl is now = %x\n", hw->fc.type);
+
+	/* Continue to configure the copper link. */
+	ret_val = func->setup_physical_interface(hw);
+	if (ret_val)
+		goto out;
+
+	E1000_WRITE_REG(hw, E1000_FCTTV, hw->fc.pause_time);
+
+	ret_val = e1000_set_fc_watermarks_generic(hw);
+
+out:
+	return ret_val;
+}
+
+/**
+ *  e1000_setup_copper_link_ich8lan - Configure MAC/PHY interface
+ *  @hw: pointer to the HW structure
+ *
+ *  Configures the kumeran interface to the PHY to wait the appropriate time
+ *  when polling the PHY, then call the generic setup_copper_link to finish
+ *  configuring the copper link.
+ **/
+STATIC s32 e1000_setup_copper_link_ich8lan(struct e1000_hw *hw)
+{
+	u32 ctrl;
+	s32 ret_val;
+	u16 reg_data;
+
+	DEBUGFUNC("e1000_setup_copper_link_ich8lan");
+
+	ctrl = E1000_READ_REG(hw, E1000_CTRL);
+	ctrl |= E1000_CTRL_SLU;
+	ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
+	E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
+
+	/*
+	 * Set the mac to wait the maximum time between each iteration
+	 * and increase the max iterations when polling the phy;
+	 * this fixes erroneous timeouts at 10Mbps.
+	 */
+	ret_val = e1000_write_kmrn_reg(hw, GG82563_REG(0x34, 4), 0xFFFF);
+	if (ret_val)
+		goto out;
+	ret_val = e1000_read_kmrn_reg(hw, GG82563_REG(0x34, 9), &reg_data);
+	if (ret_val)
+		goto out;
+	reg_data |= 0x3F;
+	ret_val = e1000_write_kmrn_reg(hw, GG82563_REG(0x34, 9), reg_data);
+	if (ret_val)
+		goto out;
+
+	if (hw->phy.type == e1000_phy_igp_3) {
+		ret_val = e1000_copper_link_setup_igp(hw);
+		if (ret_val)
+			goto out;
+	}
+
+	if (hw->phy.type == e1000_phy_ife) {
+		ret_val = e1000_read_phy_reg(hw, IFE_PHY_MDIX_CONTROL, &reg_data);
+		if (ret_val)
+			goto out;
+
+		reg_data &= ~IFE_PMC_AUTO_MDIX;
+
+		switch (hw->phy.mdix) {
+		case 1:
+			reg_data &= ~IFE_PMC_FORCE_MDIX;
+			break;
+		case 2:
+			reg_data |= IFE_PMC_FORCE_MDIX;
+			break;
+		case 0:
+		default:
+			reg_data |= IFE_PMC_AUTO_MDIX;
+			break;
+		}
+		ret_val = e1000_write_phy_reg(hw, IFE_PHY_MDIX_CONTROL, reg_data);
+		if (ret_val)
+			goto out;
+	}
+	ret_val = e1000_setup_copper_link_generic(hw);
+
+out:
+	return ret_val;
+}
+
+/**
+ *  e1000_get_link_up_info_ich8lan - Get current link speed and duplex
+ *  @hw: pointer to the HW structure
+ *  @speed: pointer to store current link speed
+ *  @duplex: pointer to store the current link duplex
+ *
+ *  Calls the generic get_speed_and_duplex to retreive the current link
+ *  information and then calls the Kumeran lock loss workaround for links at
+ *  gigabit speeds.
+ **/
+STATIC s32 e1000_get_link_up_info_ich8lan(struct e1000_hw *hw, u16 *speed,
+                                          u16 *duplex)
+{
+	s32 ret_val;
+
+	DEBUGFUNC("e1000_get_link_up_info_ich8lan");
+
+	ret_val = e1000_get_speed_and_duplex_copper_generic(hw, speed, duplex);
+	if (ret_val)
+		goto out;
+
+	if ((hw->mac.type == e1000_ich8lan) &&
+	    (hw->phy.type == e1000_phy_igp_3) &&
+	    (*speed == SPEED_1000)) {
+		ret_val = e1000_kmrn_lock_loss_workaround_ich8lan(hw);
+	}
+
+out:
+	return ret_val;
+}
+
+/**
+ *  e1000_kmrn_lock_loss_workaround_ich8lan - Kumeran workaround
+ *  @hw: pointer to the HW structure
+ *
+ *  Work-around for 82566 Kumeran PCS lock loss:
+ *  On link status change (i.e. PCI reset, speed change) and link is up and
+ *  speed is gigabit-
+ *    0) if workaround is optionally disabled do nothing
+ *    1) wait 1ms for Kumeran link to come up
+ *    2) check Kumeran Diagnostic register PCS lock loss bit
+ *    3) if not set the link is locked (all is good), otherwise...
+ *    4) reset the PHY
+ *    5) repeat up to 10 times
+ *  Note: this is only called for IGP3 copper when speed is 1gb.
+ **/
+static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw)
+{
+	struct e1000_dev_spec_ich8lan *dev_spec;
+	u32 phy_ctrl;
+	s32 ret_val = E1000_SUCCESS;
+	u16 i, data;
+	bool link;
+
+	DEBUGFUNC("e1000_kmrn_lock_loss_workaround_ich8lan");
+
+	dev_spec = (struct e1000_dev_spec_ich8lan *)hw->dev_spec;
+
+	if (!dev_spec) {
+		DEBUGOUT("dev_spec pointer is set to NULL.\n");
+		ret_val = -E1000_ERR_CONFIG;
+		goto out;
+	}
+
+	if (!(dev_spec->kmrn_lock_loss_workaround_enabled))
+		goto out;
+
+	/*
+	 * Make sure link is up before proceeding.  If not just return.
+	 * Attempting this while link is negotiating fouled up link
+	 * stability
+	 */
+	ret_val = e1000_phy_has_link_generic(hw, 1, 0, &link);
+	if (!link) {
+		ret_val = E1000_SUCCESS;
+		goto out;
+	}
+
+	for (i = 0; i < 10; i++) {
+		/* read once to clear */
+		ret_val = e1000_read_phy_reg(hw, IGP3_KMRN_DIAG, &data);
+		if (ret_val)
+			goto out;
+		/* and again to get new status */
+		ret_val = e1000_read_phy_reg(hw, IGP3_KMRN_DIAG, &data);
+		if (ret_val)
+			goto out;
+
+		/* check for PCS lock */
+		if (!(data & IGP3_KMRN_DIAG_PCS_LOCK_LOSS)) {
+			ret_val = E1000_SUCCESS;
+			goto out;
+		}
+
+		/* Issue PHY reset */
+		e1000_phy_hw_reset(hw);
+		msec_delay_irq(5);
+	}
+	/* Disable GigE link negotiation */
+	phy_ctrl = E1000_READ_REG(hw, E1000_PHY_CTRL);
+	phy_ctrl |= (E1000_PHY_CTRL_GBE_DISABLE |
+	             E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
+	E1000_WRITE_REG(hw, E1000_PHY_CTRL, phy_ctrl);
+
+	/*
+	 * Call gig speed drop workaround on Giga disable before accessing
+	 * any PHY registers
+	 */
+	e1000_gig_downshift_workaround_ich8lan(hw);
+
+	/* unable to acquire PCS lock */
+	ret_val = -E1000_ERR_PHY;
+
+out:
+	return ret_val;
+}
+
+/**
+ *  e1000_set_kmrn_lock_loss_workaound_ich8lan - Set Kumeran workaround state
+ *  @hw: pointer to the HW structure
+ *  @state: boolean value used to set the current Kumaran workaround state
+ *
+ *  If ICH8, set the current Kumeran workaround state (enabled - TRUE
+ *  /disabled - FALSE).
+ **/
+void e1000_set_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw,
+                                                 bool state)
+{
+	struct e1000_dev_spec_ich8lan *dev_spec;
+
+	DEBUGFUNC("e1000_set_kmrn_lock_loss_workaround_ich8lan");
+
+	if (hw->mac.type != e1000_ich8lan) {
+		DEBUGOUT("Workaround applies to ICH8 only.\n");
+		goto out;
+	}
+
+	dev_spec = (struct e1000_dev_spec_ich8lan *)hw->dev_spec;
+
+	if (!dev_spec) {
+		DEBUGOUT("dev_spec pointer is set to NULL.\n");
+		goto out;
+	}
+
+	dev_spec->kmrn_lock_loss_workaround_enabled = state;
+
+out:
+	return;
+}
+
+/**
+ *  e1000_ipg3_phy_powerdown_workaround_ich8lan - Power down workaround on D3
+ *  @hw: pointer to the HW structure
+ *
+ *  Workaround for 82566 power-down on D3 entry:
+ *    1) disable gigabit link
+ *    2) write VR power-down enable
+ *    3) read it back
+ *  Continue if successful, else issue LCD reset and repeat
+ **/
+void e1000_igp3_phy_powerdown_workaround_ich8lan(struct e1000_hw *hw)
+{
+	u32 reg;
+	u16 data;
+	u8  retry = 0;
+
+	DEBUGFUNC("e1000_igp3_phy_powerdown_workaround_ich8lan");
+
+	if (hw->phy.type != e1000_phy_igp_3)
+		goto out;
+
+	/* Try the workaround twice (if needed) */
+	do {
+		/* Disable link */
+		reg = E1000_READ_REG(hw, E1000_PHY_CTRL);
+		reg |= (E1000_PHY_CTRL_GBE_DISABLE |
+		        E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
+		E1000_WRITE_REG(hw, E1000_PHY_CTRL, reg);
+
+		/*
+		 * Call gig speed drop workaround on Giga disable before
+		 * accessing any PHY registers
+		 */
+		if (hw->mac.type == e1000_ich8lan)
+			e1000_gig_downshift_workaround_ich8lan(hw);
+
+		/* Write VR power-down enable */
+		e1000_read_phy_reg(hw, IGP3_VR_CTRL, &data);
+		data &= ~IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
+		e1000_write_phy_reg(hw,
+		                   IGP3_VR_CTRL,
+		                   data | IGP3_VR_CTRL_MODE_SHUTDOWN);
+
+		/* Read it back and test */
+		e1000_read_phy_reg(hw, IGP3_VR_CTRL, &data);
+		data &= IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
+		if ((data == IGP3_VR_CTRL_MODE_SHUTDOWN) || retry)
+			break;
+
+		/* Issue PHY reset and repeat at most one more time */
+		reg = E1000_READ_REG(hw, E1000_CTRL);
+		E1000_WRITE_REG(hw, E1000_CTRL, reg | E1000_CTRL_PHY_RST);
+		retry++;
+	} while (retry);
+
+out:
+	return;
+}
+
+/**
+ *  e1000_gig_downshift_workaround_ich8lan - WoL from S5 stops working
+ *  @hw: pointer to the HW structure
+ *
+ *  Steps to take when dropping from 1Gb/s (eg. link cable removal (LSC),
+ *  LPLU, Giga disable, MDIC PHY reset):
+ *    1) Set Kumeran Near-end loopback
+ *    2) Clear Kumeran Near-end loopback
+ *  Should only be called for ICH8[m] devices with IGP_3 Phy.
+ **/
+void e1000_gig_downshift_workaround_ich8lan(struct e1000_hw *hw)
+{
+	s32 ret_val = E1000_SUCCESS;
+	u16 reg_data;
+
+	DEBUGFUNC("e1000_gig_downshift_workaround_ich8lan");
+
+	if ((hw->mac.type != e1000_ich8lan) ||
+	    (hw->phy.type != e1000_phy_igp_3))
+		goto out;
+
+	ret_val = e1000_read_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
+				      &reg_data);
+	if (ret_val)
+		goto out;
+	reg_data |= E1000_KMRNCTRLSTA_DIAG_NELPBK;
+	ret_val = e1000_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
+	                               reg_data);
+	if (ret_val)
+		goto out;
+	reg_data &= ~E1000_KMRNCTRLSTA_DIAG_NELPBK;
+	ret_val = e1000_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
+				       reg_data);
+out:
+	return;
+}
+
+/**
+ *  e1000_cleanup_led_ich8lan - Restore the default LED operation
+ *  @hw: pointer to the HW structure
+ *
+ *  Return the LED back to the default configuration.
+ **/
+STATIC s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw)
+{
+	s32 ret_val = E1000_SUCCESS;
+
+	DEBUGFUNC("e1000_cleanup_led_ich8lan");
+
+	if (hw->phy.type == e1000_phy_ife)
+		ret_val = e1000_write_phy_reg(hw,
+		                                IFE_PHY_SPECIAL_CONTROL_LED,
+		                                0);
+	else
+		E1000_WRITE_REG(hw, E1000_LEDCTL, hw->mac.ledctl_default);
+
+	return ret_val;
+}
+
+/**
+ *  e1000_led_on_ich8lan - Turn LED's on
+ *  @hw: pointer to the HW structure
+ *
+ *  Turn on the LED's.
+ **/
+STATIC s32 e1000_led_on_ich8lan(struct e1000_hw *hw)
+{
+	s32 ret_val = E1000_SUCCESS;
+
+	DEBUGFUNC("e1000_led_on_ich8lan");
+
+	if (hw->phy.type == e1000_phy_ife)
+		ret_val = e1000_write_phy_reg(hw,
+		                IFE_PHY_SPECIAL_CONTROL_LED,
+		                (IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_ON));
+	else
+		E1000_WRITE_REG(hw, E1000_LEDCTL, hw->mac.ledctl_mode2);
+
+	return ret_val;
+}
+
+/**
+ *  e1000_led_off_ich8lan - Turn LED's off
+ *  @hw: pointer to the HW structure
+ *
+ *  Turn off the LED's.
+ **/
+STATIC s32 e1000_led_off_ich8lan(struct e1000_hw *hw)
+{
+	s32 ret_val = E1000_SUCCESS;
+
+	DEBUGFUNC("e1000_led_off_ich8lan");
+
+	if (hw->phy.type == e1000_phy_ife)
+		ret_val = e1000_write_phy_reg(hw,
+		               IFE_PHY_SPECIAL_CONTROL_LED,
+		               (IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_OFF));
+	else
+		E1000_WRITE_REG(hw, E1000_LEDCTL, hw->mac.ledctl_mode1);
+
+	return ret_val;
+}
+
+/**
+ *  e1000_get_cfg_done_ich8lan - Read config done bit
+ *  @hw: pointer to the HW structure
+ *
+ *  Read the management control register for the config done bit for
+ *  completion status.  NOTE: silicon which is EEPROM-less will fail trying
+ *  to read the config done bit, so an error is *ONLY* logged and returns
+ *  E1000_SUCCESS.  If we were to return with error, EEPROM-less silicon
+ *  would not be able to be reset or change link.
+ **/
+STATIC s32 e1000_get_cfg_done_ich8lan(struct e1000_hw *hw)
+{
+	s32 ret_val = E1000_SUCCESS;
+
+	e1000_get_cfg_done_generic(hw);
+
+	/* If EEPROM is not marked present, init the IGP 3 PHY manually */
+	if (((E1000_READ_REG(hw, E1000_EECD) & E1000_EECD_PRES) == 0) &&
+	    (hw->phy.type == e1000_phy_igp_3)) {
+		e1000_phy_init_script_igp3(hw);
+	}
+
+	return ret_val;
+}
+
+/**
+ * e1000_power_down_phy_copper_ich8lan - Remove link during PHY power down
+ * @hw: pointer to the HW structure
+ *
+ * In the case of a PHY power down to save power, or to turn off link during a
+ * driver unload, or wake on lan is not enabled, remove the link.
+ **/
+STATIC void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw)
+{
+	/* If the management interface is not enabled, then power down */
+	if (!(e1000_check_mng_mode(hw) || e1000_check_reset_block(hw)))
+		e1000_power_down_phy_copper(hw);
+
+	return;
+}
+
+/**
+ *  e1000_clear_hw_cntrs_ich8lan - Clear statistical counters
+ *  @hw: pointer to the HW structure
+ *
+ *  Clears hardware counters specific to the silicon family and calls
+ *  clear_hw_cntrs_generic to clear all general purpose counters.
+ **/
+STATIC void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw)
+{
+	volatile u32 temp;
+
+	DEBUGFUNC("e1000_clear_hw_cntrs_ich8lan");
+
+	e1000_clear_hw_cntrs_base_generic(hw);
+
+	temp = E1000_READ_REG(hw, E1000_ALGNERRC);
+	temp = E1000_READ_REG(hw, E1000_RXERRC);
+	temp = E1000_READ_REG(hw, E1000_TNCRS);
+	temp = E1000_READ_REG(hw, E1000_CEXTERR);
+	temp = E1000_READ_REG(hw, E1000_TSCTC);
+	temp = E1000_READ_REG(hw, E1000_TSCTFC);
+
+	temp = E1000_READ_REG(hw, E1000_MGTPRC);
+	temp = E1000_READ_REG(hw, E1000_MGTPDC);
+	temp = E1000_READ_REG(hw, E1000_MGTPTC);
+
+	temp = E1000_READ_REG(hw, E1000_IAC);
+	temp = E1000_READ_REG(hw, E1000_ICRXOC);
+}
+
--- /dev/null
+++ sys/dev/em/e1000_82575.c
@@ -0,0 +1,1450 @@
+/*******************************************************************************
+
+  Copyright (c) 2001-2007, Intel Corporation 
+  All rights reserved.
+  
+  Redistribution and use in source and binary forms, with or without 
+  modification, are permitted provided that the following conditions are met:
+  
+   1. Redistributions of source code must retain the above copyright notice, 
+      this list of conditions and the following disclaimer.
+  
+   2. Redistributions in binary form must reproduce the above copyright 
+      notice, this list of conditions and the following disclaimer in the 
+      documentation and/or other materials provided with the distribution.
+  
+   3. Neither the name of the Intel Corporation nor the names of its 
+      contributors may be used to endorse or promote products derived from 
+      this software without specific prior written permission.
+  
+  THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
+  AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 
+  IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 
+  ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE 
+  LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 
+  CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 
+  SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 
+  INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 
+  CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 
+  ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
+  POSSIBILITY OF SUCH DAMAGE.
+
+*******************************************************************************/
+/* $FreeBSD: src/sys/dev/em/e1000_82575.c,v 1.3.4.1 2007/11/28 23:24:37 jfv Exp $ */
+
+
+/* e1000_82575
+ * e1000_82576
+ */
+
+#include "e1000_api.h"
+#include "e1000_82575.h"
+
+void e1000_init_function_pointers_82575(struct e1000_hw *hw);
+
+STATIC s32  e1000_init_phy_params_82575(struct e1000_hw *hw);
+STATIC s32  e1000_init_nvm_params_82575(struct e1000_hw *hw);
+STATIC s32  e1000_init_mac_params_82575(struct e1000_hw *hw);
+STATIC s32  e1000_acquire_phy_82575(struct e1000_hw *hw);
+STATIC void e1000_release_phy_82575(struct e1000_hw *hw);
+STATIC s32  e1000_acquire_nvm_82575(struct e1000_hw *hw);
+STATIC void e1000_release_nvm_82575(struct e1000_hw *hw);
+STATIC s32  e1000_check_for_link_82575(struct e1000_hw *hw);
+STATIC s32  e1000_get_cfg_done_82575(struct e1000_hw *hw);
+STATIC s32  e1000_get_link_up_info_82575(struct e1000_hw *hw, u16 *speed,
+                                         u16 *duplex);
+STATIC s32  e1000_init_hw_82575(struct e1000_hw *hw);
+STATIC s32  e1000_phy_hw_reset_sgmii_82575(struct e1000_hw *hw);
+STATIC s32  e1000_read_phy_reg_sgmii_82575(struct e1000_hw *hw, u32 offset,
+                                           u16 *data);
+STATIC void e1000_rar_set_82575(struct e1000_hw *hw, u8 *addr, u32 index);
+STATIC s32  e1000_reset_hw_82575(struct e1000_hw *hw);
+STATIC s32  e1000_set_d0_lplu_state_82575(struct e1000_hw *hw,
+                                          bool active);
+STATIC s32  e1000_setup_copper_link_82575(struct e1000_hw *hw);
+STATIC s32  e1000_setup_fiber_serdes_link_82575(struct e1000_hw *hw);
+STATIC s32  e1000_write_phy_reg_sgmii_82575(struct e1000_hw *hw,
+                                            u32 offset, u16 data);
+STATIC void e1000_clear_hw_cntrs_82575(struct e1000_hw *hw);
+static s32  e1000_acquire_swfw_sync_82575(struct e1000_hw *hw, u16 mask);
+static s32  e1000_configure_pcs_link_82575(struct e1000_hw *hw);
+static s32  e1000_get_pcs_speed_and_duplex_82575(struct e1000_hw *hw,
+                                                 u16 *speed, u16 *duplex);
+static s32  e1000_get_phy_id_82575(struct e1000_hw *hw);
+static void e1000_release_swfw_sync_82575(struct e1000_hw *hw, u16 mask);
+static bool e1000_sgmii_active_82575(struct e1000_hw *hw);
+STATIC s32  e1000_reset_init_script_82575(struct e1000_hw *hw);
+STATIC s32  e1000_read_mac_addr_82575(struct e1000_hw *hw);
+STATIC void e1000_power_down_phy_copper_82575(struct e1000_hw *hw);
+
+
+struct e1000_dev_spec_82575 {
+	bool sgmii_active;
+};
+
+/**
+ *  e1000_init_phy_params_82575 - Init PHY func ptrs.
+ *  @hw: pointer to the HW structure
+ *
+ *  This is a function pointer entry point called by the api module.
+ **/
+STATIC s32 e1000_init_phy_params_82575(struct e1000_hw *hw)
+{
+	struct e1000_phy_info *phy = &hw->phy;
+	struct e1000_functions *func = &hw->func;
+	s32 ret_val = E1000_SUCCESS;
+
+	DEBUGFUNC("e1000_init_phy_params_82575");
+
+	if (hw->phy.media_type != e1000_media_type_copper) {
+		phy->type = e1000_phy_none;
+		goto out;
+	} else {
+		func->power_up_phy      = e1000_power_up_phy_copper;
+		func->power_down_phy    = e1000_power_down_phy_copper_82575;
+	}
+
+	phy->autoneg_mask        = AUTONEG_ADVERTISE_SPEED_DEFAULT;
+	phy->reset_delay_us      = 100;
+
+	func->acquire_phy        = e1000_acquire_phy_82575;
+	func->check_reset_block  = e1000_check_reset_block_generic;
+	func->commit_phy         = e1000_phy_sw_reset_generic;
+	func->get_cfg_done       = e1000_get_cfg_done_82575;
+	func->release_phy        = e1000_release_phy_82575;
+
+	if (e1000_sgmii_active_82575(hw)) {
+		func->reset_phy          = e1000_phy_hw_reset_sgmii_82575;
+		func->read_phy_reg       = e1000_read_phy_reg_sgmii_82575;
+		func->write_phy_reg      = e1000_write_phy_reg_sgmii_82575;
+	} else {
+		func->reset_phy          = e1000_phy_hw_reset_generic;
+		func->read_phy_reg       = e1000_read_phy_reg_igp;
+		func->write_phy_reg      = e1000_write_phy_reg_igp;
+	}
+
+	/* Set phy->phy_addr and phy->id. */
+	ret_val = e1000_get_phy_id_82575(hw);
+
+	/* Verify phy id and set remaining function pointers */
+	switch (phy->id) {
+	case M88E1111_I_PHY_ID:
+		phy->type                = e1000_phy_m88;
+		func->check_polarity     = e1000_check_polarity_m88;
+		func->get_phy_info       = e1000_get_phy_info_m88;
+		func->get_cable_length   = e1000_get_cable_length_m88;
+		func->force_speed_duplex = e1000_phy_force_speed_duplex_m88;
+		break;
+	case IGP03E1000_E_PHY_ID:
+		phy->type                = e1000_phy_igp_3;
+		func->check_polarity     = e1000_check_polarity_igp;
+		func->get_phy_info       = e1000_get_phy_info_igp;
+		func->get_cable_length   = e1000_get_cable_length_igp_2;
+		func->force_speed_duplex = e1000_phy_force_speed_duplex_igp;
+		func->set_d0_lplu_state  = e1000_set_d0_lplu_state_82575;
+		func->set_d3_lplu_state  = e1000_set_d3_lplu_state_generic;
+		break;
+	default:
+		ret_val = -E1000_ERR_PHY;
+		goto out;
+	}
+
+out:
+	return ret_val;
+}
+
+/**
+ *  e1000_init_nvm_params_82575 - Init NVM func ptrs.
+ *  @hw: pointer to the HW structure
+ *
+ *  This is a function pointer entry point called by the api module.
+ **/
+STATIC s32 e1000_init_nvm_params_82575(struct e1000_hw *hw)
+{
+	struct e1000_nvm_info *nvm = &hw->nvm;
+	struct e1000_functions *func = &hw->func;
+	u32 eecd = E1000_READ_REG(hw, E1000_EECD);
+	u16 size;
+
+	DEBUGFUNC("e1000_init_nvm_params_82575");
+
+	nvm->opcode_bits        = 8;
+	nvm->delay_usec         = 1;
+	switch (nvm->override) {
+	case e1000_nvm_override_spi_large:
+		nvm->page_size    = 32;
+		nvm->address_bits = 16;
+		break;
+	case e1000_nvm_override_spi_small:
+		nvm->page_size    = 8;
+		nvm->address_bits = 8;
+		break;
+	default:
+		nvm->page_size    = eecd & E1000_EECD_ADDR_BITS ? 32 : 8;
+		nvm->address_bits = eecd & E1000_EECD_ADDR_BITS ? 16 : 8;
+		break;
+	}
+
+	nvm->type               = e1000_nvm_eeprom_spi;
+
+	size = (u16)((eecd & E1000_EECD_SIZE_EX_MASK) >>
+	                  E1000_EECD_SIZE_EX_SHIFT);
+
+	/*
+	 * Added to a constant, "size" becomes the left-shift value
+	 * for setting word_size.
+	 */
+	size += NVM_WORD_SIZE_BASE_SHIFT;
+
+	/* EEPROM access above 16k is unsupported */
+	if (size > 14)
+		size = 14;
+	nvm->word_size	= 1 << size;
+
+	/* Function Pointers */
+	func->acquire_nvm       = e1000_acquire_nvm_82575;
+	func->read_nvm          = e1000_read_nvm_eerd;
+	func->release_nvm       = e1000_release_nvm_82575;
+	func->update_nvm        = e1000_update_nvm_checksum_generic;
+	func->valid_led_default = e1000_valid_led_default_generic;
+	func->validate_nvm      = e1000_validate_nvm_checksum_generic;
+	func->write_nvm         = e1000_write_nvm_spi;
+
+	return E1000_SUCCESS;
+}
+
+/**
+ *  e1000_init_mac_params_82575 - Init MAC func ptrs.
+ *  @hw: pointer to the HW structure
+ *
+ *  This is a function pointer entry point called by the api module.
+ **/
+STATIC s32 e1000_init_mac_params_82575(struct e1000_hw *hw)
+{
+	struct e1000_mac_info *mac = &hw->mac;
+	struct e1000_functions *func = &hw->func;
+	struct e1000_dev_spec_82575 *dev_spec;
+	u32 ctrl_ext = 0;
+	s32 ret_val = E1000_SUCCESS;
+
+	DEBUGFUNC("e1000_init_mac_params_82575");
+
+	hw->dev_spec_size = sizeof(struct e1000_dev_spec_82575);
+
+	/* Device-specific structure allocation */
+	ret_val = e1000_alloc_zeroed_dev_spec_struct(hw, hw->dev_spec_size);
+	if (ret_val)
+		goto out;
+
+	dev_spec = (struct e1000_dev_spec_82575 *)hw->dev_spec;
+
+	/* Set media type */
+        /*
+	 * The 82575 uses bits 22:23 for link mode. The mode can be changed
+         * based on the EEPROM. We cannot rely upon device ID. There
+         * is no distinguishable difference between fiber and internal
+         * SerDes mode on the 82575. There can be an external PHY attached
+         * on the SGMII interface. For this, we'll set sgmii_active to TRUE.
+         */
+	hw->phy.media_type = e1000_media_type_copper;
+	dev_spec->sgmii_active = FALSE;
+
+	ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
+	if ((ctrl_ext & E1000_CTRL_EXT_LINK_MODE_MASK) ==
+	    E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES) {
+		hw->phy.media_type = e1000_media_type_internal_serdes;
+		ctrl_ext |= E1000_CTRL_I2C_ENA;
+	} else if (ctrl_ext & E1000_CTRL_EXT_LINK_MODE_SGMII) {
+		dev_spec->sgmii_active = TRUE;
+		ctrl_ext |= E1000_CTRL_I2C_ENA;
+	} else {
+		ctrl_ext &= ~E1000_CTRL_I2C_ENA;
+	}
+	E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
+
+	/* Set mta register count */
+	mac->mta_reg_count = 128;
+	/* Set rar entry count */
+	mac->rar_entry_count = E1000_RAR_ENTRIES_82575;
+	/* Set if part includes ASF firmware */
+	mac->asf_firmware_present = TRUE;
+	/* Set if manageability features are enabled. */
+	mac->arc_subsystem_valid =
+	        (E1000_READ_REG(hw, E1000_FWSM) & E1000_FWSM_MODE_MASK)
+	                ? TRUE : FALSE;
+
+	/* Function pointers */
+
+	/* bus type/speed/width */
+	func->get_bus_info = e1000_get_bus_info_pcie_generic;
+	/* reset */
+	func->reset_hw = e1000_reset_hw_82575;
+	/* hw initialization */
+	func->init_hw = e1000_init_hw_82575;
+	/* link setup */
+	func->setup_link = e1000_setup_link_generic;
+	/* physical interface link setup */
+	func->setup_physical_interface =
+	        (hw->phy.media_type == e1000_media_type_copper)
+	                ? e1000_setup_copper_link_82575
+	                : e1000_setup_fiber_serdes_link_82575;
+	/* check for link */
+	func->check_for_link = e1000_check_for_link_82575;
+	/* receive address register setting */
+	func->rar_set = e1000_rar_set_82575;
+	/* read mac address */
+	func->read_mac_addr = e1000_read_mac_addr_82575;
+	/* multicast address update */
+	func->update_mc_addr_list = e1000_update_mc_addr_list_generic;
+	/* writing VFTA */
+	func->write_vfta = e1000_write_vfta_generic;
+	/* clearing VFTA */
+	func->clear_vfta = e1000_clear_vfta_generic;
+	/* setting MTA */
+	func->mta_set = e1000_mta_set_generic;
+	/* blink LED */
+	func->blink_led = e1000_blink_led_generic;
+	/* setup LED */
+	func->setup_led = e1000_setup_led_generic;
+	/* cleanup LED */
+	func->cleanup_led = e1000_cleanup_led_generic;
+	/* turn on/off LED */
+	func->led_on = e1000_led_on_generic;
+	func->led_off = e1000_led_off_generic;
+	/* remove device */
+	func->remove_device = e1000_remove_device_generic;
+	/* clear hardware counters */
+	func->clear_hw_cntrs = e1000_clear_hw_cntrs_82575;
+	/* link info */
+	func->get_link_up_info = e1000_get_link_up_info_82575;
+
+out:
+	return ret_val;
+}
+
+/**
+ *  e1000_init_function_pointers_82575 - Init func ptrs.
+ *  @hw: pointer to the HW structure
+ *
+ *  The only function explicitly called by the api module to initialize
+ *  all function pointers and parameters.
+ **/
+void e1000_init_function_pointers_82575(struct e1000_hw *hw)
+{
+	DEBUGFUNC("e1000_init_function_pointers_82575");
+
+	hw->func.init_mac_params = e1000_init_mac_params_82575;
+	hw->func.init_nvm_params = e1000_init_nvm_params_82575;
+	hw->func.init_phy_params = e1000_init_phy_params_82575;
+}
+
+/**
+ *  e1000_acquire_phy_82575 - Acquire rights to access PHY
+ *  @hw: pointer to the HW structure
+ *
+ *  Acquire access rights to the correct PHY.  This is a
+ *  function pointer entry point called by the api module.
+ **/
+STATIC s32 e1000_acquire_phy_82575(struct e1000_hw *hw)
+{
+	u16 mask;
+
+	DEBUGFUNC("e1000_acquire_phy_82575");
+
+	mask = hw->bus.func ? E1000_SWFW_PHY1_SM : E1000_SWFW_PHY0_SM;
+
+	return e1000_acquire_swfw_sync_82575(hw, mask);
+}
+
+/**
+ *  e1000_release_phy_82575 - Release rights to access PHY
+ *  @hw: pointer to the HW structure
+ *
+ *  A wrapper to release access rights to the correct PHY.  This is a
+ *  function pointer entry point called by the api module.
+ **/
+STATIC void e1000_release_phy_82575(struct e1000_hw *hw)
+{
+	u16 mask;
+
+	DEBUGFUNC("e1000_release_phy_82575");
+
+	mask = hw->bus.func ? E1000_SWFW_PHY1_SM : E1000_SWFW_PHY0_SM;
+	e1000_release_swfw_sync_82575(hw, mask);
+}
+
+/**
+ *  e1000_read_phy_reg_sgmii_82575 - Read PHY register using sgmii
+ *  @hw: pointer to the HW structure
+ *  @offset: register offset to be read
+ *  @data: pointer to the read data
+ *
+ *  Reads the PHY register at offset using the serial gigabit media independent
+ *  interface and stores the retrieved information in data.
+ **/
+STATIC s32 e1000_read_phy_reg_sgmii_82575(struct e1000_hw *hw, u32 offset,
+                                          u16 *data)
+{
+	struct e1000_phy_info *phy = &hw->phy;
+	u32 i, i2ccmd = 0;
+
+	DEBUGFUNC("e1000_read_phy_reg_sgmii_82575");
+
+	if (offset > E1000_MAX_SGMII_PHY_REG_ADDR) {
+		DEBUGOUT1("PHY Address %u is out of range\n", offset);
+		return -E1000_ERR_PARAM;
+	}
+
+	/*
+	 * Set up Op-code, Phy Address, and register address in the I2CCMD
+	 * register.  The MAC will take care of interfacing with the
+	 * PHY to retrieve the desired data.
+	 */
+	i2ccmd = ((offset << E1000_I2CCMD_REG_ADDR_SHIFT) |
+	          (phy->addr << E1000_I2CCMD_PHY_ADDR_SHIFT) |
+	          (E1000_I2CCMD_OPCODE_READ));
+
+	E1000_WRITE_REG(hw, E1000_I2CCMD, i2ccmd);
+
+	/* Poll the ready bit to see if the I2C read completed */
+	for (i = 0; i < E1000_I2CCMD_PHY_TIMEOUT; i++) {
+		usec_delay(50);
+		i2ccmd = E1000_READ_REG(hw, E1000_I2CCMD);
+		if (i2ccmd & E1000_I2CCMD_READY)
+			break;
+	}
+	if (!(i2ccmd & E1000_I2CCMD_READY)) {
+		DEBUGOUT("I2CCMD Read did not complete\n");
+		return -E1000_ERR_PHY;
+	}
+	if (i2ccmd & E1000_I2CCMD_ERROR) {
+		DEBUGOUT("I2CCMD Error bit set\n");
+		return -E1000_ERR_PHY;
+	}
+
+	/* Need to byte-swap the 16-bit value. */
+	*data = ((i2ccmd >> 8) & 0x00FF) | ((i2ccmd << 8) & 0xFF00);
+
+	return E1000_SUCCESS;
+}
+
+/**
+ *  e1000_write_phy_reg_sgmii_82575 - Write PHY register using sgmii
+ *  @hw: pointer to the HW structure
+ *  @offset: register offset to write to
+ *  @data: data to write at register offset
+ *
+ *  Writes the data to PHY register at the offset using the serial gigabit
+ *  media independent interface.
+ **/
+STATIC s32 e1000_write_phy_reg_sgmii_82575(struct e1000_hw *hw, u32 offset,
+                                           u16 data)
+{
+	struct e1000_phy_info *phy = &hw->phy;
+	u32 i, i2ccmd = 0;
+	u16 phy_data_swapped;
+
+	DEBUGFUNC("e1000_write_phy_reg_sgmii_82575");
+
+	if (offset > E1000_MAX_SGMII_PHY_REG_ADDR) {
+		DEBUGOUT1("PHY Address %d is out of range\n", offset);
+		return -E1000_ERR_PARAM;
+	}
+
+	/* Swap the data bytes for the I2C interface */
+	phy_data_swapped = ((data >> 8) & 0x00FF) | ((data << 8) & 0xFF00);
+
+	/*
+	 * Set up Op-code, Phy Address, and register address in the I2CCMD
+	 * register.  The MAC will take care of interfacing with the
+	 * PHY to retrieve the desired data.
+	 */
+	i2ccmd = ((offset << E1000_I2CCMD_REG_ADDR_SHIFT) |
+	          (phy->addr << E1000_I2CCMD_PHY_ADDR_SHIFT) |
+	          E1000_I2CCMD_OPCODE_WRITE |
+	          phy_data_swapped);
+
+	E1000_WRITE_REG(hw, E1000_I2CCMD, i2ccmd);
+
+	/* Poll the ready bit to see if the I2C read completed */
+	for (i = 0; i < E1000_I2CCMD_PHY_TIMEOUT; i++) {
+		usec_delay(50);
+		i2ccmd = E1000_READ_REG(hw, E1000_I2CCMD);
+		if (i2ccmd & E1000_I2CCMD_READY)
+			break;
+	}
+	if (!(i2ccmd & E1000_I2CCMD_READY)) {
+		DEBUGOUT("I2CCMD Write did not complete\n");
+		return -E1000_ERR_PHY;
+	}
+	if (i2ccmd & E1000_I2CCMD_ERROR) {
+		DEBUGOUT("I2CCMD Error bit set\n");
+		return -E1000_ERR_PHY;
+	}
+
+	return E1000_SUCCESS;
+}
+
+/**
+ *  e1000_get_phy_id_82575 - Retreive PHY addr and id
+ *  @hw: pointer to the HW structure
+ *
+ *  Retreives the PHY address and ID for both PHY's which do and do not use
+ *  sgmi interface.
+ **/
+static s32 e1000_get_phy_id_82575(struct e1000_hw *hw)
+{
+	struct e1000_phy_info *phy = &hw->phy;
+	s32  ret_val = E1000_SUCCESS;
+	u16 phy_id;
+
+	DEBUGFUNC("e1000_get_phy_id_82575");
+
+	/*
+	 * For SGMII PHYs, we try the list of possible addresses until
+	 * we find one that works.  For non-SGMII PHYs
+	 * (e.g. integrated copper PHYs), an address of 1 should
+	 * work.  The result of this function should mean phy->phy_addr
+	 * and phy->id are set correctly.
+	 */
+	if (!(e1000_sgmii_active_82575(hw))) {
+		phy->addr = 1;
+		ret_val = e1000_get_phy_id(hw);
+		goto out;
+	}
+
+	/*
+	 * The address field in the I2CCMD register is 3 bits and 0 is invalid.
+	 * Therefore, we need to test 1-7
+	 */
+	for (phy->addr = 1; phy->addr < 8; phy->addr++) {
+		ret_val = e1000_read_phy_reg_sgmii_82575(hw, PHY_ID1, &phy_id);
+		if (ret_val == E1000_SUCCESS) {
+			DEBUGOUT2("Vendor ID 0x%08X read at address %u\n",
+			          phy_id,
+			          phy->addr);
+			/*
+			 * At the time of this writing, The M88 part is
+			 * the only supported SGMII PHY product.
+			 */
+			if (phy_id == M88_VENDOR)
+				break;
+		} else {
+			DEBUGOUT1("PHY address %u was unreadable\n",
+			          phy->addr);
+		}
+	}
+
+	/* A valid PHY type couldn't be found. */
+	if (phy->addr == 8) {
+		phy->addr = 0;
+		ret_val = -E1000_ERR_PHY;
+		goto out;
+	}
+
+	ret_val = e1000_get_phy_id(hw);
+
+out:
+	return ret_val;
+}
+
+/**
+ *  e1000_phy_hw_reset_sgmii_82575 - Performs a PHY reset
+ *  @hw: pointer to the HW structure
+ *
+ *  Resets the PHY using the serial gigabit media independent interface.
+ **/
+STATIC s32 e1000_phy_hw_reset_sgmii_82575(struct e1000_hw *hw)
+{
+	s32 ret_val;
+
+	DEBUGFUNC("e1000_phy_hw_reset_sgmii_82575");
+
+	/*
+	 * This isn't a true "hard" reset, but is the only reset
+	 * available to us at this time.
+	 */
+
+	DEBUGOUT("Soft resetting SGMII attached PHY...\n");
+
+	/*
+	 * SFP documentation requires the following to configure the SPF module
+	 * to work on SGMII.  No further documentation is given.
+	 */
+	ret_val = e1000_write_phy_reg(hw, 0x1B, 0x8084);
+	if (ret_val)
+		goto out;
+
+	ret_val = e1000_phy_commit(hw);
+
+out:
+	return ret_val;
+}
+
+/**
+ *  e1000_set_d0_lplu_state_82575 - Set Low Power Linkup D0 state
+ *  @hw: pointer to the HW structure
+ *  @active: TRUE to enable LPLU, FALSE to disable
+ *
+ *  Sets the LPLU D0 state according to the active flag.  When
+ *  activating LPLU this function also disables smart speed
+ *  and vice versa.  LPLU will not be activated unless the
+ *  device autonegotiation advertisement meets standards of
+ *  either 10 or 10/100 or 10/100/1000 at all duplexes.
+ *  This is a function pointer entry point only called by
+ *  PHY setup routines.
+ **/
+STATIC s32 e1000_set_d0_lplu_state_82575(struct e1000_hw *hw, bool active)
+{
+	struct e1000_phy_info *phy = &hw->phy;
+	s32 ret_val;
+	u16 data;
+
+	DEBUGFUNC("e1000_set_d0_lplu_state_82575");
+
+	ret_val = e1000_read_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, &data);
+	if (ret_val)
+		goto out;
+
+	if (active) {
+		data |= IGP02E1000_PM_D0_LPLU;
+		ret_val = e1000_write_phy_reg(hw,
+		                              IGP02E1000_PHY_POWER_MGMT,
+		                              data);
+		if (ret_val)
+			goto out;
+
+		/* When LPLU is enabled, we should disable SmartSpeed */
+		ret_val = e1000_read_phy_reg(hw,
+		                             IGP01E1000_PHY_PORT_CONFIG,
+		                             &data);
+		data &= ~IGP01E1000_PSCFR_SMART_SPEED;
+		ret_val = e1000_write_phy_reg(hw,
+		                              IGP01E1000_PHY_PORT_CONFIG,
+		                              data);
+		if (ret_val)
+			goto out;
+	} else {
+		data &= ~IGP02E1000_PM_D0_LPLU;
+		ret_val = e1000_write_phy_reg(hw,
+		                              IGP02E1000_PHY_POWER_MGMT,
+		                              data);
+		/*
+		 * LPLU and SmartSpeed are mutually exclusive.  LPLU is used
+		 * during Dx states where the power conservation is most
+		 * important.  During driver activity we should enable
+		 * SmartSpeed, so performance is maintained.
+		 */
+		if (phy->smart_speed == e1000_smart_speed_on) {
+			ret_val = e1000_read_phy_reg(hw,
+			                             IGP01E1000_PHY_PORT_CONFIG,
+			                             &data);
+			if (ret_val)
+				goto out;
+
+			data |= IGP01E1000_PSCFR_SMART_SPEED;
+			ret_val = e1000_write_phy_reg(hw,
+			                             IGP01E1000_PHY_PORT_CONFIG,
+			                             data);
+			if (ret_val)
+				goto out;
+		} else if (phy->smart_speed == e1000_smart_speed_off) {
+			ret_val = e1000_read_phy_reg(hw,
+			                             IGP01E1000_PHY_PORT_CONFIG,
+			                             &data);
+			if (ret_val)
+				goto out;
+
+			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
+			ret_val = e1000_write_phy_reg(hw,
+			                             IGP01E1000_PHY_PORT_CONFIG,
+			                             data);
+			if (ret_val)
+				goto out;
+		}
+	}
+
+out:
+	return ret_val;
+}
+
+/**
+ *  e1000_acquire_nvm_82575 - Request for access to EEPROM
+ *  @hw: pointer to the HW structure
+ *
+ *  Acquire the necessary semaphores for exclussive access to the EEPROM.
+ *  Set the EEPROM access request bit and wait for EEPROM access grant bit.
+ *  Return successful if access grant bit set, else clear the request for
+ *  EEPROM access and return -E1000_ERR_NVM (-1).
+ **/
+STATIC s32 e1000_acquire_nvm_82575(struct e1000_hw *hw)
+{
+	s32 ret_val;
+
+	DEBUGFUNC("e1000_acquire_nvm_82575");
+
+	ret_val = e1000_acquire_swfw_sync_82575(hw, E1000_SWFW_EEP_SM);
+	if (ret_val)
+		goto out;
+
+	ret_val = e1000_acquire_nvm_generic(hw);
+
+	if (ret_val)
+		e1000_release_swfw_sync_82575(hw, E1000_SWFW_EEP_SM);
+
+out:
+	return ret_val;
+}
+
+/**
+ *  e1000_release_nvm_82575 - Release exclusive access to EEPROM
+ *  @hw: pointer to the HW structure
+ *
+ *  Stop any current commands to the EEPROM and clear the EEPROM request bit,
+ *  then release the semaphores acquired.
+ **/
+STATIC void e1000_release_nvm_82575(struct e1000_hw *hw)
+{
+	DEBUGFUNC("e1000_release_nvm_82575");
+
+	e1000_release_nvm_generic(hw);
+	e1000_release_swfw_sync_82575(hw, E1000_SWFW_EEP_SM);
+}
+
+/**
+ *  e1000_acquire_swfw_sync_82575 - Acquire SW/FW semaphore
+ *  @hw: pointer to the HW structure
+ *  @mask: specifies which semaphore to acquire
+ *
+ *  Acquire the SW/FW semaphore to access the PHY or NVM.  The mask
+ *  will also specify which port we're acquiring the lock for.
+ **/
+static s32 e1000_acquire_swfw_sync_82575(struct e1000_hw *hw, u16 mask)
+{
+	u32 swfw_sync;
+	u32 swmask = mask;
+	u32 fwmask = mask << 16;
+	s32 ret_val = E1000_SUCCESS;
+	s32 i = 0, timeout = 200; /* FIXME: find real value to use here */
+
+	DEBUGFUNC("e1000_acquire_swfw_sync_82575");
+
+	while (i < timeout) {
+		if (e1000_get_hw_semaphore_generic(hw)) {
+			ret_val = -E1000_ERR_SWFW_SYNC;
+			goto out;
+		}
+
+		swfw_sync = E1000_READ_REG(hw, E1000_SW_FW_SYNC);
+		if (!(swfw_sync & (fwmask | swmask)))
+			break;
+
+		/*
+		 * Firmware currently using resource (fwmask)
+		 * or other software thread using resource (swmask)
+		 */
+		e1000_put_hw_semaphore_generic(hw);
+		msec_delay_irq(5);
+		i++;
+	}
+
+	if (i == timeout) {
+		DEBUGOUT("Driver can't access resource, SW_FW_SYNC timeout.\n");
+		ret_val = -E1000_ERR_SWFW_SYNC;
+		goto out;
+	}
+
+	swfw_sync |= swmask;
+	E1000_WRITE_REG(hw, E1000_SW_FW_SYNC, swfw_sync);
+
+	e1000_put_hw_semaphore_generic(hw);
+
+out:
+	return ret_val;
+}
+
+/**
+ *  e1000_release_swfw_sync_82575 - Release SW/FW semaphore
+ *  @hw: pointer to the HW structure
+ *  @mask: specifies which semaphore to acquire
+ *
+ *  Release the SW/FW semaphore used to access the PHY or NVM.  The mask
+ *  will also specify which port we're releasing the lock for.
+ **/
+static void e1000_release_swfw_sync_82575(struct e1000_hw *hw, u16 mask)
+{
+	u32 swfw_sync;
+
+	DEBUGFUNC("e1000_release_swfw_sync_82575");
+
+	while (e1000_get_hw_semaphore_generic(hw) != E1000_SUCCESS);
+	/* Empty */
+
+	swfw_sync = E1000_READ_REG(hw, E1000_SW_FW_SYNC);
+	swfw_sync &= ~mask;
+	E1000_WRITE_REG(hw, E1000_SW_FW_SYNC, swfw_sync);
+
+	e1000_put_hw_semaphore_generic(hw);
+}
+
+/**
+ *  e1000_get_cfg_done_82575 - Read config done bit
+ *  @hw: pointer to the HW structure
+ *
+ *  Read the management control register for the config done bit for
+ *  completion status.  NOTE: silicon which is EEPROM-less will fail trying
+ *  to read the config done bit, so an error is *ONLY* logged and returns
+ *  E1000_SUCCESS.  If we were to return with error, EEPROM-less silicon
+ *  would not be able to be reset or change link.
+ **/
+STATIC s32 e1000_get_cfg_done_82575(struct e1000_hw *hw)
+{
+	s32 timeout = PHY_CFG_TIMEOUT;
+	s32 ret_val = E1000_SUCCESS;
+	u32 mask = E1000_NVM_CFG_DONE_PORT_0;
+
+	DEBUGFUNC("e1000_get_cfg_done_82575");
+
+	if (hw->bus.func == 1)
+		mask = E1000_NVM_CFG_DONE_PORT_1;
+
+	while (timeout) {
+		if (E1000_READ_REG(hw, E1000_EEMNGCTL) & mask)
+			break;
+		msec_delay(1);
+		timeout--;
+	}
+	if (!timeout) {
+		DEBUGOUT("MNG configuration cycle has not completed.\n");
+	}
+
+	/* If EEPROM is not marked present, init the PHY manually */
+	if (((E1000_READ_REG(hw, E1000_EECD) & E1000_EECD_PRES) == 0) &&
+	    (hw->phy.type == e1000_phy_igp_3)) {
+		e1000_phy_init_script_igp3(hw);
+	}
+
+	return ret_val;
+}
+
+/**
+ *  e1000_get_link_up_info_82575 - Get link speed/duplex info
+ *  @hw: pointer to the HW structure
+ *  @speed: stores the current speed
+ *  @duplex: stores the current duplex
+ *
+ *  This is a wrapper function, if using the serial gigabit media independent
+ *  interface, use pcs to retreive the link speed and duplex information.
+ *  Otherwise, use the generic function to get the link speed and duplex info.
+ **/
+STATIC s32 e1000_get_link_up_info_82575(struct e1000_hw *hw, u16 *speed,
+                                        u16 *duplex)
+{
+	s32 ret_val;
+
+	DEBUGFUNC("e1000_get_link_up_info_82575");
+
+	if (hw->phy.media_type != e1000_media_type_copper ||
+	    e1000_sgmii_active_82575(hw)) {
+		ret_val = e1000_get_pcs_speed_and_duplex_82575(hw, speed,
+		                                               duplex);
+	} else {
+		ret_val = e1000_get_speed_and_duplex_copper_generic(hw, speed,
+		                                                    duplex);
+	}
+
+	return ret_val;
+}
+
+/**
+ *  e1000_check_for_link_82575 - Check for link
+ *  @hw: pointer to the HW structure
+ *
+ *  If sgmii is enabled, then use the pcs register to determine link, otherwise
+ *  use the generic interface for determining link.
+ **/
+STATIC s32 e1000_check_for_link_82575(struct e1000_hw *hw)
+{
+	s32 ret_val;
+	u16 speed, duplex;
+
+	DEBUGFUNC("e1000_check_for_link_82575");
+
+	/* SGMII link check is done through the PCS register. */
+	if ((hw->phy.media_type != e1000_media_type_copper) ||
+	    (e1000_sgmii_active_82575(hw)))
+		ret_val = e1000_get_pcs_speed_and_duplex_82575(hw, &speed,
+		                                               &duplex);
+	else
+		ret_val = e1000_check_for_copper_link_generic(hw);
+
+	return ret_val;
+}
+
+/**
+ *  e1000_get_pcs_speed_and_duplex_82575 - Retrieve current speed/duplex
+ *  @hw: pointer to the HW structure
+ *  @speed: stores the current speed
+ *  @duplex: stores the current duplex
+ *
+ *  Using the physical coding sub-layer (PCS), retreive the current speed and
+ *  duplex, then store the values in the pointers provided.
+ **/
+static s32 e1000_get_pcs_speed_and_duplex_82575(struct e1000_hw *hw, u16 *speed,
+                                                u16 *duplex)
+{
+	struct e1000_mac_info *mac = &hw->mac;
+	u32 pcs;
+
+	DEBUGFUNC("e1000_get_pcs_speed_and_duplex_82575");
+
+	/* Set up defaults for the return values of this function */
+	mac->serdes_has_link = FALSE;
+	*speed = 0;
+	*duplex = 0;
+
+	/*
+	 * Read the PCS Status register for link state. For non-copper mode,
+	 * the status register is not accurate. The PCS status register is
+	 * used instead.
+	 */
+	pcs = E1000_READ_REG(hw, E1000_PCS_LSTAT);
+
+	/*
+	 * The link up bit determines when link is up on autoneg. The sync ok
+	 * gets set once both sides sync up and agree upon link. Stable link
+	 * can be determined by checking for both link up and link sync ok
+	 */
+	if ((pcs & E1000_PCS_LSTS_LINK_OK) && (pcs & E1000_PCS_LSTS_SYNK_OK)) {
+		mac->serdes_has_link = TRUE;
+
+		/* Detect and store PCS speed */
+		if (pcs & E1000_PCS_LSTS_SPEED_1000) {
+			*speed = SPEED_1000;
+		} else if (pcs & E1000_PCS_LSTS_SPEED_100) {
+			*speed = SPEED_100;
+		} else {
+			*speed = SPEED_10;
+		}
+
+		/* Detect and store PCS duplex */
+		if (pcs & E1000_PCS_LSTS_DUPLEX_FULL) {
+			*duplex = FULL_DUPLEX;
+		} else {
+			*duplex = HALF_DUPLEX;
+		}
+	}
+
+	return E1000_SUCCESS;
+}
+
+/**
+ *  e1000_rar_set_82575 - Set receive address register
+ *  @hw: pointer to the HW structure
+ *  @addr: pointer to the receive address
+ *  @index: receive address array register
+ *
+ *  Sets the receive address array register at index to the address passed
+ *  in by addr.
+ **/
+void e1000_rar_set_82575(struct e1000_hw *hw, u8 *addr, u32 index)
+{
+	DEBUGFUNC("e1000_rar_set_82575");
+
+	if (index < E1000_RAR_ENTRIES_82575) {
+		e1000_rar_set_generic(hw, addr, index);
+	}
+
+	return;
+}
+
+/**
+ *  e1000_reset_hw_82575 - Reset hardware
+ *  @hw: pointer to the HW structure
+ *
+ *  This resets the hardware into a known state.  This is a
+ *  function pointer entry point called by the api module.
+ **/
+STATIC s32 e1000_reset_hw_82575(struct e1000_hw *hw)
+{
+	u32 ctrl, icr;
+	s32 ret_val;
+
+	DEBUGFUNC("e1000_reset_hw_82575");
+
+	/*
+	 * Prevent the PCI-E bus from sticking if there is no TLP connection
+	 * on the last TLP read/write transaction when MAC is reset.
+	 */
+	ret_val = e1000_disable_pcie_master_generic(hw);
+	if (ret_val) {
+		DEBUGOUT("PCI-E Master disable polling has failed.\n");
+	}
+
+	DEBUGOUT("Masking off all interrupts\n");
+	E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff);
+
+	E1000_WRITE_REG(hw, E1000_RCTL, 0);
+	E1000_WRITE_REG(hw, E1000_TCTL, E1000_TCTL_PSP);
+	E1000_WRITE_FLUSH(hw);
+
+	msec_delay(10);
+
+	ctrl = E1000_READ_REG(hw, E1000_CTRL);
+
+	DEBUGOUT("Issuing a global reset to MAC\n");
+	E1000_WRITE_REG(hw, E1000_CTRL, ctrl | E1000_CTRL_RST);
+
+	ret_val = e1000_get_auto_rd_done_generic(hw);
+	if (ret_val) {
+		/*
+		 * When auto config read does not complete, do not
+		 * return with an error. This can happen in situations
+		 * where there is no eeprom and prevents getting link.
+		 */
+		DEBUGOUT("Auto Read Done did not complete\n");
+	}
+
+	/* If EEPROM is not present, run manual init scripts */
+	if ((E1000_READ_REG(hw, E1000_EECD) & E1000_EECD_PRES) == 0)
+		e1000_reset_init_script_82575(hw);
+
+	/* Clear any pending interrupt events. */
+	E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff);
+	icr = E1000_READ_REG(hw, E1000_ICR);
+
+	e1000_check_alt_mac_addr_generic(hw);
+
+	return ret_val;
+}
+
+/**
+ *  e1000_init_hw_82575 - Initialize hardware
+ *  @hw: pointer to the HW structure
+ *
+ *  This inits the hardware readying it for operation.
+ **/
+STATIC s32 e1000_init_hw_82575(struct e1000_hw *hw)
+{
+	struct e1000_mac_info *mac = &hw->mac;
+	s32 ret_val;
+	u16 i, rar_count = mac->rar_entry_count;
+
+	DEBUGFUNC("e1000_init_hw_82575");
+
+	/* Initialize identification LED */
+	ret_val = e1000_id_led_init_generic(hw);
+	if (ret_val) {
+		DEBUGOUT("Error initializing identification LED\n");
+		/* This is not fatal and we should not stop init due to this */
+	}
+
+	/* Disabling VLAN filtering */
+	DEBUGOUT("Initializing the IEEE VLAN\n");
+	e1000_clear_vfta(hw);
+
+	/* Setup the receive address */
+	e1000_init_rx_addrs_generic(hw, rar_count);
+	/* Zero out the Multicast HASH table */
+	DEBUGOUT("Zeroing the MTA\n");
+	for (i = 0; i < mac->mta_reg_count; i++)
+		E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
+
+	/* Setup link and flow control */
+	ret_val = e1000_setup_link(hw);
+
+	/*
+	 * Clear all of the statistics registers (clear on read).  It is
+	 * important that we do this after we have tried to establish link
+	 * because the symbol error count will increment wildly if there
+	 * is no link.
+	 */
+	e1000_clear_hw_cntrs_82575(hw);
+
+	return ret_val;
+}
+
+/**
+ *  e1000_setup_copper_link_82575 - Configure copper link settings
+ *  @hw: pointer to the HW structure
+ *
+ *  Configures the link for auto-neg or forced speed and duplex.  Then we check
+ *  for link, once link is established calls to configure collision distance
+ *  and flow control are called.
+ **/
+STATIC s32 e1000_setup_copper_link_82575(struct e1000_hw *hw)
+{
+	u32 ctrl, led_ctrl;
+	s32  ret_val;
+	bool link;
+
+	DEBUGFUNC("e1000_setup_copper_link_82575");
+
+	ctrl = E1000_READ_REG(hw, E1000_CTRL);
+	ctrl |= E1000_CTRL_SLU;
+	ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
+	E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
+
+	switch (hw->phy.type) {
+	case e1000_phy_m88:
+		ret_val = e1000_copper_link_setup_m88(hw);
+		break;
+	case e1000_phy_igp_3:
+		ret_val = e1000_copper_link_setup_igp(hw);
+		/* Setup activity LED */
+		led_ctrl = E1000_READ_REG(hw, E1000_LEDCTL);
+		led_ctrl &= IGP_ACTIVITY_LED_MASK;
+		led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE);
+		E1000_WRITE_REG(hw, E1000_LEDCTL, led_ctrl);
+		break;
+	default:
+		ret_val = -E1000_ERR_PHY;
+		break;
+	}
+
+	if (ret_val)
+		goto out;
+
+	if (hw->mac.autoneg) {
+		/*
+		 * Setup autoneg and flow control advertisement
+		 * and perform autonegotiation.
+		 */
+		ret_val = e1000_copper_link_autoneg(hw);
+		if (ret_val)
+			goto out;
+	} else {
+		/*
+		 * PHY will be set to 10H, 10F, 100H or 100F
+		 * depending on user settings.
+		 */
+		DEBUGOUT("Forcing Speed and Duplex\n");
+		ret_val = e1000_phy_force_speed_duplex(hw);
+		if (ret_val) {
+			DEBUGOUT("Error Forcing Speed and Duplex\n");
+			goto out;
+		}
+	}
+
+	ret_val = e1000_configure_pcs_link_82575(hw);
+	if (ret_val)
+		goto out;
+
+	/*
+	 * Check link status. Wait up to 100 microseconds for link to become
+	 * valid.
+	 */
+	ret_val = e1000_phy_has_link_generic(hw,
+	                                     COPPER_LINK_UP_LIMIT,
+	                                     10,
+	                                     &link);
+	if (ret_val)
+		goto out;
+
+	if (link) {
+		DEBUGOUT("Valid link established!!!\n");
+		/* Config the MAC and PHY after link is up */
+		e1000_config_collision_dist_generic(hw);
+		ret_val = e1000_config_fc_after_link_up_generic(hw);
+	} else {
+		DEBUGOUT("Unable to establish link!!!\n");
+	}
+
+out:
+	return ret_val;
+}
+
+/**
+ *  e1000_setup_fiber_serdes_link_82575 - Setup link for fiber/serdes
+ *  @hw: pointer to the HW structure
+ *
+ *  Configures speed and duplex for fiber and serdes links.
+ **/
+STATIC s32 e1000_setup_fiber_serdes_link_82575(struct e1000_hw *hw)
+{
+	u32 reg;
+
+	DEBUGFUNC("e1000_setup_fiber_serdes_link_82575");
+
+	/*
+	 * On the 82575, SerDes loopback mode persists until it is
+	 * explicitly turned off or a power cycle is performed.  A read to
+	 * the register does not indicate its status.  Therefore, we ensure
+	 * loopback mode is disabled during initialization.
+	 */
+	E1000_WRITE_REG(hw, E1000_SCTL, E1000_SCTL_DISABLE_SERDES_LOOPBACK);
+
+	/* Force link up, set 1gb, set both sw defined pins */
+	reg = E1000_READ_REG(hw, E1000_CTRL);
+	reg |= E1000_CTRL_SLU |
+	       E1000_CTRL_SPD_1000 |
+	       E1000_CTRL_FRCSPD |
+	       E1000_CTRL_SWDPIN0 |
+	       E1000_CTRL_SWDPIN1;
+	E1000_WRITE_REG(hw, E1000_CTRL, reg);
+
+	/* Set switch control to serdes energy detect */
+	reg = E1000_READ_REG(hw, E1000_CONNSW);
+	reg |= E1000_CONNSW_ENRGSRC;
+	E1000_WRITE_REG(hw, E1000_CONNSW, reg);
+
+	/*
+	 * New SerDes mode allows for forcing speed or autonegotiating speed
+	 * at 1gb. Autoneg should be default set by most drivers. This is the
+	 * mode that will be compatible with older link partners and switches.
+	 * However, both are supported by the hardware and some drivers/tools.
+	 */
+	reg = E1000_READ_REG(hw, E1000_PCS_LCTL);
+
+	reg &= ~(E1000_PCS_LCTL_AN_ENABLE | E1000_PCS_LCTL_FLV_LINK_UP |
+		E1000_PCS_LCTL_FSD | E1000_PCS_LCTL_FORCE_LINK);
+
+	if (hw->mac.autoneg) {
+		/* Set PCS register for autoneg */
+		reg |= E1000_PCS_LCTL_FSV_1000 |      /* Force 1000    */
+		       E1000_PCS_LCTL_FDV_FULL |      /* SerDes Full duplex */
+		       E1000_PCS_LCTL_AN_ENABLE |     /* Enable Autoneg */
+		       E1000_PCS_LCTL_AN_RESTART;     /* Restart autoneg */
+		DEBUGOUT1("Configuring Autoneg; PCS_LCTL = 0x%08X\n", reg);
+	} else {
+		/* Set PCS register for forced speed */
+		reg |= E1000_PCS_LCTL_FLV_LINK_UP |   /* Force link up */
+		       E1000_PCS_LCTL_FSV_1000 |      /* Force 1000    */
+		       E1000_PCS_LCTL_FDV_FULL |      /* SerDes Full duplex */
+		       E1000_PCS_LCTL_FSD |           /* Force Speed */
+		       E1000_PCS_LCTL_FORCE_LINK;     /* Force Link */
+		DEBUGOUT1("Configuring Forced Link; PCS_LCTL = 0x%08X\n", reg);
+	}
+	E1000_WRITE_REG(hw, E1000_PCS_LCTL, reg);
+
+	return E1000_SUCCESS;
+}
+
+/**
+ *  e1000_configure_pcs_link_82575 - Configure PCS link
+ *  @hw: pointer to the HW structure
+ *
+ *  Configure the physical coding sub-layer (PCS) link.  The PCS link is
+ *  only used on copper connections where the serialized gigabit media
+ *  independent interface (sgmii) is being used.  Configures the link
+ *  for auto-negotiation or forces speed/duplex.
+ **/
+static s32 e1000_configure_pcs_link_82575(struct e1000_hw *hw)
+{
+	struct e1000_mac_info *mac = &hw->mac;
+	u32 reg = 0;
+
+	DEBUGFUNC("e1000_configure_pcs_link_82575");
+
+	if (hw->phy.media_type != e1000_media_type_copper ||
+	    !(e1000_sgmii_active_82575(hw)))
+		goto out;
+
+	/* For SGMII, we need to issue a PCS autoneg restart */
+	reg = E1000_READ_REG(hw, E1000_PCS_LCTL);
+
+	/* AN time out should be disabled for SGMII mode */
+	reg &= ~(E1000_PCS_LCTL_AN_TIMEOUT);
+
+	if (mac->autoneg) {
+		/* Make sure forced speed and force link are not set */
+		reg &= ~(E1000_PCS_LCTL_FSD | E1000_PCS_LCTL_FORCE_LINK);
+
+		/*
+		 * The PHY should be setup prior to calling this function.
+		 * All we need to do is restart autoneg and enable autoneg.
+		 */
+		reg |= E1000_PCS_LCTL_AN_RESTART | E1000_PCS_LCTL_AN_ENABLE;
+	} else {
+		/* Set PCS regiseter for forced speed */
+
+		/* Turn off bits for full duplex, speed, and autoneg */
+		reg &= ~(E1000_PCS_LCTL_FSV_1000 |
+		         E1000_PCS_LCTL_FSV_100 |
+		         E1000_PCS_LCTL_FDV_FULL |
+		         E1000_PCS_LCTL_AN_ENABLE);
+
+		/* Check for duplex first */
+		if (mac->forced_speed_duplex & E1000_ALL_FULL_DUPLEX)
+			reg |= E1000_PCS_LCTL_FDV_FULL;
+
+		/* Now set speed */
+		if (mac->forced_speed_duplex & E1000_ALL_100_SPEED)
+			reg |= E1000_PCS_LCTL_FSV_100;
+
+		/* Force speed and force link */
+		reg |= E1000_PCS_LCTL_FSD |
+		       E1000_PCS_LCTL_FORCE_LINK |
+		       E1000_PCS_LCTL_FLV_LINK_UP;
+
+		DEBUGOUT1("Wrote 0x%08X to PCS_LCTL to configure forced link\n",
+		          reg);
+	}
+	E1000_WRITE_REG(hw, E1000_PCS_LCTL, reg);
+
+out:
+	return E1000_SUCCESS;
+}
+
+/**
+ *  e1000_sgmii_active_82575 - Return sgmii state
+ *  @hw: pointer to the HW structure
+ *
+ *  82575 silicon has a serialized gigabit media independent interface (sgmii)
+ *  which can be enabled for use in the embedded applications.  Simply
+ *  return the current state of the sgmii interface.
+ **/
+static bool e1000_sgmii_active_82575(struct e1000_hw *hw)
+{
+	struct e1000_dev_spec_82575 *dev_spec;
+	bool ret_val;
+
+	DEBUGFUNC("e1000_sgmii_active_82575");
+
+	if (hw->mac.type != e1000_82575) {
+		ret_val = FALSE;
+		goto out;
+	}
+
+	dev_spec = (struct e1000_dev_spec_82575 *)hw->dev_spec;
+
+	ret_val = dev_spec->sgmii_active;
+
+out:
+	return ret_val;
+}
+
+/**
+ *  e1000_reset_init_script_82575 - Inits HW defaults after reset
+ *  @hw: pointer to the HW structure
+ *
+ *  Inits recommended HW defaults after a reset when there is no EEPROM
+ *  detected. This is only for the 82575.
+ **/
+STATIC s32 e1000_reset_init_script_82575(struct e1000_hw* hw)
+{
+	DEBUGFUNC("e1000_reset_init_script_82575");
+
+	if (hw->mac.type == e1000_82575) {
+		DEBUGOUT("Running reset init script for 82575\n");
+		/* SerDes configuration via SERDESCTRL */
+		e1000_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x00, 0x0C);
+		e1000_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x01, 0x78);
+		e1000_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x1B, 0x23);
+		e1000_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x23, 0x15);
+
+		/* CCM configuration via CCMCTL register */
+		e1000_write_8bit_ctrl_reg(hw, E1000_CCMCTL, 0x14, 0x00);
+		e1000_write_8bit_ctrl_reg(hw, E1000_CCMCTL, 0x10, 0x00);
+
+		/* PCIe lanes configuration */
+		e1000_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x00, 0xEC);
+		e1000_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x61, 0xDF);
+		e1000_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x34, 0x05);
+		e1000_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x2F, 0x81);
+
+		/* PCIe PLL Configuration */
+		e1000_write_8bit_ctrl_reg(hw, E1000_SCCTL, 0x02, 0x47);
+		e1000_write_8bit_ctrl_reg(hw, E1000_SCCTL, 0x14, 0x00);
+		e1000_write_8bit_ctrl_reg(hw, E1000_SCCTL, 0x10, 0x00);
+	}
+
+	return E1000_SUCCESS;
+}
+
+/**
+ *  e1000_read_mac_addr_82575 - Read device MAC address
+ *  @hw: pointer to the HW structure
+ **/
+STATIC s32 e1000_read_mac_addr_82575(struct e1000_hw *hw)
+{
+	s32 ret_val = E1000_SUCCESS;
+
+	DEBUGFUNC("e1000_read_mac_addr_82575");
+	if (e1000_check_alt_mac_addr_generic(hw))
+		ret_val = e1000_read_mac_addr_generic(hw);
+
+	return ret_val;
+}
+
+/**
+ * e1000_power_down_phy_copper_82575 - Remove link during PHY power down
+ * @hw: pointer to the HW structure
+ *
+ * In the case of a PHY power down to save power, or to turn off link during a
+ * driver unload, or wake on lan is not enabled, remove the link.
+ **/
+STATIC void e1000_power_down_phy_copper_82575(struct e1000_hw *hw)
+{
+	/* If the management interface is not enabled, then power down */
+	if (!(e1000_check_mng_mode(hw) || e1000_check_reset_block(hw)))
+		e1000_power_down_phy_copper(hw);
+
+	return;
+}
+
+/**
+ *  e1000_clear_hw_cntrs_82575 - Clear device specific hardware counters
+ *  @hw: pointer to the HW structure
+ *
+ *  Clears the hardware counters by reading the counter registers.
+ **/
+STATIC void e1000_clear_hw_cntrs_82575(struct e1000_hw *hw)
+{
+	volatile u32 temp;
+
+	DEBUGFUNC("e1000_clear_hw_cntrs_82575");
+
+	e1000_clear_hw_cntrs_base_generic(hw);
+
+	temp = E1000_READ_REG(hw, E1000_PRC64);
+	temp = E1000_READ_REG(hw, E1000_PRC127);
+	temp = E1000_READ_REG(hw, E1000_PRC255);
+	temp = E1000_READ_REG(hw, E1000_PRC511);
+	temp = E1000_READ_REG(hw, E1000_PRC1023);
+	temp = E1000_READ_REG(hw, E1000_PRC1522);
+	temp = E1000_READ_REG(hw, E1000_PTC64);
+	temp = E1000_READ_REG(hw, E1000_PTC127);
+	temp = E1000_READ_REG(hw, E1000_PTC255);
+	temp = E1000_READ_REG(hw, E1000_PTC511);
+	temp = E1000_READ_REG(hw, E1000_PTC1023);
+	temp = E1000_READ_REG(hw, E1000_PTC1522);
+
+	temp = E1000_READ_REG(hw, E1000_ALGNERRC);
+	temp = E1000_READ_REG(hw, E1000_RXERRC);
+	temp = E1000_READ_REG(hw, E1000_TNCRS);
+	temp = E1000_READ_REG(hw, E1000_CEXTERR);
+	temp = E1000_READ_REG(hw, E1000_TSCTC);
+	temp = E1000_READ_REG(hw, E1000_TSCTFC);
+
+	temp = E1000_READ_REG(hw, E1000_MGTPRC);
+	temp = E1000_READ_REG(hw, E1000_MGTPDC);
+	temp = E1000_READ_REG(hw, E1000_MGTPTC);
+
+	temp = E1000_READ_REG(hw, E1000_IAC);
+	temp = E1000_READ_REG(hw, E1000_ICRXOC);
+
+	temp = E1000_READ_REG(hw, E1000_ICRXPTC);
+	temp = E1000_READ_REG(hw, E1000_ICRXATC);
+	temp = E1000_READ_REG(hw, E1000_ICTXPTC);
+	temp = E1000_READ_REG(hw, E1000_ICTXATC);
+	temp = E1000_READ_REG(hw, E1000_ICTXQEC);
+	temp = E1000_READ_REG(hw, E1000_ICTXQMTC);
+	temp = E1000_READ_REG(hw, E1000_ICRXDMTC);
+
+	temp = E1000_READ_REG(hw, E1000_CBTMPC);
+	temp = E1000_READ_REG(hw, E1000_HTDPMC);
+	temp = E1000_READ_REG(hw, E1000_CBRMPC);
+	temp = E1000_READ_REG(hw, E1000_RPTHC);
+	temp = E1000_READ_REG(hw, E1000_HGPTC);
+	temp = E1000_READ_REG(hw, E1000_HTCBDPC);
+	temp = E1000_READ_REG(hw, E1000_HGORCL);
+	temp = E1000_READ_REG(hw, E1000_HGORCH);
+	temp = E1000_READ_REG(hw, E1000_HGOTCL);
+	temp = E1000_READ_REG(hw, E1000_HGOTCH);
+	temp = E1000_READ_REG(hw, E1000_LENERRS);
+
+	/* This register should not be read in copper configurations */
+	if (hw->phy.media_type == e1000_media_type_internal_serdes)
+		temp = E1000_READ_REG(hw, E1000_SCVPC);
+}
--- /dev/null
+++ sys/dev/em/e1000_82541.c
@@ -0,0 +1,1337 @@
+/*******************************************************************************
+
+  Copyright (c) 2001-2007, Intel Corporation 
+  All rights reserved.
+  
+  Redistribution and use in source and binary forms, with or without 
+  modification, are permitted provided that the following conditions are met:
+  
+   1. Redistributions of source code must retain the above copyright notice, 
+      this list of conditions and the following disclaimer.
+  
+   2. Redistributions in binary form must reproduce the above copyright 
+      notice, this list of conditions and the following disclaimer in the 
+      documentation and/or other materials provided with the distribution.
+  
+   3. Neither the name of the Intel Corporation nor the names of its 
+      contributors may be used to endorse or promote products derived from 
+      this software without specific prior written permission.
+  
+  THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
+  AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 
+  IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 
+  ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE 
+  LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 
+  CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 
+  SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 
+  INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 
+  CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 
+  ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
+  POSSIBILITY OF SUCH DAMAGE.
+
+*******************************************************************************/
+/* $FreeBSD: src/sys/dev/em/e1000_82541.c,v 1.3.4.1 2007/11/28 23:24:37 jfv Exp $ */
+
+
+/* e1000_82541
+ * e1000_82547
+ * e1000_82541_rev_2
+ * e1000_82547_rev_2
+ */
+
+#include "e1000_api.h"
+#include "e1000_82541.h"
+
+void e1000_init_function_pointers_82541(struct e1000_hw *hw);
+
+STATIC s32  e1000_init_phy_params_82541(struct e1000_hw *hw);
+STATIC s32  e1000_init_nvm_params_82541(struct e1000_hw *hw);
+STATIC s32  e1000_init_mac_params_82541(struct e1000_hw *hw);
+STATIC s32  e1000_reset_hw_82541(struct e1000_hw *hw);
+STATIC s32  e1000_init_hw_82541(struct e1000_hw *hw);
+STATIC s32  e1000_get_link_up_info_82541(struct e1000_hw *hw, u16 *speed,
+                                         u16 *duplex);
+STATIC s32  e1000_phy_hw_reset_82541(struct e1000_hw *hw);
+STATIC s32  e1000_setup_copper_link_82541(struct e1000_hw *hw);
+STATIC s32  e1000_check_for_link_82541(struct e1000_hw *hw);
+STATIC s32  e1000_get_cable_length_igp_82541(struct e1000_hw *hw);
+STATIC s32  e1000_set_d3_lplu_state_82541(struct e1000_hw *hw,
+                                          bool active);
+STATIC s32  e1000_setup_led_82541(struct e1000_hw *hw);
+STATIC s32  e1000_cleanup_led_82541(struct e1000_hw *hw);
+STATIC void e1000_clear_hw_cntrs_82541(struct e1000_hw *hw);
+static s32  e1000_config_dsp_after_link_change_82541(struct e1000_hw *hw,
+                                                     bool link_up);
+static s32  e1000_phy_init_script_82541(struct e1000_hw *hw);
+STATIC void e1000_power_down_phy_copper_82541(struct e1000_hw *hw);
+
+static const u16 e1000_igp_cable_length_table[] =
+    { 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
+      5, 10, 10, 10, 10, 10, 10, 10, 20, 20, 20, 20, 20, 25, 25, 25,
+      25, 25, 25, 25, 30, 30, 30, 30, 40, 40, 40, 40, 40, 40, 40, 40,
+      40, 50, 50, 50, 50, 50, 50, 50, 60, 60, 60, 60, 60, 60, 60, 60,
+      60, 70, 70, 70, 70, 70, 70, 80, 80, 80, 80, 80, 80, 90, 90, 90,
+      90, 90, 90, 90, 90, 90, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100,
+      100, 100, 100, 100, 110, 110, 110, 110, 110, 110, 110, 110, 110, 110, 110, 110,
+      110, 110, 110, 110, 110, 110, 120, 120, 120, 120, 120, 120, 120, 120, 120, 120};
+#define IGP01E1000_AGC_LENGTH_TABLE_SIZE \
+                (sizeof(e1000_igp_cable_length_table) / \
+                 sizeof(e1000_igp_cable_length_table[0]))
+
+struct e1000_dev_spec_82541 {
+	e1000_dsp_config dsp_config;
+	e1000_ffe_config ffe_config;
+	u16 spd_default;
+	bool phy_init_script;
+};
+
+/**
+ *  e1000_init_phy_params_82541 - Init PHY func ptrs.
+ *  @hw: pointer to the HW structure
+ *
+ *  This is a function pointer entry point called by the api module.
+ **/
+STATIC s32 e1000_init_phy_params_82541(struct e1000_hw *hw)
+{
+	struct e1000_phy_info *phy = &hw->phy;
+	struct e1000_functions *func = &hw->func;
+	s32 ret_val = E1000_SUCCESS;
+
+	DEBUGFUNC("e1000_init_phy_params_82541");
+
+	phy->addr                       = 1;
+	phy->autoneg_mask               = AUTONEG_ADVERTISE_SPEED_DEFAULT;
+	phy->reset_delay_us             = 10000;
+	phy->type                       = e1000_phy_igp;
+
+	/* Function Pointers */
+	func->check_polarity            = e1000_check_polarity_igp;
+	func->force_speed_duplex        = e1000_phy_force_speed_duplex_igp;
+	func->get_cable_length          = e1000_get_cable_length_igp_82541;
+	func->get_cfg_done              = e1000_get_cfg_done_generic;
+	func->get_phy_info              = e1000_get_phy_info_igp;
+	func->read_phy_reg              = e1000_read_phy_reg_igp;
+	func->reset_phy                 = e1000_phy_hw_reset_82541;
+	func->set_d3_lplu_state         = e1000_set_d3_lplu_state_82541;
+	func->write_phy_reg             = e1000_write_phy_reg_igp;
+	func->power_up_phy              = e1000_power_up_phy_copper;
+	func->power_down_phy            = e1000_power_down_phy_copper_82541;
+
+	ret_val = e1000_get_phy_id(hw);
+	if (ret_val)
+		goto out;
+
+	/* Verify phy id */
+	if (phy->id != IGP01E1000_I_PHY_ID) {
+		ret_val = -E1000_ERR_PHY;
+		goto out;
+	}
+
+out:
+	return ret_val;
+}
+
+/**
+ *  e1000_init_nvm_params_82541 - Init NVM func ptrs.
+ *  @hw: pointer to the HW structure
+ *
+ *  This is a function pointer entry point called by the api module.
+ **/
+STATIC s32 e1000_init_nvm_params_82541(struct e1000_hw *hw)
+{
+	struct   e1000_nvm_info *nvm = &hw->nvm;
+	struct e1000_functions *func = &hw->func;
+	s32  ret_val = E1000_SUCCESS;
+	u32 eecd = E1000_READ_REG(hw, E1000_EECD);
+	u16 size;
+
+	DEBUGFUNC("e1000_init_nvm_params_82541");
+
+	switch (nvm->override) {
+	case e1000_nvm_override_spi_large:
+		nvm->type = e1000_nvm_eeprom_spi;
+		eecd |= E1000_EECD_ADDR_BITS;
+		break;
+	case e1000_nvm_override_spi_small:
+		nvm->type = e1000_nvm_eeprom_spi;
+		eecd &= ~E1000_EECD_ADDR_BITS;
+		break;
+	case e1000_nvm_override_microwire_large:
+		nvm->type = e1000_nvm_eeprom_microwire;
+		eecd |= E1000_EECD_SIZE;
+		break;
+	case e1000_nvm_override_microwire_small:
+		nvm->type = e1000_nvm_eeprom_microwire;
+		eecd &= ~E1000_EECD_SIZE;
+		break;
+	default:
+		nvm->type = eecd & E1000_EECD_TYPE
+		            ? e1000_nvm_eeprom_spi
+		            : e1000_nvm_eeprom_microwire;
+		break;
+	}
+
+	if (nvm->type == e1000_nvm_eeprom_spi) {
+		nvm->address_bits       = (eecd & E1000_EECD_ADDR_BITS)
+		                          ? 16 : 8;
+		nvm->delay_usec         = 1;
+		nvm->opcode_bits        = 8;
+		nvm->page_size          = (eecd & E1000_EECD_ADDR_BITS)
+		                          ? 32 : 8;
+
+		/* Function Pointers */
+		func->acquire_nvm       = e1000_acquire_nvm_generic;
+		func->read_nvm          = e1000_read_nvm_spi;
+		func->release_nvm       = e1000_release_nvm_generic;
+		func->update_nvm        = e1000_update_nvm_checksum_generic;
+		func->valid_led_default = e1000_valid_led_default_generic;
+		func->validate_nvm      = e1000_validate_nvm_checksum_generic;
+		func->write_nvm         = e1000_write_nvm_spi;
+
+		/*
+		 * nvm->word_size must be discovered after the pointers
+		 * are set so we can verify the size from the nvm image
+		 * itself.  Temporarily set it to a dummy value so the
+		 * read will work.
+		 */
+		nvm->word_size = 64;
+		ret_val = e1000_read_nvm(hw, NVM_CFG, 1, &size);
+		if (ret_val)
+			goto out;
+		size = (size & NVM_SIZE_MASK) >> NVM_SIZE_SHIFT;
+		/*
+		 * if size != 0, it can be added to a constant and become
+		 * the left-shift value to set the word_size.  Otherwise,
+		 * word_size stays at 64.
+		 */
+		if (size) {
+			size += NVM_WORD_SIZE_BASE_SHIFT_82541;
+			nvm->word_size = 1 << size;
+		}
+	} else {
+		nvm->address_bits       = (eecd & E1000_EECD_ADDR_BITS)
+		                          ? 8 : 6;
+		nvm->delay_usec         = 50;
+		nvm->opcode_bits        = 3;
+		nvm->word_size          = (eecd & E1000_EECD_ADDR_BITS)
+		                          ? 256 : 64;
+
+		/* Function Pointers */
+		func->acquire_nvm       = e1000_acquire_nvm_generic;
+		func->read_nvm          = e1000_read_nvm_microwire;
+		func->release_nvm       = e1000_release_nvm_generic;
+		func->update_nvm        = e1000_update_nvm_checksum_generic;
+		func->valid_led_default = e1000_valid_led_default_generic;
+		func->validate_nvm      = e1000_validate_nvm_checksum_generic;
+		func->write_nvm         = e1000_write_nvm_microwire;
+	}
+
+out:
+	return ret_val;
+}
+
+/**
+ *  e1000_init_mac_params_82541 - Init MAC func ptrs.
+ *  @hw: pointer to the HW structure
+ *
+ *  This is a function pointer entry point called by the api module.
+ **/
+STATIC s32 e1000_init_mac_params_82541(struct e1000_hw *hw)
+{
+	struct e1000_mac_info *mac = &hw->mac;
+	struct e1000_functions *func = &hw->func;
+	s32 ret_val;
+
+	DEBUGFUNC("e1000_init_mac_params_82541");
+
+	/* Set media type */
+	hw->phy.media_type = e1000_media_type_copper;
+	/* Set mta register count */
+	mac->mta_reg_count = 128;
+	/* Set rar entry count */
+	mac->rar_entry_count = E1000_RAR_ENTRIES;
+	/* Set if part includes ASF firmware */
+	mac->asf_firmware_present = TRUE;
+
+	/* Function Pointers */
+
+	/* bus type/speed/width */
+	func->get_bus_info = e1000_get_bus_info_pci_generic;
+	/* reset */
+	func->reset_hw = e1000_reset_hw_82541;
+	/* hw initialization */
+	func->init_hw = e1000_init_hw_82541;
+	/* link setup */
+	func->setup_link = e1000_setup_link_generic;
+	/* physical interface link setup */
+	func->setup_physical_interface = e1000_setup_copper_link_82541;
+	/* check for link */
+	func->check_for_link = e1000_check_for_link_82541;
+	/* link info */
+	func->get_link_up_info = e1000_get_link_up_info_82541;
+	/* multicast address update */
+	func->update_mc_addr_list = e1000_update_mc_addr_list_generic;
+	/* writing VFTA */
+	func->write_vfta = e1000_write_vfta_generic;
+	/* clearing VFTA */
+	func->clear_vfta = e1000_clear_vfta_generic;
+	/* setting MTA */
+	func->mta_set = e1000_mta_set_generic;
+	/* setup LED */
+	func->setup_led = e1000_setup_led_82541;
+	/* cleanup LED */
+	func->cleanup_led = e1000_cleanup_led_82541;
+	/* turn on/off LED */
+	func->led_on = e1000_led_on_generic;
+	func->led_off = e1000_led_off_generic;
+	/* remove device */
+	func->remove_device = e1000_remove_device_generic;
+	/* clear hardware counters */
+	func->clear_hw_cntrs = e1000_clear_hw_cntrs_82541;
+
+	hw->dev_spec_size = sizeof(struct e1000_dev_spec_82541);
+
+	/* Device-specific structure allocation */
+	ret_val = e1000_alloc_zeroed_dev_spec_struct(hw, hw->dev_spec_size);
+
+	return ret_val;
+}
+
+/**
+ *  e1000_init_function_pointers_82541 - Init func ptrs.
+ *  @hw: pointer to the HW structure
+ *
+ *  The only function explicitly called by the api module to initialize
+ *  all function pointers and parameters.
+ **/
+void e1000_init_function_pointers_82541(struct e1000_hw *hw)
+{
+	DEBUGFUNC("e1000_init_function_pointers_82541");
+
+	hw->func.init_mac_params = e1000_init_mac_params_82541;
+	hw->func.init_nvm_params = e1000_init_nvm_params_82541;
+	hw->func.init_phy_params = e1000_init_phy_params_82541;
+}
+
+/**
+ *  e1000_reset_hw_82541 - Reset hardware
+ *  @hw: pointer to the HW structure
+ *
+ *  This resets the hardware into a known state.  This is a
+ *  function pointer entry point called by the api module.
+ **/
+STATIC s32 e1000_reset_hw_82541(struct e1000_hw *hw)
+{
+	u32 ledctl, ctrl, icr, manc;
+
+	DEBUGFUNC("e1000_reset_hw_82541");
+
+	DEBUGOUT("Masking off all interrupts\n");
+	E1000_WRITE_REG(hw, E1000_IMC, 0xFFFFFFFF);
+
+	E1000_WRITE_REG(hw, E1000_RCTL, 0);
+	E1000_WRITE_REG(hw, E1000_TCTL, E1000_TCTL_PSP);
+	E1000_WRITE_FLUSH(hw);
+
+	/*
+	 * Delay to allow any outstanding PCI transactions to complete
+	 * before resetting the device.
+	 */
+	msec_delay(10);
+
+	ctrl = E1000_READ_REG(hw, E1000_CTRL);
+
+	/* Must reset the Phy before resetting the MAC */
+	if ((hw->mac.type == e1000_82541) || (hw->mac.type == e1000_82547)) {
+		E1000_WRITE_REG(hw, E1000_CTRL, (ctrl | E1000_CTRL_PHY_RST));
+		msec_delay(5);
+	}
+
+	DEBUGOUT("Issuing a global reset to 82541/82547 MAC\n");
+	switch (hw->mac.type) {
+	case e1000_82541:
+	case e1000_82541_rev_2:
+		/*
+		 * These controllers can't ack the 64-bit write when
+		 * issuing the reset, so we use IO-mapping as a
+		 * workaround to issue the reset.
+		 */
+		E1000_WRITE_REG_IO(hw, E1000_CTRL, ctrl | E1000_CTRL_RST);
+		break;
+	default:
+		E1000_WRITE_REG(hw, E1000_CTRL, ctrl | E1000_CTRL_RST);
+		break;
+	}
+
+	/* Wait for NVM reload */
+	msec_delay(20);
+
+	/* Disable HW ARPs on ASF enabled adapters */
+	manc = E1000_READ_REG(hw, E1000_MANC);
+	manc &= ~E1000_MANC_ARP_EN;
+	E1000_WRITE_REG(hw, E1000_MANC, manc);
+
+	if ((hw->mac.type == e1000_82541) || (hw->mac.type == e1000_82547)) {
+		e1000_phy_init_script_82541(hw);
+
+		/* Configure activity LED after Phy reset */
+		ledctl = E1000_READ_REG(hw, E1000_LEDCTL);
+		ledctl &= IGP_ACTIVITY_LED_MASK;
+		ledctl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE);
+		E1000_WRITE_REG(hw, E1000_LEDCTL, ledctl);
+	}
+
+	/* Once again, mask the interrupts */
+	DEBUGOUT("Masking off all interrupts\n");
+	E1000_WRITE_REG(hw, E1000_IMC, 0xFFFFFFFF);
+
+	/* Clear any pending interrupt events. */
+	icr = E1000_READ_REG(hw, E1000_ICR);
+
+	return E1000_SUCCESS;
+}
+
+/**
+ *  e1000_init_hw_82541 - Initialize hardware
+ *  @hw: pointer to the HW structure
+ *
+ *  This inits the hardware readying it for operation.  This is a
+ *  function pointer entry point called by the api module.
+ **/
+STATIC s32 e1000_init_hw_82541(struct e1000_hw *hw)
+{
+	struct e1000_mac_info *mac = &hw->mac;
+	u32 i, txdctl;
+	s32 ret_val;
+
+	DEBUGFUNC("e1000_init_hw_82541");
+
+	/* Initialize identification LED */
+	ret_val = e1000_id_led_init_generic(hw);
+	if (ret_val) {
+		DEBUGOUT("Error initializing identification LED\n");
+		/* This is not fatal and we should not stop init due to this */
+	}
+
+	/* Disabling VLAN filtering */
+	DEBUGOUT("Initializing the IEEE VLAN\n");
+	e1000_clear_vfta(hw);
+
+	/* Setup the receive address. */
+	e1000_init_rx_addrs_generic(hw, mac->rar_entry_count);
+
+	/* Zero out the Multicast HASH table */
+	DEBUGOUT("Zeroing the MTA\n");
+	for (i = 0; i < mac->mta_reg_count; i++) {
+		E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
+		/*
+		 * Avoid back to back register writes by adding the register
+		 * read (flush).  This is to protect against some strange
+		 * bridge configurations that may issue Memory Write Block
+		 * (MWB) to our register space.
+		 */
+		E1000_WRITE_FLUSH(hw);
+	}
+
+	/* Setup link and flow control */
+	ret_val = e1000_setup_link(hw);
+
+	txdctl = E1000_READ_REG(hw, E1000_TXDCTL(0));
+	txdctl = (txdctl & ~E1000_TXDCTL_WTHRESH) |
+	         E1000_TXDCTL_FULL_TX_DESC_WB;
+	E1000_WRITE_REG(hw, E1000_TXDCTL(0), txdctl);
+
+	/*
+	 * Clear all of the statistics registers (clear on read).  It is
+	 * important that we do this after we have tried to establish link
+	 * because the symbol error count will increment wildly if there
+	 * is no link.
+	 */
+	e1000_clear_hw_cntrs_82541(hw);
+
+	return ret_val;
+}
+
+/**
+ * e1000_get_link_up_info_82541 - Report speed and duplex
+ * @hw: pointer to the HW structure
+ * @speed: pointer to speed buffer
+ * @duplex: pointer to duplex buffer
+ *
+ * Retrieve the current speed and duplex configuration.
+ * This is a function pointer entry point called by the api module.
+ **/
+STATIC s32 e1000_get_link_up_info_82541(struct e1000_hw *hw, u16 *speed,
+                                        u16 *duplex)
+{
+	struct e1000_phy_info *phy = &hw->phy;
+	s32 ret_val;
+	u16 data;
+
+	DEBUGFUNC("e1000_get_link_up_info_82541");
+
+	ret_val = e1000_get_speed_and_duplex_copper_generic(hw, speed, duplex);
+	if (ret_val)
+		goto out;
+
+	if (!phy->speed_downgraded)
+		goto out;
+
+	/*
+	 * IGP01 PHY may advertise full duplex operation after speed
+	 * downgrade even if it is operating at half duplex.
+	 * Here we set the duplex settings to match the duplex in the
+	 * link partner's capabilities.
+	 */
+	ret_val = e1000_read_phy_reg(hw, PHY_AUTONEG_EXP, &data);
+	if (ret_val)
+		goto out;
+
+	if (!(data & NWAY_ER_LP_NWAY_CAPS)) {
+		*duplex = HALF_DUPLEX;
+	} else {
+		ret_val = e1000_read_phy_reg(hw, PHY_LP_ABILITY, &data);
+		if (ret_val)
+			goto out;
+
+		if (*speed == SPEED_100) {
+			if (!(data & NWAY_LPAR_100TX_FD_CAPS))
+				*duplex = HALF_DUPLEX;
+		} else if (*speed == SPEED_10) {
+			if (!(data & NWAY_LPAR_10T_FD_CAPS))
+				*duplex = HALF_DUPLEX;
+		}
+	}
+
+out:
+	return ret_val;
+}
+
+/**
+ *  e1000_phy_hw_reset_82541 - PHY hardware reset
+ *  @hw: pointer to the HW structure
+ *
+ *  Verify the reset block is not blocking us from resetting.  Acquire
+ *  semaphore (if necessary) and read/set/write the device control reset
+ *  bit in the PHY.  Wait the appropriate delay time for the device to
+ *  reset and relase the semaphore (if necessary).
+ *  This is a function pointer entry point called by the api module.
+ **/
+STATIC s32 e1000_phy_hw_reset_82541(struct e1000_hw *hw)
+{
+	s32 ret_val;
+	u32 ledctl;
+
+	DEBUGFUNC("e1000_phy_hw_reset_82541");
+
+	ret_val = e1000_phy_hw_reset_generic(hw);
+	if (ret_val)
+		goto out;
+
+	e1000_phy_init_script_82541(hw);
+
+	if ((hw->mac.type == e1000_82541) || (hw->mac.type == e1000_82547)) {
+		/* Configure activity LED after PHY reset */
+		ledctl = E1000_READ_REG(hw, E1000_LEDCTL);
+		ledctl &= IGP_ACTIVITY_LED_MASK;
+		ledctl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE);
+		E1000_WRITE_REG(hw, E1000_LEDCTL, ledctl);
+	}
+
+out:
+	return ret_val;
+}
+
+/**
+ *  e1000_setup_copper_link_82541 - Configure copper link settings
+ *  @hw: pointer to the HW structure
+ *
+ *  Calls the appropriate function to configure the link for auto-neg or forced
+ *  speed and duplex.  Then we check for link, once link is established calls
+ *  to configure collision distance and flow control are called.  If link is
+ *  not established, we return -E1000_ERR_PHY (-2).  This is a function
+ *  pointer entry point called by the api module.
+ **/
+STATIC s32 e1000_setup_copper_link_82541(struct e1000_hw *hw)
+{
+	struct e1000_phy_info *phy = &hw->phy;
+	struct e1000_dev_spec_82541 *dev_spec;
+	s32  ret_val;
+	u32 ctrl, ledctl;
+
+	DEBUGFUNC("e1000_setup_copper_link_82541");
+
+	ctrl = E1000_READ_REG(hw, E1000_CTRL);
+	ctrl |= E1000_CTRL_SLU;
+	ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
+	E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
+
+	hw->phy.reset_disable = FALSE;
+
+	dev_spec = (struct e1000_dev_spec_82541 *)hw->dev_spec;
+
+	/* Earlier revs of the IGP phy require us to force MDI. */
+	if (hw->mac.type == e1000_82541 || hw->mac.type == e1000_82547) {
+		dev_spec->dsp_config = e1000_dsp_config_disabled;
+		phy->mdix = 1;
+	} else {
+		dev_spec->dsp_config = e1000_dsp_config_enabled;
+	}
+
+	ret_val = e1000_copper_link_setup_igp(hw);
+	if (ret_val)
+		goto out;
+
+	if (hw->mac.autoneg) {
+		if (dev_spec->ffe_config == e1000_ffe_config_active)
+			dev_spec->ffe_config = e1000_ffe_config_enabled;
+	}
+
+	/* Configure activity LED after Phy reset */
+	ledctl = E1000_READ_REG(hw, E1000_LEDCTL);
+	ledctl &= IGP_ACTIVITY_LED_MASK;
+	ledctl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE);
+	E1000_WRITE_REG(hw, E1000_LEDCTL, ledctl);
+
+	ret_val = e1000_setup_copper_link_generic(hw);
+
+out:
+	return ret_val;
+}
+
+/**
+ *  e1000_check_for_link_82541 - Check/Store link connection
+ *  @hw: pointer to the HW structure
+ *
+ *  This checks the link condition of the adapter and stores the
+ *  results in the hw->mac structure. This is a function pointer entry
+ *  point called by the api module.
+ **/
+STATIC s32 e1000_check_for_link_82541(struct e1000_hw *hw)
+{
+	struct e1000_mac_info *mac = &hw->mac;
+	s32 ret_val;
+	bool link;
+
+	DEBUGFUNC("e1000_check_for_link_82541");
+
+	/*
+	 * We only want to go out to the PHY registers to see if Auto-Neg
+	 * has completed and/or if our link status has changed.  The
+	 * get_link_status flag is set upon receiving a Link Status
+	 * Change or Rx Sequence Error interrupt.
+	 */
+	if (!mac->get_link_status) {
+		ret_val = E1000_SUCCESS;
+		goto out;
+	}
+
+	/*
+	 * First we want to see if the MII Status Register reports
+	 * link.  If so, then we want to get the current speed/duplex
+	 * of the PHY.
+	 */
+	ret_val = e1000_phy_has_link_generic(hw, 1, 0, &link);
+	if (ret_val)
+		goto out;
+
+	if (!link) {
+		ret_val = e1000_config_dsp_after_link_change_82541(hw, FALSE);
+		goto out; /* No link detected */
+	}
+
+	mac->get_link_status = FALSE;
+
+	/*
+	 * Check if there was DownShift, must be checked
+	 * immediately after link-up
+	 */
+	e1000_check_downshift_generic(hw);
+
+	/*
+	 * If we are forcing speed/duplex, then we simply return since
+	 * we have already determined whether we have link or not.
+	 */
+	if (!mac->autoneg) {
+		ret_val = -E1000_ERR_CONFIG;
+		goto out;
+	}
+
+	ret_val = e1000_config_dsp_after_link_change_82541(hw, TRUE);
+
+	/*
+	 * Auto-Neg is enabled.  Auto Speed Detection takes care
+	 * of MAC speed/duplex configuration.  So we only need to
+	 * configure Collision Distance in the MAC.
+	 */
+	e1000_config_collision_dist_generic(hw);
+
+	/*
+	 * Configure Flow Control now that Auto-Neg has completed.
+	 * First, we need to restore the desired flow control
+	 * settings because we may have had to re-autoneg with a
+	 * different link partner.
+	 */
+	ret_val = e1000_config_fc_after_link_up_generic(hw);
+	if (ret_val) {
+		DEBUGOUT("Error configuring flow control\n");
+	}
+
+out:
+	return ret_val;
+}
+
+/**
+ *  e1000_config_dsp_after_link_change_82541 - Config DSP after link
+ *  @hw: pointer to the HW structure
+ *  @link_up: boolean flag for link up status
+ *
+ *  Return E1000_ERR_PHY when failing to read/write the PHY, else E1000_SUCCESS
+ *  at any other case.
+ *
+ *  82541_rev_2 & 82547_rev_2 have the capability to configure the DSP when a
+ *  gigabit link is achieved to improve link quality.
+ *  This is a function pointer entry point called by the api module.
+ **/
+static s32 e1000_config_dsp_after_link_change_82541(struct e1000_hw *hw,
+                                                    bool link_up)
+{
+	struct e1000_phy_info *phy = &hw->phy;
+	struct e1000_dev_spec_82541 *dev_spec;
+	s32 ret_val;
+	u32 idle_errs = 0;
+	u16 phy_data, phy_saved_data, speed, duplex, i;
+	u16 ffe_idle_err_timeout = FFE_IDLE_ERR_COUNT_TIMEOUT_20;
+	u16 dsp_reg_array[IGP01E1000_PHY_CHANNEL_NUM] =
+	                                           {IGP01E1000_PHY_AGC_PARAM_A,
+	                                            IGP01E1000_PHY_AGC_PARAM_B,
+	                                            IGP01E1000_PHY_AGC_PARAM_C,
+	                                            IGP01E1000_PHY_AGC_PARAM_D};
+
+	DEBUGFUNC("e1000_config_dsp_after_link_change_82541");
+
+	dev_spec = (struct e1000_dev_spec_82541 *)hw->dev_spec;
+
+	if (link_up) {
+		ret_val = e1000_get_speed_and_duplex(hw, &speed, &duplex);
+		if (ret_val) {
+			DEBUGOUT("Error getting link speed and duplex\n");
+			goto out;
+		}
+
+		if (speed != SPEED_1000) {
+			ret_val = E1000_SUCCESS;
+			goto out;
+		}
+
+		ret_val = e1000_get_cable_length(hw);
+		if (ret_val)
+			goto out;
+
+		if ((dev_spec->dsp_config == e1000_dsp_config_enabled) &&
+		    phy->min_cable_length >= 50) {
+
+			for (i = 0; i < IGP01E1000_PHY_CHANNEL_NUM; i++) {
+				ret_val = e1000_read_phy_reg(hw,
+				                            dsp_reg_array[i],
+				                            &phy_data);
+				if (ret_val)
+					goto out;
+
+				phy_data &= ~IGP01E1000_PHY_EDAC_MU_INDEX;
+
+				ret_val = e1000_write_phy_reg(hw,
+				                             dsp_reg_array[i],
+				                             phy_data);
+				if (ret_val)
+					goto out;
+			}
+			dev_spec->dsp_config = e1000_dsp_config_activated;
+		}
+
+		if ((dev_spec->ffe_config != e1000_ffe_config_enabled) ||
+		    (phy->min_cable_length >= 50)) {
+			ret_val = E1000_SUCCESS;
+			goto out;
+		}
+
+		/* clear previous idle error counts */
+		ret_val = e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_data);
+		if (ret_val)
+			goto out;
+
+		for (i = 0; i < ffe_idle_err_timeout; i++) {
+			usec_delay(1000);
+			ret_val = e1000_read_phy_reg(hw,
+			                            PHY_1000T_STATUS,
+			                            &phy_data);
+			if (ret_val)
+				goto out;
+
+			idle_errs += (phy_data & SR_1000T_IDLE_ERROR_CNT);
+			if (idle_errs > SR_1000T_PHY_EXCESSIVE_IDLE_ERR_COUNT) {
+				dev_spec->ffe_config = e1000_ffe_config_active;
+
+				ret_val = e1000_write_phy_reg(hw,
+				                  IGP01E1000_PHY_DSP_FFE,
+				                  IGP01E1000_PHY_DSP_FFE_CM_CP);
+				if (ret_val)
+					goto out;
+				break;
+			}
+
+			if (idle_errs)
+				ffe_idle_err_timeout =
+				                 FFE_IDLE_ERR_COUNT_TIMEOUT_100;
+		}
+	} else {
+		if (dev_spec->dsp_config == e1000_dsp_config_activated) {
+			/*
+			 * Save off the current value of register 0x2F5B
+			 * to be restored at the end of the routines.
+			 */
+			ret_val = e1000_read_phy_reg(hw,
+			                            0x2F5B,
+			                            &phy_saved_data);
+			if (ret_val)
+				goto out;
+
+			/* Disable the PHY transmitter */
+			ret_val = e1000_write_phy_reg(hw, 0x2F5B, 0x0003);
+			if (ret_val)
+				goto out;
+
+			msec_delay_irq(20);
+
+			ret_val = e1000_write_phy_reg(hw,
+			                             0x0000,
+			                             IGP01E1000_IEEE_FORCE_GIG);
+			if (ret_val)
+				goto out;
+			for (i = 0; i < IGP01E1000_PHY_CHANNEL_NUM; i++) {
+				ret_val = e1000_read_phy_reg(hw,
+				                            dsp_reg_array[i],
+				                            &phy_data);
+				if (ret_val)
+					goto out;
+
+				phy_data &= ~IGP01E1000_PHY_EDAC_MU_INDEX;
+				phy_data |= IGP01E1000_PHY_EDAC_SIGN_EXT_9_BITS;
+
+				ret_val = e1000_write_phy_reg(hw,
+				                             dsp_reg_array[i],
+				                             phy_data);
+				if (ret_val)
+					goto out;
+			}
+
+			ret_val = e1000_write_phy_reg(hw,
+			                       0x0000,
+			                       IGP01E1000_IEEE_RESTART_AUTONEG);
+			if (ret_val)
+				goto out;
+
+			msec_delay_irq(20);
+
+			/* Now enable the transmitter */
+			ret_val = e1000_write_phy_reg(hw,
+			                             0x2F5B,
+			                             phy_saved_data);
+			if (ret_val)
+				goto out;
+
+			dev_spec->dsp_config = e1000_dsp_config_enabled;
+		}
+
+		if (dev_spec->ffe_config != e1000_ffe_config_active) {
+			ret_val = E1000_SUCCESS;
+			goto out;
+		}
+
+		/*
+		 * Save off the current value of register 0x2F5B
+		 * to be restored at the end of the routines.
+		 */
+		ret_val = e1000_read_phy_reg(hw, 0x2F5B, &phy_saved_data);
+		if (ret_val)
+			goto out;
+
+		/* Disable the PHY transmitter */
+		ret_val = e1000_write_phy_reg(hw, 0x2F5B, 0x0003);
+		if (ret_val)
+			goto out;
+
+		msec_delay_irq(20);
+
+		ret_val = e1000_write_phy_reg(hw,
+		                             0x0000,
+		                             IGP01E1000_IEEE_FORCE_GIG);
+		if (ret_val)
+			goto out;
+
+		ret_val = e1000_write_phy_reg(hw,
+		                             IGP01E1000_PHY_DSP_FFE,
+		                             IGP01E1000_PHY_DSP_FFE_DEFAULT);
+		if (ret_val)
+			goto out;
+
+		ret_val = e1000_write_phy_reg(hw,
+		                             0x0000,
+		                             IGP01E1000_IEEE_RESTART_AUTONEG);
+		if (ret_val)
+			goto out;
+
+		msec_delay_irq(20);
+
+		/* Now enable the transmitter */
+		ret_val = e1000_write_phy_reg(hw, 0x2F5B, phy_saved_data);
+
+		if (ret_val)
+			goto out;
+
+		dev_spec->ffe_config = e1000_ffe_config_enabled;
+	}
+
+out:
+	return ret_val;
+}
+
+/**
+ *  e1000_get_cable_length_igp_82541 - Determine cable length for igp PHY
+ *  @hw: pointer to the HW structure
+ *
+ *  The automatic gain control (agc) normalizes the amplitude of the
+ *  received signal, adjusting for the attenuation produced by the
+ *  cable.  By reading the AGC registers, which reperesent the
+ *  cobination of course and fine gain value, the value can be put
+ *  into a lookup table to obtain the approximate cable length
+ *  for each channel.  This is a function pointer entry point called by the
+ *  api module.
+ **/
+STATIC s32 e1000_get_cable_length_igp_82541(struct e1000_hw *hw)
+{
+	struct e1000_phy_info *phy = &hw->phy;
+	s32 ret_val = E1000_SUCCESS;
+	u16 i, data;
+	u16 cur_agc_value, agc_value = 0;
+	u16 min_agc_value = IGP01E1000_AGC_LENGTH_TABLE_SIZE;
+	u16 agc_reg_array[IGP01E1000_PHY_CHANNEL_NUM] =
+	                                                 {IGP01E1000_PHY_AGC_A,
+	                                                  IGP01E1000_PHY_AGC_B,
+	                                                  IGP01E1000_PHY_AGC_C,
+	                                                  IGP01E1000_PHY_AGC_D};
+
+	DEBUGFUNC("e1000_get_cable_length_igp_82541");
+
+	/* Read the AGC registers for all channels */
+	for (i = 0; i < IGP01E1000_PHY_CHANNEL_NUM; i++) {
+		ret_val = e1000_read_phy_reg(hw, agc_reg_array[i], &data);
+		if (ret_val)
+			goto out;
+
+		cur_agc_value = data >> IGP01E1000_AGC_LENGTH_SHIFT;
+
+		/* Bounds checking */
+		if ((cur_agc_value >= IGP01E1000_AGC_LENGTH_TABLE_SIZE - 1) ||
+		    (cur_agc_value == 0)) {
+			ret_val = -E1000_ERR_PHY;
+			goto out;
+		}
+
+		agc_value += cur_agc_value;
+
+		if (min_agc_value > cur_agc_value)
+			min_agc_value = cur_agc_value;
+	}
+
+	/* Remove the minimal AGC result for length < 50m */
+	if (agc_value < IGP01E1000_PHY_CHANNEL_NUM * 50) {
+		agc_value -= min_agc_value;
+		/* Average the three remaining channels for the length. */
+		agc_value /= (IGP01E1000_PHY_CHANNEL_NUM - 1);
+	} else {
+		/* Average the channels for the length. */
+		agc_value /= IGP01E1000_PHY_CHANNEL_NUM;
+	}
+
+	phy->min_cable_length = (e1000_igp_cable_length_table[agc_value] >
+	                         IGP01E1000_AGC_RANGE)
+	                        ? (e1000_igp_cable_length_table[agc_value] -
+	                           IGP01E1000_AGC_RANGE)
+	                        : 0;
+	phy->max_cable_length = e1000_igp_cable_length_table[agc_value] +
+	                        IGP01E1000_AGC_RANGE;
+
+	phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2;
+
+out:
+	return ret_val;
+}
+
+/**
+ *  e1000_set_d3_lplu_state_82541 - Sets low power link up state for D3
+ *  @hw: pointer to the HW structure
+ *  @active: boolean used to enable/disable lplu
+ *
+ *  Success returns 0, Failure returns 1
+ *
+ *  The low power link up (lplu) state is set to the power management level D3
+ *  and SmartSpeed is disabled when active is true, else clear lplu for D3
+ *  and enable Smartspeed.  LPLU and Smartspeed are mutually exclusive.  LPLU
+ *  is used during Dx states where the power conservation is most important.
+ *  During driver activity, SmartSpeed should be enabled so performance is
+ *  maintained.  This is a function pointer entry point called by the
+ *  api module.
+ **/
+STATIC s32 e1000_set_d3_lplu_state_82541(struct e1000_hw *hw, bool active)
+{
+	struct e1000_phy_info *phy = &hw->phy;
+	s32 ret_val;
+	u16 data;
+
+	DEBUGFUNC("e1000_set_d3_lplu_state_82541");
+
+	switch (hw->mac.type) {
+	case e1000_82541_rev_2:
+	case e1000_82547_rev_2:
+		break;
+	default:
+		ret_val = e1000_set_d3_lplu_state_generic(hw, active);
+		goto out;
+		break;
+	}
+
+	ret_val = e1000_read_phy_reg(hw, IGP01E1000_GMII_FIFO, &data);
+	if (ret_val)
+		goto out;
+
+	if (!active) {
+		data &= ~IGP01E1000_GMII_FLEX_SPD;
+		ret_val = e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO, data);
+		if (ret_val)
+			goto out;
+
+		/*
+		 * LPLU and SmartSpeed are mutually exclusive.  LPLU is used
+		 * during Dx states where the power conservation is most
+		 * important.  During driver activity we should enable
+		 * SmartSpeed, so performance is maintained.
+		 */
+		if (phy->smart_speed == e1000_smart_speed_on) {
+			ret_val = e1000_read_phy_reg(hw,
+			                            IGP01E1000_PHY_PORT_CONFIG,
+			                            &data);
+			if (ret_val)
+				goto out;
+
+			data |= IGP01E1000_PSCFR_SMART_SPEED;
+			ret_val = e1000_write_phy_reg(hw,
+			                             IGP01E1000_PHY_PORT_CONFIG,
+			                             data);
+			if (ret_val)
+				goto out;
+		} else if (phy->smart_speed == e1000_smart_speed_off) {
+			ret_val = e1000_read_phy_reg(hw,
+			                            IGP01E1000_PHY_PORT_CONFIG,
+			                            &data);
+			if (ret_val)
+				goto out;
+
+			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
+			ret_val = e1000_write_phy_reg(hw,
+			                             IGP01E1000_PHY_PORT_CONFIG,
+			                             data);
+			if (ret_val)
+				goto out;
+		}
+	} else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
+	           (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
+	           (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
+		data |= IGP01E1000_GMII_FLEX_SPD;
+		ret_val = e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO, data);
+		if (ret_val)
+			goto out;
+
+		/* When LPLU is enabled, we should disable SmartSpeed */
+		ret_val = e1000_read_phy_reg(hw,
+		                            IGP01E1000_PHY_PORT_CONFIG,
+		                            &data);
+		if (ret_val)
+			goto out;
+
+		data &= ~IGP01E1000_PSCFR_SMART_SPEED;
+		ret_val = e1000_write_phy_reg(hw,
+		                             IGP01E1000_PHY_PORT_CONFIG,
+		                             data);
+	}
+
+out:
+	return ret_val;
+}
+
+/**
+ *  e1000_setup_led_82541 - Configures SW controllable LED
+ *  @hw: pointer to the HW structure
+ *
+ *  This prepares the SW controllable LED for use and saves the current state
+ *  of the LED so it can be later restored.  This is a function pointer entry
+ *  point called by the api module.
+ **/
+STATIC s32 e1000_setup_led_82541(struct e1000_hw *hw)
+{
+	struct e1000_dev_spec_82541 *dev_spec;
+	s32 ret_val;
+
+	DEBUGFUNC("e1000_setup_led_82541");
+
+	dev_spec = (struct e1000_dev_spec_82541 *)hw->dev_spec;
+
+	ret_val = e1000_read_phy_reg(hw,
+	                            IGP01E1000_GMII_FIFO,
+	                            &dev_spec->spd_default);
+	if (ret_val)
+		goto out;
+
+	ret_val = e1000_write_phy_reg(hw,
+	                             IGP01E1000_GMII_FIFO,
+	                             (u16)(dev_spec->spd_default &
+	                                        ~IGP01E1000_GMII_SPD));
+	if (ret_val)
+		goto out;
+
+	E1000_WRITE_REG(hw, E1000_LEDCTL, hw->mac.ledctl_mode1);
+
+out:
+	return ret_val;
+}
+
+/**
+ *  e1000_cleanup_led_82541 - Set LED config to default operation
+ *  @hw: pointer to the HW structure
+ *
+ *  Remove the current LED configuration and set the LED configuration
+ *  to the default value, saved from the EEPROM.  This is a function pointer
+ *  entry point called by the api module.
+ **/
+STATIC s32 e1000_cleanup_led_82541(struct e1000_hw *hw)
+{
+	struct e1000_dev_spec_82541 *dev_spec;
+	s32 ret_val;
+
+	DEBUGFUNC("e1000_cleanup_led_82541");
+
+	dev_spec = (struct e1000_dev_spec_82541 *)hw->dev_spec;
+
+	ret_val = e1000_write_phy_reg(hw,
+	                             IGP01E1000_GMII_FIFO,
+	                             dev_spec->spd_default);
+	if (ret_val)
+		goto out;
+
+	E1000_WRITE_REG(hw, E1000_LEDCTL, hw->mac.ledctl_default);
+
+out:
+	return ret_val;
+}
+
+/**
+ *  e1000_phy_init_script_82541 - Initialize GbE PHY
+ *  @hw: pointer to the HW structure
+ *
+ *  Initializes the IGP PHY.
+ **/
+static s32 e1000_phy_init_script_82541(struct e1000_hw *hw)
+{
+	struct e1000_dev_spec_82541 *dev_spec;
+	u32 ret_val;
+	u16 phy_saved_data;
+
+	DEBUGFUNC("e1000_phy_init_script_82541");
+
+	dev_spec = (struct e1000_dev_spec_82541 *)hw->dev_spec;
+
+	if (!dev_spec->phy_init_script) {
+		ret_val = E1000_SUCCESS;
+		goto out;
+	}
+
+	/* Delay after phy reset to enable NVM configuration to load */
+	msec_delay(20);
+
+	/*
+	 * Save off the current value of register 0x2F5B to be restored at
+	 * the end of this routine.
+	 */
+	ret_val = e1000_read_phy_reg(hw, 0x2F5B, &phy_saved_data);
+
+	/* Disabled the PHY transmitter */
+	e1000_write_phy_reg(hw, 0x2F5B, 0x0003);
+
+	msec_delay(20);
+
+	e1000_write_phy_reg(hw, 0x0000, 0x0140);
+
+	msec_delay(5);
+
+	switch (hw->mac.type) {
+	case e1000_82541:
+	case e1000_82547:
+		e1000_write_phy_reg(hw, 0x1F95, 0x0001);
+
+		e1000_write_phy_reg(hw, 0x1F71, 0xBD21);
+
+		e1000_write_phy_reg(hw, 0x1F79, 0x0018);
+
+		e1000_write_phy_reg(hw, 0x1F30, 0x1600);
+
+		e1000_write_phy_reg(hw, 0x1F31, 0x0014);
+
+		e1000_write_phy_reg(hw, 0x1F32, 0x161C);
+
+		e1000_write_phy_reg(hw, 0x1F94, 0x0003);
+
+		e1000_write_phy_reg(hw, 0x1F96, 0x003F);
+
+		e1000_write_phy_reg(hw, 0x2010, 0x0008);
+		break;
+	case e1000_82541_rev_2:
+	case e1000_82547_rev_2:
+		e1000_write_phy_reg(hw, 0x1F73, 0x0099);
+		break;
+	default:
+		break;
+	}
+
+	e1000_write_phy_reg(hw, 0x0000, 0x3300);
+
+	msec_delay(20);
+
+	/* Now enable the transmitter */
+	e1000_write_phy_reg(hw, 0x2F5B, phy_saved_data);
+
+	if (hw->mac.type == e1000_82547) {
+		u16 fused, fine, coarse;
+
+		/* Move to analog registers page */
+		e1000_read_phy_reg(hw,
+		                  IGP01E1000_ANALOG_SPARE_FUSE_STATUS,
+		                  &fused);
+
+		if (!(fused & IGP01E1000_ANALOG_SPARE_FUSE_ENABLED)) {
+			e1000_read_phy_reg(hw,
+			                  IGP01E1000_ANALOG_FUSE_STATUS,
+			                  &fused);
+
+			fine = fused & IGP01E1000_ANALOG_FUSE_FINE_MASK;
+			coarse = fused & IGP01E1000_ANALOG_FUSE_COARSE_MASK;
+
+			if (coarse > IGP01E1000_ANALOG_FUSE_COARSE_THRESH) {
+				coarse -= IGP01E1000_ANALOG_FUSE_COARSE_10;
+				fine -= IGP01E1000_ANALOG_FUSE_FINE_1;
+			} else if (coarse ==
+			           IGP01E1000_ANALOG_FUSE_COARSE_THRESH)
+				fine -= IGP01E1000_ANALOG_FUSE_FINE_10;
+
+			fused = (fused & IGP01E1000_ANALOG_FUSE_POLY_MASK) |
+			        (fine & IGP01E1000_ANALOG_FUSE_FINE_MASK) |
+			        (coarse & IGP01E1000_ANALOG_FUSE_COARSE_MASK);
+
+			e1000_write_phy_reg(hw,
+			                   IGP01E1000_ANALOG_FUSE_CONTROL,
+			                   fused);
+			e1000_write_phy_reg(hw,
+			              IGP01E1000_ANALOG_FUSE_BYPASS,
+			              IGP01E1000_ANALOG_FUSE_ENABLE_SW_CONTROL);
+		}
+	}
+
+out:
+	return ret_val;
+}
+
+/**
+ *  e1000_init_script_state_82541 - Enable/Disable PHY init script
+ *  @hw: pointer to the HW structure
+ *  @state: boolean value used to enable/disable PHY init script
+ *
+ *  Allows the driver to enable/disable the PHY init script, if the PHY is an
+ *  IGP PHY.  This is a function pointer entry point called by the api module.
+ **/
+void e1000_init_script_state_82541(struct e1000_hw *hw, bool state)
+{
+	struct e1000_dev_spec_82541 *dev_spec;
+
+	DEBUGFUNC("e1000_init_script_state_82541");
+
+	if (hw->phy.type != e1000_phy_igp) {
+		DEBUGOUT("Initialization script not necessary.\n");
+		goto out;
+	}
+
+	dev_spec = (struct e1000_dev_spec_82541 *)hw->dev_spec;
+
+	if (!dev_spec) {
+		DEBUGOUT("dev_spec pointer is set to NULL.\n");
+		goto out;
+	}
+
+	dev_spec->phy_init_script = state;
+
+out:
+	return;
+}
+
+/**
+ * e1000_power_down_phy_copper_82541 - Remove link in case of PHY power down
+ * @hw: pointer to the HW structure
+ *
+ * In the case of a PHY power down to save power, or to turn off link during a
+ * driver unload, or wake on lan is not enabled, remove the link.
+ **/
+STATIC void e1000_power_down_phy_copper_82541(struct e1000_hw *hw)
+{
+	/* If the management interface is not enabled, then power down */
+	if (!(E1000_READ_REG(hw, E1000_MANC) & E1000_MANC_SMBUS_EN))
+		e1000_power_down_phy_copper(hw);
+
+	return;
+}
+
+/**
+ *  e1000_clear_hw_cntrs_82541 - Clear device specific hardware counters
+ *  @hw: pointer to the HW structure
+ *
+ *  Clears the hardware counters by reading the counter registers.
+ **/
+STATIC void e1000_clear_hw_cntrs_82541(struct e1000_hw *hw)
+{
+	volatile u32 temp;
+
+	DEBUGFUNC("e1000_clear_hw_cntrs_82541");
+
+	e1000_clear_hw_cntrs_base_generic(hw);
+
+	temp = E1000_READ_REG(hw, E1000_PRC64);
+	temp = E1000_READ_REG(hw, E1000_PRC127);
+	temp = E1000_READ_REG(hw, E1000_PRC255);
+	temp = E1000_READ_REG(hw, E1000_PRC511);
+	temp = E1000_READ_REG(hw, E1000_PRC1023);
+	temp = E1000_READ_REG(hw, E1000_PRC1522);
+	temp = E1000_READ_REG(hw, E1000_PTC64);
+	temp = E1000_READ_REG(hw, E1000_PTC127);
+	temp = E1000_READ_REG(hw, E1000_PTC255);
+	temp = E1000_READ_REG(hw, E1000_PTC511);
+	temp = E1000_READ_REG(hw, E1000_PTC1023);
+	temp = E1000_READ_REG(hw, E1000_PTC1522);
+
+	temp = E1000_READ_REG(hw, E1000_ALGNERRC);
+	temp = E1000_READ_REG(hw, E1000_RXERRC);
+	temp = E1000_READ_REG(hw, E1000_TNCRS);
+	temp = E1000_READ_REG(hw, E1000_CEXTERR);
+	temp = E1000_READ_REG(hw, E1000_TSCTC);
+	temp = E1000_READ_REG(hw, E1000_TSCTFC);
+
+	temp = E1000_READ_REG(hw, E1000_MGTPRC);
+	temp = E1000_READ_REG(hw, E1000_MGTPDC);
+	temp = E1000_READ_REG(hw, E1000_MGTPTC);
+}
--- /dev/null
+++ sys/dev/em/e1000_mac.c
@@ -0,0 +1,2046 @@
+/*******************************************************************************
+
+  Copyright (c) 2001-2007, Intel Corporation 
+  All rights reserved.
+  
+  Redistribution and use in source and binary forms, with or without 
+  modification, are permitted provided that the following conditions are met:
+  
+   1. Redistributions of source code must retain the above copyright notice, 
+      this list of conditions and the following disclaimer.
+  
+   2. Redistributions in binary form must reproduce the above copyright 
+      notice, this list of conditions and the following disclaimer in the 
+      documentation and/or other materials provided with the distribution.
+  
+   3. Neither the name of the Intel Corporation nor the names of its 
+      contributors may be used to endorse or promote products derived from 
+      this software without specific prior written permission.
+  
+  THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
+  AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 
+  IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 
+  ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE 
+  LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 
+  CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 
+  SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 
+  INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 
+  CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 
+  ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
+  POSSIBILITY OF SUCH DAMAGE.
+
+*******************************************************************************/
+/* $FreeBSD: src/sys/dev/em/e1000_mac.c,v 1.3.4.1 2007/11/28 23:24:38 jfv Exp $ */
+
+
+#include "e1000_api.h"
+#include "e1000_mac.h"
+
+/**
+ *  e1000_remove_device_generic - Free device specific structure
+ *  @hw: pointer to the HW structure
+ *
+ *  If a device specific structure was allocated, this function will
+ *  free it.
+ **/
+void e1000_remove_device_generic(struct e1000_hw *hw)
+{
+	DEBUGFUNC("e1000_remove_device_generic");
+
+	/* Freeing the dev_spec member of e1000_hw structure */
+	e1000_free_dev_spec_struct(hw);
+}
+
+/**
+ *  e1000_get_bus_info_pci_generic - Get PCI(x) bus information
+ *  @hw: pointer to the HW structure
+ *
+ *  Determines and stores the system bus information for a particular
+ *  network interface.  The following bus information is determined and stored:
+ *  bus speed, bus width, type (PCI/PCIx), and PCI(-x) function.
+ **/
+s32 e1000_get_bus_info_pci_generic(struct e1000_hw *hw)
+{
+	struct e1000_bus_info *bus = &hw->bus;
+	u32 status = E1000_READ_REG(hw, E1000_STATUS);
+	s32 ret_val = E1000_SUCCESS;
+	u16 pci_header_type;
+
+	DEBUGFUNC("e1000_get_bus_info_pci_generic");
+
+	/* PCI or PCI-X? */
+	bus->type = (status & E1000_STATUS_PCIX_MODE)
+			? e1000_bus_type_pcix
+			: e1000_bus_type_pci;
+
+	/* Bus speed */
+	if (bus->type == e1000_bus_type_pci) {
+		bus->speed = (status & E1000_STATUS_PCI66)
+		             ? e1000_bus_speed_66
+		             : e1000_bus_speed_33;
+	} else {
+		switch (status & E1000_STATUS_PCIX_SPEED) {
+		case E1000_STATUS_PCIX_SPEED_66:
+			bus->speed = e1000_bus_speed_66;
+			break;
+		case E1000_STATUS_PCIX_SPEED_100:
+			bus->speed = e1000_bus_speed_100;
+			break;
+		case E1000_STATUS_PCIX_SPEED_133:
+			bus->speed = e1000_bus_speed_133;
+			break;
+		default:
+			bus->speed = e1000_bus_speed_reserved;
+			break;
+		}
+	}
+
+	/* Bus width */
+	bus->width = (status & E1000_STATUS_BUS64)
+	             ? e1000_bus_width_64
+	             : e1000_bus_width_32;
+
+	/* Which PCI(-X) function? */
+	e1000_read_pci_cfg(hw, PCI_HEADER_TYPE_REGISTER, &pci_header_type);
+	if (pci_header_type & PCI_HEADER_TYPE_MULTIFUNC)
+		bus->func = (status & E1000_STATUS_FUNC_MASK)
+		            >> E1000_STATUS_FUNC_SHIFT;
+	else
+		bus->func = 0;
+
+	return ret_val;
+}
+
+/**
+ *  e1000_get_bus_info_pcie_generic - Get PCIe bus information
+ *  @hw: pointer to the HW structure
+ *
+ *  Determines and stores the system bus information for a particular
+ *  network interface.  The following bus information is determined and stored:
+ *  bus speed, bus width, type (PCIe), and PCIe function.
+ **/
+s32 e1000_get_bus_info_pcie_generic(struct e1000_hw *hw)
+{
+	struct e1000_bus_info *bus = &hw->bus;
+	s32 ret_val;
+	u32 status;
+	u16 pcie_link_status, pci_header_type;
+
+	DEBUGFUNC("e1000_get_bus_info_pcie_generic");
+
+	bus->type = e1000_bus_type_pci_express;
+	bus->speed = e1000_bus_speed_2500;
+
+	ret_val = e1000_read_pcie_cap_reg(hw,
+	                                  PCIE_LINK_STATUS,
+	                                  &pcie_link_status);
+	if (ret_val)
+		bus->width = e1000_bus_width_unknown;
+	else
+		bus->width = (e1000_bus_width)((pcie_link_status &
+		                                PCIE_LINK_WIDTH_MASK) >>
+		                               PCIE_LINK_WIDTH_SHIFT);
+
+	e1000_read_pci_cfg(hw, PCI_HEADER_TYPE_REGISTER, &pci_header_type);
+	if (pci_header_type & PCI_HEADER_TYPE_MULTIFUNC) {
+		status = E1000_READ_REG(hw, E1000_STATUS);
+		bus->func = (status & E1000_STATUS_FUNC_MASK)
+		            >> E1000_STATUS_FUNC_SHIFT;
+	} else {
+		bus->func = 0;
+	}
+
+	return E1000_SUCCESS;
+}
+
+/**
+ *  e1000_clear_vfta_generic - Clear VLAN filter table
+ *  @hw: pointer to the HW structure
+ *
+ *  Clears the register array which contains the VLAN filter table by
+ *  setting all the values to 0.
+ **/
+void e1000_clear_vfta_generic(struct e1000_hw *hw)
+{
+	u32 offset;
+
+	DEBUGFUNC("e1000_clear_vfta_generic");
+
+	for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) {
+		E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset, 0);
+		E1000_WRITE_FLUSH(hw);
+	}
+}
+
+/**
+ *  e1000_write_vfta_generic - Write value to VLAN filter table
+ *  @hw: pointer to the HW structure
+ *  @offset: register offset in VLAN filter table
+ *  @value: register value written to VLAN filter table
+ *
+ *  Writes value at the given offset in the register array which stores
+ *  the VLAN filter table.
+ **/
+void e1000_write_vfta_generic(struct e1000_hw *hw, u32 offset, u32 value)
+{
+	DEBUGFUNC("e1000_write_vfta_generic");
+
+	E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset, value);
+	E1000_WRITE_FLUSH(hw);
+}
+
+/**
+ *  e1000_init_rx_addrs_generic - Initialize receive address's
+ *  @hw: pointer to the HW structure
+ *  @rar_count: receive address registers
+ *
+ *  Setups the receive address registers by setting the base receive address
+ *  register to the devices MAC address and clearing all the other receive
+ *  address registers to 0.
+ **/
+void e1000_init_rx_addrs_generic(struct e1000_hw *hw, u16 rar_count)
+{
+	u32 i;
+
+	DEBUGFUNC("e1000_init_rx_addrs_generic");
+
+	/* Setup the receive address */
+	DEBUGOUT("Programming MAC Address into RAR[0]\n");
+
+	e1000_rar_set_generic(hw, hw->mac.addr, 0);
+
+	/* Zero out the other (rar_entry_count - 1) receive addresses */
+	DEBUGOUT1("Clearing RAR[1-%u]\n", rar_count-1);
+	for (i = 1; i < rar_count; i++) {
+		E1000_WRITE_REG_ARRAY(hw, E1000_RA, (i << 1), 0);
+		E1000_WRITE_FLUSH(hw);
+		E1000_WRITE_REG_ARRAY(hw, E1000_RA, ((i << 1) + 1), 0);
+		E1000_WRITE_FLUSH(hw);
+	}
+}
+
+/**
+ *  e1000_check_alt_mac_addr_generic - Check for alternate MAC addr
+ *  @hw: pointer to the HW structure
+ *
+ *  Checks the nvm for an alternate MAC address.  An alternate MAC address
+ *  can be setup by pre-boot software and must be treated like a permanent
+ *  address and must override the actual permanent MAC address.  If an
+ *  alternate MAC address is found it is saved in the hw struct and
+ *  programmed into RAR0 and the function returns success, otherwise the
+ *  function returns an error.
+ **/
+s32 e1000_check_alt_mac_addr_generic(struct e1000_hw *hw)
+{
+	u32 i;
+	s32 ret_val = E1000_SUCCESS;
+	u16 offset, nvm_alt_mac_addr_offset, nvm_data;
+	u8 alt_mac_addr[ETH_ADDR_LEN];
+
+	DEBUGFUNC("e1000_check_alt_mac_addr_generic");
+
+	ret_val = e1000_read_nvm(hw, NVM_ALT_MAC_ADDR_PTR, 1, &nvm_alt_mac_addr_offset);
+	if (ret_val) {
+		DEBUGOUT("NVM Read Error\n");
+		goto out;
+	}
+
+	if (nvm_alt_mac_addr_offset == 0xFFFF) {
+		ret_val = -(E1000_NOT_IMPLEMENTED);
+		goto out;
+	}
+
+	if (hw->bus.func == E1000_FUNC_1)
+		nvm_alt_mac_addr_offset += ETH_ADDR_LEN/sizeof(u16);
+
+	for (i = 0; i < ETH_ADDR_LEN; i += 2) {
+		offset = nvm_alt_mac_addr_offset + (i >> 1);
+		ret_val = e1000_read_nvm(hw, offset, 1, &nvm_data);
+		if (ret_val) {
+			DEBUGOUT("NVM Read Error\n");
+			goto out;
+		}
+
+		alt_mac_addr[i] = (u8)(nvm_data & 0xFF);
+		alt_mac_addr[i + 1] = (u8)(nvm_data >> 8);
+	}
+
+	/* if multicast bit is set, the alternate address will not be used */
+	if (alt_mac_addr[0] & 0x01) {
+		ret_val = -(E1000_NOT_IMPLEMENTED);
+		goto out;
+	}
+
+	for (i = 0; i < ETH_ADDR_LEN; i++)
+		hw->mac.addr[i] = hw->mac.perm_addr[i] = alt_mac_addr[i];
+
+	e1000_rar_set(hw, hw->mac.perm_addr, 0);
+
+out:
+	return ret_val;
+}
+
+/**
+ *  e1000_rar_set_generic - Set receive address register
+ *  @hw: pointer to the HW structure
+ *  @addr: pointer to the receive address
+ *  @index: receive address array register
+ *
+ *  Sets the receive address array register at index to the address passed
+ *  in by addr.
+ **/
+void e1000_rar_set_generic(struct e1000_hw *hw, u8 *addr, u32 index)
+{
+	u32 rar_low, rar_high;
+
+	DEBUGFUNC("e1000_rar_set_generic");
+
+	/*
+	 * HW expects these in little endian so we reverse the byte order
+	 * from network order (big endian) to little endian
+	 */
+	rar_low = ((u32) addr[0] |
+		   ((u32) addr[1] << 8) |
+		    ((u32) addr[2] << 16) | ((u32) addr[3] << 24));
+
+	rar_high = ((u32) addr[4] | ((u32) addr[5] << 8));
+
+	/* If MAC address zero, no need to set the AV bit */
+	if (rar_low || rar_high) {
+		if (!hw->mac.disable_av)
+			rar_high |= E1000_RAH_AV;
+	}
+
+	E1000_WRITE_REG_ARRAY(hw, E1000_RA, (index << 1), rar_low);
+	E1000_WRITE_REG_ARRAY(hw, E1000_RA, ((index << 1) + 1), rar_high);
+}
+
+/**
+ *  e1000_mta_set_generic - Set multicast filter table address
+ *  @hw: pointer to the HW structure
+ *  @hash_value: determines the MTA register and bit to set
+ *
+ *  The multicast table address is a register array of 32-bit registers.
+ *  The hash_value is used to determine what register the bit is in, the
+ *  current value is read, the new bit is OR'd in and the new value is
+ *  written back into the register.
+ **/
+void e1000_mta_set_generic(struct e1000_hw *hw, u32 hash_value)
+{
+	u32 hash_bit, hash_reg, mta;
+
+	DEBUGFUNC("e1000_mta_set_generic");
+	/*
+	 * The MTA is a register array of 32-bit registers. It is
+	 * treated like an array of (32*mta_reg_count) bits.  We want to
+	 * set bit BitArray[hash_value]. So we figure out what register
+	 * the bit is in, read it, OR in the new bit, then write
+	 * back the new value.  The (hw->mac.mta_reg_count - 1) serves as a
+	 * mask to bits 31:5 of the hash value which gives us the
+	 * register we're modifying.  The hash bit within that register
+	 * is determined by the lower 5 bits of the hash value.
+	 */
+	hash_reg = (hash_value >> 5) & (hw->mac.mta_reg_count - 1);
+	hash_bit = hash_value & 0x1F;
+
+	mta = E1000_READ_REG_ARRAY(hw, E1000_MTA, hash_reg);
+
+	mta |= (1 << hash_bit);
+
+	E1000_WRITE_REG_ARRAY(hw, E1000_MTA, hash_reg, mta);
+	E1000_WRITE_FLUSH(hw);
+}
+
+/**
+ *  e1000_update_mc_addr_list_generic - Update Multicast addresses
+ *  @hw: pointer to the HW structure
+ *  @mc_addr_list: array of multicast addresses to program
+ *  @mc_addr_count: number of multicast addresses to program
+ *  @rar_used_count: the first RAR register free to program
+ *  @rar_count: total number of supported Receive Address Registers
+ *
+ *  Updates the Receive Address Registers and Multicast Table Array.
+ *  The caller must have a packed mc_addr_list of multicast addresses.
+ *  The parameter rar_count will usually be hw->mac.rar_entry_count
+ *  unless there are workarounds that change this.
+ **/
+void e1000_update_mc_addr_list_generic(struct e1000_hw *hw,
+                                       u8 *mc_addr_list, u32 mc_addr_count,
+                                       u32 rar_used_count, u32 rar_count)
+{
+	u32 hash_value;
+	u32 i;
+
+	DEBUGFUNC("e1000_update_mc_addr_list_generic");
+
+	/*
+	 * Load the first set of multicast addresses into the exact
+	 * filters (RAR).  If there are not enough to fill the RAR
+	 * array, clear the filters.
+	 */
+	for (i = rar_used_count; i < rar_count; i++) {
+		if (mc_addr_count) {
+			e1000_rar_set(hw, mc_addr_list, i);
+			mc_addr_count--;
+			mc_addr_list += ETH_ADDR_LEN;
+		} else {
+			E1000_WRITE_REG_ARRAY(hw, E1000_RA, i << 1, 0);
+			E1000_WRITE_FLUSH(hw);
+			E1000_WRITE_REG_ARRAY(hw, E1000_RA, (i << 1) + 1, 0);
+			E1000_WRITE_FLUSH(hw);
+		}
+	}
+
+	/* Clear the old settings from the MTA */
+	DEBUGOUT("Clearing MTA\n");
+	for (i = 0; i < hw->mac.mta_reg_count; i++) {
+		E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
+		E1000_WRITE_FLUSH(hw);
+	}
+
+	/* Load any remaining multicast addresses into the hash table. */
+	for (; mc_addr_count > 0; mc_addr_count--) {
+		hash_value = e1000_hash_mc_addr(hw, mc_addr_list);
+		DEBUGOUT1("Hash value = 0x%03X\n", hash_value);
+		e1000_mta_set(hw, hash_value);
+		mc_addr_list += ETH_ADDR_LEN;
+	}
+}
+
+/**
+ *  e1000_hash_mc_addr_generic - Generate a multicast hash value
+ *  @hw: pointer to the HW structure
+ *  @mc_addr: pointer to a multicast address
+ *
+ *  Generates a multicast address hash value which is used to determine
+ *  the multicast filter table array address and new table value.  See
+ *  e1000_mta_set_generic()
+ **/
+u32 e1000_hash_mc_addr_generic(struct e1000_hw *hw, u8 *mc_addr)
+{
+	u32 hash_value, hash_mask;
+	u8 bit_shift = 0;
+
+	DEBUGFUNC("e1000_hash_mc_addr_generic");
+
+	/* Register count multiplied by bits per register */
+	hash_mask = (hw->mac.mta_reg_count * 32) - 1;
+
+	/*
+	 * For a mc_filter_type of 0, bit_shift is the number of left-shifts
+	 * where 0xFF would still fall within the hash mask.
+	 */
+	while (hash_mask >> bit_shift != 0xFF)
+		bit_shift++;
+
+	/*
+	 * The portion of the address that is used for the hash table
+	 * is determined by the mc_filter_type setting.
+	 * The algorithm is such that there is a total of 8 bits of shifting.
+	 * The bit_shift for a mc_filter_type of 0 represents the number of
+	 * left-shifts where the MSB of mc_addr[5] would still fall within
+	 * the hash_mask.  Case 0 does this exactly.  Since there are a total
+	 * of 8 bits of shifting, then mc_addr[4] will shift right the
+	 * remaining number of bits. Thus 8 - bit_shift.  The rest of the
+	 * cases are a variation of this algorithm...essentially raising the
+	 * number of bits to shift mc_addr[5] left, while still keeping the
+	 * 8-bit shifting total.
+	 *
+	 * For example, given the following Destination MAC Address and an
+	 * mta register count of 128 (thus a 4096-bit vector and 0xFFF mask),
+	 * we can see that the bit_shift for case 0 is 4.  These are the hash
+	 * values resulting from each mc_filter_type...
+	 * [0] [1] [2] [3] [4] [5]
+	 * 01  AA  00  12  34  56
+	 * LSB                 MSB
+	 *
+	 * case 0: hash_value = ((0x34 >> 4) | (0x56 << 4)) & 0xFFF = 0x563
+	 * case 1: hash_value = ((0x34 >> 3) | (0x56 << 5)) & 0xFFF = 0xAC6
+	 * case 2: hash_value = ((0x34 >> 2) | (0x56 << 6)) & 0xFFF = 0x163
+	 * case 3: hash_value = ((0x34 >> 0) | (0x56 << 8)) & 0xFFF = 0x634
+	 */
+	switch (hw->mac.mc_filter_type) {
+		default:
+		case 0:
+			break;
+		case 1:
+			bit_shift += 1;
+			break;
+		case 2:
+			bit_shift += 2;
+			break;
+		case 3:
+			bit_shift += 4;
+			break;
+	}
+
+	hash_value = hash_mask & (((mc_addr[4] >> (8 - bit_shift)) |
+	                          (((u16) mc_addr[5]) << bit_shift)));
+
+	return hash_value;
+}
+
+/**
+ *  e1000_pcix_mmrbc_workaround_generic - Fix incorrect MMRBC value
+ *  @hw: pointer to the HW structure
+ *
+ *  In certain situations, a system BIOS may report that the PCIx maximum
+ *  memory read byte count (MMRBC) value is higher than than the actual
+ *  value. We check the PCIx command regsiter with the current PCIx status
+ *  regsiter.
+ **/
+void e1000_pcix_mmrbc_workaround_generic(struct e1000_hw *hw)
+{
+	u16 cmd_mmrbc;
+	u16 pcix_cmd;
+	u16 pcix_stat_hi_word;
+	u16 stat_mmrbc;
+
+	DEBUGFUNC("e1000_pcix_mmrbc_workaround_generic");
+
+	/* Workaround for PCI-X issue when BIOS sets MMRBC incorrectly */
+	if (hw->bus.type != e1000_bus_type_pcix)
+		return;
+
+	e1000_read_pci_cfg(hw, PCIX_COMMAND_REGISTER, &pcix_cmd);
+	e1000_read_pci_cfg(hw, PCIX_STATUS_REGISTER_HI, &pcix_stat_hi_word);
+	cmd_mmrbc = (pcix_cmd & PCIX_COMMAND_MMRBC_MASK) >>
+		    PCIX_COMMAND_MMRBC_SHIFT;
+	stat_mmrbc = (pcix_stat_hi_word & PCIX_STATUS_HI_MMRBC_MASK) >>
+		     PCIX_STATUS_HI_MMRBC_SHIFT;
+	if (stat_mmrbc == PCIX_STATUS_HI_MMRBC_4K)
+		stat_mmrbc = PCIX_STATUS_HI_MMRBC_2K;
+	if (cmd_mmrbc > stat_mmrbc) {
+		pcix_cmd &= ~PCIX_COMMAND_MMRBC_MASK;
+		pcix_cmd |= stat_mmrbc << PCIX_COMMAND_MMRBC_SHIFT;
+		e1000_write_pci_cfg(hw, PCIX_COMMAND_REGISTER, &pcix_cmd);
+	}
+}
+
+/**
+ *  e1000_clear_hw_cntrs_base_generic - Clear base hardware counters
+ *  @hw: pointer to the HW structure
+ *
+ *  Clears the base hardware counters by reading the counter registers.
+ **/
+void e1000_clear_hw_cntrs_base_generic(struct e1000_hw *hw)
+{
+	volatile u32 temp;
+
+	DEBUGFUNC("e1000_clear_hw_cntrs_base_generic");
+
+	temp = E1000_READ_REG(hw, E1000_CRCERRS);
+	temp = E1000_READ_REG(hw, E1000_SYMERRS);
+	temp = E1000_READ_REG(hw, E1000_MPC);
+	temp = E1000_READ_REG(hw, E1000_SCC);
+	temp = E1000_READ_REG(hw, E1000_ECOL);
+	temp = E1000_READ_REG(hw, E1000_MCC);
+	temp = E1000_READ_REG(hw, E1000_LATECOL);
+	temp = E1000_READ_REG(hw, E1000_COLC);
+	temp = E1000_READ_REG(hw, E1000_DC);
+	temp = E1000_READ_REG(hw, E1000_SEC);
+	temp = E1000_READ_REG(hw, E1000_RLEC);
+	temp = E1000_READ_REG(hw, E1000_XONRXC);
+	temp = E1000_READ_REG(hw, E1000_XONTXC);
+	temp = E1000_READ_REG(hw, E1000_XOFFRXC);
+	temp = E1000_READ_REG(hw, E1000_XOFFTXC);
+	temp = E1000_READ_REG(hw, E1000_FCRUC);
+	temp = E1000_READ_REG(hw, E1000_GPRC);
+	temp = E1000_READ_REG(hw, E1000_BPRC);
+	temp = E1000_READ_REG(hw, E1000_MPRC);
+	temp = E1000_READ_REG(hw, E1000_GPTC);
+	temp = E1000_READ_REG(hw, E1000_GORCL);
+	temp = E1000_READ_REG(hw, E1000_GORCH);
+	temp = E1000_READ_REG(hw, E1000_GOTCL);
+	temp = E1000_READ_REG(hw, E1000_GOTCH);
+	temp = E1000_READ_REG(hw, E1000_RNBC);
+	temp = E1000_READ_REG(hw, E1000_RUC);
+	temp = E1000_READ_REG(hw, E1000_RFC);
+	temp = E1000_READ_REG(hw, E1000_ROC);
+	temp = E1000_READ_REG(hw, E1000_RJC);
+	temp = E1000_READ_REG(hw, E1000_TORL);
+	temp = E1000_READ_REG(hw, E1000_TORH);
+	temp = E1000_READ_REG(hw, E1000_TOTL);
+	temp = E1000_READ_REG(hw, E1000_TOTH);
+	temp = E1000_READ_REG(hw, E1000_TPR);
+	temp = E1000_READ_REG(hw, E1000_TPT);
+	temp = E1000_READ_REG(hw, E1000_MPTC);
+	temp = E1000_READ_REG(hw, E1000_BPTC);
+}
+
+/**
+ *  e1000_check_for_copper_link_generic - Check for link (Copper)
+ *  @hw: pointer to the HW structure
+ *
+ *  Checks to see of the link status of the hardware has changed.  If a
+ *  change in link status has been detected, then we read the PHY registers
+ *  to get the current speed/duplex if link exists.
+ **/
+s32 e1000_check_for_copper_link_generic(struct e1000_hw *hw)
+{
+	struct e1000_mac_info *mac = &hw->mac;
+	s32 ret_val;
+	bool link;
+
+	DEBUGFUNC("e1000_check_for_copper_link");
+
+	/*
+	 * We only want to go out to the PHY registers to see if Auto-Neg
+	 * has completed and/or if our link status has changed.  The
+	 * get_link_status flag is set upon receiving a Link Status
+	 * Change or Rx Sequence Error interrupt.
+	 */
+	if (!mac->get_link_status) {
+		ret_val = E1000_SUCCESS;
+		goto out;
+	}
+
+	/*
+	 * First we want to see if the MII Status Register reports
+	 * link.  If so, then we want to get the current speed/duplex
+	 * of the PHY.
+	 */
+	ret_val = e1000_phy_has_link_generic(hw, 1, 0, &link);
+	if (ret_val)
+		goto out;
+
+	if (!link)
+		goto out; /* No link detected */
+
+	mac->get_link_status = FALSE;
+
+	/*
+	 * Check if there was DownShift, must be checked
+	 * immediately after link-up
+	 */
+	e1000_check_downshift_generic(hw);
+
+	/*
+	 * If we are forcing speed/duplex, then we simply return since
+	 * we have already determined whether we have link or not.
+	 */
+	if (!mac->autoneg) {
+		ret_val = -E1000_ERR_CONFIG;
+		goto out;
+	}
+
+	/*
+	 * Auto-Neg is enabled.  Auto Speed Detection takes care
+	 * of MAC speed/duplex configuration.  So we only need to
+	 * configure Collision Distance in the MAC.
+	 */
+	e1000_config_collision_dist_generic(hw);
+
+	/*
+	 * Configure Flow Control now that Auto-Neg has completed.
+	 * First, we need to restore the desired flow control
+	 * settings because we may have had to re-autoneg with a
+	 * different link partner.
+	 */
+	ret_val = e1000_config_fc_after_link_up_generic(hw);
+	if (ret_val) {
+		DEBUGOUT("Error configuring flow control\n");
+	}
+
+out:
+	return ret_val;
+}
+
+/**
+ *  e1000_check_for_fiber_link_generic - Check for link (Fiber)
+ *  @hw: pointer to the HW structure
+ *
+ *  Checks for link up on the hardware.  If link is not up and we have
+ *  a signal, then we need to force link up.
+ **/
+s32 e1000_check_for_fiber_link_generic(struct e1000_hw *hw)
+{
+	struct e1000_mac_info *mac = &hw->mac;
+	u32 rxcw;
+	u32 ctrl;
+	u32 status;
+	s32 ret_val = E1000_SUCCESS;
+
+	DEBUGFUNC("e1000_check_for_fiber_link_generic");
+
+	ctrl = E1000_READ_REG(hw, E1000_CTRL);
+	status = E1000_READ_REG(hw, E1000_STATUS);
+	rxcw = E1000_READ_REG(hw, E1000_RXCW);
+
+	/*
+	 * If we don't have link (auto-negotiation failed or link partner
+	 * cannot auto-negotiate), the cable is plugged in (we have signal),
+	 * and our link partner is not trying to auto-negotiate with us (we
+	 * are receiving idles or data), we need to force link up. We also
+	 * need to give auto-negotiation time to complete, in case the cable
+	 * was just plugged in. The autoneg_failed flag does this.
+	 */
+	/* (ctrl & E1000_CTRL_SWDPIN1) == 1 == have signal */
+	if ((ctrl & E1000_CTRL_SWDPIN1) && (!(status & E1000_STATUS_LU)) &&
+	    (!(rxcw & E1000_RXCW_C))) {
+		if (mac->autoneg_failed == 0) {
+			mac->autoneg_failed = 1;
+			goto out;
+		}
+		DEBUGOUT("NOT RXing /C/, disable AutoNeg and force link.\n");
+
+		/* Disable auto-negotiation in the TXCW register */
+		E1000_WRITE_REG(hw, E1000_TXCW, (mac->txcw & ~E1000_TXCW_ANE));
+
+		/* Force link-up and also force full-duplex. */
+		ctrl = E1000_READ_REG(hw, E1000_CTRL);
+		ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD);
+		E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
+
+		/* Configure Flow Control after forcing link up. */
+		ret_val = e1000_config_fc_after_link_up_generic(hw);
+		if (ret_val) {
+			DEBUGOUT("Error configuring flow control\n");
+			goto out;
+		}
+	} else if ((ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) {
+		/*
+		 * If we are forcing link and we are receiving /C/ ordered
+		 * sets, re-enable auto-negotiation in the TXCW register
+		 * and disable forced link in the Device Control register
+		 * in an attempt to auto-negotiate with our link partner.
+		 */
+		DEBUGOUT("RXing /C/, enable AutoNeg and stop forcing link.\n");
+		E1000_WRITE_REG(hw, E1000_TXCW, mac->txcw);
+		E1000_WRITE_REG(hw, E1000_CTRL, (ctrl & ~E1000_CTRL_SLU));
+
+		mac->serdes_has_link = TRUE;
+	}
+
+out:
+	return ret_val;
+}
+
+/**
+ *  e1000_check_for_serdes_link_generic - Check for link (Serdes)
+ *  @hw: pointer to the HW structure
+ *
+ *  Checks for link up on the hardware.  If link is not up and we have
+ *  a signal, then we need to force link up.
+ **/
+s32 e1000_check_for_serdes_link_generic(struct e1000_hw *hw)
+{
+	struct e1000_mac_info *mac = &hw->mac;
+	u32 rxcw;
+	u32 ctrl;
+	u32 status;
+	s32 ret_val = E1000_SUCCESS;
+
+	DEBUGFUNC("e1000_check_for_serdes_link_generic");
+
+	ctrl = E1000_READ_REG(hw, E1000_CTRL);
+	status = E1000_READ_REG(hw, E1000_STATUS);
+	rxcw = E1000_READ_REG(hw, E1000_RXCW);
+
+	/*
+	 * If we don't have link (auto-negotiation failed or link partner
+	 * cannot auto-negotiate), and our link partner is not trying to
+	 * auto-negotiate with us (we are receiving idles or data),
+	 * we need to force link up. We also need to give auto-negotiation
+	 * time to complete.
+	 */
+	/* (ctrl & E1000_CTRL_SWDPIN1) == 1 == have signal */
+	if ((!(status & E1000_STATUS_LU)) && (!(rxcw & E1000_RXCW_C))) {
+		if (mac->autoneg_failed == 0) {
+			mac->autoneg_failed = 1;
+			goto out;
+		}
+		DEBUGOUT("NOT RXing /C/, disable AutoNeg and force link.\n");
+
+		/* Disable auto-negotiation in the TXCW register */
+		E1000_WRITE_REG(hw, E1000_TXCW, (mac->txcw & ~E1000_TXCW_ANE));
+
+		/* Force link-up and also force full-duplex. */
+		ctrl = E1000_READ_REG(hw, E1000_CTRL);
+		ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD);
+		E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
+
+		/* Configure Flow Control after forcing link up. */
+		ret_val = e1000_config_fc_after_link_up_generic(hw);
+		if (ret_val) {
+			DEBUGOUT("Error configuring flow control\n");
+			goto out;
+		}
+	} else if ((ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) {
+		/*
+		 * If we are forcing link and we are receiving /C/ ordered
+		 * sets, re-enable auto-negotiation in the TXCW register
+		 * and disable forced link in the Device Control register
+		 * in an attempt to auto-negotiate with our link partner.
+		 */
+		DEBUGOUT("RXing /C/, enable AutoNeg and stop forcing link.\n");
+		E1000_WRITE_REG(hw, E1000_TXCW, mac->txcw);
+		E1000_WRITE_REG(hw, E1000_CTRL, (ctrl & ~E1000_CTRL_SLU));
+
+		mac->serdes_has_link = TRUE;
+	} else if (!(E1000_TXCW_ANE & E1000_READ_REG(hw, E1000_TXCW))) {
+		/*
+		 * If we force link for non-auto-negotiation switch, check
+		 * link status based on MAC synchronization for internal
+		 * serdes media type.
+		 */
+		/* SYNCH bit and IV bit are sticky. */
+		usec_delay(10);
+		if (E1000_RXCW_SYNCH & E1000_READ_REG(hw, E1000_RXCW)) {
+			if (!(rxcw & E1000_RXCW_IV)) {
+				mac->serdes_has_link = TRUE;
+				DEBUGOUT("SERDES: Link is up.\n");
+			}
+		} else {
+			mac->serdes_has_link = FALSE;
+			DEBUGOUT("SERDES: Link is down.\n");
+		}
+	}
+
+	if (E1000_TXCW_ANE & E1000_READ_REG(hw, E1000_TXCW)) {
+		status = E1000_READ_REG(hw, E1000_STATUS);
+		mac->serdes_has_link = (status & E1000_STATUS_LU)
+					? TRUE
+					: FALSE;
+	}
+
+out:
+	return ret_val;
+}
+
+/**
+ *  e1000_setup_link_generic - Setup flow control and link settings
+ *  @hw: pointer to the HW structure
+ *
+ *  Determines which flow control settings to use, then configures flow
+ *  control.  Calls the appropriate media-specific link configuration
+ *  function.  Assuming the adapter has a valid link partner, a valid link
+ *  should be established.  Assumes the hardware has previously been reset
+ *  and the transmitter and receiver are not enabled.
+ **/
+s32 e1000_setup_link_generic(struct e1000_hw *hw)
+{
+	struct e1000_functions *func = &hw->func;
+	s32 ret_val = E1000_SUCCESS;
+
+	DEBUGFUNC("e1000_setup_link_generic");
+
+	/*
+	 * In the case of the phy reset being blocked, we already have a link.
+	 * We do not need to set it up again.
+	 */
+	if (e1000_check_reset_block(hw))
+		goto out;
+
+	/*
+	 * If flow control is set to default, set flow control based on
+	 * the EEPROM flow control settings.
+	 */
+	if (hw->fc.type == e1000_fc_default) {
+		ret_val = e1000_set_default_fc_generic(hw);
+		if (ret_val)
+			goto out;
+	}
+
+	/*
+	 * We want to save off the original Flow Control configuration just
+	 * in case we get disconnected and then reconnected into a different
+	 * hub or switch with different Flow Control capabilities.
+	 */
+	hw->fc.original_type = hw->fc.type;
+
+	DEBUGOUT1("After fix-ups FlowControl is now = %x\n", hw->fc.type);
+
+	/* Call the necessary media_type subroutine to configure the link. */
+	ret_val = func->setup_physical_interface(hw);
+	if (ret_val)
+		goto out;
+
+	/*
+	 * Initialize the flow control address, type, and PAUSE timer
+	 * registers to their default values.  This is done even if flow
+	 * control is disabled, because it does not hurt anything to
+	 * initialize these registers.
+	 */
+	DEBUGOUT("Initializing the Flow Control address, type and timer regs\n");
+	E1000_WRITE_REG(hw, E1000_FCT, FLOW_CONTROL_TYPE);
+	E1000_WRITE_REG(hw, E1000_FCAH, FLOW_CONTROL_ADDRESS_HIGH);
+	E1000_WRITE_REG(hw, E1000_FCAL, FLOW_CONTROL_ADDRESS_LOW);
+
+	E1000_WRITE_REG(hw, E1000_FCTTV, hw->fc.pause_time);
+
+	ret_val = e1000_set_fc_watermarks_generic(hw);
+
+out:
+	return ret_val;
+}
+
+/**
+ *  e1000_setup_fiber_serdes_link_generic - Setup link for fiber/serdes
+ *  @hw: pointer to the HW structure
+ *
+ *  Configures collision distance and flow control for fiber and serdes
+ *  links.  Upon successful setup, poll for link.
+ **/
+s32 e1000_setup_fiber_serdes_link_generic(struct e1000_hw *hw)
+{
+	u32 ctrl;
+	s32 ret_val = E1000_SUCCESS;
+
+	DEBUGFUNC("e1000_setup_fiber_serdes_link_generic");
+
+	ctrl = E1000_READ_REG(hw, E1000_CTRL);
+
+	/* Take the link out of reset */
+	ctrl &= ~E1000_CTRL_LRST;
+
+	e1000_config_collision_dist_generic(hw);
+
+	ret_val = e1000_commit_fc_settings_generic(hw);
+	if (ret_val)
+		goto out;
+
+	/*
+	 * Since auto-negotiation is enabled, take the link out of reset (the
+	 * link will be in reset, because we previously reset the chip). This
+	 * will restart auto-negotiation.  If auto-negotiation is successful
+	 * then the link-up status bit will be set and the flow control enable
+	 * bits (RFCE and TFCE) will be set according to their negotiated value.
+	 */
+	DEBUGOUT("Auto-negotiation enabled\n");
+
+	E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
+	E1000_WRITE_FLUSH(hw);
+	msec_delay(1);
+
+	/*
+	 * For these adapters, the SW defineable pin 1 is set when the optics
+	 * detect a signal.  If we have a signal, then poll for a "Link-Up"
+	 * indication.
+	 */
+	if (hw->phy.media_type == e1000_media_type_internal_serdes ||
+	    (E1000_READ_REG(hw, E1000_CTRL) & E1000_CTRL_SWDPIN1)) {
+		ret_val = e1000_poll_fiber_serdes_link_generic(hw);
+	} else {
+		DEBUGOUT("No signal detected\n");
+	}
+
+out:
+	return ret_val;
+}
+
+/**
+ *  e1000_config_collision_dist_generic - Configure collision distance
+ *  @hw: pointer to the HW structure
+ *
+ *  Configures the collision distance to the default value and is used
+ *  during link setup. Currently no func pointer exists and all
+ *  implementations are handled in the generic version of this function.
+ **/
+void e1000_config_collision_dist_generic(struct e1000_hw *hw)
+{
+	u32 tctl;
+
+	DEBUGFUNC("e1000_config_collision_dist_generic");
+
+	tctl = E1000_READ_REG(hw, E1000_TCTL);
+
+	tctl &= ~E1000_TCTL_COLD;
+	tctl |= E1000_COLLISION_DISTANCE << E1000_COLD_SHIFT;
+
+	E1000_WRITE_REG(hw, E1000_TCTL, tctl);
+	E1000_WRITE_FLUSH(hw);
+}
+
+/**
+ *  e1000_poll_fiber_serdes_link_generic - Poll for link up
+ *  @hw: pointer to the HW structure
+ *
+ *  Polls for link up by reading the status register, if link fails to come
+ *  up with auto-negotiation, then the link is forced if a signal is detected.
+ **/
+s32 e1000_poll_fiber_serdes_link_generic(struct e1000_hw *hw)
+{
+	struct e1000_mac_info *mac = &hw->mac;
+	u32 i, status;
+	s32 ret_val = E1000_SUCCESS;
+
+	DEBUGFUNC("e1000_poll_fiber_serdes_link_generic");
+
+	/*
+	 * If we have a signal (the cable is plugged in, or assumed true for
+	 * serdes media) then poll for a "Link-Up" indication in the Device
+	 * Status Register.  Time-out if a link isn't seen in 500 milliseconds
+	 * seconds (Auto-negotiation should complete in less than 500
+	 * milliseconds even if the other end is doing it in SW).
+	 */
+	for (i = 0; i < FIBER_LINK_UP_LIMIT; i++) {
+		msec_delay(10);
+		status = E1000_READ_REG(hw, E1000_STATUS);
+		if (status & E1000_STATUS_LU)
+			break;
+	}
+	if (i == FIBER_LINK_UP_LIMIT) {
+		DEBUGOUT("Never got a valid link from auto-neg!!!\n");
+		mac->autoneg_failed = 1;
+		/*
+		 * AutoNeg failed to achieve a link, so we'll call
+		 * mac->check_for_link. This routine will force the
+		 * link up if we detect a signal. This will allow us to
+		 * communicate with non-autonegotiating link partners.
+		 */
+		ret_val = e1000_check_for_link(hw);
+		if (ret_val) {
+			DEBUGOUT("Error while checking for link\n");
+			goto out;
+		}
+		mac->autoneg_failed = 0;
+	} else {
+		mac->autoneg_failed = 0;
+		DEBUGOUT("Valid Link Found\n");
+	}
+
+out:
+	return ret_val;
+}
+
+/**
+ *  e1000_commit_fc_settings_generic - Configure flow control
+ *  @hw: pointer to the HW structure
+ *
+ *  Write the flow control settings to the Transmit Config Word Register (TXCW)
+ *  base on the flow control settings in e1000_mac_info.
+ **/
+s32 e1000_commit_fc_settings_generic(struct e1000_hw *hw)
+{
+	struct e1000_mac_info *mac = &hw->mac;
+	u32 txcw;
+	s32 ret_val = E1000_SUCCESS;
+
+	DEBUGFUNC("e1000_commit_fc_settings_generic");
+
+	/*
+	 * Check for a software override of the flow control settings, and
+	 * setup the device accordingly.  If auto-negotiation is enabled, then
+	 * software will have to set the "PAUSE" bits to the correct value in
+	 * the Transmit Config Word Register (TXCW) and re-start auto-
+	 * negotiation.  However, if auto-negotiation is disabled, then
+	 * software will have to manually configure the two flow control enable
+	 * bits in the CTRL register.
+	 *
+	 * The possible values of the "fc" parameter are:
+	 *      0:  Flow control is completely disabled
+	 *      1:  Rx flow control is enabled (we can receive pause frames,
+	 *          but not send pause frames).
+	 *      2:  Tx flow control is enabled (we can send pause frames but we
+	 *          do not support receiving pause frames).
+	 *      3:  Both Rx and Tx flow control (symmetric) are enabled.
+	 */
+	switch (hw->fc.type) {
+	case e1000_fc_none:
+		/* Flow control completely disabled by a software over-ride. */
+		txcw = (E1000_TXCW_ANE | E1000_TXCW_FD);
+		break;
+	case e1000_fc_rx_pause:
+		/*
+		 * Rx Flow control is enabled and Tx Flow control is disabled
+		 * by a software over-ride. Since there really isn't a way to
+		 * advertise that we are capable of Rx Pause ONLY, we will
+		 * advertise that we support both symmetric and asymmetric RX
+		 * PAUSE.  Later, we will disable the adapter's ability to send
+		 * PAUSE frames.
+		 */
+		txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
+		break;
+	case e1000_fc_tx_pause:
+		/*
+		 * Tx Flow control is enabled, and Rx Flow control is disabled,
+		 * by a software over-ride.
+		 */
+		txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_ASM_DIR);
+		break;
+	case e1000_fc_full:
+		/*
+		 * Flow control (both Rx and Tx) is enabled by a software
+		 * over-ride.
+		 */
+		txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
+		break;
+	default:
+		DEBUGOUT("Flow control param set incorrectly\n");
+		ret_val = -E1000_ERR_CONFIG;
+		goto out;
+		break;
+	}
+
+	E1000_WRITE_REG(hw, E1000_TXCW, txcw);
+	mac->txcw = txcw;
+
+out:
+	return ret_val;
+}
+
+/**
+ *  e1000_set_fc_watermarks_generic - Set flow control high/low watermarks
+ *  @hw: pointer to the HW structure
+ *
+ *  Sets the flow control high/low threshold (watermark) registers.  If
+ *  flow control XON frame transmission is enabled, then set XON frame
+ *  tansmission as well.
+ **/
+s32 e1000_set_fc_watermarks_generic(struct e1000_hw *hw)
+{
+	s32 ret_val = E1000_SUCCESS;
+	u32 fcrtl = 0, fcrth = 0;
+
+	DEBUGFUNC("e1000_set_fc_watermarks_generic");
+
+	/*
+	 * Set the flow control receive threshold registers.  Normally,
+	 * these registers will be set to a default threshold that may be
+	 * adjusted later by the driver's runtime code.  However, if the
+	 * ability to transmit pause frames is not enabled, then these
+	 * registers will be set to 0.
+	 */
+	if (hw->fc.type & e1000_fc_tx_pause) {
+		/*
+		 * We need to set up the Receive Threshold high and low water
+		 * marks as well as (optionally) enabling the transmission of
+		 * XON frames.
+		 */
+		fcrtl = hw->fc.low_water;
+		if (hw->fc.send_xon)
+			fcrtl |= E1000_FCRTL_XONE;
+
+		fcrth = hw->fc.high_water;
+	}
+	E1000_WRITE_REG(hw, E1000_FCRTL, fcrtl);
+	E1000_WRITE_REG(hw, E1000_FCRTH, fcrth);
+
+	return ret_val;
+}
+
+/**
+ *  e1000_set_default_fc_generic - Set flow control default values
+ *  @hw: pointer to the HW structure
+ *
+ *  Read the EEPROM for the default values for flow control and store the
+ *  values.
+ **/
+s32 e1000_set_default_fc_generic(struct e1000_hw *hw)
+{
+	s32 ret_val = E1000_SUCCESS;
+	u16 nvm_data;
+
+	DEBUGFUNC("e1000_set_default_fc_generic");
+
+	/*
+	 * Read and store word 0x0F of the EEPROM. This word contains bits
+	 * that determine the hardware's default PAUSE (flow control) mode,
+	 * a bit that determines whether the HW defaults to enabling or
+	 * disabling auto-negotiation, and the direction of the
+	 * SW defined pins. If there is no SW over-ride of the flow
+	 * control setting, then the variable hw->fc will
+	 * be initialized based on a value in the EEPROM.
+	 */
+	ret_val = e1000_read_nvm(hw, NVM_INIT_CONTROL2_REG, 1, &nvm_data);
+
+	if (ret_val) {
+		DEBUGOUT("NVM Read Error\n");
+		goto out;
+	}
+
+	if ((nvm_data & NVM_WORD0F_PAUSE_MASK) == 0)
+		hw->fc.type = e1000_fc_none;
+	else if ((nvm_data & NVM_WORD0F_PAUSE_MASK) ==
+		 NVM_WORD0F_ASM_DIR)
+		hw->fc.type = e1000_fc_tx_pause;
+	else
+		hw->fc.type = e1000_fc_full;
+
+out:
+	return ret_val;
+}
+
+/**
+ *  e1000_force_mac_fc_generic - Force the MAC's flow control settings
+ *  @hw: pointer to the HW structure
+ *
+ *  Force the MAC's flow control settings.  Sets the TFCE and RFCE bits in the
+ *  device control register to reflect the adapter settings.  TFCE and RFCE
+ *  need to be explicitly set by software when a copper PHY is used because
+ *  autonegotiation is managed by the PHY rather than the MAC.  Software must
+ *  also configure these bits when link is forced on a fiber connection.
+ **/
+s32 e1000_force_mac_fc_generic(struct e1000_hw *hw)
+{
+	u32 ctrl;
+	s32 ret_val = E1000_SUCCESS;
+
+	DEBUGFUNC("e1000_force_mac_fc_generic");
+
+	ctrl = E1000_READ_REG(hw, E1000_CTRL);
+
+	/*
+	 * Because we didn't get link via the internal auto-negotiation
+	 * mechanism (we either forced link or we got link via PHY
+	 * auto-neg), we have to manually enable/disable transmit an
+	 * receive flow control.
+	 *
+	 * The "Case" statement below enables/disable flow control
+	 * according to the "hw->fc.type" parameter.
+	 *
+	 * The possible values of the "fc" parameter are:
+	 *      0:  Flow control is completely disabled
+	 *      1:  Rx flow control is enabled (we can receive pause
+	 *          frames but not send pause frames).
+	 *      2:  Tx flow control is enabled (we can send pause frames
+	 *          frames but we do not receive pause frames).
+	 *      3:  Both Rx and Tx flow control (symmetric) is enabled.
+	 *  other:  No other values should be possible at this point.
+	 */
+	DEBUGOUT1("hw->fc.type = %u\n", hw->fc.type);
+
+	switch (hw->fc.type) {
+	case e1000_fc_none:
+		ctrl &= (~(E1000_CTRL_TFCE | E1000_CTRL_RFCE));
+		break;
+	case e1000_fc_rx_pause:
+		ctrl &= (~E1000_CTRL_TFCE);
+		ctrl |= E1000_CTRL_RFCE;
+		break;
+	case e1000_fc_tx_pause:
+		ctrl &= (~E1000_CTRL_RFCE);
+		ctrl |= E1000_CTRL_TFCE;
+		break;
+	case e1000_fc_full:
+		ctrl |= (E1000_CTRL_TFCE | E1000_CTRL_RFCE);
+		break;
+	default:
+		DEBUGOUT("Flow control param set incorrectly\n");
+		ret_val = -E1000_ERR_CONFIG;
+		goto out;
+	}
+
+	E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
+
+out:
+	return ret_val;
+}
+
+/**
+ *  e1000_config_fc_after_link_up_generic - Configures flow control after link
+ *  @hw: pointer to the HW structure
+ *
+ *  Checks the status of auto-negotiation after link up to ensure that the
+ *  speed and duplex were not forced.  If the link needed to be forced, then
+ *  flow control needs to be forced also.  If auto-negotiation is enabled
+ *  and did not fail, then we configure flow control based on our link
+ *  partner.
+ **/
+s32 e1000_config_fc_after_link_up_generic(struct e1000_hw *hw)
+{
+	struct e1000_mac_info *mac = &hw->mac;
+	s32 ret_val = E1000_SUCCESS;
+	u16 mii_status_reg, mii_nway_adv_reg, mii_nway_lp_ability_reg;
+	u16 speed, duplex;
+
+	DEBUGFUNC("e1000_config_fc_after_link_up_generic");
+
+	/*
+	 * Check for the case where we have fiber media and auto-neg failed
+	 * so we had to force link.  In this case, we need to force the
+	 * configuration of the MAC to match the "fc" parameter.
+	 */
+	if (mac->autoneg_failed) {
+		if (hw->phy.media_type == e1000_media_type_fiber ||
+		    hw->phy.media_type == e1000_media_type_internal_serdes)
+			ret_val = e1000_force_mac_fc_generic(hw);
+	} else {
+		if (hw->phy.media_type == e1000_media_type_copper)
+			ret_val = e1000_force_mac_fc_generic(hw);
+	}
+
+	if (ret_val) {
+		DEBUGOUT("Error forcing flow control settings\n");
+		goto out;
+	}
+
+	/*
+	 * Check for the case where we have copper media and auto-neg is
+	 * enabled.  In this case, we need to check and see if Auto-Neg
+	 * has completed, and if so, how the PHY and link partner has
+	 * flow control configured.
+	 */
+	if ((hw->phy.media_type == e1000_media_type_copper) && mac->autoneg) {
+		/*
+		 * Read the MII Status Register and check to see if AutoNeg
+		 * has completed.  We read this twice because this reg has
+		 * some "sticky" (latched) bits.
+		 */
+		ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
+		if (ret_val)
+			goto out;
+		ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
+		if (ret_val)
+			goto out;
+
+		if (!(mii_status_reg & MII_SR_AUTONEG_COMPLETE)) {
+			DEBUGOUT("Copper PHY and Auto Neg "
+			         "has not completed.\n");
+			goto out;
+		}
+
+		/*
+		 * The AutoNeg process has completed, so we now need to
+		 * read both the Auto Negotiation Advertisement
+		 * Register (Address 4) and the Auto_Negotiation Base
+		 * Page Ability Register (Address 5) to determine how
+		 * flow control was negotiated.
+		 */
+		ret_val = e1000_read_phy_reg(hw, PHY_AUTONEG_ADV,
+					    &mii_nway_adv_reg);
+		if (ret_val)
+			goto out;
+		ret_val = e1000_read_phy_reg(hw, PHY_LP_ABILITY,
+					    &mii_nway_lp_ability_reg);
+		if (ret_val)
+			goto out;
+
+		/*
+		 * Two bits in the Auto Negotiation Advertisement Register
+		 * (Address 4) and two bits in the Auto Negotiation Base
+		 * Page Ability Register (Address 5) determine flow control
+		 * for both the PHY and the link partner.  The following
+		 * table, taken out of the IEEE 802.3ab/D6.0 dated March 25,
+		 * 1999, describes these PAUSE resolution bits and how flow
+		 * control is determined based upon these settings.
+		 * NOTE:  DC = Don't Care
+		 *
+		 *   LOCAL DEVICE  |   LINK PARTNER
+		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution
+		 *-------|---------|-------|---------|--------------------
+		 *   0   |    0    |  DC   |   DC    | e1000_fc_none
+		 *   0   |    1    |   0   |   DC    | e1000_fc_none
+		 *   0   |    1    |   1   |    0    | e1000_fc_none
+		 *   0   |    1    |   1   |    1    | e1000_fc_tx_pause
+		 *   1   |    0    |   0   |   DC    | e1000_fc_none
+		 *   1   |   DC    |   1   |   DC    | e1000_fc_full
+		 *   1   |    1    |   0   |    0    | e1000_fc_none
+		 *   1   |    1    |   0   |    1    | e1000_fc_rx_pause
+		 *
+		 * Are both PAUSE bits set to 1?  If so, this implies
+		 * Symmetric Flow Control is enabled at both ends.  The
+		 * ASM_DIR bits are irrelevant per the spec.
+		 *
+		 * For Symmetric Flow Control:
+		 *
+		 *   LOCAL DEVICE  |   LINK PARTNER
+		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
+		 *-------|---------|-------|---------|--------------------
+		 *   1   |   DC    |   1   |   DC    | E1000_fc_full
+		 *
+		 */
+		if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
+		    (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE)) {
+			/*
+			 * Now we need to check if the user selected Rx ONLY
+			 * of pause frames.  In this case, we had to advertise
+			 * FULL flow control because we could not advertise RX
+			 * ONLY. Hence, we must now check to see if we need to
+			 * turn OFF  the TRANSMISSION of PAUSE frames.
+			 */
+			if (hw->fc.original_type == e1000_fc_full) {
+				hw->fc.type = e1000_fc_full;
+				DEBUGOUT("Flow Control = FULL.\r\n");
+			} else {
+				hw->fc.type = e1000_fc_rx_pause;
+				DEBUGOUT("Flow Control = "
+				         "RX PAUSE frames only.\r\n");
+			}
+		}
+		/*
+		 * For receiving PAUSE frames ONLY.
+		 *
+		 *   LOCAL DEVICE  |   LINK PARTNER
+		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
+		 *-------|---------|-------|---------|--------------------
+		 *   0   |    1    |   1   |    1    | e1000_fc_tx_pause
+		 */
+		else if (!(mii_nway_adv_reg & NWAY_AR_PAUSE) &&
+		          (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
+		          (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
+		          (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) {
+			hw->fc.type = e1000_fc_tx_pause;
+			DEBUGOUT("Flow Control = TX PAUSE frames only.\r\n");
+		}
+		/*
+		 * For transmitting PAUSE frames ONLY.
+		 *
+		 *   LOCAL DEVICE  |   LINK PARTNER
+		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
+		 *-------|---------|-------|---------|--------------------
+		 *   1   |    1    |   0   |    1    | e1000_fc_rx_pause
+		 */
+		else if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
+		         (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
+		         !(mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
+		         (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) {
+			hw->fc.type = e1000_fc_rx_pause;
+			DEBUGOUT("Flow Control = RX PAUSE frames only.\r\n");
+		} else {
+			/*
+			 * Per the IEEE spec, at this point flow control
+			 * should be disabled.
+			 */
+			hw->fc.type = e1000_fc_none;
+			DEBUGOUT("Flow Control = NONE.\r\n");
+		}
+
+		/*
+		 * Now we need to do one last check...  If we auto-
+		 * negotiated to HALF DUPLEX, flow control should not be
+		 * enabled per IEEE 802.3 spec.
+		 */
+		ret_val = e1000_get_speed_and_duplex(hw, &speed, &duplex);
+		if (ret_val) {
+			DEBUGOUT("Error getting link speed and duplex\n");
+			goto out;
+		}
+
+		if (duplex == HALF_DUPLEX)
+			hw->fc.type = e1000_fc_none;
+
+		/*
+		 * Now we call a subroutine to actually force the MAC
+		 * controller to use the correct flow control settings.
+		 */
+		ret_val = e1000_force_mac_fc_generic(hw);
+		if (ret_val) {
+			DEBUGOUT("Error forcing flow control settings\n");
+			goto out;
+		}
+	}
+
+out:
+	return ret_val;
+}
+
+/**
+ *  e1000_get_speed_and_duplex_copper_generic - Retreive current speed/duplex
+ *  @hw: pointer to the HW structure
+ *  @speed: stores the current speed
+ *  @duplex: stores the current duplex
+ *
+ *  Read the status register for the current speed/duplex and store the current
+ *  speed and duplex for copper connections.
+ **/
+s32 e1000_get_speed_and_duplex_copper_generic(struct e1000_hw *hw, u16 *speed,
+                                              u16 *duplex)
+{
+	u32 status;
+
+	DEBUGFUNC("e1000_get_speed_and_duplex_copper_generic");
+
+	status = E1000_READ_REG(hw, E1000_STATUS);
+	if (status & E1000_STATUS_SPEED_1000) {
+		*speed = SPEED_1000;
+		DEBUGOUT("1000 Mbs, ");
+	} else if (status & E1000_STATUS_SPEED_100) {
+		*speed = SPEED_100;
+		DEBUGOUT("100 Mbs, ");
+	} else {
+		*speed = SPEED_10;
+		DEBUGOUT("10 Mbs, ");
+	}
+
+	if (status & E1000_STATUS_FD) {
+		*duplex = FULL_DUPLEX;
+		DEBUGOUT("Full Duplex\n");
+	} else {
+		*duplex = HALF_DUPLEX;
+		DEBUGOUT("Half Duplex\n");
+	}
+
+	return E1000_SUCCESS;
+}
+
+/**
+ *  e1000_get_speed_and_duplex_fiber_generic - Retreive current speed/duplex
+ *  @hw: pointer to the HW structure
+ *  @speed: stores the current speed
+ *  @duplex: stores the current duplex
+ *
+ *  Sets the speed and duplex to gigabit full duplex (the only possible option)
+ *  for fiber/serdes links.
+ **/
+s32 e1000_get_speed_and_duplex_fiber_serdes_generic(struct e1000_hw *hw,
+                                                    u16 *speed, u16 *duplex)
+{
+	DEBUGFUNC("e1000_get_speed_and_duplex_fiber_serdes_generic");
+	UNREFERENCED_PARAMETER(hw);
+
+	*speed = SPEED_1000;
+	*duplex = FULL_DUPLEX;
+
+	return E1000_SUCCESS;
+}
+
+/**
+ *  e1000_get_hw_semaphore_generic - Acquire hardware semaphore
+ *  @hw: pointer to the HW structure
+ *
+ *  Acquire the HW semaphore to access the PHY or NVM
+ **/
+s32 e1000_get_hw_semaphore_generic(struct e1000_hw *hw)
+{
+	u32 swsm;
+	s32 ret_val = E1000_SUCCESS;
+	s32 timeout = hw->nvm.word_size + 1;
+	s32 i = 0;
+
+	DEBUGFUNC("e1000_get_hw_semaphore_generic");
+
+	/* Get the SW semaphore */
+	while (i < timeout) {
+		swsm = E1000_READ_REG(hw, E1000_SWSM);
+		if (!(swsm & E1000_SWSM_SMBI))
+			break;
+
+		usec_delay(50);
+		i++;
+	}
+
+	if (i == timeout) {
+		DEBUGOUT("Driver can't access device - SMBI bit is set.\n");
+		ret_val = -E1000_ERR_NVM;
+		goto out;
+	}
+
+	/* Get the FW semaphore. */
+	for (i = 0; i < timeout; i++) {
+		swsm = E1000_READ_REG(hw, E1000_SWSM);
+		E1000_WRITE_REG(hw, E1000_SWSM, swsm | E1000_SWSM_SWESMBI);
+
+		/* Semaphore acquired if bit latched */
+		if (E1000_READ_REG(hw, E1000_SWSM) & E1000_SWSM_SWESMBI)
+			break;
+
+		usec_delay(50);
+	}
+
+	if (i == timeout) {
+		/* Release semaphores */
+		e1000_put_hw_semaphore_generic(hw);
+		DEBUGOUT("Driver can't access the NVM\n");
+		ret_val = -E1000_ERR_NVM;
+		goto out;
+	}
+
+out:
+	return ret_val;
+}
+
+/**
+ *  e1000_put_hw_semaphore_generic - Release hardware semaphore
+ *  @hw: pointer to the HW structure
+ *
+ *  Release hardware semaphore used to access the PHY or NVM
+ **/
+void e1000_put_hw_semaphore_generic(struct e1000_hw *hw)
+{
+	u32 swsm;
+
+	DEBUGFUNC("e1000_put_hw_semaphore_generic");
+
+	swsm = E1000_READ_REG(hw, E1000_SWSM);
+
+	swsm &= ~(E1000_SWSM_SMBI | E1000_SWSM_SWESMBI);
+
+	E1000_WRITE_REG(hw, E1000_SWSM, swsm);
+}
+
+/**
+ *  e1000_get_auto_rd_done_generic - Check for auto read completion
+ *  @hw: pointer to the HW structure
+ *
+ *  Check EEPROM for Auto Read done bit.
+ **/
+s32 e1000_get_auto_rd_done_generic(struct e1000_hw *hw)
+{
+	s32 i = 0;
+	s32 ret_val = E1000_SUCCESS;
+
+	DEBUGFUNC("e1000_get_auto_rd_done_generic");
+
+	while (i < AUTO_READ_DONE_TIMEOUT) {
+		if (E1000_READ_REG(hw, E1000_EECD) & E1000_EECD_AUTO_RD)
+			break;
+		msec_delay(1);
+		i++;
+	}
+
+	if (i == AUTO_READ_DONE_TIMEOUT) {
+		DEBUGOUT("Auto read by HW from NVM has not completed.\n");
+		ret_val = -E1000_ERR_RESET;
+		goto out;
+	}
+
+out:
+	return ret_val;
+}
+
+/**
+ *  e1000_valid_led_default_generic - Verify a valid default LED config
+ *  @hw: pointer to the HW structure
+ *  @data: pointer to the NVM (EEPROM)
+ *
+ *  Read the EEPROM for the current default LED configuration.  If the
+ *  LED configuration is not valid, set to a valid LED configuration.
+ **/
+s32 e1000_valid_led_default_generic(struct e1000_hw *hw, u16 *data)
+{
+	s32 ret_val;
+
+	DEBUGFUNC("e1000_valid_led_default_generic");
+
+	ret_val = e1000_read_nvm(hw, NVM_ID_LED_SETTINGS, 1, data);
+	if (ret_val) {
+		DEBUGOUT("NVM Read Error\n");
+		goto out;
+	}
+
+	if (*data == ID_LED_RESERVED_0000 || *data == ID_LED_RESERVED_FFFF)
+		*data = ID_LED_DEFAULT;
+
+out:
+	return ret_val;
+}
+
+/**
+ *  e1000_id_led_init_generic -
+ *  @hw: pointer to the HW structure
+ *
+ **/
+s32 e1000_id_led_init_generic(struct e1000_hw * hw)
+{
+	struct e1000_mac_info *mac = &hw->mac;
+	s32 ret_val;
+	const u32 ledctl_mask = 0x000000FF;
+	const u32 ledctl_on = E1000_LEDCTL_MODE_LED_ON;
+	const u32 ledctl_off = E1000_LEDCTL_MODE_LED_OFF;
+	u16 data, i, temp;
+	const u16 led_mask = 0x0F;
+
+	DEBUGFUNC("e1000_id_led_init_generic");
+
+	ret_val = hw->func.valid_led_default(hw, &data);
+	if (ret_val)
+		goto out;
+
+	mac->ledctl_default = E1000_READ_REG(hw, E1000_LEDCTL);
+	mac->ledctl_mode1 = mac->ledctl_default;
+	mac->ledctl_mode2 = mac->ledctl_default;
+
+	for (i = 0; i < 4; i++) {
+		temp = (data >> (i << 2)) & led_mask;
+		switch (temp) {
+		case ID_LED_ON1_DEF2:
+		case ID_LED_ON1_ON2:
+		case ID_LED_ON1_OFF2:
+			mac->ledctl_mode1 &= ~(ledctl_mask << (i << 3));
+			mac->ledctl_mode1 |= ledctl_on << (i << 3);
+			break;
+		case ID_LED_OFF1_DEF2:
+		case ID_LED_OFF1_ON2:
+		case ID_LED_OFF1_OFF2:
+			mac->ledctl_mode1 &= ~(ledctl_mask << (i << 3));
+			mac->ledctl_mode1 |= ledctl_off << (i << 3);
+			break;
+		default:
+			/* Do nothing */
+			break;
+		}
+		switch (temp) {
+		case ID_LED_DEF1_ON2:
+		case ID_LED_ON1_ON2:
+		case ID_LED_OFF1_ON2:
+			mac->ledctl_mode2 &= ~(ledctl_mask << (i << 3));
+			mac->ledctl_mode2 |= ledctl_on << (i << 3);
+			break;
+		case ID_LED_DEF1_OFF2:
+		case ID_LED_ON1_OFF2:
+		case ID_LED_OFF1_OFF2:
+			mac->ledctl_mode2 &= ~(ledctl_mask << (i << 3));
+			mac->ledctl_mode2 |= ledctl_off << (i << 3);
+			break;
+		default:
+			/* Do nothing */
+			break;
+		}
+	}
+
+out:
+	return ret_val;
+}
+
+/**
+ *  e1000_setup_led_generic - Configures SW controllable LED
+ *  @hw: pointer to the HW structure
+ *
+ *  This prepares the SW controllable LED for use and saves the current state
+ *  of the LED so it can be later restored.
+ **/
+s32 e1000_setup_led_generic(struct e1000_hw *hw)
+{
+	u32 ledctl;
+	s32 ret_val = E1000_SUCCESS;
+
+	DEBUGFUNC("e1000_setup_led_generic");
+
+	if (hw->func.setup_led != e1000_setup_led_generic) {
+		ret_val = -E1000_ERR_CONFIG;
+		goto out;
+	}
+
+	if (hw->phy.media_type == e1000_media_type_fiber) {
+		ledctl = E1000_READ_REG(hw, E1000_LEDCTL);
+		hw->mac.ledctl_default = ledctl;
+		/* Turn off LED0 */
+		ledctl &= ~(E1000_LEDCTL_LED0_IVRT |
+		            E1000_LEDCTL_LED0_BLINK |
+		            E1000_LEDCTL_LED0_MODE_MASK);
+		ledctl |= (E1000_LEDCTL_MODE_LED_OFF <<
+		           E1000_LEDCTL_LED0_MODE_SHIFT);
+		E1000_WRITE_REG(hw, E1000_LEDCTL, ledctl);
+	} else if (hw->phy.media_type == e1000_media_type_copper) {
+		E1000_WRITE_REG(hw, E1000_LEDCTL, hw->mac.ledctl_mode1);
+	}
+
+out:
+	return ret_val;
+}
+
+/**
+ *  e1000_cleanup_led_generic - Set LED config to default operation
+ *  @hw: pointer to the HW structure
+ *
+ *  Remove the current LED configuration and set the LED configuration
+ *  to the default value, saved from the EEPROM.
+ **/
+s32 e1000_cleanup_led_generic(struct e1000_hw *hw)
+{
+	s32 ret_val = E1000_SUCCESS;
+
+	DEBUGFUNC("e1000_cleanup_led_generic");
+
+	if (hw->func.cleanup_led != e1000_cleanup_led_generic) {
+		ret_val = -E1000_ERR_CONFIG;
+		goto out;
+	}
+
+	E1000_WRITE_REG(hw, E1000_LEDCTL, hw->mac.ledctl_default);
+
+out:
+	return ret_val;
+}
+
+/**
+ *  e1000_blink_led_generic - Blink LED
+ *  @hw: pointer to the HW structure
+ *
+ *  Blink the led's which are set to be on.
+ **/
+s32 e1000_blink_led_generic(struct e1000_hw *hw)
+{
+	u32 ledctl_blink = 0;
+	u32 i;
+
+	DEBUGFUNC("e1000_blink_led_generic");
+
+	if (hw->phy.media_type == e1000_media_type_fiber) {
+		/* always blink LED0 for PCI-E fiber */
+		ledctl_blink = E1000_LEDCTL_LED0_BLINK |
+		     (E1000_LEDCTL_MODE_LED_ON << E1000_LEDCTL_LED0_MODE_SHIFT);
+	} else {
+		/*
+		 * set the blink bit for each LED that's "on" (0x0E)
+		 * in ledctl_mode2
+		 */
+		ledctl_blink = hw->mac.ledctl_mode2;
+		for (i = 0; i < 4; i++)
+			if (((hw->mac.ledctl_mode2 >> (i * 8)) & 0xFF) ==
+			    E1000_LEDCTL_MODE_LED_ON)
+				ledctl_blink |= (E1000_LEDCTL_LED0_BLINK <<
+				                 (i * 8));
+	}
+
+	E1000_WRITE_REG(hw, E1000_LEDCTL, ledctl_blink);
+
+	return E1000_SUCCESS;
+}
+
+/**
+ *  e1000_led_on_generic - Turn LED on
+ *  @hw: pointer to the HW structure
+ *
+ *  Turn LED on.
+ **/
+s32 e1000_led_on_generic(struct e1000_hw *hw)
+{
+	u32 ctrl;
+
+	DEBUGFUNC("e1000_led_on_generic");
+
+	switch (hw->phy.media_type) {
+	case e1000_media_type_fiber:
+		ctrl = E1000_READ_REG(hw, E1000_CTRL);
+		ctrl &= ~E1000_CTRL_SWDPIN0;
+		ctrl |= E1000_CTRL_SWDPIO0;
+		E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
+		break;
+	case e1000_media_type_copper:
+		E1000_WRITE_REG(hw, E1000_LEDCTL, hw->mac.ledctl_mode2);
+		break;
+	default:
+		break;
+	}
+
+	return E1000_SUCCESS;
+}
+
+/**
+ *  e1000_led_off_generic - Turn LED off
+ *  @hw: pointer to the HW structure
+ *
+ *  Turn LED off.
+ **/
+s32 e1000_led_off_generic(struct e1000_hw *hw)
+{
+	u32 ctrl;
+
+	DEBUGFUNC("e1000_led_off_generic");
+
+	switch (hw->phy.media_type) {
+	case e1000_media_type_fiber:
+		ctrl = E1000_READ_REG(hw, E1000_CTRL);
+		ctrl |= E1000_CTRL_SWDPIN0;
+		ctrl |= E1000_CTRL_SWDPIO0;
+		E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
+		break;
+	case e1000_media_type_copper:
+		E1000_WRITE_REG(hw, E1000_LEDCTL, hw->mac.ledctl_mode1);
+		break;
+	default:
+		break;
+	}
+
+	return E1000_SUCCESS;
+}
+
+/**
+ *  e1000_set_pcie_no_snoop_generic - Set PCI-express capabilities
+ *  @hw: pointer to the HW structure
+ *  @no_snoop: bitmap of snoop events
+ *
+ *  Set the PCI-express register to snoop for events enabled in 'no_snoop'.
+ **/
+void e1000_set_pcie_no_snoop_generic(struct e1000_hw *hw, u32 no_snoop)
+{
+	u32 gcr;
+
+	DEBUGFUNC("e1000_set_pcie_no_snoop_generic");
+
+	if (hw->bus.type != e1000_bus_type_pci_express)
+		goto out;
+
+	if (no_snoop) {
+		gcr = E1000_READ_REG(hw, E1000_GCR);
+		gcr &= ~(PCIE_NO_SNOOP_ALL);
+		gcr |= no_snoop;
+		E1000_WRITE_REG(hw, E1000_GCR, gcr);
+	}
+out:
+	return;
+}
+
+/**
+ *  e1000_disable_pcie_master_generic - Disables PCI-express master access
+ *  @hw: pointer to the HW structure
+ *
+ *  Returns 0 (E1000_SUCCESS) if successful, else returns -10
+ *  (-E1000_ERR_MASTER_REQUESTS_PENDING) if master disable bit has not casued
+ *  the master requests to be disabled.
+ *
+ *  Disables PCI-Express master access and verifies there are no pending
+ *  requests.
+ **/
+s32 e1000_disable_pcie_master_generic(struct e1000_hw *hw)
+{
+	u32 ctrl;
+	s32 timeout = MASTER_DISABLE_TIMEOUT;
+	s32 ret_val = E1000_SUCCESS;
+
+	DEBUGFUNC("e1000_disable_pcie_master_generic");
+
+	if (hw->bus.type != e1000_bus_type_pci_express)
+		goto out;
+
+	ctrl = E1000_READ_REG(hw, E1000_CTRL);
+	ctrl |= E1000_CTRL_GIO_MASTER_DISABLE;
+	E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
+
+	while (timeout) {
+		if (!(E1000_READ_REG(hw, E1000_STATUS) &
+		      E1000_STATUS_GIO_MASTER_ENABLE))
+			break;
+		usec_delay(100);
+		timeout--;
+	}
+
+	if (!timeout) {
+		DEBUGOUT("Master requests are pending.\n");
+		ret_val = -E1000_ERR_MASTER_REQUESTS_PENDING;
+		goto out;
+	}
+
+out:
+	return ret_val;
+}
+
+/**
+ *  e1000_reset_adaptive_generic - Reset Adaptive Interframe Spacing
+ *  @hw: pointer to the HW structure
+ *
+ *  Reset the Adaptive Interframe Spacing throttle to default values.
+ **/
+void e1000_reset_adaptive_generic(struct e1000_hw *hw)
+{
+	struct e1000_mac_info *mac = &hw->mac;
+
+	DEBUGFUNC("e1000_reset_adaptive_generic");
+
+	if (!mac->adaptive_ifs) {
+		DEBUGOUT("Not in Adaptive IFS mode!\n");
+		goto out;
+	}
+
+	if (!mac->ifs_params_forced) {
+		mac->current_ifs_val = 0;
+		mac->ifs_min_val = IFS_MIN;
+		mac->ifs_max_val = IFS_MAX;
+		mac->ifs_step_size = IFS_STEP;
+		mac->ifs_ratio = IFS_RATIO;
+	}
+
+	mac->in_ifs_mode = FALSE;
+	E1000_WRITE_REG(hw, E1000_AIT, 0);
+out:
+	return;
+}
+
+/**
+ *  e1000_update_adaptive_generic - Update Adaptive Interframe Spacing
+ *  @hw: pointer to the HW structure
+ *
+ *  Update the Adaptive Interframe Spacing Throttle value based on the
+ *  time between transmitted packets and time between collisions.
+ **/
+void e1000_update_adaptive_generic(struct e1000_hw *hw)
+{
+	struct e1000_mac_info *mac = &hw->mac;
+
+	DEBUGFUNC("e1000_update_adaptive_generic");
+
+	if (!mac->adaptive_ifs) {
+		DEBUGOUT("Not in Adaptive IFS mode!\n");
+		goto out;
+	}
+
+	if ((mac->collision_delta * mac->ifs_ratio) > mac->tx_packet_delta) {
+		if (mac->tx_packet_delta > MIN_NUM_XMITS) {
+			mac->in_ifs_mode = TRUE;
+			if (mac->current_ifs_val < mac->ifs_max_val) {
+				if (!mac->current_ifs_val)
+					mac->current_ifs_val = mac->ifs_min_val;
+				else
+					mac->current_ifs_val +=
+						mac->ifs_step_size;
+				E1000_WRITE_REG(hw, E1000_AIT, mac->current_ifs_val);
+			}
+		}
+	} else {
+		if (mac->in_ifs_mode &&
+		    (mac->tx_packet_delta <= MIN_NUM_XMITS)) {
+			mac->current_ifs_val = 0;
+			mac->in_ifs_mode = FALSE;
+			E1000_WRITE_REG(hw, E1000_AIT, 0);
+		}
+	}
+out:
+	return;
+}
+
+/**
+ *  e1000_validate_mdi_setting_generic - Verify MDI/MDIx settings
+ *  @hw: pointer to the HW structure
+ *
+ *  Verify that when not using auto-negotitation that MDI/MDIx is correctly
+ *  set, which is forced to MDI mode only.
+ **/
+s32 e1000_validate_mdi_setting_generic(struct e1000_hw *hw)
+{
+	s32 ret_val = E1000_SUCCESS;
+
+	DEBUGFUNC("e1000_validate_mdi_setting_generic");
+
+	if (!hw->mac.autoneg && (hw->phy.mdix == 0 || hw->phy.mdix == 3)) {
+		DEBUGOUT("Invalid MDI setting detected\n");
+		hw->phy.mdix = 1;
+		ret_val = -E1000_ERR_CONFIG;
+		goto out;
+	}
+
+out:
+	return ret_val;
+}
+
+/**
+ *  e1000_write_8bit_ctrl_reg_generic - Write a 8bit CTRL register
+ *  @hw: pointer to the HW structure
+ *  @reg: 32bit register offset such as E1000_SCTL
+ *  @offset: register offset to write to
+ *  @data: data to write at register offset
+ *
+ *  Writes an address/data control type register.  There are several of these
+ *  and they all have the format address << 8 | data and bit 31 is polled for
+ *  completion.
+ **/
+s32 e1000_write_8bit_ctrl_reg_generic(struct e1000_hw *hw, u32 reg,
+                                      u32 offset, u8 data)
+{
+	u32 i, regvalue = 0;
+	s32 ret_val = E1000_SUCCESS;
+
+	DEBUGFUNC("e1000_write_8bit_ctrl_reg_generic");
+
+	/* Set up the address and data */
+	regvalue = ((u32)data) | (offset << E1000_GEN_CTL_ADDRESS_SHIFT);
+	E1000_WRITE_REG(hw, reg, regvalue);
+
+	/* Poll the ready bit to see if the MDI read completed */
+	for (i = 0; i < E1000_GEN_POLL_TIMEOUT; i++) {
+		usec_delay(5);
+		regvalue = E1000_READ_REG(hw, reg);
+		if (regvalue & E1000_GEN_CTL_READY)
+			break;
+	}
+	if (!(regvalue & E1000_GEN_CTL_READY)) {
+		DEBUGOUT1("Reg %08x did not indicate ready\n", reg);
+		ret_val = -E1000_ERR_PHY;
+		goto out;
+	}
+
+out:
+	return ret_val;
+}
--- /dev/null
+++ sys/dev/em/e1000_mac.h
@@ -0,0 +1,93 @@
+/*******************************************************************************
+
+  Copyright (c) 2001-2007, Intel Corporation 
+  All rights reserved.
+  
+  Redistribution and use in source and binary forms, with or without 
+  modification, are permitted provided that the following conditions are met:
+  
+   1. Redistributions of source code must retain the above copyright notice, 
+      this list of conditions and the following disclaimer.
+  
+   2. Redistributions in binary form must reproduce the above copyright 
+      notice, this list of conditions and the following disclaimer in the 
+      documentation and/or other materials provided with the distribution.
+  
+   3. Neither the name of the Intel Corporation nor the names of its 
+      contributors may be used to endorse or promote products derived from 
+      this software without specific prior written permission.
+  
+  THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
+  AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 
+  IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 
+  ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE 
+  LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 
+  CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 
+  SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 
+  INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 
+  CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 
+  ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
+  POSSIBILITY OF SUCH DAMAGE.
+
+*******************************************************************************/
+/* $FreeBSD: src/sys/dev/em/e1000_mac.h,v 1.3.4.1 2007/11/28 23:24:38 jfv Exp $ */
+
+
+#ifndef _E1000_MAC_H_
+#define _E1000_MAC_H_
+
+/*
+ * Functions that should not be called directly from drivers but can be used
+ * by other files in this 'shared code'
+ */
+s32  e1000_blink_led_generic(struct e1000_hw *hw);
+s32  e1000_check_for_copper_link_generic(struct e1000_hw *hw);
+s32  e1000_check_for_fiber_link_generic(struct e1000_hw *hw);
+s32  e1000_check_for_serdes_link_generic(struct e1000_hw *hw);
+s32  e1000_cleanup_led_generic(struct e1000_hw *hw);
+s32  e1000_commit_fc_settings_generic(struct e1000_hw *hw);
+s32  e1000_config_fc_after_link_up_generic(struct e1000_hw *hw);
+s32  e1000_disable_pcie_master_generic(struct e1000_hw *hw);
+s32  e1000_force_mac_fc_generic(struct e1000_hw *hw);
+s32  e1000_get_auto_rd_done_generic(struct e1000_hw *hw);
+s32  e1000_get_bus_info_pci_generic(struct e1000_hw *hw);
+s32  e1000_get_bus_info_pcie_generic(struct e1000_hw *hw);
+s32  e1000_get_hw_semaphore_generic(struct e1000_hw *hw);
+s32  e1000_get_speed_and_duplex_copper_generic(struct e1000_hw *hw, u16 *speed,
+                                               u16 *duplex);
+s32  e1000_get_speed_and_duplex_fiber_serdes_generic(struct e1000_hw *hw,
+                                                     u16 *speed, u16 *duplex);
+s32  e1000_id_led_init_generic(struct e1000_hw *hw);
+s32  e1000_led_on_generic(struct e1000_hw *hw);
+s32  e1000_led_off_generic(struct e1000_hw *hw);
+void e1000_update_mc_addr_list_generic(struct e1000_hw *hw,
+	                               u8 *mc_addr_list, u32 mc_addr_count,
+	                               u32 rar_used_count, u32 rar_count);
+s32  e1000_poll_fiber_serdes_link_generic(struct e1000_hw *hw);
+s32  e1000_set_default_fc_generic(struct e1000_hw *hw);
+s32  e1000_set_fc_watermarks_generic(struct e1000_hw *hw);
+s32  e1000_setup_fiber_serdes_link_generic(struct e1000_hw *hw);
+s32  e1000_setup_led_generic(struct e1000_hw *hw);
+s32  e1000_setup_link_generic(struct e1000_hw *hw);
+s32  e1000_validate_mdi_setting_generic(struct e1000_hw *hw);
+s32  e1000_write_8bit_ctrl_reg_generic(struct e1000_hw *hw, u32 reg,
+                                       u32 offset, u8 data);
+
+u32  e1000_hash_mc_addr_generic(struct e1000_hw *hw, u8 *mc_addr);
+
+void e1000_clear_hw_cntrs_base_generic(struct e1000_hw *hw);
+void e1000_clear_vfta_generic(struct e1000_hw *hw);
+void e1000_config_collision_dist_generic(struct e1000_hw *hw);
+void e1000_init_rx_addrs_generic(struct e1000_hw *hw, u16 rar_count);
+void e1000_mta_set_generic(struct e1000_hw *hw, u32 hash_value);
+void e1000_pcix_mmrbc_workaround_generic(struct e1000_hw *hw);
+void e1000_put_hw_semaphore_generic(struct e1000_hw *hw);
+void e1000_rar_set_generic(struct e1000_hw *hw, u8 *addr, u32 index);
+s32  e1000_check_alt_mac_addr_generic(struct e1000_hw *hw);
+void e1000_remove_device_generic(struct e1000_hw *hw);
+void e1000_reset_adaptive_generic(struct e1000_hw *hw);
+void e1000_set_pcie_no_snoop_generic(struct e1000_hw *hw, u32 no_snoop);
+void e1000_update_adaptive_generic(struct e1000_hw *hw);
+void e1000_write_vfta_generic(struct e1000_hw *hw, u32 offset, u32 value);
+
+#endif
--- /dev/null
+++ sys/dev/em/e1000_defines.h
@@ -0,0 +1,1430 @@
+/*******************************************************************************
+
+  Copyright (c) 2001-2007, Intel Corporation 
+  All rights reserved.
+  
+  Redistribution and use in source and binary forms, with or without 
+  modification, are permitted provided that the following conditions are met:
+  
+   1. Redistributions of source code must retain the above copyright notice, 
+      this list of conditions and the following disclaimer.
+  
+   2. Redistributions in binary form must reproduce the above copyright 
+      notice, this list of conditions and the following disclaimer in the 
+      documentation and/or other materials provided with the distribution.
+  
+   3. Neither the name of the Intel Corporation nor the names of its 
+      contributors may be used to endorse or promote products derived from 
+      this software without specific prior written permission.
+  
+  THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
+  AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 
+  IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 
+  ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE 
+  LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 
+  CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 
+  SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 
+  INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 
+  CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 
+  ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
+  POSSIBILITY OF SUCH DAMAGE.
+
+*******************************************************************************/
+/* $FreeBSD: src/sys/dev/em/e1000_defines.h,v 1.3.4.1 2007/11/28 23:24:37 jfv Exp $ */
+
+
+#ifndef _E1000_DEFINES_H_
+#define _E1000_DEFINES_H_
+
+/* Number of Transmit and Receive Descriptors must be a multiple of 8 */
+#define REQ_TX_DESCRIPTOR_MULTIPLE  8
+#define REQ_RX_DESCRIPTOR_MULTIPLE  8
+
+/* Definitions for power management and wakeup registers */
+/* Wake Up Control */
+#define E1000_WUC_APME       0x00000001 /* APM Enable */
+#define E1000_WUC_PME_EN     0x00000002 /* PME Enable */
+#define E1000_WUC_PME_STATUS 0x00000004 /* PME Status */
+#define E1000_WUC_APMPME     0x00000008 /* Assert PME on APM Wakeup */
+#define E1000_WUC_SPM        0x80000000 /* Enable SPM */
+
+/* Wake Up Filter Control */
+#define E1000_WUFC_LNKC 0x00000001 /* Link Status Change Wakeup Enable */
+#define E1000_WUFC_MAG  0x00000002 /* Magic Packet Wakeup Enable */
+#define E1000_WUFC_EX   0x00000004 /* Directed Exact Wakeup Enable */
+#define E1000_WUFC_MC   0x00000008 /* Directed Multicast Wakeup Enable */
+#define E1000_WUFC_BC   0x00000010 /* Broadcast Wakeup Enable */
+#define E1000_WUFC_ARP  0x00000020 /* ARP Request Packet Wakeup Enable */
+#define E1000_WUFC_IPV4 0x00000040 /* Directed IPv4 Packet Wakeup Enable */
+#define E1000_WUFC_IPV6 0x00000080 /* Directed IPv6 Packet Wakeup Enable */
+#define E1000_WUFC_IGNORE_TCO      0x00008000 /* Ignore WakeOn TCO packets */
+#define E1000_WUFC_FLX0 0x00010000 /* Flexible Filter 0 Enable */
+#define E1000_WUFC_FLX1 0x00020000 /* Flexible Filter 1 Enable */
+#define E1000_WUFC_FLX2 0x00040000 /* Flexible Filter 2 Enable */
+#define E1000_WUFC_FLX3 0x00080000 /* Flexible Filter 3 Enable */
+#define E1000_WUFC_ALL_FILTERS 0x000F00FF /* Mask for all wakeup filters */
+#define E1000_WUFC_FLX_OFFSET 16       /* Offset to the Flexible Filters bits */
+#define E1000_WUFC_FLX_FILTERS 0x000F0000 /* Mask for the 4 flexible filters */
+
+/* Wake Up Status */
+#define E1000_WUS_LNKC         E1000_WUFC_LNKC
+#define E1000_WUS_MAG          E1000_WUFC_MAG
+#define E1000_WUS_EX           E1000_WUFC_EX
+#define E1000_WUS_MC           E1000_WUFC_MC
+#define E1000_WUS_BC           E1000_WUFC_BC
+#define E1000_WUS_ARP          E1000_WUFC_ARP
+#define E1000_WUS_IPV4         E1000_WUFC_IPV4
+#define E1000_WUS_IPV6         E1000_WUFC_IPV6
+#define E1000_WUS_FLX0         E1000_WUFC_FLX0
+#define E1000_WUS_FLX1         E1000_WUFC_FLX1
+#define E1000_WUS_FLX2         E1000_WUFC_FLX2
+#define E1000_WUS_FLX3         E1000_WUFC_FLX3
+#define E1000_WUS_FLX_FILTERS  E1000_WUFC_FLX_FILTERS
+
+/* Wake Up Packet Length */
+#define E1000_WUPL_LENGTH_MASK 0x0FFF   /* Only the lower 12 bits are valid */
+
+/* Four Flexible Filters are supported */
+#define E1000_FLEXIBLE_FILTER_COUNT_MAX 4
+
+/* Each Flexible Filter is at most 128 (0x80) bytes in length */
+#define E1000_FLEXIBLE_FILTER_SIZE_MAX  128
+
+#define E1000_FFLT_SIZE E1000_FLEXIBLE_FILTER_COUNT_MAX
+#define E1000_FFMT_SIZE E1000_FLEXIBLE_FILTER_SIZE_MAX
+#define E1000_FFVT_SIZE E1000_FLEXIBLE_FILTER_SIZE_MAX
+
+/* Extended Device Control */
+#define E1000_CTRL_EXT_GPI0_EN   0x00000001 /* Maps SDP4 to GPI0 */
+#define E1000_CTRL_EXT_GPI1_EN   0x00000002 /* Maps SDP5 to GPI1 */
+#define E1000_CTRL_EXT_PHYINT_EN E1000_CTRL_EXT_GPI1_EN
+#define E1000_CTRL_EXT_GPI2_EN   0x00000004 /* Maps SDP6 to GPI2 */
+#define E1000_CTRL_EXT_GPI3_EN   0x00000008 /* Maps SDP7 to GPI3 */
+#define E1000_CTRL_EXT_SDP4_DATA 0x00000010 /* Value of SW Defineable Pin 4 */
+#define E1000_CTRL_EXT_SDP5_DATA 0x00000020 /* Value of SW Defineable Pin 5 */
+#define E1000_CTRL_EXT_PHY_INT   E1000_CTRL_EXT_SDP5_DATA
+#define E1000_CTRL_EXT_SDP6_DATA 0x00000040 /* Value of SW Defineable Pin 6 */
+#define E1000_CTRL_EXT_SDP7_DATA 0x00000080 /* Value of SW Defineable Pin 7 */
+#define E1000_CTRL_EXT_SDP4_DIR  0x00000100 /* Direction of SDP4 0=in 1=out */
+#define E1000_CTRL_EXT_SDP5_DIR  0x00000200 /* Direction of SDP5 0=in 1=out */
+#define E1000_CTRL_EXT_SDP6_DIR  0x00000400 /* Direction of SDP6 0=in 1=out */
+#define E1000_CTRL_EXT_SDP7_DIR  0x00000800 /* Direction of SDP7 0=in 1=out */
+#define E1000_CTRL_EXT_ASDCHK    0x00001000 /* Initiate an ASD sequence */
+#define E1000_CTRL_EXT_EE_RST    0x00002000 /* Reinitialize from EEPROM */
+#define E1000_CTRL_EXT_IPS       0x00004000 /* Invert Power State */
+#define E1000_CTRL_EXT_SPD_BYPS  0x00008000 /* Speed Select Bypass */
+#define E1000_CTRL_EXT_RO_DIS    0x00020000 /* Relaxed Ordering disable */
+#define E1000_CTRL_EXT_LINK_MODE_MASK 0x00C00000
+#define E1000_CTRL_EXT_LINK_MODE_GMII 0x00000000
+#define E1000_CTRL_EXT_LINK_MODE_TBI  0x00C00000
+#define E1000_CTRL_EXT_LINK_MODE_KMRN    0x00000000
+#define E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES  0x00C00000
+#define E1000_CTRL_EXT_LINK_MODE_PCIX_SERDES  0x00800000
+#define E1000_CTRL_EXT_LINK_MODE_SGMII   0x00800000
+#define E1000_CTRL_EXT_EIAME          0x01000000
+#define E1000_CTRL_EXT_IRCA           0x00000001
+#define E1000_CTRL_EXT_WR_WMARK_MASK  0x03000000
+#define E1000_CTRL_EXT_WR_WMARK_256   0x00000000
+#define E1000_CTRL_EXT_WR_WMARK_320   0x01000000
+#define E1000_CTRL_EXT_WR_WMARK_384   0x02000000
+#define E1000_CTRL_EXT_WR_WMARK_448   0x03000000
+#define E1000_CTRL_EXT_CANC           0x04000000 /* Interrupt delay cancellation */
+#define E1000_CTRL_EXT_DRV_LOAD       0x10000000 /* Driver loaded bit for FW */
+#define E1000_CTRL_EXT_IAME           0x08000000 /* Interrupt acknowledge Auto-mask */
+#define E1000_CTRL_EXT_INT_TIMER_CLR  0x20000000 /* Clear Interrupt timers after IMS clear */
+#define E1000_CRTL_EXT_PB_PAREN       0x01000000 /* packet buffer parity error detection enabled */
+#define E1000_CTRL_EXT_DF_PAREN       0x02000000 /* descriptor FIFO parity error detection enable */
+#define E1000_CTRL_EXT_GHOST_PAREN    0x40000000
+#define E1000_CTRL_EXT_PBA_CLR        0x80000000 /* PBA Clear */
+#define E1000_I2CCMD_REG_ADDR_SHIFT   16
+#define E1000_I2CCMD_REG_ADDR         0x00FF0000
+#define E1000_I2CCMD_PHY_ADDR_SHIFT   24
+#define E1000_I2CCMD_PHY_ADDR         0x07000000
+#define E1000_I2CCMD_OPCODE_READ      0x08000000
+#define E1000_I2CCMD_OPCODE_WRITE     0x00000000
+#define E1000_I2CCMD_RESET            0x10000000
+#define E1000_I2CCMD_READY            0x20000000
+#define E1000_I2CCMD_INTERRUPT_ENA    0x40000000
+#define E1000_I2CCMD_ERROR            0x80000000
+#define E1000_MAX_SGMII_PHY_REG_ADDR  255
+#define E1000_I2CCMD_PHY_TIMEOUT      200
+
+/* Receive Decriptor bit definitions */
+#define E1000_RXD_STAT_DD       0x01    /* Descriptor Done */
+#define E1000_RXD_STAT_EOP      0x02    /* End of Packet */
+#define E1000_RXD_STAT_IXSM     0x04    /* Ignore checksum */
+#define E1000_RXD_STAT_VP       0x08    /* IEEE VLAN Packet */
+#define E1000_RXD_STAT_UDPCS    0x10    /* UDP xsum caculated */
+#define E1000_RXD_STAT_TCPCS    0x20    /* TCP xsum calculated */
+#define E1000_RXD_STAT_IPCS     0x40    /* IP xsum calculated */
+#define E1000_RXD_STAT_PIF      0x80    /* passed in-exact filter */
+#define E1000_RXD_STAT_CRCV     0x100   /* Speculative CRC Valid */
+#define E1000_RXD_STAT_IPIDV    0x200   /* IP identification valid */
+#define E1000_RXD_STAT_UDPV     0x400   /* Valid UDP checksum */
+#define E1000_RXD_STAT_DYNINT   0x800   /* Pkt caused INT via DYNINT */
+#define E1000_RXD_STAT_ACK      0x8000  /* ACK Packet indication */
+#define E1000_RXD_ERR_CE        0x01    /* CRC Error */
+#define E1000_RXD_ERR_SE        0x02    /* Symbol Error */
+#define E1000_RXD_ERR_SEQ       0x04    /* Sequence Error */
+#define E1000_RXD_ERR_CXE       0x10    /* Carrier Extension Error */
+#define E1000_RXD_ERR_TCPE      0x20    /* TCP/UDP Checksum Error */
+#define E1000_RXD_ERR_IPE       0x40    /* IP Checksum Error */
+#define E1000_RXD_ERR_RXE       0x80    /* Rx Data Error */
+#define E1000_RXD_SPC_VLAN_MASK 0x0FFF  /* VLAN ID is in lower 12 bits */
+#define E1000_RXD_SPC_PRI_MASK  0xE000  /* Priority is in upper 3 bits */
+#define E1000_RXD_SPC_PRI_SHIFT 13
+#define E1000_RXD_SPC_CFI_MASK  0x1000  /* CFI is bit 12 */
+#define E1000_RXD_SPC_CFI_SHIFT 12
+
+#define E1000_RXDEXT_STATERR_CE    0x01000000
+#define E1000_RXDEXT_STATERR_SE    0x02000000
+#define E1000_RXDEXT_STATERR_SEQ   0x04000000
+#define E1000_RXDEXT_STATERR_CXE   0x10000000
+#define E1000_RXDEXT_STATERR_TCPE  0x20000000
+#define E1000_RXDEXT_STATERR_IPE   0x40000000
+#define E1000_RXDEXT_STATERR_RXE   0x80000000
+
+/* mask to determine if packets should be dropped due to frame errors */
+#define E1000_RXD_ERR_FRAME_ERR_MASK ( \
+    E1000_RXD_ERR_CE  |                \
+    E1000_RXD_ERR_SE  |                \
+    E1000_RXD_ERR_SEQ |                \
+    E1000_RXD_ERR_CXE |                \
+    E1000_RXD_ERR_RXE)
+
+/* Same mask, but for extended and packet split descriptors */
+#define E1000_RXDEXT_ERR_FRAME_ERR_MASK ( \
+    E1000_RXDEXT_STATERR_CE  |            \
+    E1000_RXDEXT_STATERR_SE  |            \
+    E1000_RXDEXT_STATERR_SEQ |            \
+    E1000_RXDEXT_STATERR_CXE |            \
+    E1000_RXDEXT_STATERR_RXE)
+
+#define E1000_MRQC_ENABLE_MASK                 0x00000007
+#define E1000_MRQC_ENABLE_RSS_2Q               0x00000001
+#define E1000_MRQC_ENABLE_RSS_INT              0x00000004
+#define E1000_MRQC_RSS_FIELD_MASK              0xFFFF0000
+#define E1000_MRQC_RSS_FIELD_IPV4_TCP          0x00010000
+#define E1000_MRQC_RSS_FIELD_IPV4              0x00020000
+#define E1000_MRQC_RSS_FIELD_IPV6_TCP_EX       0x00040000
+#define E1000_MRQC_RSS_FIELD_IPV6_EX           0x00080000
+#define E1000_MRQC_RSS_FIELD_IPV6              0x00100000
+#define E1000_MRQC_RSS_FIELD_IPV6_TCP          0x00200000
+
+#define E1000_RXDPS_HDRSTAT_HDRSP              0x00008000
+#define E1000_RXDPS_HDRSTAT_HDRLEN_MASK        0x000003FF
+
+/* Management Control */
+#define E1000_MANC_SMBUS_EN      0x00000001 /* SMBus Enabled - RO */
+#define E1000_MANC_ASF_EN        0x00000002 /* ASF Enabled - RO */
+#define E1000_MANC_R_ON_FORCE    0x00000004 /* Reset on Force TCO - RO */
+#define E1000_MANC_RMCP_EN       0x00000100 /* Enable RCMP 026Fh Filtering */
+#define E1000_MANC_0298_EN       0x00000200 /* Enable RCMP 0298h Filtering */
+#define E1000_MANC_IPV4_EN       0x00000400 /* Enable IPv4 */
+#define E1000_MANC_IPV6_EN       0x00000800 /* Enable IPv6 */
+#define E1000_MANC_SNAP_EN       0x00001000 /* Accept LLC/SNAP */
+#define E1000_MANC_ARP_EN        0x00002000 /* Enable ARP Request Filtering */
+/* Enable Neighbor Discovery Filtering */
+#define E1000_MANC_NEIGHBOR_EN   0x00004000
+#define E1000_MANC_ARP_RES_EN    0x00008000 /* Enable ARP response Filtering */
+#define E1000_MANC_TCO_RESET     0x00010000 /* TCO Reset Occurred */
+#define E1000_MANC_RCV_TCO_EN    0x00020000 /* Receive TCO Packets Enabled */
+#define E1000_MANC_REPORT_STATUS 0x00040000 /* Status Reporting Enabled */
+#define E1000_MANC_RCV_ALL       0x00080000 /* Receive All Enabled */
+#define E1000_MANC_BLK_PHY_RST_ON_IDE   0x00040000 /* Block phy resets */
+/* Enable MAC address filtering */
+#define E1000_MANC_EN_MAC_ADDR_FILTER   0x00100000
+/* Enable MNG packets to host memory */
+#define E1000_MANC_EN_MNG2HOST   0x00200000
+/* Enable IP address filtering */
+#define E1000_MANC_EN_IP_ADDR_FILTER    0x00400000
+#define E1000_MANC_EN_XSUM_FILTER   0x00800000 /* Enable checksum filtering */
+#define E1000_MANC_BR_EN            0x01000000 /* Enable broadcast filtering */
+#define E1000_MANC_SMB_REQ       0x01000000 /* SMBus Request */
+#define E1000_MANC_SMB_GNT       0x02000000 /* SMBus Grant */
+#define E1000_MANC_SMB_CLK_IN    0x04000000 /* SMBus Clock In */
+#define E1000_MANC_SMB_DATA_IN   0x08000000 /* SMBus Data In */
+#define E1000_MANC_SMB_DATA_OUT  0x10000000 /* SMBus Data Out */
+#define E1000_MANC_SMB_CLK_OUT   0x20000000 /* SMBus Clock Out */
+
+#define E1000_MANC_SMB_DATA_OUT_SHIFT  28 /* SMBus Data Out Shift */
+#define E1000_MANC_SMB_CLK_OUT_SHIFT   29 /* SMBus Clock Out Shift */
+
+/* Receive Control */
+#define E1000_RCTL_RST            0x00000001    /* Software reset */
+#define E1000_RCTL_EN             0x00000002    /* enable */
+#define E1000_RCTL_SBP            0x00000004    /* store bad packet */
+#define E1000_RCTL_UPE            0x00000008    /* unicast promiscuous enable */
+#define E1000_RCTL_MPE            0x00000010    /* multicast promiscuous enab */
+#define E1000_RCTL_LPE            0x00000020    /* long packet enable */
+#define E1000_RCTL_LBM_NO         0x00000000    /* no loopback mode */
+#define E1000_RCTL_LBM_MAC        0x00000040    /* MAC loopback mode */
+#define E1000_RCTL_LBM_SLP        0x00000080    /* serial link loopback mode */
+#define E1000_RCTL_LBM_TCVR       0x000000C0    /* tcvr loopback mode */
+#define E1000_RCTL_DTYP_MASK      0x00000C00    /* Descriptor type mask */
+#define E1000_RCTL_DTYP_PS        0x00000400    /* Packet Split descriptor */
+#define E1000_RCTL_RDMTS_HALF     0x00000000    /* rx desc min threshold size */
+#define E1000_RCTL_RDMTS_QUAT     0x00000100    /* rx desc min threshold size */
+#define E1000_RCTL_RDMTS_EIGTH    0x00000200    /* rx desc min threshold size */
+#define E1000_RCTL_MO_SHIFT       12            /* multicast offset shift */
+#define E1000_RCTL_MO_0           0x00000000    /* multicast offset 11:0 */
+#define E1000_RCTL_MO_1           0x00001000    /* multicast offset 12:1 */
+#define E1000_RCTL_MO_2           0x00002000    /* multicast offset 13:2 */
+#define E1000_RCTL_MO_3           0x00003000    /* multicast offset 15:4 */
+#define E1000_RCTL_MDR            0x00004000    /* multicast desc ring 0 */
+#define E1000_RCTL_BAM            0x00008000    /* broadcast enable */
+/* these buffer sizes are valid if E1000_RCTL_BSEX is 0 */
+#define E1000_RCTL_SZ_2048        0x00000000    /* rx buffer size 2048 */
+#define E1000_RCTL_SZ_1024        0x00010000    /* rx buffer size 1024 */
+#define E1000_RCTL_SZ_512         0x00020000    /* rx buffer size 512 */
+#define E1000_RCTL_SZ_256         0x00030000    /* rx buffer size 256 */
+/* these buffer sizes are valid if E1000_RCTL_BSEX is 1 */
+#define E1000_RCTL_SZ_16384       0x00010000    /* rx buffer size 16384 */
+#define E1000_RCTL_SZ_8192        0x00020000    /* rx buffer size 8192 */
+#define E1000_RCTL_SZ_4096        0x00030000    /* rx buffer size 4096 */
+#define E1000_RCTL_VFE            0x00040000    /* vlan filter enable */
+#define E1000_RCTL_CFIEN          0x00080000    /* canonical form enable */
+#define E1000_RCTL_CFI            0x00100000    /* canonical form indicator */
+#define E1000_RCTL_DPF            0x00400000    /* discard pause frames */
+#define E1000_RCTL_PMCF           0x00800000    /* pass MAC control frames */
+#define E1000_RCTL_BSEX           0x02000000    /* Buffer size extension */
+#define E1000_RCTL_SECRC          0x04000000    /* Strip Ethernet CRC */
+#define E1000_RCTL_FLXBUF_MASK    0x78000000    /* Flexible buffer size */
+#define E1000_RCTL_FLXBUF_SHIFT   27            /* Flexible buffer shift */
+
+/*
+ * Use byte values for the following shift parameters
+ * Usage:
+ *     psrctl |= (((ROUNDUP(value0, 128) >> E1000_PSRCTL_BSIZE0_SHIFT) &
+ *                  E1000_PSRCTL_BSIZE0_MASK) |
+ *                ((ROUNDUP(value1, 1024) >> E1000_PSRCTL_BSIZE1_SHIFT) &
+ *                  E1000_PSRCTL_BSIZE1_MASK) |
+ *                ((ROUNDUP(value2, 1024) << E1000_PSRCTL_BSIZE2_SHIFT) &
+ *                  E1000_PSRCTL_BSIZE2_MASK) |
+ *                ((ROUNDUP(value3, 1024) << E1000_PSRCTL_BSIZE3_SHIFT) |;
+ *                  E1000_PSRCTL_BSIZE3_MASK))
+ * where value0 = [128..16256],  default=256
+ *       value1 = [1024..64512], default=4096
+ *       value2 = [0..64512],    default=4096
+ *       value3 = [0..64512],    default=0
+ */
+
+#define E1000_PSRCTL_BSIZE0_MASK   0x0000007F
+#define E1000_PSRCTL_BSIZE1_MASK   0x00003F00
+#define E1000_PSRCTL_BSIZE2_MASK   0x003F0000
+#define E1000_PSRCTL_BSIZE3_MASK   0x3F000000
+
+#define E1000_PSRCTL_BSIZE0_SHIFT  7            /* Shift _right_ 7 */
+#define E1000_PSRCTL_BSIZE1_SHIFT  2            /* Shift _right_ 2 */
+#define E1000_PSRCTL_BSIZE2_SHIFT  6            /* Shift _left_ 6 */
+#define E1000_PSRCTL_BSIZE3_SHIFT 14            /* Shift _left_ 14 */
+
+/* SWFW_SYNC Definitions */
+#define E1000_SWFW_EEP_SM   0x1
+#define E1000_SWFW_PHY0_SM  0x2
+#define E1000_SWFW_PHY1_SM  0x4
+
+/* FACTPS Definitions */
+#define E1000_FACTPS_LFS    0x40000000  /* LAN Function Select */
+/* Device Control */
+#define E1000_CTRL_FD       0x00000001  /* Full duplex.0=half; 1=full */
+#define E1000_CTRL_BEM      0x00000002  /* Endian Mode.0=little,1=big */
+#define E1000_CTRL_PRIOR    0x00000004  /* Priority on PCI. 0=rx,1=fair */
+#define E1000_CTRL_GIO_MASTER_DISABLE 0x00000004 /*Blocks new Master requests */
+#define E1000_CTRL_LRST     0x00000008  /* Link reset. 0=normal,1=reset */
+#define E1000_CTRL_TME      0x00000010  /* Test mode. 0=normal,1=test */
+#define E1000_CTRL_SLE      0x00000020  /* Serial Link on 0=dis,1=en */
+#define E1000_CTRL_ASDE     0x00000020  /* Auto-speed detect enable */
+#define E1000_CTRL_SLU      0x00000040  /* Set link up (Force Link) */
+#define E1000_CTRL_ILOS     0x00000080  /* Invert Loss-Of Signal */
+#define E1000_CTRL_SPD_SEL  0x00000300  /* Speed Select Mask */
+#define E1000_CTRL_SPD_10   0x00000000  /* Force 10Mb */
+#define E1000_CTRL_SPD_100  0x00000100  /* Force 100Mb */
+#define E1000_CTRL_SPD_1000 0x00000200  /* Force 1Gb */
+#define E1000_CTRL_BEM32    0x00000400  /* Big Endian 32 mode */
+#define E1000_CTRL_FRCSPD   0x00000800  /* Force Speed */
+#define E1000_CTRL_FRCDPX   0x00001000  /* Force Duplex */
+#define E1000_CTRL_D_UD_EN  0x00002000  /* Dock/Undock enable */
+#define E1000_CTRL_D_UD_POLARITY 0x00004000 /* Defined polarity of Dock/Undock indication in SDP[0] */
+#define E1000_CTRL_FORCE_PHY_RESET 0x00008000 /* Reset both PHY ports, through PHYRST_N pin */
+#define E1000_CTRL_EXT_LINK_EN 0x00010000 /* enable link status from external LINK_0 and LINK_1 pins */
+#define E1000_CTRL_SWDPIN0  0x00040000  /* SWDPIN 0 value */
+#define E1000_CTRL_SWDPIN1  0x00080000  /* SWDPIN 1 value */
+#define E1000_CTRL_SWDPIN2  0x00100000  /* SWDPIN 2 value */
+#define E1000_CTRL_SWDPIN3  0x00200000  /* SWDPIN 3 value */
+#define E1000_CTRL_SWDPIO0  0x00400000  /* SWDPIN 0 Input or output */
+#define E1000_CTRL_SWDPIO1  0x00800000  /* SWDPIN 1 input or output */
+#define E1000_CTRL_SWDPIO2  0x01000000  /* SWDPIN 2 input or output */
+#define E1000_CTRL_SWDPIO3  0x02000000  /* SWDPIN 3 input or output */
+#define E1000_CTRL_RST      0x04000000  /* Global reset */
+#define E1000_CTRL_RFCE     0x08000000  /* Receive Flow Control enable */
+#define E1000_CTRL_TFCE     0x10000000  /* Transmit flow control enable */
+#define E1000_CTRL_RTE      0x20000000  /* Routing tag enable */
+#define E1000_CTRL_VME      0x40000000  /* IEEE VLAN mode enable */
+#define E1000_CTRL_PHY_RST  0x80000000  /* PHY Reset */
+#define E1000_CTRL_SW2FW_INT 0x02000000  /* Initiate an interrupt to manageability engine */
+#define E1000_CTRL_I2C_ENA  0x02000000  /* I2C enable */
+
+/* Bit definitions for the Management Data IO (MDIO) and Management Data
+ * Clock (MDC) pins in the Device Control Register.
+ */
+#define E1000_CTRL_PHY_RESET_DIR  E1000_CTRL_SWDPIO0
+#define E1000_CTRL_PHY_RESET      E1000_CTRL_SWDPIN0
+#define E1000_CTRL_MDIO_DIR       E1000_CTRL_SWDPIO2
+#define E1000_CTRL_MDIO           E1000_CTRL_SWDPIN2
+#define E1000_CTRL_MDC_DIR        E1000_CTRL_SWDPIO3
+#define E1000_CTRL_MDC            E1000_CTRL_SWDPIN3
+#define E1000_CTRL_PHY_RESET_DIR4 E1000_CTRL_EXT_SDP4_DIR
+#define E1000_CTRL_PHY_RESET4     E1000_CTRL_EXT_SDP4_DATA
+
+#define E1000_CONNSW_ENRGSRC             0x4
+#define E1000_PCS_LCTL_FLV_LINK_UP       1
+#define E1000_PCS_LCTL_FSV_10            0
+#define E1000_PCS_LCTL_FSV_100           2
+#define E1000_PCS_LCTL_FSV_1000          4
+#define E1000_PCS_LCTL_FDV_FULL          8
+#define E1000_PCS_LCTL_FSD               0x10
+#define E1000_PCS_LCTL_FORCE_LINK        0x20
+#define E1000_PCS_LCTL_LOW_LINK_LATCH    0x40
+#define E1000_PCS_LCTL_AN_ENABLE         0x10000
+#define E1000_PCS_LCTL_AN_RESTART        0x20000
+#define E1000_PCS_LCTL_AN_TIMEOUT        0x40000
+#define E1000_PCS_LCTL_AN_SGMII_BYPASS   0x80000
+#define E1000_PCS_LCTL_AN_SGMII_TRIGGER  0x100000
+#define E1000_PCS_LCTL_FAST_LINK_TIMER   0x1000000
+#define E1000_PCS_LCTL_LINK_OK_FIX       0x2000000
+#define E1000_PCS_LCTL_CRS_ON_NI         0x4000000
+#define E1000_ENABLE_SERDES_LOOPBACK     0x0410
+
+#define E1000_PCS_LSTS_LINK_OK           1
+#define E1000_PCS_LSTS_SPEED_10          0
+#define E1000_PCS_LSTS_SPEED_100         2
+#define E1000_PCS_LSTS_SPEED_1000        4
+#define E1000_PCS_LSTS_DUPLEX_FULL       8
+#define E1000_PCS_LSTS_SYNK_OK           0x10
+#define E1000_PCS_LSTS_AN_COMPLETE       0x10000
+#define E1000_PCS_LSTS_AN_PAGE_RX        0x20000
+#define E1000_PCS_LSTS_AN_TIMED_OUT      0x40000
+#define E1000_PCS_LSTS_AN_REMOTE_FAULT   0x80000
+#define E1000_PCS_LSTS_AN_ERROR_RWS      0x100000
+
+/* Device Status */
+#define E1000_STATUS_FD         0x00000001      /* Full duplex.0=half,1=full */
+#define E1000_STATUS_LU         0x00000002      /* Link up.0=no,1=link */
+#define E1000_STATUS_FUNC_MASK  0x0000000C      /* PCI Function Mask */
+#define E1000_STATUS_FUNC_SHIFT 2
+#define E1000_STATUS_FUNC_0     0x00000000      /* Function 0 */
+#define E1000_STATUS_FUNC_1     0x00000004      /* Function 1 */
+#define E1000_STATUS_TXOFF      0x00000010      /* transmission paused */
+#define E1000_STATUS_TBIMODE    0x00000020      /* TBI mode */
+#define E1000_STATUS_SPEED_MASK 0x000000C0
+#define E1000_STATUS_SPEED_10   0x00000000      /* Speed 10Mb/s */
+#define E1000_STATUS_SPEED_100  0x00000040      /* Speed 100Mb/s */
+#define E1000_STATUS_SPEED_1000 0x00000080      /* Speed 1000Mb/s */
+#define E1000_STATUS_LAN_INIT_DONE 0x00000200   /* Lan Init Completion by NVM */
+#define E1000_STATUS_ASDV       0x00000300      /* Auto speed detect value */
+#define E1000_STATUS_DOCK_CI    0x00000800      /* Change in Dock/Undock state. Clear on write '0'. */
+#define E1000_STATUS_GIO_MASTER_ENABLE 0x00080000 /* Status of Master requests. */
+#define E1000_STATUS_MTXCKOK    0x00000400      /* MTX clock running OK */
+#define E1000_STATUS_PCI66      0x00000800      /* In 66Mhz slot */
+#define E1000_STATUS_BUS64      0x00001000      /* In 64 bit slot */
+#define E1000_STATUS_PCIX_MODE  0x00002000      /* PCI-X mode */
+#define E1000_STATUS_PCIX_SPEED 0x0000C000      /* PCI-X bus speed */
+#define E1000_STATUS_BMC_SKU_0  0x00100000 /* BMC USB redirect disabled */
+#define E1000_STATUS_BMC_SKU_1  0x00200000 /* BMC SRAM disabled */
+#define E1000_STATUS_BMC_SKU_2  0x00400000 /* BMC SDRAM disabled */
+#define E1000_STATUS_BMC_CRYPTO 0x00800000 /* BMC crypto disabled */
+#define E1000_STATUS_BMC_LITE   0x01000000 /* BMC external code execution disabled */
+#define E1000_STATUS_RGMII_ENABLE 0x02000000 /* RGMII disabled */
+#define E1000_STATUS_FUSE_8       0x04000000
+#define E1000_STATUS_FUSE_9       0x08000000
+#define E1000_STATUS_SERDES0_DIS  0x10000000 /* SERDES disabled on port 0 */
+#define E1000_STATUS_SERDES1_DIS  0x20000000 /* SERDES disabled on port 1 */
+
+/* Constants used to intrepret the masked PCI-X bus speed. */
+#define E1000_STATUS_PCIX_SPEED_66  0x00000000 /* PCI-X bus speed  50-66 MHz */
+#define E1000_STATUS_PCIX_SPEED_100 0x00004000 /* PCI-X bus speed  66-100 MHz */
+#define E1000_STATUS_PCIX_SPEED_133 0x00008000 /* PCI-X bus speed 100-133 MHz */
+
+#define SPEED_10    10
+#define SPEED_100   100
+#define SPEED_1000  1000
+#define HALF_DUPLEX 1
+#define FULL_DUPLEX 2
+
+#define PHY_FORCE_TIME   20
+
+#define ADVERTISE_10_HALF                 0x0001
+#define ADVERTISE_10_FULL                 0x0002
+#define ADVERTISE_100_HALF                0x0004
+#define ADVERTISE_100_FULL                0x0008
+#define ADVERTISE_1000_HALF               0x0010 /* Not used, just FYI */
+#define ADVERTISE_1000_FULL               0x0020
+
+/* 1000/H is not supported, nor spec-compliant. */
+#define E1000_ALL_SPEED_DUPLEX ( ADVERTISE_10_HALF |   ADVERTISE_10_FULL | \
+                                ADVERTISE_100_HALF |  ADVERTISE_100_FULL | \
+                                                     ADVERTISE_1000_FULL)
+#define E1000_ALL_NOT_GIG      ( ADVERTISE_10_HALF |   ADVERTISE_10_FULL | \
+                                ADVERTISE_100_HALF |  ADVERTISE_100_FULL)
+#define E1000_ALL_100_SPEED    (ADVERTISE_100_HALF |  ADVERTISE_100_FULL)
+#define E1000_ALL_10_SPEED      (ADVERTISE_10_HALF |   ADVERTISE_10_FULL)
+#define E1000_ALL_FULL_DUPLEX   (ADVERTISE_10_FULL |  ADVERTISE_100_FULL | \
+                                                     ADVERTISE_1000_FULL)
+#define E1000_ALL_HALF_DUPLEX   (ADVERTISE_10_HALF |  ADVERTISE_100_HALF)
+
+#define AUTONEG_ADVERTISE_SPEED_DEFAULT   E1000_ALL_SPEED_DUPLEX
+
+/* LED Control */
+#define E1000_LEDCTL_LED0_MODE_MASK       0x0000000F
+#define E1000_LEDCTL_LED0_MODE_SHIFT      0
+#define E1000_LEDCTL_LED0_BLINK_RATE      0x00000020
+#define E1000_LEDCTL_LED0_IVRT            0x00000040
+#define E1000_LEDCTL_LED0_BLINK           0x00000080
+#define E1000_LEDCTL_LED1_MODE_MASK       0x00000F00
+#define E1000_LEDCTL_LED1_MODE_SHIFT      8
+#define E1000_LEDCTL_LED1_BLINK_RATE      0x00002000
+#define E1000_LEDCTL_LED1_IVRT            0x00004000
+#define E1000_LEDCTL_LED1_BLINK           0x00008000
+#define E1000_LEDCTL_LED2_MODE_MASK       0x000F0000
+#define E1000_LEDCTL_LED2_MODE_SHIFT      16
+#define E1000_LEDCTL_LED2_BLINK_RATE      0x00200000
+#define E1000_LEDCTL_LED2_IVRT            0x00400000
+#define E1000_LEDCTL_LED2_BLINK           0x00800000
+#define E1000_LEDCTL_LED3_MODE_MASK       0x0F000000
+#define E1000_LEDCTL_LED3_MODE_SHIFT      24
+#define E1000_LEDCTL_LED3_BLINK_RATE      0x20000000
+#define E1000_LEDCTL_LED3_IVRT            0x40000000
+#define E1000_LEDCTL_LED3_BLINK           0x80000000
+
+#define E1000_LEDCTL_MODE_LINK_10_1000  0x0
+#define E1000_LEDCTL_MODE_LINK_100_1000 0x1
+#define E1000_LEDCTL_MODE_LINK_UP       0x2
+#define E1000_LEDCTL_MODE_ACTIVITY      0x3
+#define E1000_LEDCTL_MODE_LINK_ACTIVITY 0x4
+#define E1000_LEDCTL_MODE_LINK_10       0x5
+#define E1000_LEDCTL_MODE_LINK_100      0x6
+#define E1000_LEDCTL_MODE_LINK_1000     0x7
+#define E1000_LEDCTL_MODE_PCIX_MODE     0x8
+#define E1000_LEDCTL_MODE_FULL_DUPLEX   0x9
+#define E1000_LEDCTL_MODE_COLLISION     0xA
+#define E1000_LEDCTL_MODE_BUS_SPEED     0xB
+#define E1000_LEDCTL_MODE_BUS_SIZE      0xC
+#define E1000_LEDCTL_MODE_PAUSED        0xD
+#define E1000_LEDCTL_MODE_LED_ON        0xE
+#define E1000_LEDCTL_MODE_LED_OFF       0xF
+
+/* Transmit Descriptor bit definitions */
+#define E1000_TXD_DTYP_D     0x00100000 /* Data Descriptor */
+#define E1000_TXD_DTYP_C     0x00000000 /* Context Descriptor */
+#define E1000_TXD_POPTS_SHIFT 8         /* POPTS shift */
+#define E1000_TXD_POPTS_IXSM 0x01       /* Insert IP checksum */
+#define E1000_TXD_POPTS_TXSM 0x02       /* Insert TCP/UDP checksum */
+#define E1000_TXD_CMD_EOP    0x01000000 /* End of Packet */
+#define E1000_TXD_CMD_IFCS   0x02000000 /* Insert FCS (Ethernet CRC) */
+#define E1000_TXD_CMD_IC     0x04000000 /* Insert Checksum */
+#define E1000_TXD_CMD_RS     0x08000000 /* Report Status */
+#define E1000_TXD_CMD_RPS    0x10000000 /* Report Packet Sent */
+#define E1000_TXD_CMD_DEXT   0x20000000 /* Descriptor extension (0 = legacy) */
+#define E1000_TXD_CMD_VLE    0x40000000 /* Add VLAN tag */
+#define E1000_TXD_CMD_IDE    0x80000000 /* Enable Tidv register */
+#define E1000_TXD_STAT_DD    0x00000001 /* Descriptor Done */
+#define E1000_TXD_STAT_EC    0x00000002 /* Excess Collisions */
+#define E1000_TXD_STAT_LC    0x00000004 /* Late Collisions */
+#define E1000_TXD_STAT_TU    0x00000008 /* Transmit underrun */
+#define E1000_TXD_CMD_TCP    0x01000000 /* TCP packet */
+#define E1000_TXD_CMD_IP     0x02000000 /* IP packet */
+#define E1000_TXD_CMD_TSE    0x04000000 /* TCP Seg enable */
+#define E1000_TXD_STAT_TC    0x00000004 /* Tx Underrun */
+/* Extended desc bits for Linksec and timesync */
+
+/* Transmit Control */
+#define E1000_TCTL_RST    0x00000001    /* software reset */
+#define E1000_TCTL_EN     0x00000002    /* enable tx */
+#define E1000_TCTL_BCE    0x00000004    /* busy check enable */
+#define E1000_TCTL_PSP    0x00000008    /* pad short packets */
+#define E1000_TCTL_CT     0x00000ff0    /* collision threshold */
+#define E1000_TCTL_COLD   0x003ff000    /* collision distance */
+#define E1000_TCTL_SWXOFF 0x00400000    /* SW Xoff transmission */
+#define E1000_TCTL_PBE    0x00800000    /* Packet Burst Enable */
+#define E1000_TCTL_RTLC   0x01000000    /* Re-transmit on late collision */
+#define E1000_TCTL_NRTU   0x02000000    /* No Re-transmit on underrun */
+#define E1000_TCTL_MULR   0x10000000    /* Multiple request support */
+
+/* Transmit Arbitration Count */
+#define E1000_TARC0_ENABLE     0x00000400   /* Enable Tx Queue 0 */
+
+/* SerDes Control */
+#define E1000_SCTL_DISABLE_SERDES_LOOPBACK 0x0400
+
+/* Receive Checksum Control */
+#define E1000_RXCSUM_PCSS_MASK 0x000000FF   /* Packet Checksum Start */
+#define E1000_RXCSUM_IPOFL     0x00000100   /* IPv4 checksum offload */
+#define E1000_RXCSUM_TUOFL     0x00000200   /* TCP / UDP checksum offload */
+#define E1000_RXCSUM_IPV6OFL   0x00000400   /* IPv6 checksum offload */
+#define E1000_RXCSUM_CRCOFL    0x00000800   /* CRC32 offload enable */
+#define E1000_RXCSUM_IPPCSE    0x00001000   /* IP payload checksum enable */
+#define E1000_RXCSUM_PCSD      0x00002000   /* packet checksum disabled */
+
+/* Header split receive */
+#define E1000_RFCTL_ISCSI_DIS           0x00000001
+#define E1000_RFCTL_ISCSI_DWC_MASK      0x0000003E
+#define E1000_RFCTL_ISCSI_DWC_SHIFT     1
+#define E1000_RFCTL_NFSW_DIS            0x00000040
+#define E1000_RFCTL_NFSR_DIS            0x00000080
+#define E1000_RFCTL_NFS_VER_MASK        0x00000300
+#define E1000_RFCTL_NFS_VER_SHIFT       8
+#define E1000_RFCTL_IPV6_DIS            0x00000400
+#define E1000_RFCTL_IPV6_XSUM_DIS       0x00000800
+#define E1000_RFCTL_ACK_DIS             0x00001000
+#define E1000_RFCTL_ACKD_DIS            0x00002000
+#define E1000_RFCTL_IPFRSP_DIS          0x00004000
+#define E1000_RFCTL_EXTEN               0x00008000
+#define E1000_RFCTL_IPV6_EX_DIS         0x00010000
+#define E1000_RFCTL_NEW_IPV6_EXT_DIS    0x00020000
+
+/* Collision related configuration parameters */
+#define E1000_COLLISION_THRESHOLD       15
+#define E1000_CT_SHIFT                  4
+#define E1000_COLLISION_DISTANCE        63
+#define E1000_COLD_SHIFT                12
+
+/* Default values for the transmit IPG register */
+#ifndef NO_82542_SUPPORT
+#define DEFAULT_82542_TIPG_IPGT        10
+#endif
+#define DEFAULT_82543_TIPG_IPGT_FIBER  9
+#define DEFAULT_82543_TIPG_IPGT_COPPER 8
+
+#define E1000_TIPG_IPGT_MASK  0x000003FF
+#define E1000_TIPG_IPGR1_MASK 0x000FFC00
+#define E1000_TIPG_IPGR2_MASK 0x3FF00000
+
+#ifndef NO_82542_SUPPORT
+#define DEFAULT_82542_TIPG_IPGR1 2
+#endif
+#define DEFAULT_82543_TIPG_IPGR1 8
+#define E1000_TIPG_IPGR1_SHIFT  10
+
+#ifndef NO_82542_SUPPORT
+#define DEFAULT_82542_TIPG_IPGR2 10
+#endif
+#define DEFAULT_82543_TIPG_IPGR2 6
+#define DEFAULT_80003ES2LAN_TIPG_IPGR2 7
+#define E1000_TIPG_IPGR2_SHIFT  20
+
+/* Ethertype field values */
+#define ETHERNET_IEEE_VLAN_TYPE 0x8100  /* 802.3ac packet */
+
+#define ETHERNET_FCS_SIZE       4
+#define MAX_JUMBO_FRAME_SIZE    0x3F00
+
+/* Extended Configuration Control and Size */
+#define E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP      0x00000020
+#define E1000_EXTCNF_CTRL_LCD_WRITE_ENABLE       0x00000001
+#define E1000_EXTCNF_CTRL_SWFLAG                 0x00000020
+#define E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_MASK   0x00FF0000
+#define E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_SHIFT          16
+#define E1000_EXTCNF_CTRL_EXT_CNF_POINTER_MASK   0x0FFF0000
+#define E1000_EXTCNF_CTRL_EXT_CNF_POINTER_SHIFT          16
+
+#define E1000_PHY_CTRL_SPD_EN             0x00000001
+#define E1000_PHY_CTRL_D0A_LPLU           0x00000002
+#define E1000_PHY_CTRL_NOND0A_LPLU        0x00000004
+#define E1000_PHY_CTRL_NOND0A_GBE_DISABLE 0x00000008
+#define E1000_PHY_CTRL_GBE_DISABLE        0x00000040
+
+#define E1000_KABGTXD_BGSQLBIAS           0x00050000
+
+/* PBA constants */
+#define E1000_PBA_8K  0x0008    /* 8KB */
+#define E1000_PBA_12K 0x000C    /* 12KB */
+#define E1000_PBA_16K 0x0010    /* 16KB */
+#define E1000_PBA_20K 0x0014
+#define E1000_PBA_22K 0x0016
+#define E1000_PBA_24K 0x0018
+#define E1000_PBA_30K 0x001E
+#define E1000_PBA_32K 0x0020
+#define E1000_PBA_34K 0x0022
+#define E1000_PBA_38K 0x0026
+#define E1000_PBA_40K 0x0028
+#define E1000_PBA_48K 0x0030    /* 48KB */
+#define E1000_PBA_64K 0x0040    /* 64KB */
+
+#define E1000_PBS_16K E1000_PBA_16K
+#define E1000_PBS_24K E1000_PBA_24K
+
+#define IFS_MAX       80
+#define IFS_MIN       40
+#define IFS_RATIO     4
+#define IFS_STEP      10
+#define MIN_NUM_XMITS 1000
+
+/* SW Semaphore Register */
+#define E1000_SWSM_SMBI         0x00000001 /* Driver Semaphore bit */
+#define E1000_SWSM_SWESMBI      0x00000002 /* FW Semaphore bit */
+#define E1000_SWSM_WMNG         0x00000004 /* Wake MNG Clock */
+#define E1000_SWSM_DRV_LOAD     0x00000008 /* Driver Loaded Bit */
+
+/* Interrupt Cause Read */
+#define E1000_ICR_TXDW          0x00000001 /* Transmit desc written back */
+#define E1000_ICR_TXQE          0x00000002 /* Transmit Queue empty */
+#define E1000_ICR_LSC           0x00000004 /* Link Status Change */
+#define E1000_ICR_RXSEQ         0x00000008 /* rx sequence error */
+#define E1000_ICR_RXDMT0        0x00000010 /* rx desc min. threshold (0) */
+#define E1000_ICR_RXO           0x00000040 /* rx overrun */
+#define E1000_ICR_RXT0          0x00000080 /* rx timer intr (ring 0) */
+#define E1000_ICR_MDAC          0x00000200 /* MDIO access complete */
+#define E1000_ICR_RXCFG         0x00000400 /* Rx /c/ ordered set */
+#define E1000_ICR_GPI_EN0       0x00000800 /* GP Int 0 */
+#define E1000_ICR_GPI_EN1       0x00001000 /* GP Int 1 */
+#define E1000_ICR_GPI_EN2       0x00002000 /* GP Int 2 */
+#define E1000_ICR_GPI_EN3       0x00004000 /* GP Int 3 */
+#define E1000_ICR_TXD_LOW       0x00008000
+#define E1000_ICR_SRPD          0x00010000
+#define E1000_ICR_ACK           0x00020000 /* Receive Ack frame */
+#define E1000_ICR_MNG           0x00040000 /* Manageability event */
+#define E1000_ICR_DOCK          0x00080000 /* Dock/Undock */
+#define E1000_ICR_INT_ASSERTED  0x80000000 /* If this bit asserted, the driver should claim the interrupt */
+#define E1000_ICR_RXD_FIFO_PAR0 0x00100000 /* queue 0 Rx descriptor FIFO parity error */
+#define E1000_ICR_TXD_FIFO_PAR0 0x00200000 /* queue 0 Tx descriptor FIFO parity error */
+#define E1000_ICR_HOST_ARB_PAR  0x00400000 /* host arb read buffer parity error */
+#define E1000_ICR_PB_PAR        0x00800000 /* packet buffer parity error */
+#define E1000_ICR_RXD_FIFO_PAR1 0x01000000 /* queue 1 Rx descriptor FIFO parity error */
+#define E1000_ICR_TXD_FIFO_PAR1 0x02000000 /* queue 1 Tx descriptor FIFO parity error */
+#define E1000_ICR_ALL_PARITY    0x03F00000 /* all parity error bits */
+#define E1000_ICR_DSW           0x00000020 /* FW changed the status of DISSW bit in the FWSM */
+#define E1000_ICR_PHYINT        0x00001000 /* LAN connected device generates an interrupt */
+#define E1000_ICR_EPRST         0x00100000 /* ME handware reset occurs */
+
+/* Extended Interrupt Cause Read */
+#define E1000_EICR_RX_QUEUE0    0x00000001 /* Rx Queue 0 Interrupt */
+#define E1000_EICR_RX_QUEUE1    0x00000002 /* Rx Queue 1 Interrupt */
+#define E1000_EICR_RX_QUEUE2    0x00000004 /* Rx Queue 2 Interrupt */
+#define E1000_EICR_RX_QUEUE3    0x00000008 /* Rx Queue 3 Interrupt */
+#define E1000_EICR_TX_QUEUE0    0x00000100 /* Tx Queue 0 Interrupt */
+#define E1000_EICR_TX_QUEUE1    0x00000200 /* Tx Queue 1 Interrupt */
+#define E1000_EICR_TX_QUEUE2    0x00000400 /* Tx Queue 2 Interrupt */
+#define E1000_EICR_TX_QUEUE3    0x00000800 /* Tx Queue 3 Interrupt */
+#define E1000_EICR_TCP_TIMER    0x40000000 /* TCP Timer */
+#define E1000_EICR_OTHER        0x80000000 /* Interrupt Cause Active */
+/* TCP Timer */
+#define E1000_TCPTIMER_KS       0x00000100 /* KickStart */
+#define E1000_TCPTIMER_COUNT_ENABLE       0x00000200 /* Count Enable */
+#define E1000_TCPTIMER_COUNT_FINISH       0x00000400 /* Count finish */
+#define E1000_TCPTIMER_LOOP     0x00000800 /* Loop */
+
+/*
+ * This defines the bits that are set in the Interrupt Mask
+ * Set/Read Register.  Each bit is documented below:
+ *   o RXDMT0 = Receive Descriptor Minimum Threshold hit (ring 0)
+ *   o RXSEQ  = Receive Sequence Error
+ */
+#define POLL_IMS_ENABLE_MASK ( \
+    E1000_IMS_RXDMT0 |    \
+    E1000_IMS_RXSEQ)
+
+/*
+ * This defines the bits that are set in the Interrupt Mask
+ * Set/Read Register.  Each bit is documented below:
+ *   o RXT0   = Receiver Timer Interrupt (ring 0)
+ *   o TXDW   = Transmit Descriptor Written Back
+ *   o RXDMT0 = Receive Descriptor Minimum Threshold hit (ring 0)
+ *   o RXSEQ  = Receive Sequence Error
+ *   o LSC    = Link Status Change
+ */
+#define IMS_ENABLE_MASK ( \
+    E1000_IMS_RXT0   |    \
+    E1000_IMS_TXDW   |    \
+    E1000_IMS_RXDMT0 |    \
+    E1000_IMS_RXSEQ  |    \
+    E1000_IMS_LSC)
+
+/* Interrupt Mask Set */
+#define E1000_IMS_TXDW      E1000_ICR_TXDW      /* Transmit desc written back */
+#define E1000_IMS_TXQE      E1000_ICR_TXQE      /* Transmit Queue empty */
+#define E1000_IMS_LSC       E1000_ICR_LSC       /* Link Status Change */
+#define E1000_IMS_RXSEQ     E1000_ICR_RXSEQ     /* rx sequence error */
+#define E1000_IMS_RXDMT0    E1000_ICR_RXDMT0    /* rx desc min. threshold */
+#define E1000_IMS_RXO       E1000_ICR_RXO       /* rx overrun */
+#define E1000_IMS_RXT0      E1000_ICR_RXT0      /* rx timer intr */
+#define E1000_IMS_MDAC      E1000_ICR_MDAC      /* MDIO access complete */
+#define E1000_IMS_RXCFG     E1000_ICR_RXCFG     /* Rx /c/ ordered set */
+#define E1000_IMS_GPI_EN0   E1000_ICR_GPI_EN0   /* GP Int 0 */
+#define E1000_IMS_GPI_EN1   E1000_ICR_GPI_EN1   /* GP Int 1 */
+#define E1000_IMS_GPI_EN2   E1000_ICR_GPI_EN2   /* GP Int 2 */
+#define E1000_IMS_GPI_EN3   E1000_ICR_GPI_EN3   /* GP Int 3 */
+#define E1000_IMS_TXD_LOW   E1000_ICR_TXD_LOW
+#define E1000_IMS_SRPD      E1000_ICR_SRPD
+#define E1000_IMS_ACK       E1000_ICR_ACK       /* Receive Ack frame */
+#define E1000_IMS_MNG       E1000_ICR_MNG       /* Manageability event */
+#define E1000_IMS_DOCK      E1000_ICR_DOCK      /* Dock/Undock */
+#define E1000_IMS_RXD_FIFO_PAR0 E1000_ICR_RXD_FIFO_PAR0 /* queue 0 Rx descriptor FIFO parity error */
+#define E1000_IMS_TXD_FIFO_PAR0 E1000_ICR_TXD_FIFO_PAR0 /* queue 0 Tx descriptor FIFO parity error */
+#define E1000_IMS_HOST_ARB_PAR  E1000_ICR_HOST_ARB_PAR  /* host arb read buffer parity error */
+#define E1000_IMS_PB_PAR        E1000_ICR_PB_PAR        /* packet buffer parity error */
+#define E1000_IMS_RXD_FIFO_PAR1 E1000_ICR_RXD_FIFO_PAR1 /* queue 1 Rx descriptor FIFO parity error */
+#define E1000_IMS_TXD_FIFO_PAR1 E1000_ICR_TXD_FIFO_PAR1 /* queue 1 Tx descriptor FIFO parity error */
+#define E1000_IMS_DSW       E1000_ICR_DSW
+#define E1000_IMS_PHYINT    E1000_ICR_PHYINT
+#define E1000_IMS_EPRST     E1000_ICR_EPRST
+
+/* Extended Interrupt Mask Set */
+#define E1000_EIMS_RX_QUEUE0    E1000_EICR_RX_QUEUE0 /* Rx Queue 0 Interrupt */
+#define E1000_EIMS_RX_QUEUE1    E1000_EICR_RX_QUEUE1 /* Rx Queue 1 Interrupt */
+#define E1000_EIMS_RX_QUEUE2    E1000_EICR_RX_QUEUE2 /* Rx Queue 2 Interrupt */
+#define E1000_EIMS_RX_QUEUE3    E1000_EICR_RX_QUEUE3 /* Rx Queue 3 Interrupt */
+#define E1000_EIMS_TX_QUEUE0    E1000_EICR_TX_QUEUE0 /* Tx Queue 0 Interrupt */
+#define E1000_EIMS_TX_QUEUE1    E1000_EICR_TX_QUEUE1 /* Tx Queue 1 Interrupt */
+#define E1000_EIMS_TX_QUEUE2    E1000_EICR_TX_QUEUE2 /* Tx Queue 2 Interrupt */
+#define E1000_EIMS_TX_QUEUE3    E1000_EICR_TX_QUEUE3 /* Tx Queue 3 Interrupt */
+#define E1000_EIMS_TCP_TIMER    E1000_EICR_TCP_TIMER /* TCP Timer */
+#define E1000_EIMS_OTHER        E1000_EICR_OTHER   /* Interrupt Cause Active */
+
+/* Interrupt Cause Set */
+#define E1000_ICS_TXDW      E1000_ICR_TXDW      /* Transmit desc written back */
+#define E1000_ICS_TXQE      E1000_ICR_TXQE      /* Transmit Queue empty */
+#define E1000_ICS_LSC       E1000_ICR_LSC       /* Link Status Change */
+#define E1000_ICS_RXSEQ     E1000_ICR_RXSEQ     /* rx sequence error */
+#define E1000_ICS_RXDMT0    E1000_ICR_RXDMT0    /* rx desc min. threshold */
+#define E1000_ICS_RXO       E1000_ICR_RXO       /* rx overrun */
+#define E1000_ICS_RXT0      E1000_ICR_RXT0      /* rx timer intr */
+#define E1000_ICS_MDAC      E1000_ICR_MDAC      /* MDIO access complete */
+#define E1000_ICS_RXCFG     E1000_ICR_RXCFG     /* Rx /c/ ordered set */
+#define E1000_ICS_GPI_EN0   E1000_ICR_GPI_EN0   /* GP Int 0 */
+#define E1000_ICS_GPI_EN1   E1000_ICR_GPI_EN1   /* GP Int 1 */
+#define E1000_ICS_GPI_EN2   E1000_ICR_GPI_EN2   /* GP Int 2 */
+#define E1000_ICS_GPI_EN3   E1000_ICR_GPI_EN3   /* GP Int 3 */
+#define E1000_ICS_TXD_LOW   E1000_ICR_TXD_LOW
+#define E1000_ICS_SRPD      E1000_ICR_SRPD
+#define E1000_ICS_ACK       E1000_ICR_ACK       /* Receive Ack frame */
+#define E1000_ICS_MNG       E1000_ICR_MNG       /* Manageability event */
+#define E1000_ICS_DOCK      E1000_ICR_DOCK      /* Dock/Undock */
+#define E1000_ICS_RXD_FIFO_PAR0 E1000_ICR_RXD_FIFO_PAR0 /* queue 0 Rx descriptor FIFO parity error */
+#define E1000_ICS_TXD_FIFO_PAR0 E1000_ICR_TXD_FIFO_PAR0 /* queue 0 Tx descriptor FIFO parity error */
+#define E1000_ICS_HOST_ARB_PAR  E1000_ICR_HOST_ARB_PAR  /* host arb read buffer parity error */
+#define E1000_ICS_PB_PAR        E1000_ICR_PB_PAR        /* packet buffer parity error */
+#define E1000_ICS_RXD_FIFO_PAR1 E1000_ICR_RXD_FIFO_PAR1 /* queue 1 Rx descriptor FIFO parity error */
+#define E1000_ICS_TXD_FIFO_PAR1 E1000_ICR_TXD_FIFO_PAR1 /* queue 1 Tx descriptor FIFO parity error */
+#define E1000_ICS_DSW       E1000_ICR_DSW
+#define E1000_ICS_PHYINT    E1000_ICR_PHYINT
+#define E1000_ICS_EPRST     E1000_ICR_EPRST
+
+/* Extended Interrupt Cause Set */
+#define E1000_EICS_RX_QUEUE0    E1000_EICR_RX_QUEUE0 /* Rx Queue 0 Interrupt */
+#define E1000_EICS_RX_QUEUE1    E1000_EICR_RX_QUEUE1 /* Rx Queue 1 Interrupt */
+#define E1000_EICS_RX_QUEUE2    E1000_EICR_RX_QUEUE2 /* Rx Queue 2 Interrupt */
+#define E1000_EICS_RX_QUEUE3    E1000_EICR_RX_QUEUE3 /* Rx Queue 3 Interrupt */
+#define E1000_EICS_TX_QUEUE0    E1000_EICR_TX_QUEUE0 /* Tx Queue 0 Interrupt */
+#define E1000_EICS_TX_QUEUE1    E1000_EICR_TX_QUEUE1 /* Tx Queue 1 Interrupt */
+#define E1000_EICS_TX_QUEUE2    E1000_EICR_TX_QUEUE2 /* Tx Queue 2 Interrupt */
+#define E1000_EICS_TX_QUEUE3    E1000_EICR_TX_QUEUE3 /* Tx Queue 3 Interrupt */
+#define E1000_EICS_TCP_TIMER    E1000_EICR_TCP_TIMER /* TCP Timer */
+#define E1000_EICS_OTHER        E1000_EICR_OTHER   /* Interrupt Cause Active */
+
+/* Transmit Descriptor Control */
+#define E1000_TXDCTL_PTHRESH 0x0000003F /* TXDCTL Prefetch Threshold */
+#define E1000_TXDCTL_HTHRESH 0x00003F00 /* TXDCTL Host Threshold */
+#define E1000_TXDCTL_WTHRESH 0x003F0000 /* TXDCTL Writeback Threshold */
+#define E1000_TXDCTL_GRAN    0x01000000 /* TXDCTL Granularity */
+#define E1000_TXDCTL_LWTHRESH 0xFE000000 /* TXDCTL Low Threshold */
+#define E1000_TXDCTL_FULL_TX_DESC_WB 0x01010000 /* GRAN=1, WTHRESH=1 */
+#define E1000_TXDCTL_MAX_TX_DESC_PREFETCH 0x0100001F /* GRAN=1, PTHRESH=31 */
+/* Enable the counting of descriptors still to be processed. */
+#define E1000_TXDCTL_COUNT_DESC 0x00400000
+
+/* Flow Control Constants */
+#define FLOW_CONTROL_ADDRESS_LOW  0x00C28001
+#define FLOW_CONTROL_ADDRESS_HIGH 0x00000100
+#define FLOW_CONTROL_TYPE         0x8808
+
+/* 802.1q VLAN Packet Size */
+#define VLAN_TAG_SIZE              4    /* 802.3ac tag (not DMA'd) */
+#define E1000_VLAN_FILTER_TBL_SIZE 128  /* VLAN Filter Table (4096 bits) */
+
+/* Receive Address */
+/*
+ * Number of high/low register pairs in the RAR. The RAR (Receive Address
+ * Registers) holds the directed and multicast addresses that we monitor.
+ * Technically, we have 16 spots.  However, we reserve one of these spots
+ * (RAR[15]) for our directed address used by controllers with
+ * manageability enabled, allowing us room for 15 multicast addresses.
+ */
+#define E1000_RAR_ENTRIES     15
+#define E1000_RAH_AV  0x80000000        /* Receive descriptor valid */
+
+/* Error Codes */
+#define E1000_SUCCESS      0
+#define E1000_ERR_NVM      1
+#define E1000_ERR_PHY      2
+#define E1000_ERR_CONFIG   3
+#define E1000_ERR_PARAM    4
+#define E1000_ERR_MAC_INIT 5
+#define E1000_ERR_PHY_TYPE 6
+#define E1000_ERR_RESET   9
+#define E1000_ERR_MASTER_REQUESTS_PENDING 10
+#define E1000_ERR_HOST_INTERFACE_COMMAND 11
+#define E1000_BLK_PHY_RESET   12
+#define E1000_ERR_SWFW_SYNC 13
+#define E1000_NOT_IMPLEMENTED 14
+
+/* Loop limit on how long we wait for auto-negotiation to complete */
+#define FIBER_LINK_UP_LIMIT               50
+#define COPPER_LINK_UP_LIMIT              10
+#define PHY_AUTO_NEG_LIMIT                45
+#define PHY_FORCE_LIMIT                   20
+/* Number of 100 microseconds we wait for PCI Express master disable */
+#define MASTER_DISABLE_TIMEOUT      800
+/* Number of milliseconds we wait for PHY configuration done after MAC reset */
+#define PHY_CFG_TIMEOUT             100
+/* Number of 2 milliseconds we wait for acquiring MDIO ownership. */
+#define MDIO_OWNERSHIP_TIMEOUT      10
+/* Number of milliseconds for NVM auto read done after MAC reset. */
+#define AUTO_READ_DONE_TIMEOUT      10
+
+/* Flow Control */
+#define E1000_FCRTH_RTH  0x0000FFF8     /* Mask Bits[15:3] for RTH */
+#define E1000_FCRTH_XFCE 0x80000000     /* External Flow Control Enable */
+#define E1000_FCRTL_RTL  0x0000FFF8     /* Mask Bits[15:3] for RTL */
+#define E1000_FCRTL_XONE 0x80000000     /* Enable XON frame transmission */
+
+/* Transmit Configuration Word */
+#define E1000_TXCW_FD         0x00000020        /* TXCW full duplex */
+#define E1000_TXCW_HD         0x00000040        /* TXCW half duplex */
+#define E1000_TXCW_PAUSE      0x00000080        /* TXCW sym pause request */
+#define E1000_TXCW_ASM_DIR    0x00000100        /* TXCW astm pause direction */
+#define E1000_TXCW_PAUSE_MASK 0x00000180        /* TXCW pause request mask */
+#define E1000_TXCW_RF         0x00003000        /* TXCW remote fault */
+#define E1000_TXCW_NP         0x00008000        /* TXCW next page */
+#define E1000_TXCW_CW         0x0000ffff        /* TxConfigWord mask */
+#define E1000_TXCW_TXC        0x40000000        /* Transmit Config control */
+#define E1000_TXCW_ANE        0x80000000        /* Auto-neg enable */
+
+/* Receive Configuration Word */
+#define E1000_RXCW_CW         0x0000ffff        /* RxConfigWord mask */
+#define E1000_RXCW_NC         0x04000000        /* Receive config no carrier */
+#define E1000_RXCW_IV         0x08000000        /* Receive config invalid */
+#define E1000_RXCW_CC         0x10000000        /* Receive config change */
+#define E1000_RXCW_C          0x20000000        /* Receive config */
+#define E1000_RXCW_SYNCH      0x40000000        /* Receive config synch */
+#define E1000_RXCW_ANC        0x80000000        /* Auto-neg complete */
+
+/* PCI Express Control */
+#define E1000_GCR_RXD_NO_SNOOP          0x00000001
+#define E1000_GCR_RXDSCW_NO_SNOOP       0x00000002
+#define E1000_GCR_RXDSCR_NO_SNOOP       0x00000004
+#define E1000_GCR_TXD_NO_SNOOP          0x00000008
+#define E1000_GCR_TXDSCW_NO_SNOOP       0x00000010
+#define E1000_GCR_TXDSCR_NO_SNOOP       0x00000020
+
+#define PCIE_NO_SNOOP_ALL (E1000_GCR_RXD_NO_SNOOP         | \
+                           E1000_GCR_RXDSCW_NO_SNOOP      | \
+                           E1000_GCR_RXDSCR_NO_SNOOP      | \
+                           E1000_GCR_TXD_NO_SNOOP         | \
+                           E1000_GCR_TXDSCW_NO_SNOOP      | \
+                           E1000_GCR_TXDSCR_NO_SNOOP)
+
+/* PHY Control Register */
+#define MII_CR_SPEED_SELECT_MSB 0x0040  /* bits 6,13: 10=1000, 01=100, 00=10 */
+#define MII_CR_COLL_TEST_ENABLE 0x0080  /* Collision test enable */
+#define MII_CR_FULL_DUPLEX      0x0100  /* FDX =1, half duplex =0 */
+#define MII_CR_RESTART_AUTO_NEG 0x0200  /* Restart auto negotiation */
+#define MII_CR_ISOLATE          0x0400  /* Isolate PHY from MII */
+#define MII_CR_POWER_DOWN       0x0800  /* Power down */
+#define MII_CR_AUTO_NEG_EN      0x1000  /* Auto Neg Enable */
+#define MII_CR_SPEED_SELECT_LSB 0x2000  /* bits 6,13: 10=1000, 01=100, 00=10 */
+#define MII_CR_LOOPBACK         0x4000  /* 0 = normal, 1 = loopback */
+#define MII_CR_RESET            0x8000  /* 0 = normal, 1 = PHY reset */
+#define MII_CR_SPEED_1000       0x0040
+#define MII_CR_SPEED_100        0x2000
+#define MII_CR_SPEED_10         0x0000
+
+/* PHY Status Register */
+#define MII_SR_EXTENDED_CAPS     0x0001 /* Extended register capabilities */
+#define MII_SR_JABBER_DETECT     0x0002 /* Jabber Detected */
+#define MII_SR_LINK_STATUS       0x0004 /* Link Status 1 = link */
+#define MII_SR_AUTONEG_CAPS      0x0008 /* Auto Neg Capable */
+#define MII_SR_REMOTE_FAULT      0x0010 /* Remote Fault Detect */
+#define MII_SR_AUTONEG_COMPLETE  0x0020 /* Auto Neg Complete */
+#define MII_SR_PREAMBLE_SUPPRESS 0x0040 /* Preamble may be suppressed */
+#define MII_SR_EXTENDED_STATUS   0x0100 /* Ext. status info in Reg 0x0F */
+#define MII_SR_100T2_HD_CAPS     0x0200 /* 100T2 Half Duplex Capable */
+#define MII_SR_100T2_FD_CAPS     0x0400 /* 100T2 Full Duplex Capable */
+#define MII_SR_10T_HD_CAPS       0x0800 /* 10T   Half Duplex Capable */
+#define MII_SR_10T_FD_CAPS       0x1000 /* 10T   Full Duplex Capable */
+#define MII_SR_100X_HD_CAPS      0x2000 /* 100X  Half Duplex Capable */
+#define MII_SR_100X_FD_CAPS      0x4000 /* 100X  Full Duplex Capable */
+#define MII_SR_100T4_CAPS        0x8000 /* 100T4 Capable */
+
+/* Autoneg Advertisement Register */
+#define NWAY_AR_SELECTOR_FIELD   0x0001   /* indicates IEEE 802.3 CSMA/CD */
+#define NWAY_AR_10T_HD_CAPS      0x0020   /* 10T   Half Duplex Capable */
+#define NWAY_AR_10T_FD_CAPS      0x0040   /* 10T   Full Duplex Capable */
+#define NWAY_AR_100TX_HD_CAPS    0x0080   /* 100TX Half Duplex Capable */
+#define NWAY_AR_100TX_FD_CAPS    0x0100   /* 100TX Full Duplex Capable */
+#define NWAY_AR_100T4_CAPS       0x0200   /* 100T4 Capable */
+#define NWAY_AR_PAUSE            0x0400   /* Pause operation desired */
+#define NWAY_AR_ASM_DIR          0x0800   /* Asymmetric Pause Direction bit */
+#define NWAY_AR_REMOTE_FAULT     0x2000   /* Remote Fault detected */
+#define NWAY_AR_NEXT_PAGE        0x8000   /* Next Page ability supported */
+
+/* Link Partner Ability Register (Base Page) */
+#define NWAY_LPAR_SELECTOR_FIELD 0x0000 /* LP protocol selector field */
+#define NWAY_LPAR_10T_HD_CAPS    0x0020 /* LP is 10T   Half Duplex Capable */
+#define NWAY_LPAR_10T_FD_CAPS    0x0040 /* LP is 10T   Full Duplex Capable */
+#define NWAY_LPAR_100TX_HD_CAPS  0x0080 /* LP is 100TX Half Duplex Capable */
+#define NWAY_LPAR_100TX_FD_CAPS  0x0100 /* LP is 100TX Full Duplex Capable */
+#define NWAY_LPAR_100T4_CAPS     0x0200 /* LP is 100T4 Capable */
+#define NWAY_LPAR_PAUSE          0x0400 /* LP Pause operation desired */
+#define NWAY_LPAR_ASM_DIR        0x0800 /* LP Asymmetric Pause Direction bit */
+#define NWAY_LPAR_REMOTE_FAULT   0x2000 /* LP has detected Remote Fault */
+#define NWAY_LPAR_ACKNOWLEDGE    0x4000 /* LP has rx'd link code word */
+#define NWAY_LPAR_NEXT_PAGE      0x8000 /* Next Page ability supported */
+
+/* Autoneg Expansion Register */
+#define NWAY_ER_LP_NWAY_CAPS      0x0001 /* LP has Auto Neg Capability */
+#define NWAY_ER_PAGE_RXD          0x0002 /* LP is 10T   Half Duplex Capable */
+#define NWAY_ER_NEXT_PAGE_CAPS    0x0004 /* LP is 10T   Full Duplex Capable */
+#define NWAY_ER_LP_NEXT_PAGE_CAPS 0x0008 /* LP is 100TX Half Duplex Capable */
+#define NWAY_ER_PAR_DETECT_FAULT  0x0010 /* LP is 100TX Full Duplex Capable */
+
+/* 1000BASE-T Control Register */
+#define CR_1000T_ASYM_PAUSE      0x0080 /* Advertise asymmetric pause bit */
+#define CR_1000T_HD_CAPS         0x0100 /* Advertise 1000T HD capability */
+#define CR_1000T_FD_CAPS         0x0200 /* Advertise 1000T FD capability  */
+#define CR_1000T_REPEATER_DTE    0x0400 /* 1=Repeater/switch device port */
+                                        /* 0=DTE device */
+#define CR_1000T_MS_VALUE        0x0800 /* 1=Configure PHY as Master */
+                                        /* 0=Configure PHY as Slave */
+#define CR_1000T_MS_ENABLE       0x1000 /* 1=Master/Slave manual config value */
+                                        /* 0=Automatic Master/Slave config */
+#define CR_1000T_TEST_MODE_NORMAL 0x0000 /* Normal Operation */
+#define CR_1000T_TEST_MODE_1     0x2000 /* Transmit Waveform test */
+#define CR_1000T_TEST_MODE_2     0x4000 /* Master Transmit Jitter test */
+#define CR_1000T_TEST_MODE_3     0x6000 /* Slave Transmit Jitter test */
+#define CR_1000T_TEST_MODE_4     0x8000 /* Transmitter Distortion test */
+
+/* 1000BASE-T Status Register */
+#define SR_1000T_IDLE_ERROR_CNT   0x00FF /* Num idle errors since last read */
+#define SR_1000T_ASYM_PAUSE_DIR   0x0100 /* LP asymmetric pause direction bit */
+#define SR_1000T_LP_HD_CAPS       0x0400 /* LP is 1000T HD capable */
+#define SR_1000T_LP_FD_CAPS       0x0800 /* LP is 1000T FD capable */
+#define SR_1000T_REMOTE_RX_STATUS 0x1000 /* Remote receiver OK */
+#define SR_1000T_LOCAL_RX_STATUS  0x2000 /* Local receiver OK */
+#define SR_1000T_MS_CONFIG_RES    0x4000 /* 1=Local Tx is Master, 0=Slave */
+#define SR_1000T_MS_CONFIG_FAULT  0x8000 /* Master/Slave config fault */
+
+#define SR_1000T_PHY_EXCESSIVE_IDLE_ERR_COUNT 5
+
+/* PHY 1000 MII Register/Bit Definitions */
+/* PHY Registers defined by IEEE */
+#define PHY_CONTROL      0x00 /* Control Register */
+#define PHY_STATUS       0x01 /* Status Regiser */
+#define PHY_ID1          0x02 /* Phy Id Reg (word 1) */
+#define PHY_ID2          0x03 /* Phy Id Reg (word 2) */
+#define PHY_AUTONEG_ADV  0x04 /* Autoneg Advertisement */
+#define PHY_LP_ABILITY   0x05 /* Link Partner Ability (Base Page) */
+#define PHY_AUTONEG_EXP  0x06 /* Autoneg Expansion Reg */
+#define PHY_NEXT_PAGE_TX 0x07 /* Next Page Tx */
+#define PHY_LP_NEXT_PAGE 0x08 /* Link Partner Next Page */
+#define PHY_1000T_CTRL   0x09 /* 1000Base-T Control Reg */
+#define PHY_1000T_STATUS 0x0A /* 1000Base-T Status Reg */
+#define PHY_EXT_STATUS   0x0F /* Extended Status Reg */
+
+/* NVM Control */
+#define E1000_EECD_SK        0x00000001 /* NVM Clock */
+#define E1000_EECD_CS        0x00000002 /* NVM Chip Select */
+#define E1000_EECD_DI        0x00000004 /* NVM Data In */
+#define E1000_EECD_DO        0x00000008 /* NVM Data Out */
+#define E1000_EECD_FWE_MASK  0x00000030
+#define E1000_EECD_FWE_DIS   0x00000010 /* Disable FLASH writes */
+#define E1000_EECD_FWE_EN    0x00000020 /* Enable FLASH writes */
+#define E1000_EECD_FWE_SHIFT 4
+#define E1000_EECD_REQ       0x00000040 /* NVM Access Request */
+#define E1000_EECD_GNT       0x00000080 /* NVM Access Grant */
+#define E1000_EECD_PRES      0x00000100 /* NVM Present */
+#define E1000_EECD_SIZE      0x00000200 /* NVM Size (0=64 word 1=256 word) */
+/* NVM Addressing bits based on type 0=small, 1=large */
+#define E1000_EECD_ADDR_BITS 0x00000400
+#define E1000_EECD_TYPE      0x00002000 /* NVM Type (1-SPI, 0-Microwire) */
+#ifndef E1000_NVM_GRANT_ATTEMPTS
+#define E1000_NVM_GRANT_ATTEMPTS   1000 /* NVM # attempts to gain grant */
+#endif
+#define E1000_EECD_AUTO_RD          0x00000200  /* NVM Auto Read done */
+#define E1000_EECD_SIZE_EX_MASK     0x00007800  /* NVM Size */
+#define E1000_EECD_SIZE_EX_SHIFT     11
+#define E1000_EECD_NVADDS    0x00018000 /* NVM Address Size */
+#define E1000_EECD_SELSHAD   0x00020000 /* Select Shadow RAM */
+#define E1000_EECD_INITSRAM  0x00040000 /* Initialize Shadow RAM */
+#define E1000_EECD_FLUPD     0x00080000 /* Update FLASH */
+#define E1000_EECD_AUPDEN    0x00100000 /* Enable Autonomous FLASH update */
+#define E1000_EECD_SHADV     0x00200000 /* Shadow RAM Data Valid */
+#define E1000_EECD_SEC1VAL   0x00400000 /* Sector One Valid */
+#define E1000_EECD_SECVAL_SHIFT      22
+
+#define E1000_NVM_SWDPIN0   0x0001   /* SWDPIN 0 NVM Value */
+#define E1000_NVM_LED_LOGIC 0x0020   /* Led Logic Word */
+#define E1000_NVM_RW_REG_DATA   16   /* Offset to data in NVM read/write registers */
+#define E1000_NVM_RW_REG_DONE   2    /* Offset to READ/WRITE done bit */
+#define E1000_NVM_RW_REG_START  1    /* Start operation */
+#define E1000_NVM_RW_ADDR_SHIFT 2    /* Shift to the address bits */
+#define E1000_NVM_POLL_WRITE    1    /* Flag for polling for write complete */
+#define E1000_NVM_POLL_READ     0    /* Flag for polling for read complete */
+#define E1000_FLASH_UPDATES  2000
+
+/* NVM Word Offsets */
+#define NVM_COMPAT                 0x0003
+#define NVM_ID_LED_SETTINGS        0x0004
+#define NVM_VERSION                0x0005
+#define NVM_SERDES_AMPLITUDE       0x0006 /* For SERDES output amplitude adjustment. */
+#define NVM_PHY_CLASS_WORD         0x0007
+#define NVM_INIT_CONTROL1_REG      0x000A
+#define NVM_INIT_CONTROL2_REG      0x000F
+#define NVM_SWDEF_PINS_CTRL_PORT_1 0x0010
+#define NVM_INIT_CONTROL3_PORT_B   0x0014
+#define NVM_INIT_3GIO_3            0x001A
+#define NVM_SWDEF_PINS_CTRL_PORT_0 0x0020
+#define NVM_INIT_CONTROL3_PORT_A   0x0024
+#define NVM_CFG                    0x0012
+#define NVM_FLASH_VERSION          0x0032
+#define NVM_ALT_MAC_ADDR_PTR       0x0037
+#define NVM_CHECKSUM_REG           0x003F
+
+#define E1000_NVM_CFG_DONE_PORT_0  0x40000 /* MNG config cycle done */
+#define E1000_NVM_CFG_DONE_PORT_1  0x80000 /* ...for second port */
+
+/* Mask bits for fields in Word 0x0f of the NVM */
+#define NVM_WORD0F_PAUSE_MASK       0x3000
+#define NVM_WORD0F_PAUSE            0x1000
+#define NVM_WORD0F_ASM_DIR          0x2000
+#define NVM_WORD0F_ANE              0x0800
+#define NVM_WORD0F_SWPDIO_EXT_MASK  0x00F0
+#define NVM_WORD0F_LPLU             0x0001
+
+/* Mask bits for fields in Word 0x1a of the NVM */
+#define NVM_WORD1A_ASPM_MASK  0x000C
+
+/* For checksumming, the sum of all words in the NVM should equal 0xBABA. */
+#define NVM_SUM                    0xBABA
+
+#define NVM_MAC_ADDR_OFFSET        0
+#define NVM_PBA_OFFSET_0           8
+#define NVM_PBA_OFFSET_1           9
+#define NVM_RESERVED_WORD          0xFFFF
+#define NVM_PHY_CLASS_A            0x8000
+#define NVM_SERDES_AMPLITUDE_MASK  0x000F
+#define NVM_SIZE_MASK              0x1C00
+#define NVM_SIZE_SHIFT             10
+#define NVM_WORD_SIZE_BASE_SHIFT   6
+#define NVM_SWDPIO_EXT_SHIFT       4
+
+/* NVM Commands - Microwire */
+#define NVM_READ_OPCODE_MICROWIRE  0x6  /* NVM read opcode */
+#define NVM_WRITE_OPCODE_MICROWIRE 0x5  /* NVM write opcode */
+#define NVM_ERASE_OPCODE_MICROWIRE 0x7  /* NVM erase opcode */
+#define NVM_EWEN_OPCODE_MICROWIRE  0x13 /* NVM erase/write enable */
+#define NVM_EWDS_OPCODE_MICROWIRE  0x10 /* NVM erast/write disable */
+
+/* NVM Commands - SPI */
+#define NVM_MAX_RETRY_SPI          5000 /* Max wait of 5ms, for RDY signal */
+#define NVM_READ_OPCODE_SPI        0x03 /* NVM read opcode */
+#define NVM_WRITE_OPCODE_SPI       0x02 /* NVM write opcode */
+#define NVM_A8_OPCODE_SPI          0x08 /* opcode bit-3 = address bit-8 */
+#define NVM_WREN_OPCODE_SPI        0x06 /* NVM set Write Enable latch */
+#define NVM_WRDI_OPCODE_SPI        0x04 /* NVM reset Write Enable latch */
+#define NVM_RDSR_OPCODE_SPI        0x05 /* NVM read Status register */
+#define NVM_WRSR_OPCODE_SPI        0x01 /* NVM write Status register */
+
+/* SPI NVM Status Register */
+#define NVM_STATUS_RDY_SPI         0x01
+#define NVM_STATUS_WEN_SPI         0x02
+#define NVM_STATUS_BP0_SPI         0x04
+#define NVM_STATUS_BP1_SPI         0x08
+#define NVM_STATUS_WPEN_SPI        0x80
+
+/* Word definitions for ID LED Settings */
+#define ID_LED_RESERVED_0000 0x0000
+#define ID_LED_RESERVED_FFFF 0xFFFF
+#define ID_LED_DEFAULT       ((ID_LED_OFF1_ON2  << 12) | \
+                              (ID_LED_OFF1_OFF2 <<  8) | \
+                              (ID_LED_DEF1_DEF2 <<  4) | \
+                              (ID_LED_DEF1_DEF2))
+#define ID_LED_DEF1_DEF2     0x1
+#define ID_LED_DEF1_ON2      0x2
+#define ID_LED_DEF1_OFF2     0x3
+#define ID_LED_ON1_DEF2      0x4
+#define ID_LED_ON1_ON2       0x5
+#define ID_LED_ON1_OFF2      0x6
+#define ID_LED_OFF1_DEF2     0x7
+#define ID_LED_OFF1_ON2      0x8
+#define ID_LED_OFF1_OFF2     0x9
+
+#define IGP_ACTIVITY_LED_MASK   0xFFFFF0FF
+#define IGP_ACTIVITY_LED_ENABLE 0x0300
+#define IGP_LED3_MODE           0x07000000
+
+/* PCI/PCI-X/PCI-EX Config space */
+#define PCIX_COMMAND_REGISTER        0xE6
+#define PCIX_STATUS_REGISTER_LO      0xE8
+#define PCIX_STATUS_REGISTER_HI      0xEA
+#define PCI_HEADER_TYPE_REGISTER     0x0E
+#define PCIE_LINK_STATUS             0x12
+
+#define PCIX_COMMAND_MMRBC_MASK      0x000C
+#define PCIX_COMMAND_MMRBC_SHIFT     0x2
+#define PCIX_STATUS_HI_MMRBC_MASK    0x0060
+#define PCIX_STATUS_HI_MMRBC_SHIFT   0x5
+#define PCIX_STATUS_HI_MMRBC_4K      0x3
+#define PCIX_STATUS_HI_MMRBC_2K      0x2
+#define PCIX_STATUS_LO_FUNC_MASK     0x7
+#define PCI_HEADER_TYPE_MULTIFUNC    0x80
+#define PCIE_LINK_WIDTH_MASK         0x3F0
+#define PCIE_LINK_WIDTH_SHIFT        4
+
+#ifndef ETH_ADDR_LEN
+#define ETH_ADDR_LEN                 6
+#endif
+
+#define PHY_REVISION_MASK      0xFFFFFFF0
+#define MAX_PHY_REG_ADDRESS    0x1F  /* 5 bit address bus (0-0x1F) */
+#define MAX_PHY_MULTI_PAGE_REG 0xF
+
+/* Bit definitions for valid PHY IDs. */
+/*
+ * I = Integrated
+ * E = External
+ */
+#define M88E1000_E_PHY_ID    0x01410C50
+#define M88E1000_I_PHY_ID    0x01410C30
+#define M88E1011_I_PHY_ID    0x01410C20
+#define IGP01E1000_I_PHY_ID  0x02A80380
+#define M88E1011_I_REV_4     0x04
+#define M88E1111_I_PHY_ID    0x01410CC0
+#define GG82563_E_PHY_ID     0x01410CA0
+#define IGP03E1000_E_PHY_ID  0x02A80390
+#define IFE_E_PHY_ID         0x02A80330
+#define IFE_PLUS_E_PHY_ID    0x02A80320
+#define IFE_C_E_PHY_ID       0x02A80310
+#define M88_VENDOR           0x0141
+
+/* M88E1000 Specific Registers */
+#define M88E1000_PHY_SPEC_CTRL     0x10  /* PHY Specific Control Register */
+#define M88E1000_PHY_SPEC_STATUS   0x11  /* PHY Specific Status Register */
+#define M88E1000_INT_ENABLE        0x12  /* Interrupt Enable Register */
+#define M88E1000_INT_STATUS        0x13  /* Interrupt Status Register */
+#define M88E1000_EXT_PHY_SPEC_CTRL 0x14  /* Extended PHY Specific Control */
+#define M88E1000_RX_ERR_CNTR       0x15  /* Receive Error Counter */
+
+#define M88E1000_PHY_EXT_CTRL      0x1A  /* PHY extend control register */
+#define M88E1000_PHY_PAGE_SELECT   0x1D  /* Reg 29 for page number setting */
+#define M88E1000_PHY_GEN_CONTROL   0x1E  /* Its meaning depends on reg 29 */
+#define M88E1000_PHY_VCO_REG_BIT8  0x100 /* Bits 8 & 11 are adjusted for */
+#define M88E1000_PHY_VCO_REG_BIT11 0x800    /* improved BER performance */
+
+/* M88E1000 PHY Specific Control Register */
+#define M88E1000_PSCR_JABBER_DISABLE    0x0001 /* 1=Jabber Function disabled */
+#define M88E1000_PSCR_POLARITY_REVERSAL 0x0002 /* 1=Polarity Reversal enabled */
+#define M88E1000_PSCR_SQE_TEST          0x0004 /* 1=SQE Test enabled */
+/* 1=CLK125 low, 0=CLK125 toggling */
+#define M88E1000_PSCR_CLK125_DISABLE    0x0010
+#define M88E1000_PSCR_MDI_MANUAL_MODE  0x0000  /* MDI Crossover Mode bits 6:5 */
+                                               /* Manual MDI configuration */
+#define M88E1000_PSCR_MDIX_MANUAL_MODE 0x0020  /* Manual MDIX configuration */
+/* 1000BASE-T: Auto crossover, 100BASE-TX/10BASE-T: MDI Mode */
+#define M88E1000_PSCR_AUTO_X_1000T     0x0040
+/* Auto crossover enabled all speeds */
+#define M88E1000_PSCR_AUTO_X_MODE      0x0060
+/*
+ * 1=Enable Extended 10BASE-T distance (Lower 10BASE-T Rx Threshold
+ * 0=Normal 10BASE-T Rx Threshold
+ */
+#define M88E1000_PSCR_EN_10BT_EXT_DIST 0x0080
+/* 1=5-bit interface in 100BASE-TX, 0=MII interface in 100BASE-TX */
+#define M88E1000_PSCR_MII_5BIT_ENABLE      0x0100
+#define M88E1000_PSCR_SCRAMBLER_DISABLE    0x0200 /* 1=Scrambler disable */
+#define M88E1000_PSCR_FORCE_LINK_GOOD      0x0400 /* 1=Force link good */
+#define M88E1000_PSCR_ASSERT_CRS_ON_TX     0x0800 /* 1=Assert CRS on Transmit */
+
+/* M88E1000 PHY Specific Status Register */
+#define M88E1000_PSSR_JABBER             0x0001 /* 1=Jabber */
+#define M88E1000_PSSR_REV_POLARITY       0x0002 /* 1=Polarity reversed */
+#define M88E1000_PSSR_DOWNSHIFT          0x0020 /* 1=Downshifted */
+#define M88E1000_PSSR_MDIX               0x0040 /* 1=MDIX; 0=MDI */
+/*
+ * 0 = <50M
+ * 1 = 50-80M
+ * 2 = 80-110M
+ * 3 = 110-140M
+ * 4 = >140M
+ */
+#define M88E1000_PSSR_CABLE_LENGTH       0x0380
+#define M88E1000_PSSR_LINK               0x0400 /* 1=Link up, 0=Link down */
+#define M88E1000_PSSR_SPD_DPLX_RESOLVED  0x0800 /* 1=Speed & Duplex resolved */
+#define M88E1000_PSSR_PAGE_RCVD          0x1000 /* 1=Page received */
+#define M88E1000_PSSR_DPLX               0x2000 /* 1=Duplex 0=Half Duplex */
+#define M88E1000_PSSR_SPEED              0xC000 /* Speed, bits 14:15 */
+#define M88E1000_PSSR_10MBS              0x0000 /* 00=10Mbs */
+#define M88E1000_PSSR_100MBS             0x4000 /* 01=100Mbs */
+#define M88E1000_PSSR_1000MBS            0x8000 /* 10=1000Mbs */
+
+#define M88E1000_PSSR_CABLE_LENGTH_SHIFT 7
+
+/* M88E1000 Extended PHY Specific Control Register */
+#define M88E1000_EPSCR_FIBER_LOOPBACK 0x4000 /* 1=Fiber loopback */
+/*
+ * 1 = Lost lock detect enabled.
+ * Will assert lost lock and bring
+ * link down if idle not seen
+ * within 1ms in 1000BASE-T
+ */
+#define M88E1000_EPSCR_DOWN_NO_IDLE   0x8000
+/*
+ * Number of times we will attempt to autonegotiate before downshifting if we
+ * are the master
+ */
+#define M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK 0x0C00
+#define M88E1000_EPSCR_MASTER_DOWNSHIFT_1X   0x0000
+#define M88E1000_EPSCR_MASTER_DOWNSHIFT_2X   0x0400
+#define M88E1000_EPSCR_MASTER_DOWNSHIFT_3X   0x0800
+#define M88E1000_EPSCR_MASTER_DOWNSHIFT_4X   0x0C00
+/*
+ * Number of times we will attempt to autonegotiate before downshifting if we
+ * are the slave
+ */
+#define M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK  0x0300
+#define M88E1000_EPSCR_SLAVE_DOWNSHIFT_DIS   0x0000
+#define M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X    0x0100
+#define M88E1000_EPSCR_SLAVE_DOWNSHIFT_2X    0x0200
+#define M88E1000_EPSCR_SLAVE_DOWNSHIFT_3X    0x0300
+#define M88E1000_EPSCR_TX_CLK_2_5     0x0060 /* 2.5 MHz TX_CLK */
+#define M88E1000_EPSCR_TX_CLK_25      0x0070 /* 25  MHz TX_CLK */
+#define M88E1000_EPSCR_TX_CLK_0       0x0000 /* NO  TX_CLK */
+
+/* M88EC018 Rev 2 specific DownShift settings */
+#define M88EC018_EPSCR_DOWNSHIFT_COUNTER_MASK  0x0E00
+#define M88EC018_EPSCR_DOWNSHIFT_COUNTER_1X    0x0000
+#define M88EC018_EPSCR_DOWNSHIFT_COUNTER_2X    0x0200
+#define M88EC018_EPSCR_DOWNSHIFT_COUNTER_3X    0x0400
+#define M88EC018_EPSCR_DOWNSHIFT_COUNTER_4X    0x0600
+#define M88EC018_EPSCR_DOWNSHIFT_COUNTER_5X    0x0800
+#define M88EC018_EPSCR_DOWNSHIFT_COUNTER_6X    0x0A00
+#define M88EC018_EPSCR_DOWNSHIFT_COUNTER_7X    0x0C00
+#define M88EC018_EPSCR_DOWNSHIFT_COUNTER_8X    0x0E00
+
+/*
+ * Bits...
+ * 15-5: page
+ * 4-0: register offset
+ */
+#define GG82563_PAGE_SHIFT        5
+#define GG82563_REG(page, reg)    \
+        (((page) << GG82563_PAGE_SHIFT) | ((reg) & MAX_PHY_REG_ADDRESS))
+#define GG82563_MIN_ALT_REG       30
+
+/* GG82563 Specific Registers */
+#define GG82563_PHY_SPEC_CTRL           \
+        GG82563_REG(0, 16) /* PHY Specific Control */
+#define GG82563_PHY_SPEC_STATUS         \
+        GG82563_REG(0, 17) /* PHY Specific Status */
+#define GG82563_PHY_INT_ENABLE          \
+        GG82563_REG(0, 18) /* Interrupt Enable */
+#define GG82563_PHY_SPEC_STATUS_2       \
+        GG82563_REG(0, 19) /* PHY Specific Status 2 */
+#define GG82563_PHY_RX_ERR_CNTR         \
+        GG82563_REG(0, 21) /* Receive Error Counter */
+#define GG82563_PHY_PAGE_SELECT         \
+        GG82563_REG(0, 22) /* Page Select */
+#define GG82563_PHY_SPEC_CTRL_2         \
+        GG82563_REG(0, 26) /* PHY Specific Control 2 */
+#define GG82563_PHY_PAGE_SELECT_ALT     \
+        GG82563_REG(0, 29) /* Alternate Page Select */
+#define GG82563_PHY_TEST_CLK_CTRL       \
+        GG82563_REG(0, 30) /* Test Clock Control (use reg. 29 to select) */
+
+#define GG82563_PHY_MAC_SPEC_CTRL       \
+        GG82563_REG(2, 21) /* MAC Specific Control Register */
+#define GG82563_PHY_MAC_SPEC_CTRL_2     \
+        GG82563_REG(2, 26) /* MAC Specific Control 2 */
+
+#define GG82563_PHY_DSP_DISTANCE    \
+        GG82563_REG(5, 26) /* DSP Distance */
+
+/* Page 193 - Port Control Registers */
+#define GG82563_PHY_KMRN_MODE_CTRL   \
+        GG82563_REG(193, 16) /* Kumeran Mode Control */
+#define GG82563_PHY_PORT_RESET          \
+        GG82563_REG(193, 17) /* Port Reset */
+#define GG82563_PHY_REVISION_ID         \
+        GG82563_REG(193, 18) /* Revision ID */
+#define GG82563_PHY_DEVICE_ID           \
+        GG82563_REG(193, 19) /* Device ID */
+#define GG82563_PHY_PWR_MGMT_CTRL       \
+        GG82563_REG(193, 20) /* Power Management Control */
+#define GG82563_PHY_RATE_ADAPT_CTRL     \
+        GG82563_REG(193, 25) /* Rate Adaptation Control */
+
+/* Page 194 - KMRN Registers */
+#define GG82563_PHY_KMRN_FIFO_CTRL_STAT \
+        GG82563_REG(194, 16) /* FIFO's Control/Status */
+#define GG82563_PHY_KMRN_CTRL           \
+        GG82563_REG(194, 17) /* Control */
+#define GG82563_PHY_INBAND_CTRL         \
+        GG82563_REG(194, 18) /* Inband Control */
+#define GG82563_PHY_KMRN_DIAGNOSTIC     \
+        GG82563_REG(194, 19) /* Diagnostic */
+#define GG82563_PHY_ACK_TIMEOUTS        \
+        GG82563_REG(194, 20) /* Acknowledge Timeouts */
+#define GG82563_PHY_ADV_ABILITY         \
+        GG82563_REG(194, 21) /* Advertised Ability */
+#define GG82563_PHY_LINK_PARTNER_ADV_ABILITY \
+        GG82563_REG(194, 23) /* Link Partner Advertised Ability */
+#define GG82563_PHY_ADV_NEXT_PAGE       \
+        GG82563_REG(194, 24) /* Advertised Next Page */
+#define GG82563_PHY_LINK_PARTNER_ADV_NEXT_PAGE \
+        GG82563_REG(194, 25) /* Link Partner Advertised Next page */
+#define GG82563_PHY_KMRN_MISC           \
+        GG82563_REG(194, 26) /* Misc. */
+
+/* MDI Control */
+#define E1000_MDIC_DATA_MASK 0x0000FFFF
+#define E1000_MDIC_REG_MASK  0x001F0000
+#define E1000_MDIC_REG_SHIFT 16
+#define E1000_MDIC_PHY_MASK  0x03E00000
+#define E1000_MDIC_PHY_SHIFT 21
+#define E1000_MDIC_OP_WRITE  0x04000000
+#define E1000_MDIC_OP_READ   0x08000000
+#define E1000_MDIC_READY     0x10000000
+#define E1000_MDIC_INT_EN    0x20000000
+#define E1000_MDIC_ERROR     0x40000000
+
+/* SerDes Control */
+#define E1000_GEN_CTL_READY             0x80000000
+#define E1000_GEN_CTL_ADDRESS_SHIFT     8
+#define E1000_GEN_POLL_TIMEOUT          640
+
+/* LinkSec register fields */
+#define E1000_LSECTXCAP_SUM_MASK        0x00FF0000
+#define E1000_LSECTXCAP_SUM_SHIFT       16
+#define E1000_LSECRXCAP_SUM_MASK        0x00FF0000
+#define E1000_LSECRXCAP_SUM_SHIFT       16
+
+#define E1000_LSECTXCTRL_EN_MASK        0x00000003
+#define E1000_LSECTXCTRL_DISABLE        0x0
+#define E1000_LSECTXCTRL_AUTH           0x1
+#define E1000_LSECTXCTRL_AUTH_ENCRYPT   0x2
+#define E1000_LSECTXCTRL_AISCI          0x00000020
+#define E1000_LSECTXCTRL_PNTHRSH_MASK   0xFFFFFF00
+#define E1000_LSECTXCTRL_RSV_MASK       0x000000D8
+
+#define E1000_LSECRXCTRL_EN_MASK        0x0000000C
+#define E1000_LSECRXCTRL_EN_SHIFT       2
+#define E1000_LSECRXCTRL_DISABLE        0x0
+#define E1000_LSECRXCTRL_CHECK          0x1
+#define E1000_LSECRXCTRL_STRICT         0x2
+#define E1000_LSECRXCTRL_DROP           0x3
+#define E1000_LSECRXCTRL_PLSH           0x00000040
+#define E1000_LSECRXCTRL_RP             0x00000080
+#define E1000_LSECRXCTRL_RSV_MASK       0xFFFFFF33
+
+#define UNREFERENCED_PARAMETER(_p)
+#endif
Index: if_em.c
===================================================================
RCS file: /home/cvs/src/sys/dev/em/if_em.c,v
retrieving revision 1.4
retrieving revision 1.5
diff -L sys/dev/em/if_em.c -L sys/dev/em/if_em.c -u -r1.4 -r1.5
--- sys/dev/em/if_em.c
+++ sys/dev/em/if_em.c
@@ -1,6 +1,6 @@
 /**************************************************************************
 
-Copyright (c) 2001-2006, Intel Corporation
+Copyright (c) 2001-2007, Intel Corporation
 All rights reserved.
 
 Redistribution and use in source and binary forms, with or without
@@ -30,8 +30,8 @@
 POSSIBILITY OF SUCH DAMAGE.
 
 ***************************************************************************/
+/* $FreeBSD: src/sys/dev/em/if_em.c,v 1.184.2.1 2007/11/28 23:24:38 jfv Exp $ */
 
-/*$FreeBSD: /repoman/r/ncvs/src/sys/dev/em/if_em.c,v 1.65.2.18 2006/08/25 12:38:26 glebius Exp $*/
 
 #ifdef HAVE_KERNEL_OPTION_HEADERS
 #include "opt_device_polling.h"
@@ -69,13 +69,17 @@
 #include <netinet/in.h>
 #include <netinet/if_ether.h>
 #include <netinet/ip.h>
+#include <netinet/ip6.h>
 #include <netinet/tcp.h>
 #include <netinet/udp.h>
 
+#include <machine/in_cksum.h>
 #include <dev/pci/pcivar.h>
 #include <dev/pci/pcireg.h>
-#include <dev/em/if_em_hw.h>
-#include <dev/em/if_em.h>
+
+#include "e1000_api.h"
+#include "e1000_82575.h"
+#include "if_em.h"
 
 /*********************************************************************
  *  Set this to one to display debug statistics
@@ -83,17 +87,16 @@
 int	em_display_debug_stats = 0;
 
 /*********************************************************************
- *  Driver version
+ *  Driver version:
  *********************************************************************/
-
-char em_driver_version[] = "Version - 6.1.4";
+char em_driver_version[] = "Version - 6.7.3";
 
 
 /*********************************************************************
  *  PCI Device ID Table
  *
  *  Used by probe to select devices to load on
- *  Last field stores an index into em_strings
+ *  Last field stores an index into e1000_strings
  *  Last entry must be all 0s
  *
  *  { Vendor ID, Device ID, SubVendor ID, SubDevice ID, String Index }
@@ -152,7 +155,12 @@
 	{ 0x8086, E1000_DEV_ID_82571EB_SERDES,	PCI_ANY_ID, PCI_ANY_ID, 0},
 	{ 0x8086, E1000_DEV_ID_82571EB_QUAD_COPPER,
 						PCI_ANY_ID, PCI_ANY_ID, 0},
-
+	{ 0x8086, E1000_DEV_ID_82571EB_QUAD_COPPER_LP,
+						PCI_ANY_ID, PCI_ANY_ID, 0},
+	{ 0x8086, E1000_DEV_ID_82571EB_QUAD_FIBER,
+						PCI_ANY_ID, PCI_ANY_ID, 0},
+	{ 0x8086, E1000_DEV_ID_82571PT_QUAD_COPPER,
+						PCI_ANY_ID, PCI_ANY_ID, 0},
 	{ 0x8086, E1000_DEV_ID_82572EI_COPPER,	PCI_ANY_ID, PCI_ANY_ID, 0},
 	{ 0x8086, E1000_DEV_ID_82572EI_FIBER,	PCI_ANY_ID, PCI_ANY_ID, 0},
 	{ 0x8086, E1000_DEV_ID_82572EI_SERDES,	PCI_ANY_ID, PCI_ANY_ID, 0},
@@ -169,10 +177,25 @@
 						PCI_ANY_ID, PCI_ANY_ID, 0},
 	{ 0x8086, E1000_DEV_ID_80003ES2LAN_SERDES_DPT,
 						PCI_ANY_ID, PCI_ANY_ID, 0},
+	{ 0x8086, E1000_DEV_ID_ICH8_IGP_M_AMT,	PCI_ANY_ID, PCI_ANY_ID, 0},
 	{ 0x8086, E1000_DEV_ID_ICH8_IGP_AMT,	PCI_ANY_ID, PCI_ANY_ID, 0},
 	{ 0x8086, E1000_DEV_ID_ICH8_IGP_C,	PCI_ANY_ID, PCI_ANY_ID, 0},
 	{ 0x8086, E1000_DEV_ID_ICH8_IFE,	PCI_ANY_ID, PCI_ANY_ID, 0},
+	{ 0x8086, E1000_DEV_ID_ICH8_IFE_GT,	PCI_ANY_ID, PCI_ANY_ID, 0},
+	{ 0x8086, E1000_DEV_ID_ICH8_IFE_G,	PCI_ANY_ID, PCI_ANY_ID, 0},
+	{ 0x8086, E1000_DEV_ID_ICH8_IGP_M,	PCI_ANY_ID, PCI_ANY_ID, 0},
+
+	{ 0x8086, E1000_DEV_ID_ICH9_IGP_AMT,	PCI_ANY_ID, PCI_ANY_ID, 0},
+	{ 0x8086, E1000_DEV_ID_ICH9_IGP_C,	PCI_ANY_ID, PCI_ANY_ID, 0},
+	{ 0x8086, E1000_DEV_ID_ICH9_IFE,	PCI_ANY_ID, PCI_ANY_ID, 0},
+	{ 0x8086, E1000_DEV_ID_ICH9_IFE_GT,	PCI_ANY_ID, PCI_ANY_ID, 0},
+	{ 0x8086, E1000_DEV_ID_ICH9_IFE_G,	PCI_ANY_ID, PCI_ANY_ID, 0},
 
+	{ 0x8086, E1000_DEV_ID_82575EB_COPPER,	PCI_ANY_ID, PCI_ANY_ID, 0},
+	{ 0x8086, E1000_DEV_ID_82575EB_FIBER_SERDES,
+						PCI_ANY_ID, PCI_ANY_ID, 0},
+	{ 0x8086, E1000_DEV_ID_82575GB_QUAD_COPPER,
+						PCI_ANY_ID, PCI_ANY_ID, 0},
 	/* required last entry */
 	{ 0, 0, 0, 0, 0}
 };
@@ -197,7 +220,7 @@
 static void	em_start(struct ifnet *);
 static void	em_start_locked(struct ifnet *ifp);
 static int	em_ioctl(struct ifnet *, u_long, caddr_t);
-static void	em_watchdog(struct ifnet *);
+static void	em_watchdog(struct adapter *);
 static void	em_init(void *);
 static void	em_init_locked(struct adapter *);
 static void	em_stop(void *);
@@ -206,12 +229,13 @@
 static void	em_identify_hardware(struct adapter *);
 static int	em_allocate_pci_resources(struct adapter *);
 static int	em_allocate_intr(struct adapter *);
+static bool	em_setup_msix(struct adapter *);
 static void	em_free_intr(struct adapter *);
 static void	em_free_pci_resources(struct adapter *);
 static void	em_local_timer(void *);
 static int	em_hardware_init(struct adapter *);
 static void	em_setup_interface(device_t, struct adapter *);
-static int	em_setup_transmit_structures(struct adapter *);
+static void	em_setup_transmit_structures(struct adapter *);
 static void	em_initialize_transmit_unit(struct adapter *);
 static int	em_setup_receive_structures(struct adapter *);
 static void	em_initialize_receive_unit(struct adapter *);
@@ -221,35 +245,42 @@
 static void	em_free_receive_structures(struct adapter *);
 static void	em_update_stats_counters(struct adapter *);
 static void	em_txeof(struct adapter *);
+static void	em_tx_purge(struct adapter *);
 static int	em_allocate_receive_structures(struct adapter *);
 static int	em_allocate_transmit_structures(struct adapter *);
 static int	em_rxeof(struct adapter *, int);
 #ifndef __NO_STRICT_ALIGNMENT
 static int	em_fixup_rx(struct adapter *);
 #endif
-static void	em_receive_checksum(struct adapter *, struct em_rx_desc *,
+static void	em_receive_checksum(struct adapter *, struct e1000_rx_desc *,
 		    struct mbuf *);
 static void	em_transmit_checksum_setup(struct adapter *, struct mbuf *,
 		    uint32_t *, uint32_t *);
+static boolean_t em_tx_adv_ctx_setup(struct adapter *, struct mbuf *);
+#if __FreeBSD_version >= 700000
+static boolean_t em_tso_setup(struct adapter *, struct mbuf *, uint32_t *,
+		    uint32_t *);
+static boolean_t em_tso_adv_setup(struct adapter *, struct mbuf *, uint32_t *);
+#endif /* FreeBSD_version >= 700000 */
 static void	em_set_promisc(struct adapter *);
 static void	em_disable_promisc(struct adapter *);
 static void	em_set_multi(struct adapter *);
 static void	em_print_hw_stats(struct adapter *);
 static void	em_update_link_status(struct adapter *);
 static int	em_get_buf(struct adapter *, int);
-static void	em_enable_vlans(struct adapter *);
-static void	em_disable_vlans(struct adapter *);
+static void	em_enable_hw_vlans(struct adapter *);
 static int	em_encap(struct adapter *, struct mbuf **);
+static int	em_adv_encap(struct adapter *, struct mbuf **);
 static void	em_smartspeed(struct adapter *);
 static int	em_82547_fifo_workaround(struct adapter *, int);
 static void	em_82547_update_fifo_head(struct adapter *, int);
 static int	em_82547_tx_fifo_reset(struct adapter *);
-static void	em_82547_move_tail(void *arg);
-static void	em_82547_move_tail_locked(struct adapter *);
+static void	em_82547_move_tail(void *);
 static int	em_dma_malloc(struct adapter *, bus_size_t,
-		struct em_dma_alloc *, int);
+		    struct em_dma_alloc *, int);
 static void	em_dma_free(struct adapter *, struct em_dma_alloc *);
 static void	em_print_debug_info(struct adapter *);
+static void	em_print_nvm_info(struct adapter *);
 static int 	em_is_valid_ether_addr(uint8_t *);
 static int	em_sysctl_stats(SYSCTL_HANDLER_ARGS);
 static int	em_sysctl_debug_info(SYSCTL_HANDLER_ARGS);
@@ -257,22 +288,31 @@
 		    PDESC_ARRAY desc_array);
 static int	em_sysctl_int_delay(SYSCTL_HANDLER_ARGS);
 static void	em_add_int_delay_sysctl(struct adapter *, const char *,
-		const char *, struct em_int_delay_info *, int, int);
+		    const char *, struct em_int_delay_info *, int, int);
+/* Management and WOL Support */
+static void	em_init_manageability(struct adapter *);
+static void	em_release_manageability(struct adapter *);
+static void     em_get_hw_control(struct adapter *);
+static void     em_release_hw_control(struct adapter *);
+static void     em_enable_wakeup(device_t);
 
-/*
- * Fast interrupt handler and legacy ithread/polling modes are
- * mutually exclusive.
- */
-#ifdef DEVICE_POLLING
-static poll_handler_t em_poll;
+#ifndef EM_FAST_IRQ
 static void	em_intr(void *);
-#else
+#else /* FAST IRQ */
+#if __FreeBSD_version < 700000
 static void	em_intr_fast(void *);
-static void	em_add_int_process_limit(struct adapter *, const char *,
-		const char *, int *, int);
+#else
+static int	em_intr_fast(void *);
+#endif
+static void	em_add_rx_process_limit(struct adapter *, const char *,
+		    const char *, int *, int);
 static void	em_handle_rxtx(void *context, int pending);
 static void	em_handle_link(void *context, int pending);
-#endif
+#endif /* EM_FAST_IRQ */
+
+#ifdef DEVICE_POLLING
+static poll_handler_t em_poll;
+#endif /* POLLING */
 
 /*********************************************************************
  *  FreeBSD Device Interface Entry Points
@@ -302,13 +342,19 @@
  *  Tunable default values.
  *********************************************************************/
 
-#define E1000_TICKS_TO_USECS(ticks)	((1024 * (ticks) + 500) / 1000)
-#define E1000_USECS_TO_TICKS(usecs)	((1000 * (usecs) + 512) / 1024)
+#define EM_TICKS_TO_USECS(ticks)	((1024 * (ticks) + 500) / 1000)
+#define EM_USECS_TO_TICKS(usecs)	((1000 * (usecs) + 512) / 1024)
+#define M_TSO_LEN			66
+
+/* Allow common code without TSO */
+#ifndef CSUM_TSO
+#define CSUM_TSO	0
+#endif
 
-static int em_tx_int_delay_dflt = E1000_TICKS_TO_USECS(EM_TIDV);
-static int em_rx_int_delay_dflt = E1000_TICKS_TO_USECS(EM_RDTR);
-static int em_tx_abs_int_delay_dflt = E1000_TICKS_TO_USECS(EM_TADV);
-static int em_rx_abs_int_delay_dflt = E1000_TICKS_TO_USECS(EM_RADV);
+static int em_tx_int_delay_dflt = EM_TICKS_TO_USECS(EM_TIDV);
+static int em_rx_int_delay_dflt = EM_TICKS_TO_USECS(EM_RDTR);
+static int em_tx_abs_int_delay_dflt = EM_TICKS_TO_USECS(EM_TADV);
+static int em_rx_abs_int_delay_dflt = EM_TICKS_TO_USECS(EM_RADV);
 static int em_rxd = EM_DEFAULT_RXD;
 static int em_txd = EM_DEFAULT_TXD;
 static int em_smart_pwr_down = FALSE;
@@ -320,10 +366,13 @@
 TUNABLE_INT("hw.em.rxd", &em_rxd);
 TUNABLE_INT("hw.em.txd", &em_txd);
 TUNABLE_INT("hw.em.smart_pwr_down", &em_smart_pwr_down);
-#ifndef DEVICE_POLLING
+#ifdef EM_FAST_IRQ
+/* How many packets rxeof tries to clean at a time */
 static int em_rx_process_limit = 100;
 TUNABLE_INT("hw.em.rx_process_limit", &em_rx_process_limit);
 #endif
+/* Global used in WOL setup with multiport cards */
+static int global_quad_port_a = 0;
 
 /*********************************************************************
  *  Device identification routine
@@ -392,17 +441,19 @@
 	struct adapter	*adapter;
 	int		tsize, rsize;
 	int		error = 0;
+	u16		eeprom_data, device_id;
 
 	INIT_DEBUGOUT("em_attach: begin");
 
 	adapter = device_get_softc(dev);
 	adapter->dev = adapter->osdep.dev = dev;
-	EM_LOCK_INIT(adapter, device_get_nameunit(dev));
+	EM_CORE_LOCK_INIT(adapter, device_get_nameunit(dev));
+	EM_TX_LOCK_INIT(adapter, device_get_nameunit(dev));
 
 	/* SYSCTL stuff */
 	SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
 	    SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
-	    OID_AUTO, "debug_info", CTLTYPE_INT|CTLFLAG_RW, adapter, 0,
+	    OID_AUTO, "debug", CTLTYPE_INT|CTLFLAG_RW, adapter, 0,
 	    em_sysctl_debug_info, "I", "Debug Information");
 
 	SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
@@ -410,35 +461,70 @@
 	    OID_AUTO, "stats", CTLTYPE_INT|CTLFLAG_RW, adapter, 0,
 	    em_sysctl_stats, "I", "Statistics");
 
-	callout_init(&adapter->timer, CALLOUT_MPSAFE);
-	callout_init(&adapter->tx_fifo_timer, CALLOUT_MPSAFE);
+	callout_init_mtx(&adapter->timer, &adapter->core_mtx, 0);
+	callout_init_mtx(&adapter->tx_fifo_timer, &adapter->tx_mtx, 0);
 
-	/* Determine hardware revision */
+	/* Determine hardware and mac info */
 	em_identify_hardware(adapter);
 
+	/* Setup PCI resources */
+	if (em_allocate_pci_resources(adapter)) {
+		device_printf(dev, "Allocation of PCI resources failed\n");
+		error = ENXIO;
+		goto err_pci;
+	}
+
+	/*
+	** For ICH8 and family we need to
+	** map the flash memory, and this
+	** must happen after the MAC is 
+	** identified
+	*/
+	if ((adapter->hw.mac.type == e1000_ich8lan) ||
+	    (adapter->hw.mac.type == e1000_ich9lan)) {
+		int rid = EM_BAR_TYPE_FLASH;
+		adapter->flash_mem = bus_alloc_resource_any(dev,
+		    SYS_RES_MEMORY, &rid, RF_ACTIVE);
+		/* This is used in the shared code */
+		adapter->hw.flash_address = (u8 *)adapter->flash_mem;
+		adapter->osdep.flash_bus_space_tag =
+		    rman_get_bustag(adapter->flash_mem);
+		adapter->osdep.flash_bus_space_handle =
+		    rman_get_bushandle(adapter->flash_mem);
+	}
+
+	/* Do Shared Code initialization */
+	if (e1000_setup_init_funcs(&adapter->hw, TRUE)) {
+		device_printf(dev, "Setup of Shared code failed\n");
+		error = ENXIO;
+		goto err_pci;
+	}
+
+	e1000_get_bus_info(&adapter->hw);
+
 	/* Set up some sysctls for the tunable interrupt delays */
 	em_add_int_delay_sysctl(adapter, "rx_int_delay",
 	    "receive interrupt delay in usecs", &adapter->rx_int_delay,
-	    E1000_REG_OFFSET(&adapter->hw, RDTR), em_rx_int_delay_dflt);
+	    E1000_REGISTER(&adapter->hw, E1000_RDTR), em_rx_int_delay_dflt);
 	em_add_int_delay_sysctl(adapter, "tx_int_delay",
 	    "transmit interrupt delay in usecs", &adapter->tx_int_delay,
-	    E1000_REG_OFFSET(&adapter->hw, TIDV), em_tx_int_delay_dflt);
-	if (adapter->hw.mac_type >= em_82540) {
+	    E1000_REGISTER(&adapter->hw, E1000_TIDV), em_tx_int_delay_dflt);
+	if (adapter->hw.mac.type >= e1000_82540) {
 		em_add_int_delay_sysctl(adapter, "rx_abs_int_delay",
 		    "receive interrupt delay limit in usecs",
 		    &adapter->rx_abs_int_delay,
-		    E1000_REG_OFFSET(&adapter->hw, RADV),
+		    E1000_REGISTER(&adapter->hw, E1000_RADV),
 		    em_rx_abs_int_delay_dflt);
 		em_add_int_delay_sysctl(adapter, "tx_abs_int_delay",
 		    "transmit interrupt delay limit in usecs",
 		    &adapter->tx_abs_int_delay,
-		    E1000_REG_OFFSET(&adapter->hw, TADV),
+		    E1000_REGISTER(&adapter->hw, E1000_TADV),
 		    em_tx_abs_int_delay_dflt);
 	}
 
-#ifndef DEVICE_POLLING
+#ifdef EM_FAST_IRQ
 	/* Sysctls for limiting the amount of work done in the taskqueue */
-	em_add_int_process_limit(adapter, "rx_processing_limit",
+	em_add_rx_process_limit(adapter, "rx_processing_limit",
 	    "max number of rx packets to process", &adapter->rx_process_limit,
 	    em_rx_process_limit);
 #endif
@@ -446,20 +532,20 @@
 	/*
 	 * Validate number of transmit and receive descriptors. It
 	 * must not exceed hardware maximum, and must be multiple
-	 * of EM_DBA_ALIGN.
+	 * of E1000_DBA_ALIGN.
 	 */
-	if (((em_txd * sizeof(struct em_tx_desc)) % EM_DBA_ALIGN) != 0 ||
-	    (adapter->hw.mac_type >= em_82544 && em_txd > EM_MAX_TXD) ||
-	    (adapter->hw.mac_type < em_82544 && em_txd > EM_MAX_TXD_82543) ||
+	if (((em_txd * sizeof(struct e1000_tx_desc)) % EM_DBA_ALIGN) != 0 ||
+	    (adapter->hw.mac.type >= e1000_82544 && em_txd > EM_MAX_TXD) ||
+	    (adapter->hw.mac.type < e1000_82544 && em_txd > EM_MAX_TXD_82543) ||
 	    (em_txd < EM_MIN_TXD)) {
 		device_printf(dev, "Using %d TX descriptors instead of %d!\n",
 		    EM_DEFAULT_TXD, em_txd);
 		adapter->num_tx_desc = EM_DEFAULT_TXD;
 	} else
 		adapter->num_tx_desc = em_txd;
-	if (((em_rxd * sizeof(struct em_rx_desc)) % EM_DBA_ALIGN) != 0 ||
-	    (adapter->hw.mac_type >= em_82544 && em_rxd > EM_MAX_RXD) ||
-	    (adapter->hw.mac_type < em_82544 && em_rxd > EM_MAX_RXD_82543) ||
+	if (((em_rxd * sizeof(struct e1000_rx_desc)) % EM_DBA_ALIGN) != 0 ||
+	    (adapter->hw.mac.type >= e1000_82544 && em_rxd > EM_MAX_RXD) ||
+	    (adapter->hw.mac.type < e1000_82544 && em_rxd > EM_MAX_RXD_82543) ||
 	    (em_rxd < EM_MIN_RXD)) {
 		device_printf(dev, "Using %d RX descriptors instead of %d!\n",
 		    EM_DEFAULT_RXD, em_rxd);
@@ -467,43 +553,35 @@
 	} else
 		adapter->num_rx_desc = em_rxd;
 
-	adapter->hw.autoneg = DO_AUTO_NEG;
-	adapter->hw.wait_autoneg_complete = WAIT_FOR_AUTO_NEG_DEFAULT;
-	adapter->hw.autoneg_advertised = AUTONEG_ADV_DEFAULT;
-	adapter->hw.tbi_compatibility_en = TRUE;
-	adapter->rx_buffer_len = EM_RXBUFFER_2048;
-
-	adapter->hw.phy_init_script = 1;
-	adapter->hw.phy_reset_disable = FALSE;
+	adapter->hw.mac.autoneg = DO_AUTO_NEG;
+	adapter->hw.phy.autoneg_wait_to_complete = FALSE;
+	adapter->hw.phy.autoneg_advertised = AUTONEG_ADV_DEFAULT;
+	adapter->rx_buffer_len = 2048;
+
+	e1000_init_script_state_82541(&adapter->hw, TRUE);
+	e1000_set_tbi_compatibility_82543(&adapter->hw, TRUE);
+
+	/* Copper options */
+	if (adapter->hw.phy.media_type == e1000_media_type_copper) {
+		adapter->hw.phy.mdix = AUTO_ALL_MODES;
+		adapter->hw.phy.disable_polarity_correction = FALSE;
+		adapter->hw.phy.ms_type = EM_MASTER_SLAVE;
+	}
 
-#ifndef EM_MASTER_SLAVE
-	adapter->hw.master_slave = em_ms_hw_default;
-#else
-	adapter->hw.master_slave = EM_MASTER_SLAVE;
-#endif
 	/*
-	 * Set the max frame size assuming standard ethernet
-	 * sized frames.
+	 * Set the frame limits assuming
+	 * standard ethernet sized frames.
 	 */
-	adapter->hw.max_frame_size = ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN;
-
-	adapter->hw.min_frame_size = MINIMUM_ETHERNET_PACKET_SIZE + ETHER_CRC_LEN;
+	adapter->max_frame_size = ETHERMTU + ETHER_HDR_LEN + ETHERNET_FCS_SIZE;
+	adapter->min_frame_size = ETH_ZLEN + ETHERNET_FCS_SIZE;
 
 	/*
 	 * This controls when hardware reports transmit completion
 	 * status.
 	 */
-	adapter->hw.report_tx_early = 1;
-	if (em_allocate_pci_resources(adapter)) {
-		device_printf(dev, "Allocation of PCI resources failed\n");
-		error = ENXIO;
-		goto err_pci;
-	}
-	
-	/* Initialize eeprom parameters */
-	em_init_eeprom_params(&adapter->hw);
+	adapter->hw.mac.report_tx_early = 1;
 
-	tsize = roundup2(adapter->num_tx_desc * sizeof(struct em_tx_desc),
+	tsize = roundup2(adapter->num_tx_desc * sizeof(struct e1000_tx_desc),
 	    EM_DBA_ALIGN);
 
 	/* Allocate Transmit Descriptor ring */
@@ -512,9 +590,10 @@
 		error = ENOMEM;
 		goto err_tx_desc;
 	}
-	adapter->tx_desc_base = (struct em_tx_desc *)adapter->txdma.dma_vaddr;
+	adapter->tx_desc_base = 
+	    (struct e1000_tx_desc *)adapter->txdma.dma_vaddr;
 
-	rsize = roundup2(adapter->num_rx_desc * sizeof(struct em_rx_desc),
+	rsize = roundup2(adapter->num_rx_desc * sizeof(struct e1000_rx_desc),
 	    EM_DBA_ALIGN);
 
 	/* Allocate Receive Descriptor ring */
@@ -523,7 +602,23 @@
 		error = ENOMEM;
 		goto err_rx_desc;
 	}
-	adapter->rx_desc_base = (struct em_rx_desc *)adapter->rxdma.dma_vaddr;
+	adapter->rx_desc_base =
+	    (struct e1000_rx_desc *)adapter->rxdma.dma_vaddr;
+
+	/* Make sure we have a good EEPROM before we read from it */
+	if (e1000_validate_nvm_checksum(&adapter->hw) < 0) {
+		/*
+		** Some PCI-E parts fail the first check due to
+		** the link being in sleep state, call it again,
+		** if it fails a second time its a real issue.
+		*/
+		if (e1000_validate_nvm_checksum(&adapter->hw) < 0) {
+			device_printf(dev,
+			    "The EEPROM Checksum Is Not Valid\n");
+			error = EIO;
+			goto err_hw_init;
+		}
+	}
 
 	/* Initialize the hardware */
 	if (em_hardware_init(adapter)) {
@@ -533,47 +628,132 @@
 	}
 
 	/* Copy the permanent MAC address out of the EEPROM */
-	if (em_read_mac_addr(&adapter->hw) < 0) {
+	if (e1000_read_mac_addr(&adapter->hw) < 0) {
 		device_printf(dev, "EEPROM read error while reading MAC"
 		    " address\n");
 		error = EIO;
 		goto err_hw_init;
 	}
 
-	if (!em_is_valid_ether_addr(adapter->hw.mac_addr)) {
+	if (!em_is_valid_ether_addr(adapter->hw.mac.addr)) {
 		device_printf(dev, "Invalid MAC address\n");
 		error = EIO;
 		goto err_hw_init;
 	}
 
+	/* Allocate transmit descriptors and buffers */
+	if (em_allocate_transmit_structures(adapter)) {
+		device_printf(dev, "Could not setup transmit structures\n");
+		error = ENOMEM;
+		goto err_tx_struct;
+	}
+
+	/* Allocate receive descriptors and buffers */
+	if (em_allocate_receive_structures(adapter)) {
+		device_printf(dev, "Could not setup receive structures\n");
+		error = ENOMEM;
+		goto err_rx_struct;
+	}
+
 	/* Setup OS specific network interface */
 	em_setup_interface(dev, adapter);
 
 	em_allocate_intr(adapter);
 
 	/* Initialize statistics */
-	em_clear_hw_cntrs(&adapter->hw);
 	em_update_stats_counters(adapter);
-	adapter->hw.get_link_status = 1;
+
+	adapter->hw.mac.get_link_status = 1;
 	em_update_link_status(adapter);
 
 	/* Indicate SOL/IDER usage */
-	if (em_check_phy_reset_block(&adapter->hw))
+	if (e1000_check_reset_block(&adapter->hw))
 		device_printf(dev,
 		    "PHY reset is blocked due to SOL/IDER session.\n");
 
-	/* Identify 82544 on PCIX */
-	em_get_bus_info(&adapter->hw);
-	if(adapter->hw.bus_type == em_bus_type_pcix && adapter->hw.mac_type == em_82544)
+	/* Determine if we have to control management hardware */
+	adapter->has_manage = e1000_enable_mng_pass_thru(&adapter->hw);
+
+	/*
+	 * Setup Wake-on-Lan
+	 */
+	switch (adapter->hw.mac.type) {
+
+	case e1000_82542:
+	case e1000_82543:
+		break;
+	case e1000_82546:
+	case e1000_82546_rev_3:
+	case e1000_82571:
+	case e1000_80003es2lan:
+		if (adapter->hw.bus.func == 1)
+			e1000_read_nvm(&adapter->hw,
+			    NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
+		else
+			e1000_read_nvm(&adapter->hw,
+			    NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
+		eeprom_data &= EM_EEPROM_APME;
+		break;
+	default:
+		/* APME bit in EEPROM is mapped to WUC.APME */
+		eeprom_data = E1000_READ_REG(&adapter->hw, E1000_WUC) &
+		    E1000_WUC_APME;
+		break;
+	}
+	if (eeprom_data)
+		adapter->wol = E1000_WUFC_MAG;
+	/*
+         * We have the eeprom settings, now apply the special cases
+         * where the eeprom may be wrong or the board won't support
+         * wake on lan on a particular port
+	 */
+	device_id = pci_get_device(dev);
+        switch (device_id) {
+	case E1000_DEV_ID_82546GB_PCIE:
+		adapter->wol = 0;
+		break;
+	case E1000_DEV_ID_82546EB_FIBER:
+	case E1000_DEV_ID_82546GB_FIBER:
+	case E1000_DEV_ID_82571EB_FIBER:
+		/* Wake events only supported on port A for dual fiber
+		 * regardless of eeprom setting */
+		if (E1000_READ_REG(&adapter->hw, E1000_STATUS) &
+		    E1000_STATUS_FUNC_1)
+			adapter->wol = 0;
+		break;
+	case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
+	case E1000_DEV_ID_82571EB_QUAD_COPPER:
+	case E1000_DEV_ID_82571EB_QUAD_FIBER:
+	case E1000_DEV_ID_82571EB_QUAD_COPPER_LP:
+                /* if quad port adapter, disable WoL on all but port A */
+		if (global_quad_port_a != 0)
+			adapter->wol = 0;
+		/* Reset for multiple quad port adapters */
+		if (++global_quad_port_a == 4)
+			global_quad_port_a = 0;
+                break;
+	}
+
+	/* Do we need workaround for 82544 PCI-X adapter? */
+	if (adapter->hw.bus.type == e1000_bus_type_pcix &&
+	    adapter->hw.mac.type == e1000_82544)
 		adapter->pcix_82544 = TRUE;
 	else
 		adapter->pcix_82544 = FALSE;
 
+	/* Tell the stack that the interface is not active */
+	adapter->ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
+
 	INIT_DEBUGOUT("em_attach: end");
 
 	return (0);
 
+err_rx_struct:
+	em_free_transmit_structures(adapter);
+err_tx_struct:
 err_hw_init:
+	em_release_hw_control(adapter);
+	e1000_remove_device(&adapter->hw);
 	em_dma_free(adapter, &adapter->rxdma);
 err_rx_desc:
 	em_dma_free(adapter, &adapter->txdma);
@@ -581,7 +761,8 @@
 err_pci:
 	em_free_intr(adapter);
 	em_free_pci_resources(adapter);
-	EM_LOCK_DESTROY(adapter);
+	EM_TX_LOCK_DESTROY(adapter);
+	EM_CORE_LOCK_DESTROY(adapter);
 
 	return (error);
 }
@@ -604,23 +785,58 @@
 
 	INIT_DEBUGOUT("em_detach: begin");
 
+	/* Make sure VLANS are not using driver */
+#if __FreeBSD_version >= 700000
+	if (adapter->ifp->if_vlantrunk != NULL) {
+#else
+	if (adapter->ifp->if_nvlans != 0) {
+#endif   
+		device_printf(dev,"Vlan in use, detach first\n");
+		return (EBUSY);
+	}
+
 #ifdef DEVICE_POLLING
 	if (ifp->if_capenable & IFCAP_POLLING)
 		ether_poll_deregister(ifp);
 #endif
 
+	em_disable_intr(adapter);
 	em_free_intr(adapter);
-	EM_LOCK(adapter);
+	EM_CORE_LOCK(adapter);
+	EM_TX_LOCK(adapter);
 	adapter->in_detach = 1;
 	em_stop(adapter);
-	em_phy_hw_reset(&adapter->hw);
-	EM_UNLOCK(adapter);
+	e1000_phy_hw_reset(&adapter->hw);
+
+	em_release_manageability(adapter);
+
+	if (((adapter->hw.mac.type == e1000_82573) ||
+	    (adapter->hw.mac.type == e1000_ich8lan) ||
+	    (adapter->hw.mac.type == e1000_ich9lan)) &&
+	    e1000_check_mng_mode(&adapter->hw))
+		em_release_hw_control(adapter);
+
+	if (adapter->wol) {
+		E1000_WRITE_REG(&adapter->hw, E1000_WUC, E1000_WUC_PME_EN);
+		E1000_WRITE_REG(&adapter->hw, E1000_WUFC, adapter->wol);
+		em_enable_wakeup(dev);
+	}
+
 	ether_ifdetach(adapter->ifp);
 
+	callout_drain(&adapter->timer);
+	callout_drain(&adapter->tx_fifo_timer);
+
 	em_free_pci_resources(adapter);
 	bus_generic_detach(dev);
 	if_free(ifp);
 
+	e1000_remove_device(&adapter->hw);
+	em_free_transmit_structures(adapter);
+	em_free_receive_structures(adapter);
+	EM_TX_UNLOCK(adapter);
+	EM_CORE_UNLOCK(adapter);
+
 	/* Free Transmit Descriptor ring */
 	if (adapter->tx_desc_base) {
 		em_dma_free(adapter, &adapter->txdma);
@@ -633,7 +849,8 @@
 		adapter->rx_desc_base = NULL;
 	}
 
-	EM_LOCK_DESTROY(adapter);
+	EM_TX_LOCK_DESTROY(adapter);
+	EM_CORE_LOCK_DESTROY(adapter);
 
 	return (0);
 }
@@ -647,11 +864,7 @@
 static int
 em_shutdown(device_t dev)
 {
-	struct adapter *adapter = device_get_softc(dev);
-	EM_LOCK(adapter);
-	em_stop(adapter);
-	EM_UNLOCK(adapter);
-	return (0);
+	return em_suspend(dev);
 }
 
 /*
@@ -662,9 +875,27 @@
 {
 	struct adapter *adapter = device_get_softc(dev);
 
-	EM_LOCK(adapter);
+	EM_CORE_LOCK(adapter);
+
+	EM_TX_LOCK(adapter);
 	em_stop(adapter);
-	EM_UNLOCK(adapter);
+	EM_TX_UNLOCK(adapter);
+
+        em_release_manageability(adapter);
+
+        if (((adapter->hw.mac.type == e1000_82573) ||
+            (adapter->hw.mac.type == e1000_ich8lan) ||
+            (adapter->hw.mac.type == e1000_ich9lan)) &&
+            e1000_check_mng_mode(&adapter->hw))
+                em_release_hw_control(adapter);
+
+        if (adapter->wol) {
+                E1000_WRITE_REG(&adapter->hw, E1000_WUC, E1000_WUC_PME_EN);
+                E1000_WRITE_REG(&adapter->hw, E1000_WUFC, adapter->wol);
+                em_enable_wakeup(dev);
+        }
+
+	EM_CORE_UNLOCK(adapter);
 
 	return bus_generic_suspend(dev);
 }
@@ -675,12 +906,15 @@
 	struct adapter *adapter = device_get_softc(dev);
 	struct ifnet *ifp = adapter->ifp;
 
-	EM_LOCK(adapter);
+	EM_CORE_LOCK(adapter);
 	em_init_locked(adapter);
+	em_init_manageability(adapter);
+
 	if ((ifp->if_flags & IFF_UP) &&
 	    (ifp->if_drv_flags & IFF_DRV_RUNNING))
 		em_start_locked(ifp);
-	EM_UNLOCK(adapter);
+
+	EM_CORE_UNLOCK(adapter);
 
 	return bus_generic_resume(dev);
 }
@@ -702,7 +936,7 @@
 	struct adapter	*adapter = ifp->if_softc;
 	struct mbuf	*m_head;
 
-	EM_LOCK_ASSERT(adapter);
+	EM_TX_LOCK_ASSERT(adapter);
 
 	if ((ifp->if_drv_flags & (IFF_DRV_RUNNING|IFF_DRV_OACTIVE)) !=
 	    IFF_DRV_RUNNING)
@@ -716,10 +950,13 @@
 		if (m_head == NULL)
 			break;
 		/*
-		 * em_encap() can modify our pointer, and or make it NULL on
-		 * failure.  In that event, we can't requeue.
+		 *  Encapsulation can modify our pointer, and or make it
+		 *  NULL on failure.  In that event, we can't requeue.
+		 *
+		 *  We now use a pointer to accomodate legacy and
+		 *  advanced transmit functions.
 		 */
-		if (em_encap(adapter, &m_head)) {
+		if (adapter->em_xmit(adapter, &m_head)) {
 			if (m_head == NULL)
 				break;
 			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
@@ -728,10 +965,10 @@
 		}
 
 		/* Send a copy of the frame to the BPF listener */
-		BPF_MTAP(ifp, m_head);
+		ETHER_BPF_MTAP(ifp, m_head);
 
 		/* Set timeout in case hardware has problems transmitting. */
-		ifp->if_timer = EM_TX_TIMEOUT;
+		adapter->watchdog_timer = EM_TX_TIMEOUT;
 	}
 }
 
@@ -740,10 +977,10 @@
 {
 	struct adapter *adapter = ifp->if_softc;
 
-	EM_LOCK(adapter);
+	EM_TX_LOCK(adapter);
 	if (ifp->if_drv_flags & IFF_DRV_RUNNING)
 		em_start_locked(ifp);
-	EM_UNLOCK(adapter);
+	EM_TX_UNLOCK(adapter);
 }
 
 /*********************************************************************
@@ -768,7 +1005,6 @@
 
 	switch (command) {
 	case SIOCSIFADDR:
-	case SIOCGIFADDR:
 		if (ifa->ifa_addr->sa_family == AF_INET) {
 			/*
 			 * XXX
@@ -779,9 +1015,9 @@
 			 */
 			ifp->if_flags |= IFF_UP;
 			if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
-				EM_LOCK(adapter);
+				EM_CORE_LOCK(adapter);
 				em_init_locked(adapter);
-				EM_UNLOCK(adapter);
+				EM_CORE_UNLOCK(adapter);
 			}
 			arp_ifinit(ifp, ifa);
 		} else
@@ -794,27 +1030,30 @@
 
 		IOCTL_DEBUGOUT("ioctl rcv'd: SIOCSIFMTU (Set Interface MTU)");
 
-		EM_LOCK(adapter);
-		switch (adapter->hw.mac_type) {
-		case em_82573:
+		EM_CORE_LOCK(adapter);
+		switch (adapter->hw.mac.type) {
+		case e1000_82573:
 			/*
 			 * 82573 only supports jumbo frames
 			 * if ASPM is disabled.
 			 */
-			em_read_eeprom(&adapter->hw, EEPROM_INIT_3GIO_3, 1,
-			    &eeprom_data);
-			if (eeprom_data & EEPROM_WORD1A_ASPM_MASK) {
+			e1000_read_nvm(&adapter->hw,
+			    NVM_INIT_3GIO_3, 1, &eeprom_data);
+			if (eeprom_data & NVM_WORD1A_ASPM_MASK) {
 				max_frame_size = ETHER_MAX_LEN;
 				break;
 			}
 			/* Allow Jumbo frames - fall thru */
-		case em_82571:
-		case em_82572:
-		case em_80003es2lan:	/* Limit Jumbo Frame size */
+		case e1000_82571:
+		case e1000_82572:
+		case e1000_ich9lan:
+		case e1000_82575:
+		case e1000_80003es2lan:	/* Limit Jumbo Frame size */
 			max_frame_size = 9234;
 			break;
-		case em_ich8lan:
-			/* ICH8 does not support jumbo frames */
+			/* Adapters that do not support jumbo frames */
+		case e1000_82542:
+		case e1000_ich8lan:
 			max_frame_size = ETHER_MAX_LEN;
 			break;
 		default:
@@ -822,21 +1061,22 @@
 		}
 		if (ifr->ifr_mtu > max_frame_size - ETHER_HDR_LEN -
 		    ETHER_CRC_LEN) {
-			EM_UNLOCK(adapter);
+			EM_CORE_UNLOCK(adapter);
 			error = EINVAL;
 			break;
 		}
 
 		ifp->if_mtu = ifr->ifr_mtu;
-		adapter->hw.max_frame_size =
-		ifp->if_mtu + ETHER_HDR_LEN + ETHER_CRC_LEN;
+		adapter->max_frame_size =
+		    ifp->if_mtu + ETHER_HDR_LEN + ETHER_CRC_LEN;
 		em_init_locked(adapter);
-		EM_UNLOCK(adapter);
+		EM_CORE_UNLOCK(adapter);
 		break;
 	    }
 	case SIOCSIFFLAGS:
-		IOCTL_DEBUGOUT("ioctl rcv'd: SIOCSIFFLAGS (Set Interface Flags)");
-		EM_LOCK(adapter);
+		IOCTL_DEBUGOUT("ioctl rcv'd:\
+		    SIOCSIFFLAGS (Set Interface Flags)");
+		EM_CORE_LOCK(adapter);
 		if (ifp->if_flags & IFF_UP) {
 			if ((ifp->if_drv_flags & IFF_DRV_RUNNING)) {
 				if ((ifp->if_flags ^ adapter->if_flags) &
@@ -846,34 +1086,46 @@
 				}
 			} else
 				em_init_locked(adapter);
-		} else {
+		} else
 			if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
+				EM_TX_LOCK(adapter);
 				em_stop(adapter);
+				EM_TX_UNLOCK(adapter);
 			}
-		}
 		adapter->if_flags = ifp->if_flags;
-		EM_UNLOCK(adapter);
+		EM_CORE_UNLOCK(adapter);
 		break;
 	case SIOCADDMULTI:
 	case SIOCDELMULTI:
 		IOCTL_DEBUGOUT("ioctl rcv'd: SIOC(ADD|DEL)MULTI");
 		if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
-			EM_LOCK(adapter);
+			EM_CORE_LOCK(adapter);
 			em_disable_intr(adapter);
 			em_set_multi(adapter);
-			if (adapter->hw.mac_type == em_82542_rev2_0) {
+			if (adapter->hw.mac.type == e1000_82542 && 
+	    		    adapter->hw.revision_id == E1000_REVISION_2) {
 				em_initialize_receive_unit(adapter);
 			}
 #ifdef DEVICE_POLLING
 			if (!(ifp->if_capenable & IFCAP_POLLING))
 #endif
 				em_enable_intr(adapter);
-			EM_UNLOCK(adapter);
+			EM_CORE_UNLOCK(adapter);
 		}
 		break;
 	case SIOCSIFMEDIA:
+		/* Check SOL/IDER usage */
+		EM_CORE_LOCK(adapter);
+		if (e1000_check_reset_block(&adapter->hw)) {
+			EM_CORE_UNLOCK(adapter);
+			device_printf(adapter->dev, "Media change is"
+			    " blocked due to SOL/IDER session.\n");
+			break;
+		}
+		EM_CORE_UNLOCK(adapter);
 	case SIOCGIFMEDIA:
-		IOCTL_DEBUGOUT("ioctl rcv'd: SIOCxIFMEDIA (Get/Set Interface Media)");
+		IOCTL_DEBUGOUT("ioctl rcv'd: \
+		    SIOCxIFMEDIA (Get/Set Interface Media)");
 		error = ifmedia_ioctl(ifp, ifr, &adapter->media, command);
 		break;
 	case SIOCSIFCAP:
@@ -889,17 +1141,17 @@
 				error = ether_poll_register(em_poll, ifp);
 				if (error)
 					return (error);
-				EM_LOCK(adapter);
+				EM_CORE_LOCK(adapter);
 				em_disable_intr(adapter);
 				ifp->if_capenable |= IFCAP_POLLING;
-				EM_UNLOCK(adapter);
+				EM_CORE_UNLOCK(adapter);
 			} else {
 				error = ether_poll_deregister(ifp);
 				/* Enable interrupt even in error case */
-				EM_LOCK(adapter);
+				EM_CORE_LOCK(adapter);
 				em_enable_intr(adapter);
 				ifp->if_capenable &= ~IFCAP_POLLING;
-				EM_UNLOCK(adapter);
+				EM_CORE_UNLOCK(adapter);
 			}
 		}
 #endif
@@ -907,12 +1159,21 @@
 			ifp->if_capenable ^= IFCAP_HWCSUM;
 			reinit = 1;
 		}
+#if __FreeBSD_version >= 700000
+		if (mask & IFCAP_TSO4) {
+			ifp->if_capenable ^= IFCAP_TSO4;
+			reinit = 1;
+		}
+#endif
 		if (mask & IFCAP_VLAN_HWTAGGING) {
 			ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
 			reinit = 1;
 		}
 		if (reinit && (ifp->if_drv_flags & IFF_DRV_RUNNING))
 			em_init(adapter);
+#if __FreeBSD_version >= 700000
+		VLAN_CAPABILITIES(ifp);
+#endif
 		break;
 	    }
 	default:
@@ -924,35 +1185,46 @@
 }
 
 /*********************************************************************
- *  Watchdog entry point
+ *  Watchdog timer:
  *
- *  This routine is called whenever hardware quits transmitting.
+ *  This routine is called from the local timer every second.
+ *  As long as transmit descriptors are being cleaned the value
+ *  is non-zero and we do nothing. Reaching 0 indicates a tx hang
+ *  and we then reset the device.
  *
  **********************************************************************/
 
 static void
-em_watchdog(struct ifnet *ifp)
+em_watchdog(struct adapter *adapter)
 {
-	struct adapter *adapter = ifp->if_softc;
 
-	EM_LOCK(adapter);
+	EM_CORE_LOCK_ASSERT(adapter);
+
+	/*
+	** The timer is set to 5 every time start queues a packet.
+	** Then txeof keeps resetting it as long as it cleans at
+	** least one descriptor.
+	** Finally, anytime all descriptors are clean the timer is
+	** set to 0.
+	*/
+	if ((adapter->watchdog_timer == 0) || (--adapter->watchdog_timer))
+		return;
+
 	/* If we are in this routine because of pause frames, then
 	 * don't reset the hardware.
 	 */
-	if (E1000_READ_REG(&adapter->hw, STATUS) & E1000_STATUS_TXOFF) {
-		ifp->if_timer = EM_TX_TIMEOUT;
-		EM_UNLOCK(adapter);
+	if (E1000_READ_REG(&adapter->hw, E1000_STATUS) &
+	    E1000_STATUS_TXOFF) {
+		adapter->watchdog_timer = EM_TX_TIMEOUT;
 		return;
 	}
 
-	if (em_check_for_link(&adapter->hw) == 0)
+	if (e1000_check_for_link(&adapter->hw) == 0)
 		device_printf(adapter->dev, "watchdog timeout -- resetting\n");
-
-	ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
+	adapter->ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
 	adapter->watchdog_events++;
 
 	em_init_locked(adapter);
-	EM_UNLOCK(adapter);
 }
 
 /*********************************************************************
@@ -975,9 +1247,11 @@
 
 	INIT_DEBUGOUT("em_init: begin");
 
-	EM_LOCK_ASSERT(adapter);
+	EM_CORE_LOCK_ASSERT(adapter);
 
+	EM_TX_LOCK(adapter);
 	em_stop(adapter);
+	EM_TX_UNLOCK(adapter);
 
 	/*
 	 * Packet Buffer Allocation (PBA)
@@ -990,42 +1264,64 @@
 	 *   Default allocation: PBA=30K for Rx, leaving 10K for Tx.
 	 *   Note: default does not leave enough room for Jumbo Frame >10k.
 	 */
-	switch (adapter->hw.mac_type) {
-	case em_82547:
-	case em_82547_rev_2: /* 82547: Total Packet Buffer is 40K */
-		if (adapter->hw.max_frame_size > EM_RXBUFFER_8192)
+	switch (adapter->hw.mac.type) {
+	case e1000_82547:
+	case e1000_82547_rev_2: /* 82547: Total Packet Buffer is 40K */
+		if (adapter->max_frame_size > 8192)
 			pba = E1000_PBA_22K; /* 22K for Rx, 18K for Tx */
 		else
 			pba = E1000_PBA_30K; /* 30K for Rx, 10K for Tx */
 		adapter->tx_fifo_head = 0;
 		adapter->tx_head_addr = pba << EM_TX_HEAD_ADDR_SHIFT;
-		adapter->tx_fifo_size = (E1000_PBA_40K - pba) << EM_PBA_BYTES_SHIFT;
+		adapter->tx_fifo_size =
+		    (E1000_PBA_40K - pba) << EM_PBA_BYTES_SHIFT;
 		break;
-	case em_80003es2lan: /* 80003es2lan: Total Packet Buffer is 48K */
-	case em_82571: /* 82571: Total Packet Buffer is 48K */
-	case em_82572: /* 82572: Total Packet Buffer is 48K */
+	/* Total Packet Buffer on these is 48K */
+	case e1000_82571:
+	case e1000_82572:
+	case e1000_82575:
+	case e1000_80003es2lan:
 			pba = E1000_PBA_32K; /* 32K for Rx, 16K for Tx */
 		break;
-	case em_82573: /* 82573: Total Packet Buffer is 32K */
-		/* Jumbo frames not supported */
+	case e1000_82573: /* 82573: Total Packet Buffer is 32K */
 			pba = E1000_PBA_12K; /* 12K for Rx, 20K for Tx */
 		break;
-	case em_ich8lan:
+	case e1000_ich9lan:
+#define E1000_PBA_10K	0x000A
+		pba = E1000_PBA_10K;
+		break;
+	case e1000_ich8lan:
 		pba = E1000_PBA_8K;
 		break;
 	default:
 		/* Devices before 82547 had a Packet Buffer of 64K.   */
-		if(adapter->hw.max_frame_size > EM_RXBUFFER_8192)
+		if (adapter->max_frame_size > 8192)
 			pba = E1000_PBA_40K; /* 40K for Rx, 24K for Tx */
 		else
 			pba = E1000_PBA_48K; /* 48K for Rx, 16K for Tx */
 	}
 
 	INIT_DEBUGOUT1("em_init: pba=%dK",pba);
-	E1000_WRITE_REG(&adapter->hw, PBA, pba);
+	E1000_WRITE_REG(&adapter->hw, E1000_PBA, pba);
 	
 	/* Get the latest mac address, User can use a LAA */
-	bcopy(IF_LLADDR(adapter->ifp), adapter->hw.mac_addr, ETHER_ADDR_LEN);
+        bcopy(IF_LLADDR(adapter->ifp), adapter->hw.mac.addr,
+              ETHER_ADDR_LEN);
+
+	/* Put the address into the Receive Address Array */
+	e1000_rar_set(&adapter->hw, adapter->hw.mac.addr, 0);
+
+	/*
+	 * With the 82571 adapter, RAR[0] may be overwritten
+	 * when the other port is reset, we make a duplicate
+	 * in RAR[14] for that eventuality, this assures
+	 * the interface continues to function.
+	 */
+	if (adapter->hw.mac.type == e1000_82571) {
+		e1000_set_laa_state_82571(&adapter->hw, TRUE);
+		e1000_rar_set(&adapter->hw, adapter->hw.mac.addr,
+		    E1000_RAR_ENTRIES - 1);
+	}
 
 	/* Initialize the hardware */
 	if (em_hardware_init(adapter)) {
@@ -1034,15 +1330,27 @@
 	}
 	em_update_link_status(adapter);
 
+	/* Setup VLAN support, basic and offload if available */
+	E1000_WRITE_REG(&adapter->hw, E1000_VET, ETHERTYPE_VLAN);
 	if (ifp->if_capenable & IFCAP_VLAN_HWTAGGING)
-		em_enable_vlans(adapter);
+		em_enable_hw_vlans(adapter);
 
-	/* Prepare transmit descriptors and buffers */
-	if (em_setup_transmit_structures(adapter)) {
-		device_printf(dev, "Could not setup transmit structures\n");
-		em_stop(adapter);
-		return;
+	/* Set hardware offload abilities */
+	ifp->if_hwassist = 0;
+	if (adapter->hw.mac.type >= e1000_82543) {
+		if (ifp->if_capenable & IFCAP_TXCSUM)
+			ifp->if_hwassist |= (CSUM_TCP | CSUM_UDP);
+#if __FreeBSD_version >= 700000
+		if (ifp->if_capenable & IFCAP_TSO4)
+			ifp->if_hwassist |= CSUM_TSO;
+#endif
 	}
+
+	/* Configure for OS presence */
+	em_init_manageability(adapter);
+
+	/* Prepare transmit descriptors and buffers */
+	em_setup_transmit_structures(adapter);
 	em_initialize_transmit_unit(adapter);
 
 	/* Setup Multicast table */
@@ -1051,7 +1359,9 @@
 	/* Prepare receive descriptors and buffers */
 	if (em_setup_receive_structures(adapter)) {
 		device_printf(dev, "Could not setup receive structures\n");
+		EM_TX_LOCK(adapter);
 		em_stop(adapter);
+		EM_TX_UNLOCK(adapter);
 		return;
 	}
 	em_initialize_receive_unit(adapter);
@@ -1062,15 +1372,9 @@
 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
 
-	if (adapter->hw.mac_type >= em_82543) {
-		if (ifp->if_capenable & IFCAP_TXCSUM)
-			ifp->if_hwassist = EM_CHECKSUM_FEATURES;
-		else
-			ifp->if_hwassist = 0;
-	}
-
 	callout_reset(&adapter->timer, hz, em_local_timer, adapter);
-	em_clear_hw_cntrs(&adapter->hw);
+	e1000_clear_hw_cntrs_base_generic(&adapter->hw);
+
 #ifdef DEVICE_POLLING
 	/*
 	 * Only enable interrupts if we are not polling, make sure
@@ -1083,7 +1387,7 @@
 		em_enable_intr(adapter);
 
 	/* Don't reset the phy next time init gets called */
-	adapter->hw.phy_reset_disable = TRUE;
+	adapter->hw.phy.reset_disable = TRUE;
 }
 
 static void
@@ -1091,16 +1395,16 @@
 {
 	struct adapter *adapter = arg;
 
-	EM_LOCK(adapter);
+	EM_CORE_LOCK(adapter);
 	em_init_locked(adapter);
-	EM_UNLOCK(adapter);
+	EM_CORE_UNLOCK(adapter);
 }
 
 
 #ifdef DEVICE_POLLING
 /*********************************************************************
  *
- *  Legacy polling routine
+ *  Legacy polling routine  
  *
  *********************************************************************/
 static void
@@ -1109,35 +1413,42 @@
 	struct adapter *adapter = ifp->if_softc;
 	uint32_t reg_icr;
 
-	EM_LOCK(adapter);
+	EM_CORE_LOCK(adapter);
 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
-		EM_UNLOCK(adapter);
+		EM_CORE_UNLOCK(adapter);
 		return;
 	}
 
 	if (cmd == POLL_AND_CHECK_STATUS) {
-		reg_icr = E1000_READ_REG(&adapter->hw, ICR);
+		reg_icr = E1000_READ_REG(&adapter->hw, E1000_ICR);
 		if (reg_icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
 			callout_stop(&adapter->timer);
-			adapter->hw.get_link_status = 1;
-			em_check_for_link(&adapter->hw);
+			adapter->hw.mac.get_link_status = 1;
+			e1000_check_for_link(&adapter->hw);
 			em_update_link_status(adapter);
-			callout_reset(&adapter->timer, hz, em_local_timer, adapter);
+			callout_reset(&adapter->timer, hz,
+			    em_local_timer, adapter);
 		}
 	}
 	em_rxeof(adapter, count);
+	EM_CORE_UNLOCK(adapter);
+
+	EM_TX_LOCK(adapter);
 	em_txeof(adapter);
 
 	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
 		em_start_locked(ifp);
-	EM_UNLOCK(adapter);
+	EM_TX_UNLOCK(adapter);
 }
+#endif /* DEVICE_POLLING */
 
+#ifndef EM_FAST_IRQ 
 /*********************************************************************
  *
- *  Legacy Interrupt Service routine
+ *  Legacy Interrupt Service routine  
  *
  *********************************************************************/
+
 static void
 em_intr(void *arg)
 {
@@ -1145,19 +1456,19 @@
 	struct ifnet	*ifp;
 	uint32_t	reg_icr;
 
-	EM_LOCK(adapter);
-
+	EM_CORE_LOCK(adapter);
 	ifp = adapter->ifp;
 
 	if (ifp->if_capenable & IFCAP_POLLING) {
-		EM_UNLOCK(adapter);
+		EM_CORE_UNLOCK(adapter);
 		return;
 	}
 
 	for (;;) {
-		reg_icr = E1000_READ_REG(&adapter->hw, ICR);
-		if (adapter->hw.mac_type >= em_82571 &&
-		    (reg_icr & E1000_ICR_INT_ASSERTED) == 0)
+		reg_icr = E1000_READ_REG(&adapter->hw, E1000_ICR);
+
+		if (adapter->hw.mac.type >= e1000_82571 &&
+	    	    (reg_icr & E1000_ICR_INT_ASSERTED) == 0)
 			break;
 		else if (reg_icr == 0)
 			break;
@@ -1173,30 +1484,34 @@
 
 		if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
 			em_rxeof(adapter, -1);
+			EM_TX_LOCK(adapter);
 			em_txeof(adapter);
+			EM_TX_UNLOCK(adapter);
 		}
 
 		/* Link status change */
 		if (reg_icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
 			callout_stop(&adapter->timer);
-			adapter->hw.get_link_status = 1;
-			em_check_for_link(&adapter->hw);
+			adapter->hw.mac.get_link_status = 1;
+			e1000_check_for_link(&adapter->hw);
 			em_update_link_status(adapter);
-			callout_reset(&adapter->timer, hz, em_local_timer, adapter);
+			/* Deal with TX cruft when link lost */
+			em_tx_purge(adapter);
+			callout_reset(&adapter->timer, hz,
+			    em_local_timer, adapter);
 		}
 
 		if (reg_icr & E1000_ICR_RXO)
 			adapter->rx_overruns++;
 	}
+	EM_CORE_UNLOCK(adapter);
 
 	if (ifp->if_drv_flags & IFF_DRV_RUNNING &&
 	    !IFQ_DRV_IS_EMPTY(&ifp->if_snd))
-		em_start_locked(ifp);
-
-	EM_UNLOCK(adapter);
+		em_start(ifp);
 }
 
-#else  /* if not DEVICE_POLLING, then fast interrupt routines only */
+#else /* EM_FAST_IRQ, then fast interrupt routines only */
 
 static void
 em_handle_link(void *context, int pending)
@@ -1206,16 +1521,29 @@
 
 	ifp = adapter->ifp;
 
-	EM_LOCK(adapter);
+	EM_CORE_LOCK(adapter);
+	if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
+		EM_CORE_UNLOCK(adapter);
+		return;
+	}
 
 	callout_stop(&adapter->timer);
-	adapter->hw.get_link_status = 1;
-	em_check_for_link(&adapter->hw);
+	adapter->hw.mac.get_link_status = 1;
+	e1000_check_for_link(&adapter->hw);
 	em_update_link_status(adapter);
+	/* Deal with TX cruft when link lost */
+	em_tx_purge(adapter);
 	callout_reset(&adapter->timer, hz, em_local_timer, adapter);
-	EM_UNLOCK(adapter);
+	EM_CORE_UNLOCK(adapter);
 }
 
+#if __FreeBSD_version >= 700000
+#if !defined(NET_LOCK_GIANT)
+#define NET_LOCK_GIANT()
+#define NET_UNLOCK_GIANT()
+#endif
+#endif
+
 static void
 em_handle_rxtx(void *context, int pending)
 {
@@ -1232,12 +1560,12 @@
 	if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
 		if (em_rxeof(adapter, adapter->rx_process_limit) != 0)
 			taskqueue_enqueue(adapter->tq, &adapter->rxtx_task);
-		EM_LOCK(adapter);
+		EM_TX_LOCK(adapter);
 		em_txeof(adapter);
 
 		if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
 			em_start_locked(ifp);
-		EM_UNLOCK(adapter);
+		EM_TX_UNLOCK(adapter);
 	}
 
 	em_enable_intr(adapter);
@@ -1246,10 +1574,16 @@
 
 /*********************************************************************
  *
- *  Fast Interrupt Service routine
+ *  Fast Interrupt Service routine  
  *
  *********************************************************************/
+#if __FreeBSD_version < 700000
+#define FILTER_STRAY
+#define FILTER_HANDLED
 static void
+#else
+static int
+#endif
 em_intr_fast(void *arg)
 {
 	struct adapter	*adapter = arg;
@@ -1258,23 +1592,23 @@
 
 	ifp = adapter->ifp;
 
-	reg_icr = E1000_READ_REG(&adapter->hw, ICR);
+	reg_icr = E1000_READ_REG(&adapter->hw, E1000_ICR);
 
 	/* Hot eject?  */
 	if (reg_icr == 0xffffffff)
-		return;
+		return FILTER_STRAY;
 
 	/* Definitely not our interrupt.  */
 	if (reg_icr == 0x0)
-		return;
+		return FILTER_STRAY;
 
 	/*
 	 * Starting with the 82571 chip, bit 31 should be used to
 	 * determine whether the interrupt belongs to us.
 	 */
-	if (adapter->hw.mac_type >= em_82571 &&
+	if (adapter->hw.mac.type >= e1000_82571 &&
 	    (reg_icr & E1000_ICR_INT_ASSERTED) == 0)
-		return;
+		return FILTER_STRAY;
 
 	/*
 	 * Mask interrupts until the taskqueue is finished running.  This is
@@ -1290,8 +1624,9 @@
 
 	if (reg_icr & E1000_ICR_RXO)
 		adapter->rx_overruns++;
+	return FILTER_HANDLED;
 }
-#endif /* ! DEVICE_POLLING */
+#endif /* EM_FAST_IRQ */
 
 /*********************************************************************
  *
@@ -1305,26 +1640,29 @@
 em_media_status(struct ifnet *ifp, struct ifmediareq *ifmr)
 {
 	struct adapter *adapter = ifp->if_softc;
+	u_char fiber_type = IFM_1000_SX;
 
 	INIT_DEBUGOUT("em_media_status: begin");
 
-	em_check_for_link(&adapter->hw);
+	EM_CORE_LOCK(adapter);
+	e1000_check_for_link(&adapter->hw);
 	em_update_link_status(adapter);
 
 	ifmr->ifm_status = IFM_AVALID;
 	ifmr->ifm_active = IFM_ETHER;
 
-	if (!adapter->link_active)
+	if (!adapter->link_active) {
+		EM_CORE_UNLOCK(adapter);
 		return;
+	}
 
 	ifmr->ifm_status |= IFM_ACTIVE;
 
-	if ((adapter->hw.media_type == em_media_type_fiber) ||
-	    (adapter->hw.media_type == em_media_type_internal_serdes)) {
-		if (adapter->hw.mac_type == em_82545)
-			ifmr->ifm_active |= IFM_1000_LX | IFM_FDX;
-		else
-			ifmr->ifm_active |= IFM_1000_SX | IFM_FDX;
+	if ((adapter->hw.phy.media_type == e1000_media_type_fiber) ||
+	    (adapter->hw.phy.media_type == e1000_media_type_internal_serdes)) {
+		if (adapter->hw.mac.type == e1000_82545)
+			fiber_type = IFM_1000_LX;
+		ifmr->ifm_active |= fiber_type | IFM_FDX;
 	} else {
 		switch (adapter->link_speed) {
 		case 10:
@@ -1342,6 +1680,7 @@
 		else
 			ifmr->ifm_active |= IFM_HDX;
 	}
+	EM_CORE_UNLOCK(adapter);
 }
 
 /*********************************************************************
@@ -1363,32 +1702,33 @@
 	if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
 		return (EINVAL);
 
+	EM_CORE_LOCK(adapter);
 	switch (IFM_SUBTYPE(ifm->ifm_media)) {
 	case IFM_AUTO:
-		adapter->hw.autoneg = DO_AUTO_NEG;
-		adapter->hw.autoneg_advertised = AUTONEG_ADV_DEFAULT;
+		adapter->hw.mac.autoneg = DO_AUTO_NEG;
+		adapter->hw.phy.autoneg_advertised = AUTONEG_ADV_DEFAULT;
 		break;
 	case IFM_1000_LX:
 	case IFM_1000_SX:
 	case IFM_1000_T:
-		adapter->hw.autoneg = DO_AUTO_NEG;
-		adapter->hw.autoneg_advertised = ADVERTISE_1000_FULL;
+		adapter->hw.mac.autoneg = DO_AUTO_NEG;
+		adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
 		break;
 	case IFM_100_TX:
-		adapter->hw.autoneg = FALSE;
-		adapter->hw.autoneg_advertised = 0;
+		adapter->hw.mac.autoneg = FALSE;
+		adapter->hw.phy.autoneg_advertised = 0;
 		if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX)
-			adapter->hw.forced_speed_duplex = em_100_full;
+			adapter->hw.mac.forced_speed_duplex = ADVERTISE_100_FULL;
 		else
-			adapter->hw.forced_speed_duplex = em_100_half;
+			adapter->hw.mac.forced_speed_duplex = ADVERTISE_100_HALF;
 		break;
 	case IFM_10_T:
-		adapter->hw.autoneg = FALSE;
-		adapter->hw.autoneg_advertised = 0;
+		adapter->hw.mac.autoneg = FALSE;
+		adapter->hw.phy.autoneg_advertised = 0;
 		if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX)
-			adapter->hw.forced_speed_duplex = em_10_full;
+			adapter->hw.mac.forced_speed_duplex = ADVERTISE_10_FULL;
 		else
-			adapter->hw.forced_speed_duplex = em_10_half;
+			adapter->hw.mac.forced_speed_duplex = ADVERTISE_10_HALF;
 		break;
 	default:
 		device_printf(adapter->dev, "Unsupported media type\n");
@@ -1397,9 +1737,10 @@
 	/* As the speed/duplex settings my have changed we need to
 	 * reset the PHY.
 	 */
-	adapter->hw.phy_reset_disable = FALSE;
+	adapter->hw.phy.reset_disable = FALSE;
 
-	em_init(adapter);
+	em_init_locked(adapter);
+	EM_CORE_UNLOCK(adapter);
 
 	return (0);
 }
@@ -1410,136 +1751,161 @@
  *
  *  return 0 on success, positive on failure
  **********************************************************************/
+
 static int
 em_encap(struct adapter *adapter, struct mbuf **m_headp)
 {
-	struct ifnet		*ifp = adapter->ifp;
 	bus_dma_segment_t	segs[EM_MAX_SCATTER];
 	bus_dmamap_t		map;
-	struct em_buffer	*tx_buffer, *tx_buffer_last;
-	struct em_tx_desc	*current_tx_desc;
+	struct em_buffer	*tx_buffer, *tx_buffer_mapped;
+	struct e1000_tx_desc	*ctxd = NULL;
 	struct mbuf		*m_head;
-	struct m_tag		*mtag;
 	uint32_t		txd_upper, txd_lower, txd_used, txd_saved;
-	int			nsegs, i, j;
-	int			error;
-
+	int			nsegs, i, j, first, last = 0;
+	int			error, do_tso, tso_desc = 0;
+#if __FreeBSD_version < 700000
+	struct m_tag		*mtag;
+#endif
 	m_head = *m_headp;
-	current_tx_desc = NULL;
-	txd_used = txd_saved = 0;
+	txd_upper = txd_lower = txd_used = txd_saved = 0;
 
-	/*
-	 * Force a cleanup if number of TX descriptors
-	 * available hits the threshold.
-	 */
+#if __FreeBSD_version >= 700000
+	do_tso = ((m_head->m_pkthdr.csum_flags & CSUM_TSO) != 0);
+#else
+	do_tso = 0;
+#endif
+
+        /*
+         * Force a cleanup if number of TX descriptors
+         * available hits the threshold
+         */
 	if (adapter->num_tx_desc_avail <= EM_TX_CLEANUP_THRESHOLD) {
 		em_txeof(adapter);
-		if (adapter->num_tx_desc_avail <= EM_TX_CLEANUP_THRESHOLD) {
+		/* Now do we at least have a minimal? */
+		if (adapter->num_tx_desc_avail <= EM_TX_OP_THRESHOLD) {
 			adapter->no_tx_desc_avail1++;
 			return (ENOBUFS);
 		}
 	}
 
-	/* Find out if we are in vlan mode. */
-	mtag = VLAN_OUTPUT_TAG(ifp, m_head);
 
 	/*
-	 * When operating in promiscuous mode, hardware encapsulation for
-	 * packets is disabled.  This means we have to add the vlan
-	 * encapsulation in the driver, since it will have come down from the
-	 * VLAN layer with a tag instead of a VLAN header.
+	 * TSO workaround: 
+	 *  If an mbuf is only header we need  
+	 *     to pull 4 bytes of data into it. 
 	 */
-	if (mtag != NULL && adapter->em_insert_vlan_header) {
-		struct ether_vlan_header *evl;
-		struct ether_header eh;
-
-		m_head = m_pullup(m_head, sizeof(eh));
-		if (m_head == NULL) {
-			*m_headp = NULL;
-			return (ENOBUFS);
-		}
-		eh = *mtod(m_head, struct ether_header *);
-		M_PREPEND(m_head, sizeof(*evl), M_DONTWAIT);
-		if (m_head == NULL) {
-			*m_headp = NULL;
-			return (ENOBUFS);
-		}
-		m_head = m_pullup(m_head, sizeof(*evl));
-		if (m_head == NULL) {
-			*m_headp = NULL;
-			return (ENOBUFS);
-		}
-		evl = mtod(m_head, struct ether_vlan_header *);
-		bcopy(&eh, evl, sizeof(*evl));
-		evl->evl_proto = evl->evl_encap_proto;
-		evl->evl_encap_proto = htons(ETHERTYPE_VLAN);
-		evl->evl_tag = htons(VLAN_TAG_VALUE(mtag));
-		m_tag_delete(m_head, mtag);
-		mtag = NULL;
+	if (do_tso && (m_head->m_len <= M_TSO_LEN)) {
+		m_head = m_pullup(m_head, M_TSO_LEN + 4);
 		*m_headp = m_head;
+		if (m_head == NULL)
+			return (ENOBUFS);
 	}
 
 	/*
-	 * Map the packet for DMA.
+	 * Map the packet for DMA
+	 *
+	 * Capture the first descriptor index,
+	 * this descriptor will have the index
+	 * of the EOP which is the only one that
+	 * now gets a DONE bit writeback.
 	 */
-	tx_buffer = &adapter->tx_buffer_area[adapter->next_avail_tx_desc];
-	tx_buffer_last = tx_buffer;
+	first = adapter->next_avail_tx_desc;
+	tx_buffer = &adapter->tx_buffer_area[first];
+	tx_buffer_mapped = tx_buffer;
 	map = tx_buffer->map;
-	error = bus_dmamap_load_mbuf_sg(adapter->txtag, map, *m_headp, segs,
-	    &nsegs, BUS_DMA_NOWAIT);
+
+	error = bus_dmamap_load_mbuf_sg(adapter->txtag, map,
+	    *m_headp, segs, &nsegs, BUS_DMA_NOWAIT);
+
+	/*
+	 * There are two types of errors we can (try) to handle:
+	 * - EFBIG means the mbuf chain was too long and bus_dma ran
+	 *   out of segments.  Defragment the mbuf chain and try again.
+	 * - ENOMEM means bus_dma could not obtain enough bounce buffers
+	 *   at this point in time.  Defer sending and try again later.
+	 * All other errors, in particular EINVAL, are fatal and prevent the
+	 * mbuf chain from ever going through.  Drop it and report error.
+	 */
 	if (error == EFBIG) {
 		struct mbuf *m;
 
 		m = m_defrag(*m_headp, M_DONTWAIT);
 		if (m == NULL) {
-			/* Assume m_defrag(9) used only m_get(9). */
 			adapter->mbuf_alloc_failed++;
 			m_freem(*m_headp);
 			*m_headp = NULL;
 			return (ENOBUFS);
 		}
 		*m_headp = m;
-		error = bus_dmamap_load_mbuf_sg(adapter->txtag, map, *m_headp,
-		    segs, &nsegs, BUS_DMA_NOWAIT);
-		if (error != 0) {
+
+		/* Try it again */
+		error = bus_dmamap_load_mbuf_sg(adapter->txtag, map,
+		    *m_headp, segs, &nsegs, BUS_DMA_NOWAIT);
+
+		if (error == ENOMEM) {
+			adapter->no_tx_dma_setup++;
+			return (error);
+		} else if (error != 0) {
 			adapter->no_tx_dma_setup++;
 			m_freem(*m_headp);
 			*m_headp = NULL;
 			return (error);
 		}
-	} else if (error != 0) {
+	} else if (error == ENOMEM) {
 		adapter->no_tx_dma_setup++;
 		return (error);
-	}
-	if (nsegs == 0) {
+	} else if (error != 0) {
+		adapter->no_tx_dma_setup++;
 		m_freem(*m_headp);
 		*m_headp = NULL;
-		return (EIO);
+		return (error);
 	}
 
-	if (nsegs > adapter->num_tx_desc_avail) {
-		adapter->no_tx_desc_avail2++;
-		bus_dmamap_unload(adapter->txtag, map);
-		return (ENOBUFS);
+	/*
+	 * TSO Hardware workaround, if this packet is not
+	 * TSO, and is only a single descriptor long, and
+	 * it follows a TSO burst, then we need to add a
+	 * sentinel descriptor to prevent premature writeback.
+	 */
+	if ((do_tso == 0) && (adapter->tx_tso == TRUE)) {
+		if (nsegs == 1)
+			tso_desc = TRUE;
+		adapter->tx_tso = FALSE;
 	}
 
+        if (nsegs > (adapter->num_tx_desc_avail - 2)) {
+                adapter->no_tx_desc_avail2++;
+		bus_dmamap_unload(adapter->txtag, map);
+		return (ENOBUFS);
+        }
 	m_head = *m_headp;
-	if (ifp->if_hwassist > 0)
-		em_transmit_checksum_setup(adapter,  m_head, &txd_upper, &txd_lower);
-	else
-		txd_upper = txd_lower = 0;
+
+	/* Do hardware assists */
+#if __FreeBSD_version >= 700000
+	if (m_head->m_pkthdr.csum_flags & CSUM_TSO) {
+		error = em_tso_setup(adapter, m_head, &txd_upper, &txd_lower);
+		if (error != TRUE)
+			return (ENXIO); /* something foobar */
+		/* we need to make a final sentinel transmit desc */
+		tso_desc = TRUE;
+	} else
+#endif
+	 if (m_head->m_pkthdr.csum_flags & CSUM_OFFLOAD)
+		em_transmit_checksum_setup(adapter,  m_head,
+		    &txd_upper, &txd_lower);
 
 	i = adapter->next_avail_tx_desc;
-	if (adapter->pcix_82544) {
+	if (adapter->pcix_82544) 
 		txd_saved = i;
-		txd_used = 0;
-	}
+
+	/* Set up our transmit descriptors */
 	for (j = 0; j < nsegs; j++) {
-		/* If adapter is 82544 and on PCIX bus. */
+		bus_size_t seg_len;
+		bus_addr_t seg_addr;
+		/* If adapter is 82544 and on PCIX bus */
 		if(adapter->pcix_82544) {
 			DESC_ARRAY	desc_array;
 			uint32_t	array_elements, counter;
-
 			/*
 			 * Check the Address and Length combination and
 			 * split the data accordingly
@@ -1554,72 +1920,131 @@
 					return (ENOBUFS);
 				}
 				tx_buffer = &adapter->tx_buffer_area[i];
-				current_tx_desc = &adapter->tx_desc_base[i];
-				current_tx_desc->buffer_addr = htole64(
-					desc_array.descriptor[counter].address);
-				current_tx_desc->lower.data = htole32(
-					(adapter->txd_cmd | txd_lower |
-					(uint16_t)desc_array.descriptor[counter].length));
-				current_tx_desc->upper.data = htole32((txd_upper));
+				ctxd = &adapter->tx_desc_base[i];
+				ctxd->buffer_addr = htole64(
+				    desc_array.descriptor[counter].address);
+				ctxd->lower.data = htole32(
+				    (adapter->txd_cmd | txd_lower | (uint16_t) 
+				    desc_array.descriptor[counter].length));
+				ctxd->upper.data =
+				    htole32((txd_upper));
+				last = i;
 				if (++i == adapter->num_tx_desc)
-					i = 0;
-
+                                         i = 0;
 				tx_buffer->m_head = NULL;
+				tx_buffer->next_eop = -1;
 				txd_used++;
-			}
+                        }
 		} else {
 			tx_buffer = &adapter->tx_buffer_area[i];
-			current_tx_desc = &adapter->tx_desc_base[i];
-
-			current_tx_desc->buffer_addr = htole64(segs[j].ds_addr);
-			current_tx_desc->lower.data = htole32(
-				adapter->txd_cmd | txd_lower | segs[j].ds_len);
-			current_tx_desc->upper.data = htole32(txd_upper);
-
-			if (++i == adapter->num_tx_desc)
-				i = 0;
-
+			ctxd = &adapter->tx_desc_base[i];
+			seg_addr = segs[j].ds_addr;
+			seg_len  = segs[j].ds_len;
+			/*
+			** TSO Workaround:
+			** If this is the last descriptor, we want to
+			** split it so we have a small final sentinel
+			*/
+			if (tso_desc && (j == (nsegs -1)) && (seg_len > 8)) {
+				seg_len -= 4;
+				ctxd->buffer_addr = htole64(seg_addr);
+				ctxd->lower.data = htole32(
+				adapter->txd_cmd | txd_lower | seg_len);
+				ctxd->upper.data =
+				    htole32(txd_upper);
+				if (++i == adapter->num_tx_desc)
+					i = 0;
+				/* Now make the sentinel */	
+				++txd_used; /* using an extra txd */
+				ctxd = &adapter->tx_desc_base[i];
+				tx_buffer = &adapter->tx_buffer_area[i];
+				ctxd->buffer_addr =
+				    htole64(seg_addr + seg_len);
+				ctxd->lower.data = htole32(
+				adapter->txd_cmd | txd_lower | 4);
+				ctxd->upper.data =
+				    htole32(txd_upper);
+				last = i;
+				if (++i == adapter->num_tx_desc)
+					i = 0;
+			} else {
+				ctxd->buffer_addr = htole64(seg_addr);
+				ctxd->lower.data = htole32(
+				adapter->txd_cmd | txd_lower | seg_len);
+				ctxd->upper.data =
+				    htole32(txd_upper);
+				last = i;
+				if (++i == adapter->num_tx_desc)
+					i = 0;
+			}
 			tx_buffer->m_head = NULL;
+			tx_buffer->next_eop = -1;
 		}
 	}
 
 	adapter->next_avail_tx_desc = i;
 	if (adapter->pcix_82544)
 		adapter->num_tx_desc_avail -= txd_used;
-	else
+	else {
 		adapter->num_tx_desc_avail -= nsegs;
+		if (tso_desc) /* TSO used an extra for sentinel */
+			adapter->num_tx_desc_avail -= txd_used;
+	}
 
-	if (mtag != NULL) {
+        /*
+	** Handle VLAN tag, this is the
+	** biggest difference between 
+	** 6.x and 7
+	*/
+#if __FreeBSD_version < 700000
+        /* Find out if we are in vlan mode. */
+        mtag = VLAN_OUTPUT_TAG(ifp, m_head);
+        if (mtag != NULL) {
+                ctxd->upper.fields.special =
+                    htole16(VLAN_TAG_VALUE(mtag));
+#else /* FreeBSD 7 */
+	if (m_head->m_flags & M_VLANTAG) {
 		/* Set the vlan id. */
-		current_tx_desc->upper.fields.special =
-		    htole16(VLAN_TAG_VALUE(mtag));
-
-		/* Tell hardware to add tag. */
-		current_tx_desc->lower.data |= htole32(E1000_TXD_CMD_VLE);
-	}
+		ctxd->upper.fields.special =
+		    htole16(m_head->m_pkthdr.ether_vtag);
+#endif
+                /* Tell hardware to add tag */
+                ctxd->lower.data |= htole32(E1000_TXD_CMD_VLE);
+        }
 
-	tx_buffer->m_head = m_head;
-	tx_buffer_last->map = tx_buffer->map;
+        tx_buffer->m_head = m_head;
+	tx_buffer_mapped->map = tx_buffer->map;
 	tx_buffer->map = map;
-	bus_dmamap_sync(adapter->txtag, map, BUS_DMASYNC_PREWRITE);
+        bus_dmamap_sync(adapter->txtag, map, BUS_DMASYNC_PREWRITE);
 
+        /*
+         * Last Descriptor of Packet
+	 * needs End Of Packet (EOP)
+	 * and Report Status (RS)
+         */
+        ctxd->lower.data |=
+	    htole32(E1000_TXD_CMD_EOP | E1000_TXD_CMD_RS);
 	/*
-	 * Last Descriptor of Packet needs End Of Packet (EOP).
+	 * Keep track in the first buffer which
+	 * descriptor will be written back
 	 */
-	current_tx_desc->lower.data |= htole32(E1000_TXD_CMD_EOP);
+	tx_buffer = &adapter->tx_buffer_area[first];
+	tx_buffer->next_eop = last;
 
 	/*
-	 * Advance the Transmit Descriptor Tail (Tdt), this tells the E1000
+	 * Advance the Transmit Descriptor Tail (TDT), this tells the E1000
 	 * that this frame is available to transmit.
 	 */
 	bus_dmamap_sync(adapter->txdma.dma_tag, adapter->txdma.dma_map,
 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
-	if (adapter->hw.mac_type == em_82547 && adapter->link_duplex == HALF_DUPLEX)
-		em_82547_move_tail_locked(adapter);
+	if (adapter->hw.mac.type == e1000_82547 &&
+	    adapter->link_duplex == HALF_DUPLEX)
+		em_82547_move_tail(adapter);
 	else {
-		E1000_WRITE_REG(&adapter->hw, TDT, i);
-		if (adapter->hw.mac_type == em_82547)
-			em_82547_update_fifo_head(adapter, m_head->m_pkthdr.len);
+		E1000_WRITE_REG(&adapter->hw, E1000_TDT(0), i);
+		if (adapter->hw.mac.type == e1000_82547)
+			em_82547_update_fifo_head(adapter,
+			    m_head->m_pkthdr.len);
 	}
 
 	return (0);
@@ -1627,57 +2052,237 @@
 
 /*********************************************************************
  *
- * 82547 workaround to avoid controller hang in half-duplex environment.
- * The workaround is to avoid queuing a large packet that would span
- * the internal Tx FIFO ring boundary. We need to reset the FIFO pointers
- * in this case. We do that only when FIFO is quiescent.
- *
+ *  This routine maps the mbufs to Advanced TX descriptors.
+ *  used by the 82575 adapter. It also needs no workarounds.
+ *  
  **********************************************************************/
-static void
-em_82547_move_tail_locked(struct adapter *adapter)
+
+static int
+em_adv_encap(struct adapter *adapter, struct mbuf **m_headp)
 {
-	uint16_t hw_tdt;
-	uint16_t sw_tdt;
-	struct em_tx_desc *tx_desc;
-	uint16_t length = 0;
-	boolean_t eop = 0;
+	bus_dma_segment_t	segs[EM_MAX_SCATTER];
+	bus_dmamap_t		map;
+	struct em_buffer	*tx_buffer, *tx_buffer_mapped;
+	union e1000_adv_tx_desc	*txd = NULL;
+	struct mbuf		*m_head;
+	u32			olinfo_status = 0, cmd_type_len = 0;
+	int			nsegs, i, j, error, first, last = 0;
+#if __FreeBSD_version < 700000
+	struct m_tag		*mtag;
+#else
+	u32			hdrlen = 0;
+#endif
 
-	EM_LOCK_ASSERT(adapter);
+	m_head = *m_headp;
 
-	hw_tdt = E1000_READ_REG(&adapter->hw, TDT);
-	sw_tdt = adapter->next_avail_tx_desc;
-	
-	while (hw_tdt != sw_tdt) {
-		tx_desc = &adapter->tx_desc_base[hw_tdt];
-		length += tx_desc->lower.flags.length;
-		eop = tx_desc->lower.data & E1000_TXD_CMD_EOP;
-		if(++hw_tdt == adapter->num_tx_desc)
-			hw_tdt = 0;
 
-		if (eop) {
+	/* Set basic descriptor constants */
+	cmd_type_len |= E1000_ADVTXD_DTYP_DATA;
+	cmd_type_len |= E1000_ADVTXD_DCMD_IFCS | E1000_ADVTXD_DCMD_DEXT;
+#if __FreeBSD_version < 700000
+        mtag = VLAN_OUTPUT_TAG(ifp, m_head);
+        if (mtag != NULL)
+#else
+	if (m_head->m_flags & M_VLANTAG)
+#endif
+		cmd_type_len |= E1000_ADVTXD_DCMD_VLE;
+
+        /*
+         * Force a cleanup if number of TX descriptors
+         * available hits the threshold
+         */
+	if (adapter->num_tx_desc_avail <= EM_TX_CLEANUP_THRESHOLD) {
+		em_txeof(adapter);
+		/* Now do we at least have a minimal? */
+		if (adapter->num_tx_desc_avail <= EM_TX_OP_THRESHOLD) {
+			adapter->no_tx_desc_avail1++;
+			return (ENOBUFS);
+		}
+	}
+
+	/*
+         * Map the packet for DMA.
+	 *
+	 * Capture the first descriptor index,
+	 * this descriptor will have the index
+	 * of the EOP which is the only one that
+	 * now gets a DONE bit writeback.
+	 */
+	first = adapter->next_avail_tx_desc;
+	tx_buffer = &adapter->tx_buffer_area[first];
+	tx_buffer_mapped = tx_buffer;
+	map = tx_buffer->map;
+
+	error = bus_dmamap_load_mbuf_sg(adapter->txtag, map,
+	    *m_headp, segs, &nsegs, BUS_DMA_NOWAIT);
+
+	if (error == EFBIG) {
+		struct mbuf *m;
+
+		m = m_defrag(*m_headp, M_DONTWAIT);
+		if (m == NULL) {
+			adapter->mbuf_alloc_failed++;
+			m_freem(*m_headp);
+			*m_headp = NULL;
+			return (ENOBUFS);
+		}
+		*m_headp = m;
+
+		/* Try it again */
+		error = bus_dmamap_load_mbuf_sg(adapter->txtag, map,
+		    *m_headp, segs, &nsegs, BUS_DMA_NOWAIT);
+
+		if (error == ENOMEM) {
+			adapter->no_tx_dma_setup++;
+			return (error);
+		} else if (error != 0) {
+			adapter->no_tx_dma_setup++;
+			m_freem(*m_headp);
+			*m_headp = NULL;
+			return (error);
+		}
+	} else if (error == ENOMEM) {
+		adapter->no_tx_dma_setup++;
+		return (error);
+	} else if (error != 0) {
+		adapter->no_tx_dma_setup++;
+		m_freem(*m_headp);
+		*m_headp = NULL;
+		return (error);
+	}
+
+	/* Check again to be sure we have enough descriptors */
+        if (nsegs > (adapter->num_tx_desc_avail - 2)) {
+                adapter->no_tx_desc_avail2++;
+		bus_dmamap_unload(adapter->txtag, map);
+		return (ENOBUFS);
+        }
+	m_head = *m_headp;
+
+        /*
+         * Set up the context descriptor:
+         * used when any hardware offload is done.
+	 * This includes CSUM, VLAN, and TSO. It
+	 * will use the first descriptor.
+         */
+#if __FreeBSD_version >= 700000
+	if (m_head->m_pkthdr.csum_flags & CSUM_TSO) {
+		if (em_tso_adv_setup(adapter, m_head, &hdrlen)) {
+			cmd_type_len |= E1000_ADVTXD_DCMD_TSE;
+			olinfo_status |= E1000_TXD_POPTS_IXSM << 8;
+			olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
+		} else
+			return (ENXIO);
+	}
+#endif
+	/* Do all other context descriptor setup */
+	if (em_tx_adv_ctx_setup(adapter, m_head))
+		olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
+
+	/* Calculate payload length */
+	olinfo_status |= ((m_head->m_pkthdr.len - hdrlen)
+	    << E1000_ADVTXD_PAYLEN_SHIFT);
+
+	/* Set up our transmit descriptors */
+	i = adapter->next_avail_tx_desc;
+	for (j = 0; j < nsegs; j++) {
+		bus_size_t seg_len;
+		bus_addr_t seg_addr;
+
+		tx_buffer = &adapter->tx_buffer_area[i];
+		txd = (union e1000_adv_tx_desc *)&adapter->tx_desc_base[i];
+		seg_addr = segs[j].ds_addr;
+		seg_len  = segs[j].ds_len;
+
+		txd->read.buffer_addr = htole64(seg_addr);
+		txd->read.cmd_type_len = htole32(
+		    adapter->txd_cmd | cmd_type_len | seg_len);
+		txd->read.olinfo_status = htole32(olinfo_status);
+		last = i;
+		if (++i == adapter->num_tx_desc)
+			i = 0;
+		tx_buffer->m_head = NULL;
+		tx_buffer->next_eop = -1;
+	}
+
+	adapter->next_avail_tx_desc = i;
+	adapter->num_tx_desc_avail -= nsegs;
+
+        tx_buffer->m_head = m_head;
+	tx_buffer_mapped->map = tx_buffer->map;
+	tx_buffer->map = map;
+        bus_dmamap_sync(adapter->txtag, map, BUS_DMASYNC_PREWRITE);
+
+        /*
+         * Last Descriptor of Packet
+	 * needs End Of Packet (EOP)
+	 * and Report Status (RS)
+         */
+        txd->read.cmd_type_len |=
+	    htole32(E1000_TXD_CMD_EOP | E1000_TXD_CMD_RS);
+	/*
+	 * Keep track in the first buffer which
+	 * descriptor will be written back
+	 */
+	tx_buffer = &adapter->tx_buffer_area[first];
+	tx_buffer->next_eop = last;
+
+	/*
+	 * Advance the Transmit Descriptor Tail (TDT), this tells the E1000
+	 * that this frame is available to transmit.
+	 */
+	bus_dmamap_sync(adapter->txdma.dma_tag, adapter->txdma.dma_map,
+	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
+	E1000_WRITE_REG(&adapter->hw, E1000_TDT(0), i);
+
+	return (0);
+
+}
+
+/*********************************************************************
+ *
+ * 82547 workaround to avoid controller hang in half-duplex environment.
+ * The workaround is to avoid queuing a large packet that would span
+ * the internal Tx FIFO ring boundary. We need to reset the FIFO pointers
+ * in this case. We do that only when FIFO is quiescent.
+ *
+ **********************************************************************/
+static void
+em_82547_move_tail(void *arg)
+{
+	struct adapter *adapter = arg;
+	uint16_t hw_tdt;
+	uint16_t sw_tdt;
+	struct e1000_tx_desc *tx_desc;
+	uint16_t length = 0;
+	boolean_t eop = 0;
+
+	EM_TX_LOCK_ASSERT(adapter);
+
+	hw_tdt = E1000_READ_REG(&adapter->hw, E1000_TDT(0));
+	sw_tdt = adapter->next_avail_tx_desc;
+	
+	while (hw_tdt != sw_tdt) {
+		tx_desc = &adapter->tx_desc_base[hw_tdt];
+		length += tx_desc->lower.flags.length;
+		eop = tx_desc->lower.data & E1000_TXD_CMD_EOP;
+		if (++hw_tdt == adapter->num_tx_desc)
+			hw_tdt = 0;
+
+		if (eop) {
 			if (em_82547_fifo_workaround(adapter, length)) {
 				adapter->tx_fifo_wrk_cnt++;
 				callout_reset(&adapter->tx_fifo_timer, 1,
 					em_82547_move_tail, adapter);
 				break;
 			}
-			E1000_WRITE_REG(&adapter->hw, TDT, hw_tdt);
+			E1000_WRITE_REG(&adapter->hw, E1000_TDT(0), hw_tdt);
 			em_82547_update_fifo_head(adapter, length);
 			length = 0;
 		}
 	}	
 }
 
-static void
-em_82547_move_tail(void *arg)
-{
-	struct adapter *adapter = arg;
-
-	EM_LOCK(adapter);
-	em_82547_move_tail_locked(adapter);
-	EM_UNLOCK(adapter);
-}
-
 static int
 em_82547_fifo_workaround(struct adapter *adapter, int len)
 {	
@@ -1714,26 +2319,33 @@
 
 static int
 em_82547_tx_fifo_reset(struct adapter *adapter)
-{	
+{
 	uint32_t tctl;
 
-	if ((E1000_READ_REG(&adapter->hw, TDT) == E1000_READ_REG(&adapter->hw, TDH)) &&
-	    (E1000_READ_REG(&adapter->hw, TDFT) == E1000_READ_REG(&adapter->hw, TDFH)) &&
-	    (E1000_READ_REG(&adapter->hw, TDFTS) == E1000_READ_REG(&adapter->hw, TDFHS))&&
-	    (E1000_READ_REG(&adapter->hw, TDFPC) == 0)) {
-
+	if ((E1000_READ_REG(&adapter->hw, E1000_TDT(0)) ==
+	    E1000_READ_REG(&adapter->hw, E1000_TDH(0))) &&
+	    (E1000_READ_REG(&adapter->hw, E1000_TDFT) == 
+	    E1000_READ_REG(&adapter->hw, E1000_TDFH)) &&
+	    (E1000_READ_REG(&adapter->hw, E1000_TDFTS) ==
+	    E1000_READ_REG(&adapter->hw, E1000_TDFHS)) &&
+	    (E1000_READ_REG(&adapter->hw, E1000_TDFPC) == 0)) {
 		/* Disable TX unit */
-		tctl = E1000_READ_REG(&adapter->hw, TCTL);
-		E1000_WRITE_REG(&adapter->hw, TCTL, tctl & ~E1000_TCTL_EN);
+		tctl = E1000_READ_REG(&adapter->hw, E1000_TCTL);
+		E1000_WRITE_REG(&adapter->hw, E1000_TCTL,
+		    tctl & ~E1000_TCTL_EN);
 
 		/* Reset FIFO pointers */
-		E1000_WRITE_REG(&adapter->hw, TDFT,  adapter->tx_head_addr);
-		E1000_WRITE_REG(&adapter->hw, TDFH,  adapter->tx_head_addr);
-		E1000_WRITE_REG(&adapter->hw, TDFTS, adapter->tx_head_addr);
-		E1000_WRITE_REG(&adapter->hw, TDFHS, adapter->tx_head_addr);
+		E1000_WRITE_REG(&adapter->hw, E1000_TDFT,
+		    adapter->tx_head_addr);
+		E1000_WRITE_REG(&adapter->hw, E1000_TDFH,
+		    adapter->tx_head_addr);
+		E1000_WRITE_REG(&adapter->hw, E1000_TDFTS,
+		    adapter->tx_head_addr);
+		E1000_WRITE_REG(&adapter->hw, E1000_TDFHS,
+		    adapter->tx_head_addr);
 
 		/* Re-enable TX unit */
-		E1000_WRITE_REG(&adapter->hw, TCTL, tctl);
+		E1000_WRITE_REG(&adapter->hw, E1000_TCTL, tctl);
 		E1000_WRITE_FLUSH(&adapter->hw);
 
 		adapter->tx_fifo_head = 0;
@@ -1752,42 +2364,28 @@
 	struct ifnet	*ifp = adapter->ifp;
 	uint32_t	reg_rctl;
 
-	reg_rctl = E1000_READ_REG(&adapter->hw, RCTL);
+	reg_rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL);
 
 	if (ifp->if_flags & IFF_PROMISC) {
 		reg_rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
-		E1000_WRITE_REG(&adapter->hw, RCTL, reg_rctl);
-		/* Disable VLAN stripping in promiscous mode
-		 * This enables bridging of vlan tagged frames to occur
-		 * and also allows vlan tags to be seen in tcpdump
-		 */
-		if (ifp->if_capenable & IFCAP_VLAN_HWTAGGING)
-			em_disable_vlans(adapter);
-		adapter->em_insert_vlan_header = 1;
+		E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl);
 	} else if (ifp->if_flags & IFF_ALLMULTI) {
 		reg_rctl |= E1000_RCTL_MPE;
 		reg_rctl &= ~E1000_RCTL_UPE;
-		E1000_WRITE_REG(&adapter->hw, RCTL, reg_rctl);
-		adapter->em_insert_vlan_header = 0;
-	} else
-		adapter->em_insert_vlan_header = 0;
+		E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl);
+	}
 }
 
 static void
 em_disable_promisc(struct adapter *adapter)
 {
-	struct ifnet	*ifp = adapter->ifp;
 	uint32_t	reg_rctl;
 
-	reg_rctl = E1000_READ_REG(&adapter->hw, RCTL);
+	reg_rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL);
 
 	reg_rctl &=  (~E1000_RCTL_UPE);
 	reg_rctl &=  (~E1000_RCTL_MPE);
-	E1000_WRITE_REG(&adapter->hw, RCTL, reg_rctl);
-
-	if (ifp->if_capenable & IFCAP_VLAN_HWTAGGING)
-		em_enable_vlans(adapter);
-	adapter->em_insert_vlan_header = 0;
+	E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl);
 }
 
 
@@ -1804,17 +2402,18 @@
 	struct ifnet	*ifp = adapter->ifp;
 	struct ifmultiaddr *ifma;
 	uint32_t reg_rctl = 0;
-	uint8_t  mta[MAX_NUM_MULTICAST_ADDRESSES * ETH_LENGTH_OF_ADDRESS];
+	uint8_t  mta[512]; /* Largest MTS is 4096 bits */
 	int mcnt = 0;
 
 	IOCTL_DEBUGOUT("em_set_multi: begin");
 
-	if (adapter->hw.mac_type == em_82542_rev2_0) {
-		reg_rctl = E1000_READ_REG(&adapter->hw, RCTL);
-		if (adapter->hw.pci_cmd_word & CMD_MEM_WRT_INVALIDATE)
-			em_pci_clear_mwi(&adapter->hw);
+	if (adapter->hw.mac.type == e1000_82542 && 
+	    adapter->hw.revision_id == E1000_REVISION_2) {
+		reg_rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL);
+		if (adapter->hw.bus.pci_cmd_word & CMD_MEM_WRT_INVALIDATE)
+			e1000_pci_clear_mwi(&adapter->hw);
 		reg_rctl |= E1000_RCTL_RST;
-		E1000_WRITE_REG(&adapter->hw, RCTL, reg_rctl);
+		E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl);
 		msec_delay(5);
 	}
 
@@ -1827,25 +2426,27 @@
 			break;
 
 		bcopy(LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
-		    &mta[mcnt*ETH_LENGTH_OF_ADDRESS], ETH_LENGTH_OF_ADDRESS);
+		    &mta[mcnt * ETH_ADDR_LEN], ETH_ADDR_LEN);
 		mcnt++;
 	}
 	IF_ADDR_UNLOCK(ifp);
 
 	if (mcnt >= MAX_NUM_MULTICAST_ADDRESSES) {
-		reg_rctl = E1000_READ_REG(&adapter->hw, RCTL);
+		reg_rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL);
 		reg_rctl |= E1000_RCTL_MPE;
-		E1000_WRITE_REG(&adapter->hw, RCTL, reg_rctl);
+		E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl);
 	} else
-		em_mc_addr_list_update(&adapter->hw, mta, mcnt, 0, 1);
+		e1000_update_mc_addr_list(&adapter->hw, mta,
+		    mcnt, 1, adapter->hw.mac.rar_entry_count);
 
-	if (adapter->hw.mac_type == em_82542_rev2_0) {
-		reg_rctl = E1000_READ_REG(&adapter->hw, RCTL);
+	if (adapter->hw.mac.type == e1000_82542 && 
+	    adapter->hw.revision_id == E1000_REVISION_2) {
+		reg_rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL);
 		reg_rctl &= ~E1000_RCTL_RST;
-		E1000_WRITE_REG(&adapter->hw, RCTL, reg_rctl);
+		E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl);
 		msec_delay(5);
-		if (adapter->hw.pci_cmd_word & CMD_MEM_WRT_INVALIDATE)
-			em_pci_set_mwi(&adapter->hw);
+		if (adapter->hw.bus.pci_cmd_word & CMD_MEM_WRT_INVALIDATE)
+			e1000_pci_set_mwi(&adapter->hw);
 	}
 }
 
@@ -1863,18 +2464,29 @@
 	struct adapter	*adapter = arg;
 	struct ifnet	*ifp = adapter->ifp;
 
-	EM_LOCK(adapter);
+	EM_CORE_LOCK_ASSERT(adapter);
 
-	em_check_for_link(&adapter->hw);
+	e1000_check_for_link(&adapter->hw);
 	em_update_link_status(adapter);
 	em_update_stats_counters(adapter);
+
+	/* Reset LAA into RAR[0] on 82571 */
+	if (e1000_get_laa_state_82571(&adapter->hw) == TRUE)
+		e1000_rar_set(&adapter->hw, adapter->hw.mac.addr, 0);
+
 	if (em_display_debug_stats && ifp->if_drv_flags & IFF_DRV_RUNNING)
 		em_print_hw_stats(adapter);
+
 	em_smartspeed(adapter);
 
+	/*
+	 * Each second we check the watchdog to 
+	 * protect against hardware hangs.
+	 */
+	em_watchdog(adapter);
+
 	callout_reset(&adapter->timer, hz, em_local_timer, adapter);
 
-	EM_UNLOCK(adapter);
 }
 
 static void
@@ -1883,19 +2495,22 @@
 	struct ifnet *ifp = adapter->ifp;
 	device_t dev = adapter->dev;
 
-	if (E1000_READ_REG(&adapter->hw, STATUS) & E1000_STATUS_LU) {
+	if (E1000_READ_REG(&adapter->hw, E1000_STATUS) &
+	    E1000_STATUS_LU) {
 		if (adapter->link_active == 0) {
-			em_get_speed_and_duplex(&adapter->hw, &adapter->link_speed,
-			    &adapter->link_duplex);
-			/* Check if we may set SPEED_MODE bit on PCI-E */
-			if ((adapter->link_speed == SPEED_1000) &&
-			    ((adapter->hw.mac_type == em_82571) ||
-			    (adapter->hw.mac_type == em_82572))) {
+			e1000_get_speed_and_duplex(&adapter->hw, 
+			    &adapter->link_speed, &adapter->link_duplex);
+			/* Check if we must disable SPEED_MODE bit on PCI-E */
+			if ((adapter->link_speed != SPEED_1000) &&
+			    ((adapter->hw.mac.type == e1000_82571) ||
+			    (adapter->hw.mac.type == e1000_82572))) {
 				int tarc0;
 
-				tarc0 = E1000_READ_REG(&adapter->hw, TARC0);
-				tarc0 |= SPEED_MODE_BIT;
-				E1000_WRITE_REG(&adapter->hw, TARC0, tarc0);
+				tarc0 = E1000_READ_REG(&adapter->hw,
+				    E1000_TARC(0));
+				tarc0 &= ~SPEED_MODE_BIT;
+				E1000_WRITE_REG(&adapter->hw,
+				    E1000_TARC(0), tarc0);
 			}
 			if (bootverbose)
 				device_printf(dev, "Link is up %d Mbps %s\n",
@@ -1924,6 +2539,8 @@
  *  This routine disables all traffic on the adapter by issuing a
  *  global reset on the MAC and deallocates TX/RX buffers.
  *
+ *  This routine should always be called with BOTH the CORE
+ *  and TX locks.
  **********************************************************************/
 
 static void
@@ -1932,19 +2549,21 @@
 	struct adapter	*adapter = arg;
 	struct ifnet	*ifp = adapter->ifp;
 
-	EM_LOCK_ASSERT(adapter);
+	EM_CORE_LOCK_ASSERT(adapter);
+	EM_TX_LOCK_ASSERT(adapter);
 
 	INIT_DEBUGOUT("em_stop: begin");
 
 	em_disable_intr(adapter);
-	em_reset_hw(&adapter->hw);
 	callout_stop(&adapter->timer);
 	callout_stop(&adapter->tx_fifo_timer);
-	em_free_transmit_structures(adapter);
-	em_free_receive_structures(adapter);
 
 	/* Tell the stack that the interface is no longer active */
 	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
+
+	e1000_reset_hw(&adapter->hw);
+	if (adapter->hw.mac.type >= e1000_82544)
+		E1000_WRITE_REG(&adapter->hw, E1000_WUC, 0);
 }
 
 
@@ -1959,30 +2578,31 @@
 	device_t dev = adapter->dev;
 
 	/* Make sure our PCI config space has the necessary stuff set */
-	adapter->hw.pci_cmd_word = pci_read_config(dev, PCIR_COMMAND, 2);
-	if ((adapter->hw.pci_cmd_word & PCIM_CMD_BUSMASTEREN) == 0 &&
-	    (adapter->hw.pci_cmd_word & PCIM_CMD_MEMEN)) {
+	adapter->hw.bus.pci_cmd_word = pci_read_config(dev, PCIR_COMMAND, 2);
+	if (!((adapter->hw.bus.pci_cmd_word & PCIM_CMD_BUSMASTEREN) &&
+	    (adapter->hw.bus.pci_cmd_word & PCIM_CMD_MEMEN))) {
 		device_printf(dev, "Memory Access and/or Bus Master bits "
 		    "were not set!\n");
-		adapter->hw.pci_cmd_word |=
+		adapter->hw.bus.pci_cmd_word |=
 		(PCIM_CMD_BUSMASTEREN | PCIM_CMD_MEMEN);
-		pci_write_config(dev, PCIR_COMMAND, adapter->hw.pci_cmd_word, 2);
+		pci_write_config(dev, PCIR_COMMAND,
+		    adapter->hw.bus.pci_cmd_word, 2);
 	}
 
 	/* Save off the information about this board */
 	adapter->hw.vendor_id = pci_get_vendor(dev);
 	adapter->hw.device_id = pci_get_device(dev);
 	adapter->hw.revision_id = pci_read_config(dev, PCIR_REVID, 1);
-	adapter->hw.subsystem_vendor_id = pci_read_config(dev, PCIR_SUBVEND_0, 2);
-	adapter->hw.subsystem_id = pci_read_config(dev, PCIR_SUBDEV_0, 2);
-
-	/* Identify the MAC */
-	if (em_set_mac_type(&adapter->hw))
-		device_printf(dev, "Unknown MAC Type\n");
-	
-	if(adapter->hw.mac_type == em_82541 || adapter->hw.mac_type == em_82541_rev_2 ||
-	   adapter->hw.mac_type == em_82547 || adapter->hw.mac_type == em_82547_rev_2)
-		adapter->hw.phy_init_script = TRUE;
+	adapter->hw.subsystem_vendor_id =
+	    pci_read_config(dev, PCIR_SUBVEND_0, 2);
+	adapter->hw.subsystem_device_id =
+	    pci_read_config(dev, PCIR_SUBDEV_0, 2);
+
+	/* Do Shared Code Init and Setup */
+	if (e1000_set_mac_type(&adapter->hw)) {
+		device_printf(dev, "Setup init failure\n");
+		return;
+	}
 }
 
 static int
@@ -1999,54 +2619,60 @@
 		return (ENXIO);
 	}
 	adapter->osdep.mem_bus_space_tag =
-	rman_get_bustag(adapter->res_memory);
-	adapter->osdep.mem_bus_space_handle = rman_get_bushandle(adapter->res_memory);
+	    rman_get_bustag(adapter->res_memory);
+	adapter->osdep.mem_bus_space_handle =
+	    rman_get_bushandle(adapter->res_memory);
 	adapter->hw.hw_addr = (uint8_t *)&adapter->osdep.mem_bus_space_handle;
 
-	if (adapter->hw.mac_type > em_82543) {
+	/* Only older adapters use IO mapping */
+	if ((adapter->hw.mac.type > e1000_82543) &&
+	    (adapter->hw.mac.type < e1000_82571)) {
 		/* Figure our where our IO BAR is ? */
 		for (rid = PCIR_BAR(0); rid < PCIR_CIS;) {
 			val = pci_read_config(dev, rid, 4);
-			if (E1000_BAR_TYPE(val) == E1000_BAR_TYPE_IO) {
+			if (EM_BAR_TYPE(val) == EM_BAR_TYPE_IO) {
 				adapter->io_rid = rid;
 				break;
 			}
 			rid += 4;
 			/* check for 64bit BAR */
-			if (E1000_BAR_MEM_TYPE(val) == E1000_BAR_MEM_TYPE_64BIT)
+			if (EM_BAR_MEM_TYPE(val) == EM_BAR_MEM_TYPE_64BIT)
 				rid += 4;
 		}
 		if (rid >= PCIR_CIS) {
 			device_printf(dev, "Unable to locate IO BAR\n");
 			return (ENXIO);
 		}
-		adapter->res_ioport = bus_alloc_resource_any(dev, SYS_RES_IOPORT,
-		    &adapter->io_rid, RF_ACTIVE);
+		adapter->res_ioport = bus_alloc_resource_any(dev,
+		    SYS_RES_IOPORT, &adapter->io_rid, RF_ACTIVE);
 		if (adapter->res_ioport == NULL) {
 			device_printf(dev, "Unable to allocate bus resource: "
 			    "ioport\n");
 			return (ENXIO);
 		}
 		adapter->hw.io_base = 0;
-		adapter->osdep.io_bus_space_tag = rman_get_bustag(adapter->res_ioport);
+		adapter->osdep.io_bus_space_tag =
+		    rman_get_bustag(adapter->res_ioport);
 		adapter->osdep.io_bus_space_handle =
 		    rman_get_bushandle(adapter->res_ioport);
 	}
 
-	/* For ICH8 we need to find the flash memory. */
-	if (adapter->hw.mac_type == em_ich8lan) {
-		rid = EM_FLASH;
-
-		adapter->flash_mem = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
-		    &rid, RF_ACTIVE);
-		adapter->osdep.flash_bus_space_tag = rman_get_bustag(adapter->flash_mem);
-		adapter->osdep.flash_bus_space_handle =
-		    rman_get_bushandle(adapter->flash_mem);
-	}
-
+	/*
+	 * Setup MSI/X or MSI if PCI Express
+	 * only the latest can use MSI/X and
+	 * real support for it is forthcoming
+	 */
+	adapter->msi = 0; /* Set defaults */
 	rid = 0x0;
-	adapter->res_interrupt = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
-	    RF_SHAREABLE | RF_ACTIVE);
+
+#if __FreeBSD_version > 602111	/* MSI support is present */
+	/* This will setup either MSI/X or MSI */
+	if (em_setup_msix(adapter))
+		rid = 1;
+#endif	/* FreeBSD_version */
+
+	adapter->res_interrupt = bus_alloc_resource_any(dev,
+	    SYS_RES_IRQ, &rid, RF_SHAREABLE | RF_ACTIVE);
 	if (adapter->res_interrupt == NULL) {
 		device_printf(dev, "Unable to allocate bus resource: "
 		    "interrupt\n");
@@ -2058,6 +2684,11 @@
 	return (0);
 }
 
+/*********************************************************************
+ *
+ *  Setup the appropriate Interrupt handlers.
+ *
+ **********************************************************************/
 int
 em_allocate_intr(struct adapter *adapter)
 {
@@ -2065,16 +2696,23 @@
 	int error;
 
 	/* Manually turn off all interrupts */
-	E1000_WRITE_REG(&adapter->hw, IMC, 0xffffffff);
+	E1000_WRITE_REG(&adapter->hw, E1000_IMC, 0xffffffff);
 
-#ifdef DEVICE_POLLING
-	if (adapter->int_handler_tag == NULL && (error = bus_setup_intr(dev,
-	    adapter->res_interrupt, INTR_TYPE_NET | INTR_MPSAFE, em_intr, adapter,
+#ifndef EM_FAST_IRQ
+	/* We do Legacy setup */
+	if (adapter->int_handler_tag == NULL &&
+	    (error = bus_setup_intr(dev, adapter->res_interrupt,
+#if __FreeBSD_version > 700000
+	    INTR_TYPE_NET | INTR_MPSAFE, NULL, em_intr, adapter,
+#else /* 6.X */
+	    INTR_TYPE_NET | INTR_MPSAFE, em_intr, adapter,
+#endif
 	    &adapter->int_handler_tag)) != 0) {
 		device_printf(dev, "Failed to register interrupt handler");
 		return (error);
 	}
-#else
+
+#else /* FAST_IRQ */
 	/*
 	 * Try allocating a fast interrupt and the associated deferred
 	 * processing contexts.
@@ -2085,8 +2723,13 @@
 	    taskqueue_thread_enqueue, &adapter->tq);
 	taskqueue_start_threads(&adapter->tq, 1, PI_NET, "%s taskq",
 	    device_get_nameunit(adapter->dev));
+#if __FreeBSD_version < 700000
 	if ((error = bus_setup_intr(dev, adapter->res_interrupt,
-	    INTR_TYPE_NET | INTR_MPSAFE, em_intr_fast, adapter,
+	    INTR_TYPE_NET | INTR_FAST, em_intr_fast, adapter,
+#else
+	if ((error = bus_setup_intr(dev, adapter->res_interrupt,
+	    INTR_TYPE_NET, em_intr_fast, NULL, adapter,
+#endif
 	    &adapter->int_handler_tag)) != 0) {
 		device_printf(dev, "Failed to register fast interrupt "
 			    "handler: %d\n", error);
@@ -2094,7 +2737,7 @@
 		adapter->tq = NULL;
 		return (error);
 	}
-#endif
+#endif  /* EM_FAST_IRQ */
 
 	em_enable_intr(adapter);
 	return (0);
@@ -2106,7 +2749,8 @@
 	device_t dev = adapter->dev;
 
 	if (adapter->res_interrupt != NULL) {
-		bus_teardown_intr(dev, adapter->res_interrupt, adapter->int_handler_tag);
+		bus_teardown_intr(dev, adapter->res_interrupt,
+			adapter->int_handler_tag);
 		adapter->int_handler_tag = NULL;
 	}
 	if (adapter->tq != NULL) {
@@ -2123,27 +2767,77 @@
 	device_t dev = adapter->dev;
 
 	if (adapter->res_interrupt != NULL)
-		bus_release_resource(dev, SYS_RES_IRQ, 0, adapter->res_interrupt);
+		bus_release_resource(dev, SYS_RES_IRQ,
+		    adapter->msi ? 1 : 0, adapter->res_interrupt);
+
+#if __FreeBSD_version > 602111	/* MSI support is present */
+	if (adapter->msix_mem != NULL)
+		bus_release_resource(dev, SYS_RES_MEMORY,
+		    PCIR_BAR(EM_MSIX_BAR), adapter->msix_mem);
+
+	if (adapter->msi)
+		pci_release_msi(dev);
+#endif	/* FreeBSD_version */
 
 	if (adapter->res_memory != NULL)
-		bus_release_resource(dev, SYS_RES_MEMORY, PCIR_BAR(0),
-		    adapter->res_memory);
+		bus_release_resource(dev, SYS_RES_MEMORY,
+		    PCIR_BAR(0), adapter->res_memory);
 
 	if (adapter->flash_mem != NULL)
-		bus_release_resource(dev, SYS_RES_MEMORY, EM_FLASH,
-		    adapter->flash_mem);
+		bus_release_resource(dev, SYS_RES_MEMORY,
+		    EM_FLASH, adapter->flash_mem);
 
 	if (adapter->res_ioport != NULL)
-		bus_release_resource(dev, SYS_RES_IOPORT, adapter->io_rid,
-		    adapter->res_ioport);
+		bus_release_resource(dev, SYS_RES_IOPORT,
+		    adapter->io_rid, adapter->res_ioport);
 }
 
+#if __FreeBSD_version > 602111	/* MSI support is present */
+/*
+ * Setup MSI/X
+ */
+static bool
+em_setup_msix(struct adapter *adapter)
+{
+	device_t dev = adapter->dev;
+	int rid, val;
+
+	if (adapter->hw.mac.type < e1000_82571)
+		return (FALSE);
+
+	/* First try MSI/X if possible */
+	if (adapter->hw.mac.type >= e1000_82575) {
+		rid = PCIR_BAR(EM_MSIX_BAR);
+		adapter->msix_mem = bus_alloc_resource_any(dev,
+		    SYS_RES_MEMORY, &rid, RF_ACTIVE);
+       		if (!adapter->msix_mem) {
+			/* May not be enabled */
+               		device_printf(adapter->dev,
+			    "Unable to map MSIX table \n");
+			goto msi;
+       		}
+		val = pci_msix_count(dev); 
+		if ((val) && pci_alloc_msix(dev, &val) == 0) {
+               		adapter->msi = 1;
+               		device_printf(adapter->dev,"Using MSIX interrupts\n");
+			return (TRUE);
+		}
+	}
+msi:
+       	val = pci_msi_count(dev);
+       	if (val == 1 && pci_alloc_msi(dev, &val) == 0) {
+               	adapter->msi = 1;
+               	device_printf(adapter->dev,"Using MSI interrupt\n");
+		return (TRUE);
+	} 
+	return (FALSE);
+}
+#endif	/* FreeBSD_version */
+
 /*********************************************************************
  *
- *  Initialize the hardware to a configuration as specified by the
- *  adapter structure. The controller is reset, the EEPROM is
- *  verified, the MAC address is set, then the shared initialization
- *  routines are called.
+ *  Initialize the hardware to a configuration
+ *  as specified by the adapter structure.
  *
  **********************************************************************/
 static int
@@ -2153,33 +2847,31 @@
 	uint16_t rx_buffer_size;
 
 	INIT_DEBUGOUT("em_hardware_init: begin");
+
 	/* Issue a global reset */
-	em_reset_hw(&adapter->hw);
+	e1000_reset_hw(&adapter->hw);
+
+	/* Get control from any management/hw control */
+	if (((adapter->hw.mac.type == e1000_82573) ||
+	    (adapter->hw.mac.type == e1000_ich8lan) ||
+	    (adapter->hw.mac.type == e1000_ich9lan)) &&
+	    e1000_check_mng_mode(&adapter->hw))
+		em_get_hw_control(adapter);
 
 	/* When hardware is reset, fifo_head is also reset */
 	adapter->tx_fifo_head = 0;
 
-	/* Make sure we have a good EEPROM before we read from it */
-	if (em_validate_eeprom_checksum(&adapter->hw) < 0) {
-		device_printf(dev, "The EEPROM Checksum Is Not Valid\n");
-		return (EIO);
-	}
-
-	if (em_read_part_num(&adapter->hw, &(adapter->part_num)) < 0) {
-		device_printf(dev, "EEPROM read error while reading part "
-		    "number\n");
-		return (EIO);
-	}
-
 	/* Set up smart power down as default off on newer adapters. */
-	if (!em_smart_pwr_down &&
-	    (adapter->hw.mac_type == em_82571 || adapter->hw.mac_type == em_82572)) {
+	if (!em_smart_pwr_down && (adapter->hw.mac.type == e1000_82571 ||
+	    adapter->hw.mac.type == e1000_82572)) {
 		uint16_t phy_tmp = 0;
 
 		/* Speed up time to link by disabling smart power down. */
-		em_read_phy_reg(&adapter->hw, IGP02E1000_PHY_POWER_MGMT, &phy_tmp);
+		e1000_read_phy_reg(&adapter->hw,
+		    IGP02E1000_PHY_POWER_MGMT, &phy_tmp);
 		phy_tmp &= ~IGP02E1000_PM_SPD;
-		em_write_phy_reg(&adapter->hw, IGP02E1000_PHY_POWER_MGMT, phy_tmp);
+		e1000_write_phy_reg(&adapter->hw,
+		    IGP02E1000_PHY_POWER_MGMT, phy_tmp);
 	}
 
 	/*
@@ -2196,24 +2888,26 @@
 	 *   by 1500.
 	 * - The pause time is fairly large at 1000 x 512ns = 512 usec.
 	 */
-	rx_buffer_size = ((E1000_READ_REG(&adapter->hw, PBA) & 0xffff) << 10 );
+	rx_buffer_size = ((E1000_READ_REG(&adapter->hw, E1000_PBA) &
+	    0xffff) << 10 );
+
+	adapter->hw.fc.high_water = rx_buffer_size -
+	    roundup2(adapter->max_frame_size, 1024);
+	adapter->hw.fc.low_water = adapter->hw.fc.high_water - 1500;
 
-	adapter->hw.fc_high_water = rx_buffer_size -
-	    roundup2(adapter->hw.max_frame_size, 1024);
-	adapter->hw.fc_low_water = adapter->hw.fc_high_water - 1500;
-	if (adapter->hw.mac_type == em_80003es2lan)
-		adapter->hw.fc_pause_time = 0xFFFF;
+	if (adapter->hw.mac.type == e1000_80003es2lan)
+		adapter->hw.fc.pause_time = 0xFFFF;
 	else
-		adapter->hw.fc_pause_time = 0x1000;
-	adapter->hw.fc_send_xon = TRUE;
-	adapter->hw.fc = em_fc_full;
+		adapter->hw.fc.pause_time = EM_FC_PAUSE_TIME;
+	adapter->hw.fc.send_xon = TRUE;
+	adapter->hw.fc.type = e1000_fc_full;
 
-	if (em_init_hw(&adapter->hw) < 0) {
-		device_printf(dev, "Hardware Initialization Failed");
+	if (e1000_init_hw(&adapter->hw) < 0) {
+		device_printf(dev, "Hardware Initialization Failed\n");
 		return (EIO);
 	}
 
-	em_check_for_link(&adapter->hw);
+	e1000_check_for_link(&adapter->hw);
 
 	return (0);
 }
@@ -2227,6 +2921,7 @@
 em_setup_interface(device_t dev, struct adapter *adapter)
 {
 	struct ifnet   *ifp;
+
 	INIT_DEBUGOUT("em_setup_interface: begin");
 
 	ifp = adapter->ifp = if_alloc(IFT_ETHER);
@@ -2239,26 +2934,44 @@
 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
 	ifp->if_ioctl = em_ioctl;
 	ifp->if_start = em_start;
-	ifp->if_watchdog = em_watchdog;
 	IFQ_SET_MAXLEN(&ifp->if_snd, adapter->num_tx_desc - 1);
 	ifp->if_snd.ifq_drv_maxlen = adapter->num_tx_desc - 1;
 	IFQ_SET_READY(&ifp->if_snd);
 
-	ether_ifattach(ifp, adapter->hw.mac_addr);
+	ether_ifattach(ifp, adapter->hw.mac.addr);
 
 	ifp->if_capabilities = ifp->if_capenable = 0;
 
-	if (adapter->hw.mac_type >= em_82543) {
-		ifp->if_capabilities |= IFCAP_HWCSUM;
-		ifp->if_capenable |= IFCAP_HWCSUM;
+	if (adapter->hw.mac.type >= e1000_82543) {
+		int version_cap;
+#if __FreeBSD_version < 700000
+		version_cap = IFCAP_HWCSUM;
+#else
+		version_cap = IFCAP_HWCSUM | IFCAP_VLAN_HWCSUM;
+#endif
+		ifp->if_capabilities |= version_cap;
+		ifp->if_capenable |= version_cap;
 	}
 
+#if __FreeBSD_version >= 700000
+	/* Identify TSO capable adapters */
+	if ((adapter->hw.mac.type > e1000_82544) &&
+	    (adapter->hw.mac.type != e1000_82547))
+		ifp->if_capabilities |= IFCAP_TSO4;
+	/*
+	 * By default only enable on PCI-E, this
+	 * can be overriden by ifconfig.
+	 */
+	if (adapter->hw.mac.type >= e1000_82571)
+		ifp->if_capenable |= IFCAP_TSO4;
+#endif
+
 	/*
 	 * Tell the upper layer(s) we support long frames.
 	 */
 	ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
 	ifp->if_capabilities |= IFCAP_VLAN_HWTAGGING | IFCAP_VLAN_MTU;
-	ifp->if_capenable |= IFCAP_VLAN_MTU;
+	ifp->if_capenable |= IFCAP_VLAN_HWTAGGING | IFCAP_VLAN_MTU;
 
 #ifdef DEVICE_POLLING
 	ifp->if_capabilities |= IFCAP_POLLING;
@@ -2268,16 +2981,16 @@
 	 * Specify the media types supported by this adapter and register
 	 * callbacks to update media and link information
 	 */
-	ifmedia_init(&adapter->media, IFM_IMASK, em_media_change,
-	    em_media_status);
-	if ((adapter->hw.media_type == em_media_type_fiber) ||
-	    (adapter->hw.media_type == em_media_type_internal_serdes)) {
-		u_char fiber_type = IFM_1000_SX;	// default type;
+	ifmedia_init(&adapter->media, IFM_IMASK,
+	    em_media_change, em_media_status);
+	if ((adapter->hw.phy.media_type == e1000_media_type_fiber) ||
+	    (adapter->hw.phy.media_type == e1000_media_type_internal_serdes)) {
+		u_char fiber_type = IFM_1000_SX;	/* default type */
 
-		if (adapter->hw.mac_type == em_82545)
+		if (adapter->hw.mac.type == e1000_82545)
 			fiber_type = IFM_1000_LX;
-		ifmedia_add(&adapter->media, IFM_ETHER | fiber_type | IFM_FDX,
-		    0, NULL);
+		ifmedia_add(&adapter->media, IFM_ETHER | fiber_type | IFM_FDX, 
+			    0, NULL);
 		ifmedia_add(&adapter->media, IFM_ETHER | fiber_type, 0, NULL);
 	} else {
 		ifmedia_add(&adapter->media, IFM_ETHER | IFM_10_T, 0, NULL);
@@ -2287,7 +3000,7 @@
 			    0, NULL);
 		ifmedia_add(&adapter->media, IFM_ETHER | IFM_100_TX | IFM_FDX,
 			    0, NULL);
-		if (adapter->hw.phy_type != em_phy_ife) {
+		if (adapter->hw.phy.type != e1000_phy_ife) {
 			ifmedia_add(&adapter->media,
 				IFM_ETHER | IFM_1000_T | IFM_FDX, 0, NULL);
 			ifmedia_add(&adapter->media,
@@ -2309,32 +3022,32 @@
 {
 	uint16_t phy_tmp;
 
-	if (adapter->link_active || (adapter->hw.phy_type != em_phy_igp) ||
-	    adapter->hw.autoneg == 0 ||
-	    (adapter->hw.autoneg_advertised & ADVERTISE_1000_FULL) == 0)
+	if (adapter->link_active || (adapter->hw.phy.type != e1000_phy_igp) ||
+	    adapter->hw.mac.autoneg == 0 ||
+	    (adapter->hw.phy.autoneg_advertised & ADVERTISE_1000_FULL) == 0)
 		return;
 
 	if (adapter->smartspeed == 0) {
 		/* If Master/Slave config fault is asserted twice,
 		 * we assume back-to-back */
-		em_read_phy_reg(&adapter->hw, PHY_1000T_STATUS, &phy_tmp);
+		e1000_read_phy_reg(&adapter->hw, PHY_1000T_STATUS, &phy_tmp);
 		if (!(phy_tmp & SR_1000T_MS_CONFIG_FAULT))
 			return;
-		em_read_phy_reg(&adapter->hw, PHY_1000T_STATUS, &phy_tmp);
+		e1000_read_phy_reg(&adapter->hw, PHY_1000T_STATUS, &phy_tmp);
 		if (phy_tmp & SR_1000T_MS_CONFIG_FAULT) {
-			em_read_phy_reg(&adapter->hw, PHY_1000T_CTRL, &phy_tmp);
+			e1000_read_phy_reg(&adapter->hw, PHY_1000T_CTRL, &phy_tmp);
 			if(phy_tmp & CR_1000T_MS_ENABLE) {
 				phy_tmp &= ~CR_1000T_MS_ENABLE;
-				em_write_phy_reg(&adapter->hw, PHY_1000T_CTRL,
+				e1000_write_phy_reg(&adapter->hw, PHY_1000T_CTRL,
 				    phy_tmp);
 				adapter->smartspeed++;
-				if(adapter->hw.autoneg &&
-				   !em_phy_setup_autoneg(&adapter->hw) &&
-				   !em_read_phy_reg(&adapter->hw, PHY_CTRL,
+				if(adapter->hw.mac.autoneg &&
+				   !e1000_phy_setup_autoneg(&adapter->hw) &&
+				   !e1000_read_phy_reg(&adapter->hw, PHY_CONTROL,
 				    &phy_tmp)) {
 					phy_tmp |= (MII_CR_AUTO_NEG_EN |
 						    MII_CR_RESTART_AUTO_NEG);
-					em_write_phy_reg(&adapter->hw, PHY_CTRL,
+					e1000_write_phy_reg(&adapter->hw, PHY_CONTROL,
 					    phy_tmp);
 				}
 			}
@@ -2342,15 +3055,15 @@
 		return;
 	} else if(adapter->smartspeed == EM_SMARTSPEED_DOWNSHIFT) {
 		/* If still no link, perhaps using 2/3 pair cable */
-		em_read_phy_reg(&adapter->hw, PHY_1000T_CTRL, &phy_tmp);
+		e1000_read_phy_reg(&adapter->hw, PHY_1000T_CTRL, &phy_tmp);
 		phy_tmp |= CR_1000T_MS_ENABLE;
-		em_write_phy_reg(&adapter->hw, PHY_1000T_CTRL, phy_tmp);
-		if(adapter->hw.autoneg &&
-		   !em_phy_setup_autoneg(&adapter->hw) &&
-		   !em_read_phy_reg(&adapter->hw, PHY_CTRL, &phy_tmp)) {
+		e1000_write_phy_reg(&adapter->hw, PHY_1000T_CTRL, phy_tmp);
+		if(adapter->hw.mac.autoneg &&
+		   !e1000_phy_setup_autoneg(&adapter->hw) &&
+		   !e1000_read_phy_reg(&adapter->hw, PHY_CONTROL, &phy_tmp)) {
 			phy_tmp |= (MII_CR_AUTO_NEG_EN |
 				    MII_CR_RESTART_AUTO_NEG);
-			em_write_phy_reg(&adapter->hw, PHY_CTRL, phy_tmp);
+			e1000_write_phy_reg(&adapter->hw, PHY_CONTROL, phy_tmp);
 		}
 	}
 	/* Restart process after EM_SMARTSPEED_MAX iterations */
@@ -2371,12 +3084,16 @@
 }
 
 static int
-em_dma_malloc(struct adapter *adapter, bus_size_t size, struct em_dma_alloc *dma,
-	int mapflags)
+em_dma_malloc(struct adapter *adapter, bus_size_t size,
+        struct em_dma_alloc *dma, int mapflags)
 {
 	int error;
 
-	error = bus_dma_tag_create(NULL,		/* parent */
+#if __FreeBSD_version >= 700000
+	error = bus_dma_tag_create(bus_get_dma_tag(adapter->dev), /* parent */
+#else
+	error = bus_dma_tag_create(NULL,		 /* parent */
+#endif
 				EM_DBA_ALIGN, 0,	/* alignment, bounds */
 				BUS_SPACE_MAXADDR,	/* lowaddr */
 				BUS_SPACE_MAXADDR,	/* highaddr */
@@ -2389,15 +3106,17 @@
 				NULL,			/* lockarg */
 				&dma->dma_tag);
 	if (error) {
-		device_printf(adapter->dev, "%s: bus_dma_tag_create failed: %d\n",
+		device_printf(adapter->dev,
+		    "%s: bus_dma_tag_create failed: %d\n",
 		    __func__, error);
 		goto fail_0;
 	}
 
 	error = bus_dmamem_alloc(dma->dma_tag, (void**) &dma->dma_vaddr,
-	    BUS_DMA_NOWAIT, &dma->dma_map);
+	    BUS_DMA_NOWAIT | BUS_DMA_COHERENT, &dma->dma_map);
 	if (error) {
-		device_printf(adapter->dev, "%s: bus_dmamem_alloc(%ju) failed: %d\n",
+		device_printf(adapter->dev,
+		    "%s: bus_dmamem_alloc(%ju) failed: %d\n",
 		    __func__, (uintmax_t)size, error);
 		goto fail_2;
 	}
@@ -2406,7 +3125,8 @@
 	error = bus_dmamap_load(dma->dma_tag, dma->dma_map, dma->dma_vaddr,
 	    size, em_dmamap_cb, &dma->dma_paddr, mapflags | BUS_DMA_NOWAIT);
 	if (error || dma->dma_paddr == 0) {
-		device_printf(adapter->dev, "%s: bus_dmamap_load failed: %d\n",
+		device_printf(adapter->dev,
+		    "%s: bus_dmamap_load failed: %d\n",
 		    __func__, error);
 		goto fail_3;
 	}
@@ -2451,43 +3171,25 @@
 static int
 em_allocate_transmit_structures(struct adapter *adapter)
 {
-	adapter->tx_buffer_area =  malloc(sizeof(struct em_buffer) *
-	    adapter->num_tx_desc, M_DEVBUF, M_NOWAIT);
-	if (adapter->tx_buffer_area == NULL) {
-		device_printf(adapter->dev, "Unable to allocate tx_buffer memory\n");
-		return (ENOMEM);
-	}
-
-	bzero(adapter->tx_buffer_area, sizeof(struct em_buffer) * adapter->num_tx_desc);
-
-	return (0);
-}
-
-/*********************************************************************
- *
- *  Allocate and initialize transmit structures.
- *
- **********************************************************************/
-static int
-em_setup_transmit_structures(struct adapter *adapter)
-{
 	device_t dev = adapter->dev;
 	struct em_buffer *tx_buffer;
-	bus_size_t size;
-	int error, i;
+	int error;
 
 	/*
-	 * Setup DMA descriptor areas.
+	 * Create DMA tags for tx descriptors
 	 */
-	size = roundup2(adapter->hw.max_frame_size, MCLBYTES);
-	if ((error = bus_dma_tag_create(NULL,		/* parent */
+#if __FreeBSD_version >= 700000
+	if ((error = bus_dma_tag_create(bus_get_dma_tag(dev), /* parent */
+#else
+	if ((error = bus_dma_tag_create(NULL,		 /* parent */
+#endif
 				1, 0,			/* alignment, bounds */
 				BUS_SPACE_MAXADDR,	/* lowaddr */
 				BUS_SPACE_MAXADDR,	/* highaddr */
 				NULL, NULL,		/* filter, filterarg */
-				size,			/* maxsize */
+				EM_TSO_SIZE,		/* maxsize */
 				EM_MAX_SCATTER,		/* nsegments */
-				size,			/* maxsegsize */
+				EM_TSO_SEG_SIZE,	/* maxsegsize */
 				0,			/* flags */
 				NULL,		/* lockfunc */
 				NULL,		/* lockarg */
@@ -2496,36 +3198,65 @@
 		goto fail;
 	}
 
-	if ((error = em_allocate_transmit_structures(adapter)) != 0)
+	adapter->tx_buffer_area = malloc(sizeof(struct em_buffer) *
+	    adapter->num_tx_desc, M_DEVBUF, M_NOWAIT | M_ZERO);
+	if (adapter->tx_buffer_area == NULL) {
+		device_printf(dev, "Unable to allocate tx_buffer memory\n");
+		error = ENOMEM;
 		goto fail;
+	}
 
-	bzero(adapter->tx_desc_base, (sizeof(struct em_tx_desc)) * adapter->num_tx_desc);
-	tx_buffer = adapter->tx_buffer_area;
-	for (i = 0; i < adapter->num_tx_desc; i++) {
+	/* Create the descriptor buffer dma maps */
+	for (int i = 0; i < adapter->num_tx_desc; i++) {
+		tx_buffer = &adapter->tx_buffer_area[i];
 		error = bus_dmamap_create(adapter->txtag, 0, &tx_buffer->map);
 		if (error != 0) {
 			device_printf(dev, "Unable to create TX DMA map\n");
 			goto fail;
 		}
-		tx_buffer++;
+		tx_buffer->next_eop = -1;
 	}
 
-	adapter->next_avail_tx_desc = 0;
-	adapter->oldest_used_tx_desc = 0;
+	return (0);
+fail:
+	em_free_transmit_structures(adapter);
+	return (error);
+}
 
-	/* Set number of descriptors available */
+/*********************************************************************
+ *
+ *  (Re)Initialize transmit structures.
+ *
+ **********************************************************************/
+static void
+em_setup_transmit_structures(struct adapter *adapter)
+{
+	struct em_buffer *tx_buffer;
+
+	/* Clear the old ring contents */
+	bzero(adapter->tx_desc_base,
+	    (sizeof(struct e1000_tx_desc)) * adapter->num_tx_desc);
+
+	/* Free any existing TX buffers */
+	for (int i = 0; i < adapter->num_tx_desc; i++, tx_buffer++) {
+		tx_buffer = &adapter->tx_buffer_area[i];
+		bus_dmamap_sync(adapter->txtag, tx_buffer->map,
+		    BUS_DMASYNC_POSTWRITE);
+		bus_dmamap_unload(adapter->txtag, tx_buffer->map);
+		m_freem(tx_buffer->m_head);
+		tx_buffer->m_head = NULL;
+		tx_buffer->next_eop = -1;
+	}
+
+	/* Reset state */
+	adapter->next_avail_tx_desc = 0;
+	adapter->next_tx_to_clean = 0;
 	adapter->num_tx_desc_avail = adapter->num_tx_desc;
 
-	/* Set checksum context */
-	adapter->active_checksum_context = OFFLOAD_NONE;
 	bus_dmamap_sync(adapter->txdma.dma_tag, adapter->txdma.dma_map,
 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
 
-	return (0);
-
-fail:
-	em_free_transmit_structures(adapter);
-	return (error);
+	return;
 }
 
 /*********************************************************************
@@ -2536,90 +3267,93 @@
 static void
 em_initialize_transmit_unit(struct adapter *adapter)
 {
-	uint32_t	reg_tctl, reg_tarc;
-	uint32_t	reg_tipg = 0;
+	uint32_t	tctl, tarc, tipg = 0;
 	uint64_t	bus_addr;
 
 	 INIT_DEBUGOUT("em_initialize_transmit_unit: begin");
 	/* Setup the Base and Length of the Tx Descriptor Ring */
 	bus_addr = adapter->txdma.dma_paddr;
-	E1000_WRITE_REG(&adapter->hw, TDLEN,
-	    adapter->num_tx_desc * sizeof(struct em_tx_desc));
-	E1000_WRITE_REG(&adapter->hw, TDBAH, (uint32_t)(bus_addr >> 32));
-	E1000_WRITE_REG(&adapter->hw, TDBAL, (uint32_t)bus_addr);
-
+	E1000_WRITE_REG(&adapter->hw, E1000_TDLEN(0),
+	    adapter->num_tx_desc * sizeof(struct e1000_tx_desc));
+	E1000_WRITE_REG(&adapter->hw, E1000_TDBAH(0),
+	    (uint32_t)(bus_addr >> 32));
+	E1000_WRITE_REG(&adapter->hw, E1000_TDBAL(0),
+	    (uint32_t)bus_addr);
 	/* Setup the HW Tx Head and Tail descriptor pointers */
-	E1000_WRITE_REG(&adapter->hw, TDT, 0);
-	E1000_WRITE_REG(&adapter->hw, TDH, 0);
+	E1000_WRITE_REG(&adapter->hw, E1000_TDT(0), 0);
+	E1000_WRITE_REG(&adapter->hw, E1000_TDH(0), 0);
 
-
-	HW_DEBUGOUT2("Base = %x, Length = %x\n", E1000_READ_REG(&adapter->hw, TDBAL),
-	    E1000_READ_REG(&adapter->hw, TDLEN));
+	HW_DEBUGOUT2("Base = %x, Length = %x\n",
+	    E1000_READ_REG(&adapter->hw, E1000_TDBAL(0)),
+	    E1000_READ_REG(&adapter->hw, E1000_TDLEN(0)));
 
 	/* Set the default values for the Tx Inter Packet Gap timer */
-	switch (adapter->hw.mac_type) {
-	case em_82542_rev2_0:
-	case em_82542_rev2_1:
-		reg_tipg = DEFAULT_82542_TIPG_IPGT;
-		reg_tipg |= DEFAULT_82542_TIPG_IPGR1 << E1000_TIPG_IPGR1_SHIFT;
-		reg_tipg |= DEFAULT_82542_TIPG_IPGR2 << E1000_TIPG_IPGR2_SHIFT;
-		break;
-	case em_80003es2lan:
-		reg_tipg = DEFAULT_82543_TIPG_IPGR1;
-		reg_tipg |= DEFAULT_80003ES2LAN_TIPG_IPGR2 <<
+	switch (adapter->hw.mac.type) {
+	case e1000_82542:
+		tipg = DEFAULT_82542_TIPG_IPGT;
+		tipg |= DEFAULT_82542_TIPG_IPGR1 << E1000_TIPG_IPGR1_SHIFT;
+		tipg |= DEFAULT_82542_TIPG_IPGR2 << E1000_TIPG_IPGR2_SHIFT;
+		break;
+	case e1000_80003es2lan:
+		tipg = DEFAULT_82543_TIPG_IPGR1;
+		tipg |= DEFAULT_80003ES2LAN_TIPG_IPGR2 <<
 		    E1000_TIPG_IPGR2_SHIFT;
 		break;
 	default:
-		if ((adapter->hw.media_type == em_media_type_fiber) ||
-		    (adapter->hw.media_type == em_media_type_internal_serdes))
-			reg_tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
+		if ((adapter->hw.phy.media_type == e1000_media_type_fiber) ||
+		    (adapter->hw.phy.media_type ==
+		    e1000_media_type_internal_serdes))
+			tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
 		else
-			reg_tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
-		reg_tipg |= DEFAULT_82543_TIPG_IPGR1 << E1000_TIPG_IPGR1_SHIFT;
-		reg_tipg |= DEFAULT_82543_TIPG_IPGR2 << E1000_TIPG_IPGR2_SHIFT;
-	}
-
-	E1000_WRITE_REG(&adapter->hw, TIPG, reg_tipg);
-	E1000_WRITE_REG(&adapter->hw, TIDV, adapter->tx_int_delay.value);
-	if(adapter->hw.mac_type >= em_82540)
-		E1000_WRITE_REG(&adapter->hw, TADV, adapter->tx_abs_int_delay.value);
-
-	/* Do adapter specific tweaks before we enable the transmitter. */
-	if (adapter->hw.mac_type == em_82571 || adapter->hw.mac_type == em_82572) {
-		reg_tarc = E1000_READ_REG(&adapter->hw, TARC0);
-		reg_tarc |= (1 << 25);
-		E1000_WRITE_REG(&adapter->hw, TARC0, reg_tarc);
-		reg_tarc = E1000_READ_REG(&adapter->hw, TARC1);
-		reg_tarc |= (1 << 25);
-		reg_tarc &= ~(1 << 28);
-		E1000_WRITE_REG(&adapter->hw, TARC1, reg_tarc);
-	} else if (adapter->hw.mac_type == em_80003es2lan) {
-		reg_tarc = E1000_READ_REG(&adapter->hw, TARC0);
-		reg_tarc |= 1;
-		E1000_WRITE_REG(&adapter->hw, TARC0, reg_tarc);
-		reg_tarc = E1000_READ_REG(&adapter->hw, TARC1);
-		reg_tarc |= 1;
-		E1000_WRITE_REG(&adapter->hw, TARC1, reg_tarc);
+			tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
+		tipg |= DEFAULT_82543_TIPG_IPGR1 << E1000_TIPG_IPGR1_SHIFT;
+		tipg |= DEFAULT_82543_TIPG_IPGR2 << E1000_TIPG_IPGR2_SHIFT;
+	}
+
+	E1000_WRITE_REG(&adapter->hw, E1000_TIPG, tipg);
+	E1000_WRITE_REG(&adapter->hw, E1000_TIDV, adapter->tx_int_delay.value);
+	if(adapter->hw.mac.type >= e1000_82540)
+		E1000_WRITE_REG(&adapter->hw, E1000_TADV,
+		    adapter->tx_abs_int_delay.value);
+
+	if ((adapter->hw.mac.type == e1000_82571) ||
+	    (adapter->hw.mac.type == e1000_82572)) {
+		tarc = E1000_READ_REG(&adapter->hw, E1000_TARC(0));
+		tarc |= SPEED_MODE_BIT;
+		E1000_WRITE_REG(&adapter->hw, E1000_TARC(0), tarc);
+	} else if (adapter->hw.mac.type == e1000_80003es2lan) {
+		tarc = E1000_READ_REG(&adapter->hw, E1000_TARC(0));
+		tarc |= 1;
+		E1000_WRITE_REG(&adapter->hw, E1000_TARC(0), tarc);
+		tarc = E1000_READ_REG(&adapter->hw, E1000_TARC(1));
+		tarc |= 1;
+		E1000_WRITE_REG(&adapter->hw, E1000_TARC(1), tarc);
 	}
 
 	/* Program the Transmit Control Register */
-	reg_tctl = E1000_TCTL_PSP | E1000_TCTL_EN |
-		   (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
-	if (adapter->hw.mac_type >= em_82571)
-		reg_tctl |= E1000_TCTL_MULR;
-	if (adapter->link_duplex == FULL_DUPLEX) {
-		reg_tctl |= E1000_FDX_COLLISION_DISTANCE << E1000_COLD_SHIFT;
-	} else {
-		reg_tctl |= E1000_HDX_COLLISION_DISTANCE << E1000_COLD_SHIFT;
-	}
+	tctl = E1000_READ_REG(&adapter->hw, E1000_TCTL);
+	tctl &= ~E1000_TCTL_CT;
+	tctl |= (E1000_TCTL_PSP | E1000_TCTL_RTLC | E1000_TCTL_EN |
+		   (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT));
+
+	if (adapter->hw.mac.type >= e1000_82571)
+		tctl |= E1000_TCTL_MULR;
+
 	/* This write will effectively turn on the transmit unit. */
-	E1000_WRITE_REG(&adapter->hw, TCTL, reg_tctl);
+	E1000_WRITE_REG(&adapter->hw, E1000_TCTL, tctl);
 
-	/* Setup Transmit Descriptor Settings for this adapter */
-	adapter->txd_cmd = E1000_TXD_CMD_IFCS | E1000_TXD_CMD_RS;
+	/* Setup Transmit Descriptor Base Settings */   
+	adapter->txd_cmd = E1000_TXD_CMD_IFCS;
 
-	if (adapter->tx_int_delay.value > 0)
+	if ((adapter->tx_int_delay.value > 0) &&
+	    (adapter->hw.mac.type != e1000_82575))
 		adapter->txd_cmd |= E1000_TXD_CMD_IDE;
+
+        /* Set the function pointer for the transmit routine */
+        if (adapter->hw.mac.type >= e1000_82575)
+                adapter->em_xmit = em_adv_encap;
+        else
+                adapter->em_xmit = em_encap;
 }
 
 /*********************************************************************
@@ -2631,13 +3365,12 @@
 em_free_transmit_structures(struct adapter *adapter)
 {
 	struct em_buffer *tx_buffer;
-	int i;
 
 	INIT_DEBUGOUT("free_transmit_structures: begin");
 
 	if (adapter->tx_buffer_area != NULL) {
-		tx_buffer = adapter->tx_buffer_area;
-		for (i = 0; i < adapter->num_tx_desc; i++, tx_buffer++) {
+		for (int i = 0; i < adapter->num_tx_desc; i++) {
+			tx_buffer = &adapter->tx_buffer_area[i];
 			if (tx_buffer->m_head != NULL) {
 				bus_dmamap_sync(adapter->txtag, tx_buffer->map,
 				    BUS_DMASYNC_POSTWRITE);
@@ -2665,88 +3398,516 @@
 	}
 }
 
-/*********************************************************************
+/*********************************************************************
+ *
+ *  The offload context needs to be set when we transfer the first
+ *  packet of a particular protocol (TCP/UDP). This routine has been
+ *  enhanced to deal with inserted VLAN headers, and IPV6 (not complete)
+ *
+ **********************************************************************/
+static void
+em_transmit_checksum_setup(struct adapter *adapter, struct mbuf *mp,
+    uint32_t *txd_upper, uint32_t *txd_lower)
+{
+	struct e1000_context_desc *TXD;
+	struct em_buffer *tx_buffer;
+	struct ether_vlan_header *eh;
+	struct ip *ip;
+	struct ip6_hdr *ip6;
+	struct tcp_hdr *th;
+	int curr_txd, ehdrlen, hdr_len, ip_hlen;
+	uint32_t cmd = 0;
+	uint16_t etype;
+	uint8_t ipproto;
+
+	/* Setup checksum offload context. */
+	curr_txd = adapter->next_avail_tx_desc;
+	tx_buffer = &adapter->tx_buffer_area[curr_txd];
+	TXD = (struct e1000_context_desc *) &adapter->tx_desc_base[curr_txd];
+
+	*txd_lower = E1000_TXD_CMD_DEXT |	/* Extended descr type */
+		     E1000_TXD_DTYP_D;		/* Data descr */
+
+	/*
+	 * Determine where frame payload starts.
+	 * Jump over vlan headers if already present,
+	 * helpful for QinQ too.
+	 */
+	eh = mtod(mp, struct ether_vlan_header *);
+	if (eh->evl_encap_proto == htons(ETHERTYPE_VLAN)) {
+		etype = ntohs(eh->evl_proto);
+		ehdrlen = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
+	} else {
+		etype = ntohs(eh->evl_encap_proto);
+		ehdrlen = ETHER_HDR_LEN;
+	}
+
+	/*
+	 * We only support TCP/UDP for IPv4 and IPv6 for the moment.
+	 * TODO: Support SCTP too when it hits the tree.
+	 */
+	switch (etype) {
+	case ETHERTYPE_IP:
+		ip = (struct ip *)(mp->m_data + ehdrlen);
+		ip_hlen = ip->ip_hl << 2;
+
+		/* Setup of IP header checksum. */
+		if (mp->m_pkthdr.csum_flags & CSUM_IP) {
+			/*
+			 * Start offset for header checksum calculation.
+			 * End offset for header checksum calculation.
+			 * Offset of place to put the checksum.
+			 */
+			TXD->lower_setup.ip_fields.ipcss = ehdrlen;
+			TXD->lower_setup.ip_fields.ipcse =
+			    htole16(ehdrlen + ip_hlen);
+			TXD->lower_setup.ip_fields.ipcso =
+			    ehdrlen + offsetof(struct ip, ip_sum);
+			cmd |= E1000_TXD_CMD_IP;
+			*txd_upper |= E1000_TXD_POPTS_IXSM << 8;
+		}
+
+		if (mp->m_len < ehdrlen + ip_hlen)
+			return;	/* failure */
+
+		hdr_len = ehdrlen + ip_hlen;
+		ipproto = ip->ip_p;
+
+		break;
+	case ETHERTYPE_IPV6:
+		ip6 = (struct ip6_hdr *)(mp->m_data + ehdrlen);
+		ip_hlen = sizeof(struct ip6_hdr); /* XXX: No header stacking. */
+
+		if (mp->m_len < ehdrlen + ip_hlen)
+			return;	/* failure */
+
+		/* IPv6 doesn't have a header checksum. */
+
+		hdr_len = ehdrlen + ip_hlen;
+		ipproto = ip6->ip6_nxt;
+
+		break;
+	default:
+		*txd_upper = 0;
+		*txd_lower = 0;
+		return;
+	}
+
+	switch (ipproto) {
+	case IPPROTO_TCP:
+		if (mp->m_pkthdr.csum_flags & CSUM_TCP) {
+			/*
+			 * Start offset for payload checksum calculation.
+			 * End offset for payload checksum calculation.
+			 * Offset of place to put the checksum.
+			 */
+			th = (struct tcp_hdr *)(mp->m_data + hdr_len);
+			TXD->upper_setup.tcp_fields.tucss = hdr_len;
+			TXD->upper_setup.tcp_fields.tucse = htole16(0);
+			TXD->upper_setup.tcp_fields.tucso =
+			    hdr_len + offsetof(struct tcphdr, th_sum);
+			cmd |= E1000_TXD_CMD_TCP;
+			*txd_upper |= E1000_TXD_POPTS_TXSM << 8;
+		}
+		break;
+	case IPPROTO_UDP:
+		if (mp->m_pkthdr.csum_flags & CSUM_UDP) {
+			/*
+			 * Start offset for header checksum calculation.
+			 * End offset for header checksum calculation.
+			 * Offset of place to put the checksum.
+			 */
+			TXD->upper_setup.tcp_fields.tucss = hdr_len;
+			TXD->upper_setup.tcp_fields.tucse = htole16(0);
+			TXD->upper_setup.tcp_fields.tucso =
+			    hdr_len + offsetof(struct udphdr, uh_sum);
+			*txd_upper |= E1000_TXD_POPTS_TXSM << 8;
+		}
+		break;
+	default:
+		break;
+	}
+
+	TXD->tcp_seg_setup.data = htole32(0);
+	TXD->cmd_and_length =
+	    htole32(adapter->txd_cmd | E1000_TXD_CMD_DEXT | cmd);
+	tx_buffer->m_head = NULL;
+	tx_buffer->next_eop = -1;
+
+	if (++curr_txd == adapter->num_tx_desc)
+		curr_txd = 0;
+
+	adapter->num_tx_desc_avail--;
+	adapter->next_avail_tx_desc = curr_txd;
+}
+
+
+#if __FreeBSD_version >= 700000
+/**********************************************************************
+ *
+ *  Setup work for hardware segmentation offload (TSO)
+ *
+ **********************************************************************/
+static bool
+em_tso_setup(struct adapter *adapter, struct mbuf *mp, uint32_t *txd_upper,
+   uint32_t *txd_lower)
+{
+	struct e1000_context_desc *TXD;
+	struct em_buffer *tx_buffer;
+	struct ether_vlan_header *eh;
+	struct ip *ip;
+	struct ip6_hdr *ip6;
+	struct tcphdr *th;
+	int curr_txd, ehdrlen, hdr_len, ip_hlen, isip6;
+	uint16_t etype;
+
+	/*
+	 * This function could/should be extended to support IP/IPv6
+	 * fragmentation as well.  But as they say, one step at a time.
+	 */
+
+	/*
+	 * Determine where frame payload starts.
+	 * Jump over vlan headers if already present,
+	 * helpful for QinQ too.
+	 */
+	eh = mtod(mp, struct ether_vlan_header *);
+	if (eh->evl_encap_proto == htons(ETHERTYPE_VLAN)) {
+		etype = ntohs(eh->evl_proto);
+		ehdrlen = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
+	} else {
+		etype = ntohs(eh->evl_encap_proto);
+		ehdrlen = ETHER_HDR_LEN;
+	}
+
+	/* Ensure we have at least the IP+TCP header in the first mbuf. */
+	if (mp->m_len < ehdrlen + sizeof(struct ip) + sizeof(struct tcphdr))
+		return FALSE;	/* -1 */
+
+	/*
+	 * We only support TCP for IPv4 and IPv6 (notyet) for the moment.
+	 * TODO: Support SCTP too when it hits the tree.
+	 */
+	switch (etype) {
+	case ETHERTYPE_IP:
+		isip6 = 0;
+		ip = (struct ip *)(mp->m_data + ehdrlen);
+		if (ip->ip_p != IPPROTO_TCP)
+			return FALSE;	/* 0 */
+		ip->ip_len = 0;
+		ip->ip_sum = 0;
+		ip_hlen = ip->ip_hl << 2;
+		if (mp->m_len < ehdrlen + ip_hlen + sizeof(struct tcphdr))
+			return FALSE;	/* -1 */
+		th = (struct tcphdr *)((caddr_t)ip + ip_hlen);
+#if 1
+		th->th_sum = in_pseudo(ip->ip_src.s_addr,
+		    ip->ip_dst.s_addr, htons(IPPROTO_TCP));
+#else
+		th->th_sum = mp->m_pkthdr.csum_data;
+#endif
+		break;
+	case ETHERTYPE_IPV6:
+		isip6 = 1;
+		return FALSE;			/* Not supported yet. */
+		ip6 = (struct ip6_hdr *)(mp->m_data + ehdrlen);
+		if (ip6->ip6_nxt != IPPROTO_TCP)
+			return FALSE;	/* 0 */
+		ip6->ip6_plen = 0;
+		ip_hlen = sizeof(struct ip6_hdr); /* XXX: no header stacking. */
+		if (mp->m_len < ehdrlen + ip_hlen + sizeof(struct tcphdr))
+			return FALSE;	/* -1 */
+		th = (struct tcphdr *)((caddr_t)ip6 + ip_hlen);
+#if 0
+		th->th_sum = in6_pseudo(ip6->ip6_src, ip->ip6_dst,
+		    htons(IPPROTO_TCP));	/* XXX: function notyet. */
+#else
+		th->th_sum = mp->m_pkthdr.csum_data;
+#endif
+		break;
+	default:
+		return FALSE;
+	}
+	hdr_len = ehdrlen + ip_hlen + (th->th_off << 2);
+
+	*txd_lower = (E1000_TXD_CMD_DEXT |	/* Extended descr type */
+		      E1000_TXD_DTYP_D |	/* Data descr type */
+		      E1000_TXD_CMD_TSE);	/* Do TSE on this packet */
+
+	/* IP and/or TCP header checksum calculation and insertion. */
+	*txd_upper = ((isip6 ? 0 : E1000_TXD_POPTS_IXSM) |
+		      E1000_TXD_POPTS_TXSM) << 8;
+
+	curr_txd = adapter->next_avail_tx_desc;
+	tx_buffer = &adapter->tx_buffer_area[curr_txd];
+	TXD = (struct e1000_context_desc *) &adapter->tx_desc_base[curr_txd];
+
+	/* IPv6 doesn't have a header checksum. */
+	if (!isip6) {
+		/*
+		 * Start offset for header checksum calculation.
+		 * End offset for header checksum calculation.
+		 * Offset of place put the checksum.
+		 */
+		TXD->lower_setup.ip_fields.ipcss = ehdrlen;
+		TXD->lower_setup.ip_fields.ipcse =
+		    htole16(ehdrlen + ip_hlen - 1);
+		TXD->lower_setup.ip_fields.ipcso =
+		    ehdrlen + offsetof(struct ip, ip_sum);
+	}
+	/*
+	 * Start offset for payload checksum calculation.
+	 * End offset for payload checksum calculation.
+	 * Offset of place to put the checksum.
+	 */
+	TXD->upper_setup.tcp_fields.tucss =
+	    ehdrlen + ip_hlen;
+	TXD->upper_setup.tcp_fields.tucse = 0;
+	TXD->upper_setup.tcp_fields.tucso =
+	    ehdrlen + ip_hlen + offsetof(struct tcphdr, th_sum);
+	/*
+	 * Payload size per packet w/o any headers.
+	 * Length of all headers up to payload.
+	 */
+	TXD->tcp_seg_setup.fields.mss = htole16(mp->m_pkthdr.tso_segsz);
+	TXD->tcp_seg_setup.fields.hdr_len = hdr_len;
+
+	TXD->cmd_and_length = htole32(adapter->txd_cmd |
+				E1000_TXD_CMD_DEXT |	/* Extended descr */
+				E1000_TXD_CMD_TSE |	/* TSE context */
+				(isip6 ? 0 : E1000_TXD_CMD_IP) | /* Do IP csum */
+				E1000_TXD_CMD_TCP |	/* Do TCP checksum */
+				(mp->m_pkthdr.len - (hdr_len))); /* Total len */
+
+	tx_buffer->m_head = NULL;
+	tx_buffer->next_eop = -1;
+
+	if (++curr_txd == adapter->num_tx_desc)
+		curr_txd = 0;
+
+	adapter->num_tx_desc_avail--;
+	adapter->next_avail_tx_desc = curr_txd;
+	adapter->tx_tso = TRUE;
+
+	return TRUE;
+}
+
+
+/**********************************************************************
  *
- *  The offload context needs to be set when we transfer the first
- *  packet of a particular protocol (TCP/UDP). We change the
- *  context only if the protocol type changes.
+ *  Setup work for hardware segmentation offload (TSO) on
+ *  adapters using advanced tx descriptors (82575)
  *
  **********************************************************************/
-static void
-em_transmit_checksum_setup(struct adapter *adapter, struct mbuf *mp,
-    uint32_t *txd_upper, uint32_t *txd_lower)
+static boolean_t
+em_tso_adv_setup(struct adapter *adapter, struct mbuf *mp, u32 *hdrlen)
 {
-	struct em_context_desc *TXD;
-	struct em_buffer *tx_buffer;
-	int curr_txd;
+	struct e1000_adv_tx_context_desc *TXD;
+	struct em_buffer        *tx_buffer;
+	u32 vlan_macip_lens = 0, type_tucmd_mlhl = 0;
+	u32 mss_l4len_idx = 0;
+	u16 vtag = 0;
+	int ctxd, ehdrlen, ip_hlen, tcp_hlen;
+	struct ether_vlan_header *eh;
+	struct ip *ip;
+	struct tcphdr *th;
 
-	if (mp->m_pkthdr.csum_flags) {
+	/*
+	 * Determine where frame payload starts.
+	 * Jump over vlan headers if already present
+	 */
+	eh = mtod(mp, struct ether_vlan_header *);
+	if (eh->evl_encap_proto == htons(ETHERTYPE_VLAN))
+		ehdrlen = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
+	else
+		ehdrlen = ETHER_HDR_LEN;
 
-		if (mp->m_pkthdr.csum_flags & CSUM_TCP) {
-			*txd_upper = E1000_TXD_POPTS_TXSM << 8;
-			*txd_lower = E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
-			if (adapter->active_checksum_context == OFFLOAD_TCP_IP)
-				return;
-			else
-				adapter->active_checksum_context = OFFLOAD_TCP_IP;
+	/* Ensure we have at least the IP+TCP header in the first mbuf. */
+	if (mp->m_len < ehdrlen + sizeof(struct ip) + sizeof(struct tcphdr))
+		return FALSE;
+
+	/* Only supports IPV4 for now */
+	ctxd = adapter->next_avail_tx_desc;
+	tx_buffer = &adapter->tx_buffer_area[ctxd];
+	TXD = (struct e1000_adv_tx_context_desc *) &adapter->tx_desc_base[ctxd];
+
+	ip = (struct ip *)(mp->m_data + ehdrlen);
+	if (ip->ip_p != IPPROTO_TCP)
+                return FALSE;   /* 0 */
+	ip->ip_len = 0;
+	ip->ip_sum = 0;
+	ip_hlen = ip->ip_hl << 2;
+	th = (struct tcphdr *)((caddr_t)ip + ip_hlen);
+	th->th_sum = in_pseudo(ip->ip_src.s_addr,
+	    ip->ip_dst.s_addr, htons(IPPROTO_TCP));
+	tcp_hlen = th->th_off << 2;
+	/*
+	 * Calculate header length, this is used
+	 * in the transmit desc in igb_encap
+	 */
+	*hdrlen = ehdrlen + ip_hlen + tcp_hlen;
 
-		} else if (mp->m_pkthdr.csum_flags & CSUM_UDP) {
-			*txd_upper = E1000_TXD_POPTS_TXSM << 8;
-			*txd_lower = E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
-			if (adapter->active_checksum_context == OFFLOAD_UDP_IP)
-				return;
-			else
-				adapter->active_checksum_context = OFFLOAD_UDP_IP;
-		} else {
-			*txd_upper = 0;
-			*txd_lower = 0;
-			return;
-		}
+	/* VLAN MACLEN IPLEN */
+	if (mp->m_flags & M_VLANTAG) {
+		vtag = htole16(mp->m_pkthdr.ether_vtag);
+		vlan_macip_lens |= (vtag << E1000_ADVTXD_VLAN_SHIFT);
+	}
+
+	vlan_macip_lens |= (ehdrlen << E1000_ADVTXD_MACLEN_SHIFT);
+	vlan_macip_lens |= ip_hlen;
+	TXD->vlan_macip_lens |= htole32(vlan_macip_lens);
+
+	/* ADV DTYPE TUCMD */
+	type_tucmd_mlhl |= E1000_ADVTXD_DCMD_DEXT | E1000_ADVTXD_DTYP_CTXT;
+	type_tucmd_mlhl |= E1000_ADVTXD_TUCMD_L4T_TCP;
+	type_tucmd_mlhl |= E1000_ADVTXD_TUCMD_IPV4;
+	TXD->type_tucmd_mlhl |= htole32(type_tucmd_mlhl);
+
+	/* MSS L4LEN IDX */
+	mss_l4len_idx |= (mp->m_pkthdr.tso_segsz << E1000_ADVTXD_MSS_SHIFT);
+	mss_l4len_idx |= (tcp_hlen << E1000_ADVTXD_L4LEN_SHIFT);
+	TXD->mss_l4len_idx = htole32(mss_l4len_idx);
+
+	TXD->seqnum_seed = htole32(0);
+	tx_buffer->m_head = NULL;
+	tx_buffer->next_eop = -1;
+
+	if (++ctxd == adapter->num_tx_desc)
+		ctxd = 0;
+
+	adapter->num_tx_desc_avail--;
+	adapter->next_avail_tx_desc = ctxd;
+	return TRUE;
+}
+
+#endif /* FreeBSD_version >= 700000 */
+
+/*********************************************************************
+ *
+ *  Advanced Context Descriptor setup for VLAN or CSUM
+ *
+ **********************************************************************/
+
+static boolean_t
+em_tx_adv_ctx_setup(struct adapter *adapter, struct mbuf *mp)
+{
+	struct e1000_adv_tx_context_desc *TXD;
+	struct em_buffer        *tx_buffer;
+	uint32_t vlan_macip_lens = 0, type_tucmd_mlhl = 0;
+	struct ether_vlan_header *eh;
+	struct ip *ip;
+	struct ip6_hdr *ip6;
+	int  ehdrlen, ip_hlen = 0;
+	u16	etype;
+	u8	ipproto = 0;
+	bool	offload = TRUE;
+#if __FreeBSD_version < 700000
+	struct m_tag		*mtag;
+#else
+	u16 vtag = 0;
+#endif
+
+	int ctxd = adapter->next_avail_tx_desc;
+	tx_buffer = &adapter->tx_buffer_area[ctxd];
+	TXD = (struct e1000_adv_tx_context_desc *) &adapter->tx_desc_base[ctxd];
+
+	if ((mp->m_pkthdr.csum_flags & CSUM_OFFLOAD) == 0)
+		offload = FALSE; /* Only here to handle VLANs */
+	/*
+	** In advanced descriptors the vlan tag must 
+	** be placed into the descriptor itself.
+	*/
+#if __FreeBSD_version < 700000
+        mtag = VLAN_OUTPUT_TAG(ifp, mp);
+        if (mtag != NULL) {
+		vlan_macip_lens |=
+                    htole16(VLAN_TAG_VALUE(mtag)) << E1000_ADVTXD_VLAN_SHIFT;
+	} else if (offload == FALSE)
+		return FALSE;	/* No CTX needed */
+#else
+	if (mp->m_flags & M_VLANTAG) {
+		vtag = htole16(mp->m_pkthdr.ether_vtag);
+		vlan_macip_lens |= (vtag << E1000_ADVTXD_VLAN_SHIFT);
+	} else if (offload == FALSE)
+		return FALSE;
+#endif
+	/*
+	 * Determine where frame payload starts.
+	 * Jump over vlan headers if already present,
+	 * helpful for QinQ too.
+	 */
+	eh = mtod(mp, struct ether_vlan_header *);
+	if (eh->evl_encap_proto == htons(ETHERTYPE_VLAN)) {
+		etype = ntohs(eh->evl_proto);
+		ehdrlen = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
 	} else {
-		*txd_upper = 0;
-		*txd_lower = 0;
-		return;
+		etype = ntohs(eh->evl_encap_proto);
+		ehdrlen = ETHER_HDR_LEN;
 	}
 
-	/* If we reach this point, the checksum offload context
-	 * needs to be reset.
-	 */
-	curr_txd = adapter->next_avail_tx_desc;
-	tx_buffer = &adapter->tx_buffer_area[curr_txd];
-	TXD = (struct em_context_desc *) &adapter->tx_desc_base[curr_txd];
+	/* Set the ether header length */
+	vlan_macip_lens |= ehdrlen << E1000_ADVTXD_MACLEN_SHIFT;
 
-	TXD->lower_setup.ip_fields.ipcss = ETHER_HDR_LEN;
-	TXD->lower_setup.ip_fields.ipcso =
-		ETHER_HDR_LEN + offsetof(struct ip, ip_sum);
-	TXD->lower_setup.ip_fields.ipcse =
-		htole16(ETHER_HDR_LEN + sizeof(struct ip) - 1);
+	switch (etype) {
+		case ETHERTYPE_IP:
+			ip = (struct ip *)(mp->m_data + ehdrlen);
+			ip_hlen = ip->ip_hl << 2;
+			if (mp->m_len < ehdrlen + ip_hlen) {
+				offload = FALSE;
+				break;
+			}
+			ipproto = ip->ip_p;
+			type_tucmd_mlhl |= E1000_ADVTXD_TUCMD_IPV4;
+			break;
+		case ETHERTYPE_IPV6:
+			ip6 = (struct ip6_hdr *)(mp->m_data + ehdrlen);
+			ip_hlen = sizeof(struct ip6_hdr);
+			if (mp->m_len < ehdrlen + ip_hlen)
+				return FALSE; /* failure */
+			ipproto = ip6->ip6_nxt;
+			type_tucmd_mlhl |= E1000_ADVTXD_TUCMD_IPV6;
+			break;
+		default:
+			offload = FALSE;
+			break;
+	}
 
-	TXD->upper_setup.tcp_fields.tucss =
-		ETHER_HDR_LEN + sizeof(struct ip);
-	TXD->upper_setup.tcp_fields.tucse = htole16(0);
+	vlan_macip_lens |= ip_hlen;
+	type_tucmd_mlhl |= E1000_ADVTXD_DCMD_DEXT | E1000_ADVTXD_DTYP_CTXT;
 
-	if (adapter->active_checksum_context == OFFLOAD_TCP_IP) {
-		TXD->upper_setup.tcp_fields.tucso =
-			ETHER_HDR_LEN + sizeof(struct ip) +
-			offsetof(struct tcphdr, th_sum);
-	} else if (adapter->active_checksum_context == OFFLOAD_UDP_IP) {
-		TXD->upper_setup.tcp_fields.tucso =
-			ETHER_HDR_LEN + sizeof(struct ip) +
-			offsetof(struct udphdr, uh_sum);
+	switch (ipproto) {
+		case IPPROTO_TCP:
+			if (mp->m_pkthdr.csum_flags & CSUM_TCP)
+				type_tucmd_mlhl |= E1000_ADVTXD_TUCMD_L4T_TCP;
+			break;
+		case IPPROTO_UDP:
+			if (mp->m_pkthdr.csum_flags & CSUM_UDP)
+				type_tucmd_mlhl |= E1000_ADVTXD_TUCMD_L4T_UDP;
+			break;
+		default:
+			offload = FALSE;
+			break;
 	}
 
-	TXD->tcp_seg_setup.data = htole32(0);
-	TXD->cmd_and_length = htole32(adapter->txd_cmd | E1000_TXD_CMD_DEXT);
+	/* Now copy bits into descriptor */
+	TXD->vlan_macip_lens |= htole32(vlan_macip_lens);
+	TXD->type_tucmd_mlhl |= htole32(type_tucmd_mlhl);
+	TXD->seqnum_seed = htole32(0);
+	TXD->mss_l4len_idx = htole32(0);
 
 	tx_buffer->m_head = NULL;
+	tx_buffer->next_eop = -1;
 
-	if (++curr_txd == adapter->num_tx_desc)
-		curr_txd = 0;
+	/* We've consumed the first desc, adjust counters */
+	if (++ctxd == adapter->num_tx_desc)
+		ctxd = 0;
+	adapter->next_avail_tx_desc = ctxd;
+	--adapter->num_tx_desc_avail;
 
-	adapter->num_tx_desc_avail--;
-	adapter->next_avail_tx_desc = curr_txd;
+        return (offload);
 }
 
+
 /**********************************************************************
  *
  *  Examine each tx_buffer in the used queue. If the hardware is done
@@ -2757,64 +3918,117 @@
 static void
 em_txeof(struct adapter *adapter)
 {
-	int i, num_avail;
-	struct em_buffer *tx_buffer;
-	struct em_tx_desc   *tx_desc;
+        int first, last, done, num_avail;
+        struct em_buffer *tx_buffer;
+        struct e1000_tx_desc   *tx_desc, *eop_desc;
 	struct ifnet   *ifp = adapter->ifp;
 
-	EM_LOCK_ASSERT(adapter);
+	EM_TX_LOCK_ASSERT(adapter);
 
-	if (adapter->num_tx_desc_avail == adapter->num_tx_desc)
-		return;
-
-	num_avail = adapter->num_tx_desc_avail;
-	i = adapter->oldest_used_tx_desc;
+        if (adapter->num_tx_desc_avail == adapter->num_tx_desc)
+                return;
 
-	tx_buffer = &adapter->tx_buffer_area[i];
-	tx_desc = &adapter->tx_desc_base[i];
-
-	bus_dmamap_sync(adapter->txdma.dma_tag, adapter->txdma.dma_map,
-	    BUS_DMASYNC_POSTREAD);
-	while (tx_desc->upper.fields.status & E1000_TXD_STAT_DD) {
+        num_avail = adapter->num_tx_desc_avail;
+        first = adapter->next_tx_to_clean;
+        tx_desc = &adapter->tx_desc_base[first];
+        tx_buffer = &adapter->tx_buffer_area[first];
+	last = tx_buffer->next_eop;
+        eop_desc = &adapter->tx_desc_base[last];
 
-		tx_desc->upper.data = 0;
-		num_avail++;
+	/*
+	 * What this does is get the index of the
+	 * first descriptor AFTER the EOP of the 
+	 * first packet, that way we can do the
+	 * simple comparison on the inner while loop.
+	 */
+	if (++last == adapter->num_tx_desc)
+ 		last = 0;
+	done = last;
+
+        bus_dmamap_sync(adapter->txdma.dma_tag, adapter->txdma.dma_map,
+            BUS_DMASYNC_POSTREAD);
+
+        while (eop_desc->upper.fields.status & E1000_TXD_STAT_DD) {
+		/* We clean the range of the packet */
+		while (first != done) {
+                	tx_desc->upper.data = 0;
+                	tx_desc->lower.data = 0;
+                	tx_desc->buffer_addr = 0;
+                	num_avail++;
+
+			if (tx_buffer->m_head) {
+				ifp->if_opackets++;
+				bus_dmamap_sync(adapter->txtag,
+				    tx_buffer->map,
+				    BUS_DMASYNC_POSTWRITE);
+				bus_dmamap_unload(adapter->txtag,
+				    tx_buffer->map);
 
-		if (tx_buffer->m_head) {
-			ifp->if_opackets++;
-			bus_dmamap_sync(adapter->txtag, tx_buffer->map,
-			    BUS_DMASYNC_POSTWRITE);
-			bus_dmamap_unload(adapter->txtag, tx_buffer->map);
+                        	m_freem(tx_buffer->m_head);
+                        	tx_buffer->m_head = NULL;
+                	}
+			tx_buffer->next_eop = -1;
+
+	                if (++first == adapter->num_tx_desc)
+				first = 0;
+
+	                tx_buffer = &adapter->tx_buffer_area[first];
+			tx_desc = &adapter->tx_desc_base[first];
+		}
+		/* See if we can continue to the next packet */
+		last = tx_buffer->next_eop;
+		if (last != -1) {
+        		eop_desc = &adapter->tx_desc_base[last];
+			/* Get new done point */
+			if (++last == adapter->num_tx_desc) last = 0;
+			done = last;
+		} else
+			break;
+        }
+        bus_dmamap_sync(adapter->txdma.dma_tag, adapter->txdma.dma_map,
+            BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
+
+        adapter->next_tx_to_clean = first;
+
+        /*
+         * If we have enough room, clear IFF_DRV_OACTIVE to tell the stack
+         * that it is OK to send packets.
+         * If there are no pending descriptors, clear the timeout. Otherwise,
+         * if some descriptors have been freed, restart the timeout.
+         */
+        if (num_avail > EM_TX_CLEANUP_THRESHOLD) {                
+                ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
+		/* All clean, turn off the timer */
+                if (num_avail == adapter->num_tx_desc)
+			adapter->watchdog_timer = 0;
+		/* Some cleaned, reset the timer */
+                else if (num_avail != adapter->num_tx_desc_avail)
+			adapter->watchdog_timer = EM_TX_TIMEOUT;
+        }
+        adapter->num_tx_desc_avail = num_avail;
+        return;
+}
 
-			m_freem(tx_buffer->m_head);
-			tx_buffer->m_head = NULL;
+/*********************************************************************
+ *
+ *  When Link is lost sometimes there is work still in the TX ring
+ *  which will result in a watchdog, rather than allow that do an
+ *  attempted cleanup and then reinit here. Note that this has been
+ *  seens mostly with fiber adapters.
+ *
+ **********************************************************************/
+static void
+em_tx_purge(struct adapter *adapter)
+{
+	if ((!adapter->link_active) && (adapter->watchdog_timer)) {
+		EM_TX_LOCK(adapter);
+		em_txeof(adapter);
+		EM_TX_UNLOCK(adapter);
+		if (adapter->watchdog_timer) { /* Still not clean? */
+			adapter->watchdog_timer = 0;
+			em_init_locked(adapter);
 		}
-
-		if (++i == adapter->num_tx_desc)
-			i = 0;
-
-		tx_buffer = &adapter->tx_buffer_area[i];
-		tx_desc = &adapter->tx_desc_base[i];
-	}
-	bus_dmamap_sync(adapter->txdma.dma_tag, adapter->txdma.dma_map,
-	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
-
-	adapter->oldest_used_tx_desc = i;
-
-	/*
-	 * If we have enough room, clear IFF_DRV_OACTIVE to tell the stack
-	 * that it is OK to send packets.
-	 * If there are no pending descriptors, clear the timeout. Otherwise,
-	 * if some descriptors have been freed, restart the timeout.
-	 */
-	if (num_avail > EM_TX_CLEANUP_THRESHOLD) {
-		ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
-		if (num_avail == adapter->num_tx_desc)
-			ifp->if_timer = 0;
-		else if (num_avail != adapter->num_tx_desc_avail)
-			ifp->if_timer = EM_TX_TIMEOUT;
 	}
-	adapter->num_tx_desc_avail = num_avail;
 }
 
 /*********************************************************************
@@ -2837,19 +4051,21 @@
 		return (ENOBUFS);
 	}
 	m->m_len = m->m_pkthdr.len = MCLBYTES;
-	if (adapter->hw.max_frame_size <= (MCLBYTES - ETHER_ALIGN))
+
+	if (adapter->max_frame_size <= (MCLBYTES - ETHER_ALIGN))
 		m_adj(m, ETHER_ALIGN);
 
 	/*
 	 * Using memory from the mbuf cluster pool, invoke the
 	 * bus_dma machinery to arrange the memory mapping.
 	 */
-	error = bus_dmamap_load_mbuf_sg(adapter->rxtag, adapter->rx_sparemap,
-	    m, segs, &nsegs, BUS_DMA_NOWAIT);
+	error = bus_dmamap_load_mbuf_sg(adapter->rxtag,
+	    adapter->rx_sparemap, m, segs, &nsegs, BUS_DMA_NOWAIT);
 	if (error != 0) {
 		m_free(m);
 		return (error);
 	}
+
 	/* If nsegs is wrong then the stack is corrupt. */
 	KASSERT(nsegs == 1, ("Too many segments returned!"));
 
@@ -2864,7 +4080,6 @@
 	rx_buffer->m_head = m;
 
 	adapter->rx_desc_base[i].buffer_addr = htole64(segs[0].ds_addr);
-
 	return (0);
 }
 
@@ -2883,16 +4098,18 @@
 	struct em_buffer *rx_buffer;
 	int i, error;
 
-	adapter->rx_buffer_area = malloc(sizeof(struct em_buffer) * adapter->num_rx_desc,
-	    M_DEVBUF, M_NOWAIT);
+	adapter->rx_buffer_area = malloc(sizeof(struct em_buffer) *
+	    adapter->num_rx_desc, M_DEVBUF, M_NOWAIT | M_ZERO);
 	if (adapter->rx_buffer_area == NULL) {
 		device_printf(dev, "Unable to allocate rx_buffer memory\n");
 		return (ENOMEM);
 	}
 
-	bzero(adapter->rx_buffer_area, sizeof(struct em_buffer) * adapter->num_rx_desc);
-
-	error = bus_dma_tag_create(NULL,		/* parent */
+#if __FreeBSD_version >= 700000
+	error = bus_dma_tag_create(bus_get_dma_tag(dev), /* parent */
+#else
+	error = bus_dma_tag_create(NULL,		 /* parent */
+#endif
 				1, 0,			/* alignment, bounds */
 				BUS_SPACE_MAXADDR,	/* lowaddr */
 				BUS_SPACE_MAXADDR,	/* highaddr */
@@ -2910,13 +4127,15 @@
 		goto fail;
 	}
 
+	/* Create the spare map (used by getbuf) */
 	error = bus_dmamap_create(adapter->rxtag, BUS_DMA_NOWAIT,
-	    &adapter->rx_sparemap);
+	     &adapter->rx_sparemap);
 	if (error) {
 		device_printf(dev, "%s: bus_dmamap_create failed: %d\n",
 		    __func__, error);
 		goto fail;
 	}
+
 	rx_buffer = adapter->rx_buffer_area;
 	for (i = 0; i < adapter->num_rx_desc; i++, rx_buffer++) {
 		error = bus_dmamap_create(adapter->rxtag, BUS_DMA_NOWAIT,
@@ -2928,14 +4147,6 @@
 		}
 	}
 
-	for (i = 0; i < adapter->num_rx_desc; i++) {
-		error = em_get_buf(adapter, i);
-		if (error)
-			goto fail;
-	}
-	bus_dmamap_sync(adapter->rxdma.dma_tag, adapter->rxdma.dma_map,
-	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
-
 	return (0);
 
 fail:
@@ -2945,21 +4156,42 @@
 
 /*********************************************************************
  *
- *  Allocate and initialize receive structures.
+ *  (Re)initialize receive structures.
  *
  **********************************************************************/
 static int
 em_setup_receive_structures(struct adapter *adapter)
 {
-	int error;
+	struct em_buffer *rx_buffer;
+	int i, error;
 
-	bzero(adapter->rx_desc_base, (sizeof(struct em_rx_desc)) * adapter->num_rx_desc);
+	/* Reset descriptor ring */
+	bzero(adapter->rx_desc_base,
+	    (sizeof(struct e1000_rx_desc)) * adapter->num_rx_desc);
 
-	if ((error = em_allocate_receive_structures(adapter)) != 0)
-		return (error);
+	/* Free current RX buffers. */
+	rx_buffer = adapter->rx_buffer_area;
+	for (i = 0; i < adapter->num_rx_desc; i++, rx_buffer++) {
+		if (rx_buffer->m_head != NULL) {
+			bus_dmamap_sync(adapter->rxtag, rx_buffer->map,
+			    BUS_DMASYNC_POSTREAD);
+			bus_dmamap_unload(adapter->rxtag, rx_buffer->map);
+			m_freem(rx_buffer->m_head);
+			rx_buffer->m_head = NULL;
+		}
+        }
+
+	/* Allocate new ones. */
+	for (i = 0; i < adapter->num_rx_desc; i++) {
+		error = em_get_buf(adapter, i);
+		if (error)
+                        return (error);
+	}
 
 	/* Setup our descriptor pointers */
 	adapter->next_rx_desc_to_check = 0;
+	bus_dmamap_sync(adapter->rxdma.dma_tag, adapter->rxdma.dma_map,
+	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
 
 	return (0);
 }
@@ -2983,72 +4215,97 @@
 	 * Make sure receives are disabled while setting
 	 * up the descriptor ring
 	 */
-	E1000_WRITE_REG(&adapter->hw, RCTL, 0);
-
-	/* Set the Receive Delay Timer Register */
-	E1000_WRITE_REG(&adapter->hw, RDTR, adapter->rx_int_delay.value | E1000_RDT_FPDB);
-
-	if(adapter->hw.mac_type >= em_82540) {
-		E1000_WRITE_REG(&adapter->hw, RADV, adapter->rx_abs_int_delay.value);
+	reg_rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL);
+	E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl & ~E1000_RCTL_EN);
 
+	if(adapter->hw.mac.type >= e1000_82540) {
+		E1000_WRITE_REG(&adapter->hw, E1000_RADV,
+		    adapter->rx_abs_int_delay.value);
 		/*
 		 * Set the interrupt throttling rate. Value is calculated
 		 * as DEFAULT_ITR = 1/(MAX_INTS_PER_SEC * 256ns)
 		 */
 #define MAX_INTS_PER_SEC	8000
 #define DEFAULT_ITR	     1000000000/(MAX_INTS_PER_SEC * 256)
-		E1000_WRITE_REG(&adapter->hw, ITR, DEFAULT_ITR);
+		E1000_WRITE_REG(&adapter->hw, E1000_ITR, DEFAULT_ITR);
 	}
 
 	/* Setup the Base and Length of the Rx Descriptor Ring */
 	bus_addr = adapter->rxdma.dma_paddr;
-	E1000_WRITE_REG(&adapter->hw, RDLEN, adapter->num_rx_desc *
-			sizeof(struct em_rx_desc));
-	E1000_WRITE_REG(&adapter->hw, RDBAH, (uint32_t)(bus_addr >> 32));
-	E1000_WRITE_REG(&adapter->hw, RDBAL, (uint32_t)bus_addr);
-
-	/* Setup the HW Rx Head and Tail Descriptor Pointers */
-	E1000_WRITE_REG(&adapter->hw, RDT, adapter->num_rx_desc - 1);
-	E1000_WRITE_REG(&adapter->hw, RDH, 0);
+	E1000_WRITE_REG(&adapter->hw, E1000_RDLEN(0),
+	    adapter->num_rx_desc * sizeof(struct e1000_rx_desc));
+	E1000_WRITE_REG(&adapter->hw, E1000_RDBAH(0),
+	    (uint32_t)(bus_addr >> 32));
+	E1000_WRITE_REG(&adapter->hw, E1000_RDBAL(0),
+	    (uint32_t)bus_addr);
 
 	/* Setup the Receive Control Register */
-	reg_rctl = E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_LBM_NO |
+	reg_rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
+	reg_rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_LBM_NO |
 		   E1000_RCTL_RDMTS_HALF |
-		   (adapter->hw.mc_filter_type << E1000_RCTL_MO_SHIFT);
+		   (adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
 
-	if (adapter->hw.tbi_compatibility_on == TRUE)
-		reg_rctl |= E1000_RCTL_SBP;
+	/* Make sure VLAN Filters are off */
+	reg_rctl &= ~E1000_RCTL_VFE;
 
+	if (e1000_tbi_sbp_enabled_82543(&adapter->hw))
+		reg_rctl |= E1000_RCTL_SBP;
+	else
+		reg_rctl &= ~E1000_RCTL_SBP;
 
 	switch (adapter->rx_buffer_len) {
 	default:
-	case EM_RXBUFFER_2048:
+	case 2048:
 		reg_rctl |= E1000_RCTL_SZ_2048;
 		break;
-	case EM_RXBUFFER_4096:
-		reg_rctl |= E1000_RCTL_SZ_4096 | E1000_RCTL_BSEX | E1000_RCTL_LPE;
+	case 4096:
+		reg_rctl |= E1000_RCTL_SZ_4096 |
+		    E1000_RCTL_BSEX | E1000_RCTL_LPE;
 		break;
-	case EM_RXBUFFER_8192:
-		reg_rctl |= E1000_RCTL_SZ_8192 | E1000_RCTL_BSEX | E1000_RCTL_LPE;
+	case 8192:
+		reg_rctl |= E1000_RCTL_SZ_8192 |
+		    E1000_RCTL_BSEX | E1000_RCTL_LPE;
 		break;
-	case EM_RXBUFFER_16384:
-		reg_rctl |= E1000_RCTL_SZ_16384 | E1000_RCTL_BSEX | E1000_RCTL_LPE;
+	case 16384:
+		reg_rctl |= E1000_RCTL_SZ_16384 |
+		    E1000_RCTL_BSEX | E1000_RCTL_LPE;
 		break;
 	}
 
 	if (ifp->if_mtu > ETHERMTU)
 		reg_rctl |= E1000_RCTL_LPE;
+	else
+		reg_rctl &= ~E1000_RCTL_LPE;
 
 	/* Enable 82543 Receive Checksum Offload for TCP and UDP */
-	if ((adapter->hw.mac_type >= em_82543) &&
+	if ((adapter->hw.mac.type >= e1000_82543) &&
 	    (ifp->if_capenable & IFCAP_RXCSUM)) {
-		reg_rxcsum = E1000_READ_REG(&adapter->hw, RXCSUM);
+		reg_rxcsum = E1000_READ_REG(&adapter->hw, E1000_RXCSUM);
 		reg_rxcsum |= (E1000_RXCSUM_IPOFL | E1000_RXCSUM_TUOFL);
-		E1000_WRITE_REG(&adapter->hw, RXCSUM, reg_rxcsum);
+		E1000_WRITE_REG(&adapter->hw, E1000_RXCSUM, reg_rxcsum);
 	}
 
+	/*
+	** XXX TEMPORARY WORKAROUND: on some systems with 82573
+	** long latencies are observed, like Lenovo X60. This
+	** change eliminates the problem, but since having positive
+	** values in RDTR is a known source of problems on other
+	** platforms another solution is being sought.
+	*/
+	if (adapter->hw.mac.type == e1000_82573)
+		E1000_WRITE_REG(&adapter->hw, E1000_RDTR, 0x20);
+
 	/* Enable Receives */
-	E1000_WRITE_REG(&adapter->hw, RCTL, reg_rctl);
+	E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl);
+
+	/*
+	 * Setup the HW Rx Head and
+	 * Tail Descriptor Pointers
+	 */
+	E1000_WRITE_REG(&adapter->hw, E1000_RDH(0), 0);
+	E1000_WRITE_REG(&adapter->hw, E1000_RDT(0), adapter->num_rx_desc - 1);
+
+	return;
 }
 
 /*********************************************************************
@@ -3068,6 +4325,8 @@
 		bus_dmamap_destroy(adapter->rxtag, adapter->rx_sparemap);
 		adapter->rx_sparemap = NULL;
 	}
+
+	/* Cleanup any existing buffers */
 	if (adapter->rx_buffer_area != NULL) {
 		rx_buffer = adapter->rx_buffer_area;
 		for (i = 0; i < adapter->num_rx_desc; i++, rx_buffer++) {
@@ -3088,10 +4347,12 @@
 			}
 		}
 	}
+
 	if (adapter->rx_buffer_area != NULL) {
 		free(adapter->rx_buffer_area, M_DEVBUF);
 		adapter->rx_buffer_area = NULL;
 	}
+
 	if (adapter->rxtag != NULL) {
 		bus_dma_tag_destroy(adapter->rxtag);
 		adapter->rxtag = NULL;
@@ -3119,7 +4380,7 @@
 	int		i;
 
 	/* Pointer to the receive descriptor being examined. */
-	struct em_rx_desc   *current_desc;
+	struct e1000_rx_desc   *current_desc;
 	uint8_t		status;
 
 	ifp = adapter->ifp;
@@ -3170,10 +4431,12 @@
 
 			last_byte = *(mtod(mp, caddr_t) + desc_len - 1);			
 			if (TBI_ACCEPT(&adapter->hw, status,
-			    current_desc->errors, pkt_len, last_byte)) {
-				em_tbi_adjust_stats(&adapter->hw,
+			    current_desc->errors, pkt_len, last_byte,
+			    adapter->min_frame_size, adapter->max_frame_size)) {
+				e1000_tbi_adjust_stats_82543(&adapter->hw,
 				    &adapter->stats, pkt_len,
-				    adapter->hw.mac_addr);
+				    adapter->hw.mac.addr,
+				    adapter->max_frame_size);
 				if (len > 0)
 					len--;
 			} else
@@ -3217,15 +4480,23 @@
 				em_receive_checksum(adapter, current_desc,
 				    adapter->fmp);
 #ifndef __NO_STRICT_ALIGNMENT
-				if (adapter->hw.max_frame_size >
+				if (adapter->max_frame_size >
 				    (MCLBYTES - ETHER_ALIGN) &&
 				    em_fixup_rx(adapter) != 0)
 					goto skip;
 #endif
-				if (status & E1000_RXD_STAT_VP)
+				if (status & E1000_RXD_STAT_VP) {
+#if __FreeBSD_version < 700000
 					VLAN_INPUT_TAG_NEW(ifp, adapter->fmp,
 					    (le16toh(current_desc->special) &
 					    E1000_RXD_SPC_VLAN_MASK));
+#else
+					adapter->fmp->m_pkthdr.ether_vtag =
+					    (le16toh(current_desc->special) &
+					    E1000_RXD_SPC_VLAN_MASK);
+					adapter->fmp->m_flags |= M_VLANTAG;
+#endif
+				}
 #ifndef __NO_STRICT_ALIGNMENT
 skip:
 #endif
@@ -3241,7 +4512,8 @@
 			mp->m_len = mp->m_pkthdr.len = MCLBYTES;
 			mp->m_data = mp->m_ext.ext_buf;
 			mp->m_next = NULL;
-			if (adapter->hw.max_frame_size <= (MCLBYTES - ETHER_ALIGN))
+			if (adapter->max_frame_size <=
+			    (MCLBYTES - ETHER_ALIGN))
 				m_adj(mp, ETHER_ALIGN);
 			if (adapter->fmp != NULL) {
 				m_freem(adapter->fmp);
@@ -3261,11 +4533,12 @@
 			i = 0;
 		if (m != NULL) {
 			adapter->next_rx_desc_to_check = i;
-#ifdef DEVICE_POLLING
-			EM_UNLOCK(adapter);
+#ifndef EM_FAST_IRQ
+			EM_CORE_UNLOCK(adapter);
 			(*ifp->if_input)(ifp, m);
-			EM_LOCK(adapter);
+			EM_CORE_LOCK(adapter);
 #else
+			/* Already running unlocked */
 			(*ifp->if_input)(ifp, m);
 #endif
 			i = adapter->next_rx_desc_to_check;
@@ -3277,7 +4550,7 @@
 	/* Advance the E1000's Receive Queue #0  "Tail Pointer". */
 	if (--i < 0)
 		i = adapter->num_rx_desc - 1;
-	E1000_WRITE_REG(&adapter->hw, RDT, i);
+	E1000_WRITE_REG(&adapter->hw, E1000_RDT(0), i);
 	if (!((current_desc->status) & E1000_RXD_STAT_DD))
 		return (0);
 
@@ -3321,12 +4594,10 @@
 			n->m_next = m;
 			adapter->fmp = n;
 		} else {
-			adapter->ifp->if_iqdrops++;
-			adapter->mbuf_alloc_failed++;
+			adapter->dropped_pkts++;
 			m_freem(adapter->fmp);
 			adapter->fmp = NULL;
-			adapter->lmp = NULL;
-			error = ENOBUFS;
+			error = ENOMEM;
 		}
 	}
 
@@ -3342,11 +4613,11 @@
  *
  *********************************************************************/
 static void
-em_receive_checksum(struct adapter *adapter, struct em_rx_desc *rx_desc,
-		    struct mbuf *mp)
+em_receive_checksum(struct adapter *adapter,
+	    struct e1000_rx_desc *rx_desc, struct mbuf *mp)
 {
 	/* 82543 or newer only */
-	if ((adapter->hw.mac_type < em_82543) ||
+	if ((adapter->hw.mac.type < e1000_82543) ||
 	    /* Ignore Checksum bit is set */
 	    (rx_desc->status & E1000_RXD_STAT_IXSM)) {
 		mp->m_pkthdr.csum_flags = 0;
@@ -3375,53 +4646,149 @@
 	}
 }
 
-
+/*
+ * This turns on the hardware offload of the VLAN
+ * tag insertion and strip
+ */
 static void
-em_enable_vlans(struct adapter *adapter)
+em_enable_hw_vlans(struct adapter *adapter)
 {
 	uint32_t ctrl;
 
-	E1000_WRITE_REG(&adapter->hw, VET, ETHERTYPE_VLAN);
-
-	ctrl = E1000_READ_REG(&adapter->hw, CTRL);
+	ctrl = E1000_READ_REG(&adapter->hw, E1000_CTRL);
 	ctrl |= E1000_CTRL_VME;
-	E1000_WRITE_REG(&adapter->hw, CTRL, ctrl);
+	E1000_WRITE_REG(&adapter->hw, E1000_CTRL, ctrl);
 }
 
 static void
-em_disable_vlans(struct adapter *adapter)
+em_enable_intr(struct adapter *adapter)
 {
-	uint32_t ctrl;
+	E1000_WRITE_REG(&adapter->hw, E1000_IMS,
+	    (IMS_ENABLE_MASK));
+}
+
+static void
+em_disable_intr(struct adapter *adapter)
+{
+	E1000_WRITE_REG(&adapter->hw, E1000_IMC, 0xffffffff);
+}
+
+/*
+ * Bit of a misnomer, what this really means is
+ * to enable OS management of the system... aka
+ * to disable special hardware management features 
+ */
+static void
+em_init_manageability(struct adapter *adapter)
+{
+	/* A shared code workaround */
+#define E1000_82542_MANC2H E1000_MANC2H
+	if (adapter->has_manage) {
+		int manc2h = E1000_READ_REG(&adapter->hw, E1000_MANC2H);
+		int manc = E1000_READ_REG(&adapter->hw, E1000_MANC);
+
+		/* disable hardware interception of ARP */
+		manc &= ~(E1000_MANC_ARP_EN);
+
+                /* enable receiving management packets to the host */
+                if (adapter->hw.mac.type >= e1000_82571) {
+			manc |= E1000_MANC_EN_MNG2HOST;
+#define E1000_MNG2HOST_PORT_623 (1 << 5)
+#define E1000_MNG2HOST_PORT_664 (1 << 6)
+			manc2h |= E1000_MNG2HOST_PORT_623;
+			manc2h |= E1000_MNG2HOST_PORT_664;
+			E1000_WRITE_REG(&adapter->hw, E1000_MANC2H, manc2h);
+		}
 
-	ctrl = E1000_READ_REG(&adapter->hw, CTRL);
-	ctrl &= ~E1000_CTRL_VME;
-	E1000_WRITE_REG(&adapter->hw, CTRL, ctrl);
+		E1000_WRITE_REG(&adapter->hw, E1000_MANC, manc);
+	}
 }
 
+/*
+ * Give control back to hardware management
+ * controller if there is one.
+ */
 static void
-em_enable_intr(struct adapter *adapter)
+em_release_manageability(struct adapter *adapter)
 {
-	E1000_WRITE_REG(&adapter->hw, IMS, (IMS_ENABLE_MASK));
+	if (adapter->has_manage) {
+		int manc = E1000_READ_REG(&adapter->hw, E1000_MANC);
+
+		/* re-enable hardware interception of ARP */
+		manc |= E1000_MANC_ARP_EN;
+
+		if (adapter->hw.mac.type >= e1000_82571)
+			manc &= ~E1000_MANC_EN_MNG2HOST;
+
+		E1000_WRITE_REG(&adapter->hw, E1000_MANC, manc);
+	}
 }
 
+/*
+ * em_get_hw_control sets {CTRL_EXT|FWSM}:DRV_LOAD bit.
+ * For ASF and Pass Through versions of f/w this means that
+ * the driver is loaded. For AMT version (only with 82573)
+ * of the f/w this means that the network i/f is open.
+ *
+ */
 static void
-em_disable_intr(struct adapter *adapter)
+em_get_hw_control(struct adapter *adapter)
 {
-	/*
-	 * The first version of 82542 had an errata where when link was forced
-	 * it would stay up even up even if the cable was disconnected.
-	 * Sequence errors were used to detect the disconnect and then the
-	 * driver would unforce the link. This code in the in the ISR. For this
-	 * to work correctly the Sequence error interrupt had to be enabled
-	 * all the time.
-	 */
+	u32 ctrl_ext, swsm;
 
-	if (adapter->hw.mac_type == em_82542_rev2_0)
-	    E1000_WRITE_REG(&adapter->hw, IMC,
-		(0xffffffff & ~E1000_IMC_RXSEQ));
-	else
-	    E1000_WRITE_REG(&adapter->hw, IMC,
-		0xffffffff);
+	/* Let firmware know the driver has taken over */
+	switch (adapter->hw.mac.type) {
+	case e1000_82573:
+		swsm = E1000_READ_REG(&adapter->hw, E1000_SWSM);
+		E1000_WRITE_REG(&adapter->hw, E1000_SWSM,
+		    swsm | E1000_SWSM_DRV_LOAD);
+		break;
+	case e1000_82571:
+	case e1000_82572:
+	case e1000_80003es2lan:
+	case e1000_ich8lan:
+	case e1000_ich9lan:
+		ctrl_ext = E1000_READ_REG(&adapter->hw, E1000_CTRL_EXT);
+		E1000_WRITE_REG(&adapter->hw, E1000_CTRL_EXT,
+		    ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
+		break;
+	default:
+		break;
+	}
+}
+
+/*
+ * em_release_hw_control resets {CTRL_EXT|FWSM}:DRV_LOAD bit.
+ * For ASF and Pass Through versions of f/w this means that the
+ * driver is no longer loaded. For AMT version (only with 82573) i
+ * of the f/w this means that the network i/f is closed.
+ *
+ */
+static void
+em_release_hw_control(struct adapter *adapter)
+{
+	u32 ctrl_ext, swsm;
+
+	/* Let firmware taken over control of h/w */
+	switch (adapter->hw.mac.type) {
+	case e1000_82573:
+		swsm = E1000_READ_REG(&adapter->hw, E1000_SWSM);
+		E1000_WRITE_REG(&adapter->hw, E1000_SWSM,
+		    swsm & ~E1000_SWSM_DRV_LOAD);
+		break;
+	case e1000_82571:
+	case e1000_82572:
+	case e1000_80003es2lan:
+	case e1000_ich8lan:
+	case e1000_ich9lan:
+		ctrl_ext = E1000_READ_REG(&adapter->hw, E1000_CTRL_EXT);
+		E1000_WRITE_REG(&adapter->hw, E1000_CTRL_EXT,
+		    ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
+		break;
+	default:
+		break;
+
+	}
 }
 
 static int
@@ -3436,32 +4803,109 @@
 	return (TRUE);
 }
 
+/*
+ * NOTE: the following routines using the e1000 
+ * 	naming style are provided to the shared
+ *	code which expects that rather than 'em'
+ */
+
+void
+e1000_write_pci_cfg(struct e1000_hw *hw, uint32_t reg, uint16_t *value)
+{
+	pci_write_config(((struct e1000_osdep *)hw->back)->dev, reg, *value, 2);
+}
+
+void
+e1000_read_pci_cfg(struct e1000_hw *hw, uint32_t reg, uint16_t *value)
+{
+	*value = pci_read_config(((struct e1000_osdep *)hw->back)->dev, reg, 2);
+}
+
 void
-em_write_pci_cfg(struct em_hw *hw, uint32_t reg, uint16_t *value)
+e1000_pci_set_mwi(struct e1000_hw *hw)
 {
-	pci_write_config(((struct em_osdep *)hw->back)->dev, reg, *value, 2);
+	pci_write_config(((struct e1000_osdep *)hw->back)->dev, PCIR_COMMAND,
+	    (hw->bus.pci_cmd_word | CMD_MEM_WRT_INVALIDATE), 2);
 }
 
 void
-em_read_pci_cfg(struct em_hw *hw, uint32_t reg, uint16_t *value)
+e1000_pci_clear_mwi(struct e1000_hw *hw)
+{
+	pci_write_config(((struct e1000_osdep *)hw->back)->dev, PCIR_COMMAND,
+	    (hw->bus.pci_cmd_word & ~CMD_MEM_WRT_INVALIDATE), 2);
+}
+
+/*
+ * Read the PCI Express capabilities
+ */
+int32_t
+e1000_read_pcie_cap_reg(struct e1000_hw *hw, uint32_t reg, uint16_t *value)
+{
+	int32_t		error = E1000_SUCCESS;
+	uint16_t	cap_off;
+
+	switch (hw->mac.type) {
+
+		case e1000_82571:
+		case e1000_82572:
+		case e1000_82573:
+		case e1000_80003es2lan:
+			cap_off = 0xE0;
+			e1000_read_pci_cfg(hw, cap_off + reg, value);
+			break;
+		default:
+			error = ~E1000_NOT_IMPLEMENTED;
+			break;
+	}
+
+	return (error);	
+}
+
+int32_t
+e1000_alloc_zeroed_dev_spec_struct(struct e1000_hw *hw, uint32_t size)
 {
-	*value = pci_read_config(((struct em_osdep *)hw->back)->dev, reg, 2);
+	int32_t error = 0;
+
+	hw->dev_spec = malloc(size, M_DEVBUF, M_NOWAIT | M_ZERO);
+	if (hw->dev_spec == NULL)
+		error = ENOMEM;
+
+	return (error);
 }
 
 void
-em_pci_set_mwi(struct em_hw *hw)
+e1000_free_dev_spec_struct(struct e1000_hw *hw)
 {
-	pci_write_config(((struct em_osdep *)hw->back)->dev, PCIR_COMMAND,
-	    (hw->pci_cmd_word | CMD_MEM_WRT_INVALIDATE), 2);
+	if (hw->dev_spec != NULL)
+		free(hw->dev_spec, M_DEVBUF);
+	return;
 }
 
+/*
+ * Enable PCI Wake On Lan capability
+ */
 void
-em_pci_clear_mwi(struct em_hw *hw)
+em_enable_wakeup(device_t dev)
 {
-	pci_write_config(((struct em_osdep *)hw->back)->dev, PCIR_COMMAND,
-	    (hw->pci_cmd_word & ~CMD_MEM_WRT_INVALIDATE), 2);
+	u16     cap, status;
+	u8      id;
+
+	/* First find the capabilities pointer*/
+	cap = pci_read_config(dev, PCIR_CAP_PTR, 2);
+	/* Read the PM Capabilities */
+	id = pci_read_config(dev, cap, 1);
+	if (id != PCIY_PMG)     /* Something wrong */
+		return;
+	/* OK, we have the power capabilities, so
+	   now get the status register */
+	cap += PCIR_POWER_STATUS;
+	status = pci_read_config(dev, cap, 2);
+	status |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
+	pci_write_config(dev, cap, status, 2);
+	return;
 }
 
+
 /*********************************************************************
 * 82544 Coexistence issue workaround.
 *    There are 2 issues.
@@ -3477,9 +4921,10 @@
 *
 *
 *    WORKAROUND:
-*	  Make sure we do not have ending address as 1,2,3,4(Hang) or 9,a,b,c (DAC)
+*	  Make sure we do not have ending address
+*	  as 1,2,3,4(Hang) or 9,a,b,c (DAC)
 *
-*** *********************************************************************/
+*************************************************************************/
 static uint32_t
 em_fill_descriptors (bus_addr_t address, uint32_t length,
 		PDESC_ARRAY desc_array)
@@ -3493,7 +4938,8 @@
 		desc_array->elements = 1;
 		return (desc_array->elements);
 	}
-	safe_terminator = (uint32_t)((((uint32_t)address & 0x7) + (length & 0xF)) & 0xF);
+	safe_terminator = (uint32_t)((((uint32_t)address & 0x7) +
+	    (length & 0xF)) & 0xF);
 	/* if it does not fall between 0x1 to 0x4 and 0x9 to 0xC then return */
 	if (safe_terminator == 0   ||
 	(safe_terminator > 4   &&
@@ -3524,87 +4970,90 @@
 {
 	struct ifnet   *ifp;
 
-	if(adapter->hw.media_type == em_media_type_copper ||
-	   (E1000_READ_REG(&adapter->hw, STATUS) & E1000_STATUS_LU)) {
-		adapter->stats.symerrs += E1000_READ_REG(&adapter->hw, SYMERRS);
-		adapter->stats.sec += E1000_READ_REG(&adapter->hw, SEC);
-	}
-	adapter->stats.crcerrs += E1000_READ_REG(&adapter->hw, CRCERRS);
-	adapter->stats.mpc += E1000_READ_REG(&adapter->hw, MPC);
-	adapter->stats.scc += E1000_READ_REG(&adapter->hw, SCC);
-	adapter->stats.ecol += E1000_READ_REG(&adapter->hw, ECOL);
-
-	adapter->stats.mcc += E1000_READ_REG(&adapter->hw, MCC);
-	adapter->stats.latecol += E1000_READ_REG(&adapter->hw, LATECOL);
-	adapter->stats.colc += E1000_READ_REG(&adapter->hw, COLC);
-	adapter->stats.dc += E1000_READ_REG(&adapter->hw, DC);
-	adapter->stats.rlec += E1000_READ_REG(&adapter->hw, RLEC);
-	adapter->stats.xonrxc += E1000_READ_REG(&adapter->hw, XONRXC);
-	adapter->stats.xontxc += E1000_READ_REG(&adapter->hw, XONTXC);
-	adapter->stats.xoffrxc += E1000_READ_REG(&adapter->hw, XOFFRXC);
-	adapter->stats.xofftxc += E1000_READ_REG(&adapter->hw, XOFFTXC);
-	adapter->stats.fcruc += E1000_READ_REG(&adapter->hw, FCRUC);
-	adapter->stats.prc64 += E1000_READ_REG(&adapter->hw, PRC64);
-	adapter->stats.prc127 += E1000_READ_REG(&adapter->hw, PRC127);
-	adapter->stats.prc255 += E1000_READ_REG(&adapter->hw, PRC255);
-	adapter->stats.prc511 += E1000_READ_REG(&adapter->hw, PRC511);
-	adapter->stats.prc1023 += E1000_READ_REG(&adapter->hw, PRC1023);
-	adapter->stats.prc1522 += E1000_READ_REG(&adapter->hw, PRC1522);
-	adapter->stats.gprc += E1000_READ_REG(&adapter->hw, GPRC);
-	adapter->stats.bprc += E1000_READ_REG(&adapter->hw, BPRC);
-	adapter->stats.mprc += E1000_READ_REG(&adapter->hw, MPRC);
-	adapter->stats.gptc += E1000_READ_REG(&adapter->hw, GPTC);
+	if(adapter->hw.phy.media_type == e1000_media_type_copper ||
+	   (E1000_READ_REG(&adapter->hw, E1000_STATUS) & E1000_STATUS_LU)) {
+		adapter->stats.symerrs += E1000_READ_REG(&adapter->hw, E1000_SYMERRS);
+		adapter->stats.sec += E1000_READ_REG(&adapter->hw, E1000_SEC);
+	}
+	adapter->stats.crcerrs += E1000_READ_REG(&adapter->hw, E1000_CRCERRS);
+	adapter->stats.mpc += E1000_READ_REG(&adapter->hw, E1000_MPC);
+	adapter->stats.scc += E1000_READ_REG(&adapter->hw, E1000_SCC);
+	adapter->stats.ecol += E1000_READ_REG(&adapter->hw, E1000_ECOL);
+
+	adapter->stats.mcc += E1000_READ_REG(&adapter->hw, E1000_MCC);
+	adapter->stats.latecol += E1000_READ_REG(&adapter->hw, E1000_LATECOL);
+	adapter->stats.colc += E1000_READ_REG(&adapter->hw, E1000_COLC);
+	adapter->stats.dc += E1000_READ_REG(&adapter->hw, E1000_DC);
+	adapter->stats.rlec += E1000_READ_REG(&adapter->hw, E1000_RLEC);
+	adapter->stats.xonrxc += E1000_READ_REG(&adapter->hw, E1000_XONRXC);
+	adapter->stats.xontxc += E1000_READ_REG(&adapter->hw, E1000_XONTXC);
+	adapter->stats.xoffrxc += E1000_READ_REG(&adapter->hw, E1000_XOFFRXC);
+	adapter->stats.xofftxc += E1000_READ_REG(&adapter->hw, E1000_XOFFTXC);
+	adapter->stats.fcruc += E1000_READ_REG(&adapter->hw, E1000_FCRUC);
+	adapter->stats.prc64 += E1000_READ_REG(&adapter->hw, E1000_PRC64);
+	adapter->stats.prc127 += E1000_READ_REG(&adapter->hw, E1000_PRC127);
+	adapter->stats.prc255 += E1000_READ_REG(&adapter->hw, E1000_PRC255);
+	adapter->stats.prc511 += E1000_READ_REG(&adapter->hw, E1000_PRC511);
+	adapter->stats.prc1023 += E1000_READ_REG(&adapter->hw, E1000_PRC1023);
+	adapter->stats.prc1522 += E1000_READ_REG(&adapter->hw, E1000_PRC1522);
+	adapter->stats.gprc += E1000_READ_REG(&adapter->hw, E1000_GPRC);
+	adapter->stats.bprc += E1000_READ_REG(&adapter->hw, E1000_BPRC);
+	adapter->stats.mprc += E1000_READ_REG(&adapter->hw, E1000_MPRC);
+	adapter->stats.gptc += E1000_READ_REG(&adapter->hw, E1000_GPTC);
 
 	/* For the 64-bit byte counters the low dword must be read first. */
 	/* Both registers clear on the read of the high dword */
 
-	adapter->stats.gorcl += E1000_READ_REG(&adapter->hw, GORCL);
-	adapter->stats.gorch += E1000_READ_REG(&adapter->hw, GORCH);
-	adapter->stats.gotcl += E1000_READ_REG(&adapter->hw, GOTCL);
-	adapter->stats.gotch += E1000_READ_REG(&adapter->hw, GOTCH);
-
-	adapter->stats.rnbc += E1000_READ_REG(&adapter->hw, RNBC);
-	adapter->stats.ruc += E1000_READ_REG(&adapter->hw, RUC);
-	adapter->stats.rfc += E1000_READ_REG(&adapter->hw, RFC);
-	adapter->stats.roc += E1000_READ_REG(&adapter->hw, ROC);
-	adapter->stats.rjc += E1000_READ_REG(&adapter->hw, RJC);
-
-	adapter->stats.torl += E1000_READ_REG(&adapter->hw, TORL);
-	adapter->stats.torh += E1000_READ_REG(&adapter->hw, TORH);
-	adapter->stats.totl += E1000_READ_REG(&adapter->hw, TOTL);
-	adapter->stats.toth += E1000_READ_REG(&adapter->hw, TOTH);
-
-	adapter->stats.tpr += E1000_READ_REG(&adapter->hw, TPR);
-	adapter->stats.tpt += E1000_READ_REG(&adapter->hw, TPT);
-	adapter->stats.ptc64 += E1000_READ_REG(&adapter->hw, PTC64);
-	adapter->stats.ptc127 += E1000_READ_REG(&adapter->hw, PTC127);
-	adapter->stats.ptc255 += E1000_READ_REG(&adapter->hw, PTC255);
-	adapter->stats.ptc511 += E1000_READ_REG(&adapter->hw, PTC511);
-	adapter->stats.ptc1023 += E1000_READ_REG(&adapter->hw, PTC1023);
-	adapter->stats.ptc1522 += E1000_READ_REG(&adapter->hw, PTC1522);
-	adapter->stats.mptc += E1000_READ_REG(&adapter->hw, MPTC);
-	adapter->stats.bptc += E1000_READ_REG(&adapter->hw, BPTC);
-
-	if (adapter->hw.mac_type >= em_82543) {
-		adapter->stats.algnerrc += E1000_READ_REG(&adapter->hw, ALGNERRC);
-		adapter->stats.rxerrc += E1000_READ_REG(&adapter->hw, RXERRC);
-		adapter->stats.tncrs += E1000_READ_REG(&adapter->hw, TNCRS);
-		adapter->stats.cexterr += E1000_READ_REG(&adapter->hw, CEXTERR);
-		adapter->stats.tsctc += E1000_READ_REG(&adapter->hw, TSCTC);
-		adapter->stats.tsctfc += E1000_READ_REG(&adapter->hw, TSCTFC);
+	adapter->stats.gorc += E1000_READ_REG(&adapter->hw, E1000_GORCH);
+	adapter->stats.gotc += E1000_READ_REG(&adapter->hw, E1000_GOTCH);
+
+	adapter->stats.rnbc += E1000_READ_REG(&adapter->hw, E1000_RNBC);
+	adapter->stats.ruc += E1000_READ_REG(&adapter->hw, E1000_RUC);
+	adapter->stats.rfc += E1000_READ_REG(&adapter->hw, E1000_RFC);
+	adapter->stats.roc += E1000_READ_REG(&adapter->hw, E1000_ROC);
+	adapter->stats.rjc += E1000_READ_REG(&adapter->hw, E1000_RJC);
+
+	adapter->stats.tor += E1000_READ_REG(&adapter->hw, E1000_TORH);
+	adapter->stats.tot += E1000_READ_REG(&adapter->hw, E1000_TOTH);
+
+	adapter->stats.tpr += E1000_READ_REG(&adapter->hw, E1000_TPR);
+	adapter->stats.tpt += E1000_READ_REG(&adapter->hw, E1000_TPT);
+	adapter->stats.ptc64 += E1000_READ_REG(&adapter->hw, E1000_PTC64);
+	adapter->stats.ptc127 += E1000_READ_REG(&adapter->hw, E1000_PTC127);
+	adapter->stats.ptc255 += E1000_READ_REG(&adapter->hw, E1000_PTC255);
+	adapter->stats.ptc511 += E1000_READ_REG(&adapter->hw, E1000_PTC511);
+	adapter->stats.ptc1023 += E1000_READ_REG(&adapter->hw, E1000_PTC1023);
+	adapter->stats.ptc1522 += E1000_READ_REG(&adapter->hw, E1000_PTC1522);
+	adapter->stats.mptc += E1000_READ_REG(&adapter->hw, E1000_MPTC);
+	adapter->stats.bptc += E1000_READ_REG(&adapter->hw, E1000_BPTC);
+
+	if (adapter->hw.mac.type >= e1000_82543) {
+		adapter->stats.algnerrc += 
+		E1000_READ_REG(&adapter->hw, E1000_ALGNERRC);
+		adapter->stats.rxerrc += 
+		E1000_READ_REG(&adapter->hw, E1000_RXERRC);
+		adapter->stats.tncrs += 
+		E1000_READ_REG(&adapter->hw, E1000_TNCRS);
+		adapter->stats.cexterr += 
+		E1000_READ_REG(&adapter->hw, E1000_CEXTERR);
+		adapter->stats.tsctc += 
+		E1000_READ_REG(&adapter->hw, E1000_TSCTC);
+		adapter->stats.tsctfc += 
+		E1000_READ_REG(&adapter->hw, E1000_TSCTFC);
 	}
 	ifp = adapter->ifp;
 
 	ifp->if_collisions = adapter->stats.colc;
 
 	/* Rx Errors */
-	ifp->if_ierrors = adapter->stats.rxerrc + adapter->stats.crcerrs +
-	    adapter->stats.algnerrc + adapter->stats.ruc + adapter->stats.roc +
+	ifp->if_ierrors = adapter->dropped_pkts + adapter->stats.rxerrc +
+	    adapter->stats.crcerrs + adapter->stats.algnerrc +
+	    adapter->stats.ruc + adapter->stats.roc +
 	    adapter->stats.mpc + adapter->stats.cexterr;
 
 	/* Tx Errors */
-	ifp->if_oerrors = adapter->stats.ecol + adapter->stats.latecol +
-	    adapter->watchdog_events;
+	ifp->if_oerrors = adapter->stats.ecol +
+	    adapter->stats.latecol + adapter->watchdog_events;
 }
 
 
@@ -3623,26 +5072,29 @@
 
 	device_printf(dev, "Adapter hardware address = %p \n", hw_addr);
 	device_printf(dev, "CTRL = 0x%x RCTL = 0x%x \n",
-	    E1000_READ_REG(&adapter->hw, CTRL),
-	    E1000_READ_REG(&adapter->hw, RCTL));
+	    E1000_READ_REG(&adapter->hw, E1000_CTRL),
+	    E1000_READ_REG(&adapter->hw, E1000_RCTL));
 	device_printf(dev, "Packet buffer = Tx=%dk Rx=%dk \n",
-	    ((E1000_READ_REG(&adapter->hw, PBA) & 0xffff0000) >> 16),\
-	    (E1000_READ_REG(&adapter->hw, PBA) & 0xffff) );
+	    ((E1000_READ_REG(&adapter->hw, E1000_PBA) & 0xffff0000) >> 16),\
+	    (E1000_READ_REG(&adapter->hw, E1000_PBA) & 0xffff) );
 	device_printf(dev, "Flow control watermarks high = %d low = %d\n",
-	    adapter->hw.fc_high_water,
-	    adapter->hw.fc_low_water);
+	    adapter->hw.fc.high_water,
+	    adapter->hw.fc.low_water);
 	device_printf(dev, "tx_int_delay = %d, tx_abs_int_delay = %d\n",
-	    E1000_READ_REG(&adapter->hw, TIDV),
-	    E1000_READ_REG(&adapter->hw, TADV));
+	    E1000_READ_REG(&adapter->hw, E1000_TIDV),
+	    E1000_READ_REG(&adapter->hw, E1000_TADV));
 	device_printf(dev, "rx_int_delay = %d, rx_abs_int_delay = %d\n",
-	    E1000_READ_REG(&adapter->hw, RDTR),
-	    E1000_READ_REG(&adapter->hw, RADV));
+	    E1000_READ_REG(&adapter->hw, E1000_RDTR),
+	    E1000_READ_REG(&adapter->hw, E1000_RADV));
 	device_printf(dev, "fifo workaround = %lld, fifo_reset_count = %lld\n",
 	    (long long)adapter->tx_fifo_wrk_cnt,
 	    (long long)adapter->tx_fifo_reset_cnt);
 	device_printf(dev, "hw tdh = %d, hw tdt = %d\n",
-	    E1000_READ_REG(&adapter->hw, TDH),
-	    E1000_READ_REG(&adapter->hw, TDT));
+	    E1000_READ_REG(&adapter->hw, E1000_TDH(0)),
+	    E1000_READ_REG(&adapter->hw, E1000_TDT(0)));
+	device_printf(dev, "hw rdh = %d, hw rdt = %d\n",
+	    E1000_READ_REG(&adapter->hw, E1000_RDH(0)),
+	    E1000_READ_REG(&adapter->hw, E1000_RDT(0)));
 	device_printf(dev, "Num Tx descriptors avail = %d\n",
 	    adapter->num_tx_desc_avail);
 	device_printf(dev, "Tx Descriptors not avail1 = %ld\n",
@@ -3653,6 +5105,10 @@
 	    adapter->mbuf_alloc_failed);
 	device_printf(dev, "Std mbuf cluster failed = %ld\n",
 	    adapter->mbuf_cluster_failed);
+	device_printf(dev, "Driver dropped packets = %ld\n",
+	    adapter->dropped_pkts);
+	device_printf(dev, "Driver tx dma failure in encap = %ld\n",
+		adapter->no_tx_dma_setup);
 }
 
 static void
@@ -3662,13 +5118,16 @@
 
 	device_printf(dev, "Excessive collisions = %lld\n",
 	    (long long)adapter->stats.ecol);
+#if	(DEBUG_HW > 0)  /* Dont output these errors normally */
 	device_printf(dev, "Symbol errors = %lld\n",
 	    (long long)adapter->stats.symerrs);
+#endif
 	device_printf(dev, "Sequence errors = %lld\n",
 	    (long long)adapter->stats.sec);
-	device_printf(dev, "Defer count = %lld\n", (long long)adapter->stats.dc);
-
-	device_printf(dev, "Missed Packets = %lld\n", (long long)adapter->stats.mpc);
+	device_printf(dev, "Defer count = %lld\n",
+	    (long long)adapter->stats.dc);
+	device_printf(dev, "Missed Packets = %lld\n",
+	    (long long)adapter->stats.mpc);
 	device_printf(dev, "Receive No Buffers = %lld\n",
 	    (long long)adapter->stats.rnbc);
 	/* RLEC is inaccurate on some hardware, calculate our own. */
@@ -3676,23 +5135,59 @@
 	    ((long long)adapter->stats.roc + (long long)adapter->stats.ruc));
 	device_printf(dev, "Receive errors = %lld\n",
 	    (long long)adapter->stats.rxerrc);
-	device_printf(dev, "Crc errors = %lld\n", (long long)adapter->stats.crcerrs);
+	device_printf(dev, "Crc errors = %lld\n",
+	    (long long)adapter->stats.crcerrs);
 	device_printf(dev, "Alignment errors = %lld\n",
 	    (long long)adapter->stats.algnerrc);
-	device_printf(dev, "Carrier extension errors = %lld\n",
+	/* On 82575 these are collision counts */
+	device_printf(dev, "Collision/Carrier extension errors = %lld\n",
 	    (long long)adapter->stats.cexterr);
 	device_printf(dev, "RX overruns = %ld\n", adapter->rx_overruns);
-	device_printf(dev, "watchdog timeouts = %ld\n", adapter->watchdog_events);
-
-	device_printf(dev, "XON Rcvd = %lld\n", (long long)adapter->stats.xonrxc);
-	device_printf(dev, "XON Xmtd = %lld\n", (long long)adapter->stats.xontxc);
-	device_printf(dev, "XOFF Rcvd = %lld\n", (long long)adapter->stats.xoffrxc);
-	device_printf(dev, "XOFF Xmtd = %lld\n", (long long)adapter->stats.xofftxc);
-
+	device_printf(dev, "watchdog timeouts = %ld\n",
+	    adapter->watchdog_events);
+	device_printf(dev, "XON Rcvd = %lld\n",
+	    (long long)adapter->stats.xonrxc);
+	device_printf(dev, "XON Xmtd = %lld\n",
+	    (long long)adapter->stats.xontxc);
+	device_printf(dev, "XOFF Rcvd = %lld\n",
+	    (long long)adapter->stats.xoffrxc);
+	device_printf(dev, "XOFF Xmtd = %lld\n",
+	    (long long)adapter->stats.xofftxc);
 	device_printf(dev, "Good Packets Rcvd = %lld\n",
 	    (long long)adapter->stats.gprc);
 	device_printf(dev, "Good Packets Xmtd = %lld\n",
 	    (long long)adapter->stats.gptc);
+	device_printf(dev, "TSO Contexts Xmtd = %lld\n",
+	    (long long)adapter->stats.tsctc);
+	device_printf(dev, "TSO Contexts Failed = %lld\n",
+	    (long long)adapter->stats.tsctfc);
+}
+
+/**********************************************************************
+ *
+ *  This routine provides a way to dump out the adapter eeprom,
+ *  often a useful debug/service tool. This only dumps the first
+ *  32 words, stuff that matters is in that extent.
+ *
+ **********************************************************************/
+static void
+em_print_nvm_info(struct adapter *adapter)
+{
+	u16	eeprom_data;
+	int	i, j, row = 0;
+
+	/* Its a bit crude, but it gets the job done */
+	printf("\nInterface EEPROM Dump:\n");
+	printf("Offset\n0x0000  ");
+	for (i = 0, j = 0; i < 32; i++, j++) {
+		if (j == 8) { /* Make the offset block */
+			j = 0; ++row;
+			printf("\n0x00%x0  ",row);
+		}
+		e1000_read_nvm(&adapter->hw, i, 1, &eeprom_data);
+		printf("%04x ", eeprom_data);
+	}
+	printf("\n");
 }
 
 static int
@@ -3712,6 +5207,15 @@
 		adapter = (struct adapter *)arg1;
 		em_print_debug_info(adapter);
 	}
+	/*
+	 * This value will cause a hex dump of the
+	 * first 32 16-bit words of the EEPROM to
+	 * the screen.
+	 */
+	if (result == 2) {
+		adapter = (struct adapter *)arg1;
+		em_print_nvm_info(adapter);
+        }
 
 	return (error);
 }
@@ -3753,34 +5257,32 @@
 	error = sysctl_handle_int(oidp, &usecs, 0, req);
 	if (error != 0 || req->newptr == NULL)
 		return (error);
-	if (usecs < 0 || usecs > E1000_TICKS_TO_USECS(65535))
+	if (usecs < 0 || usecs > EM_TICKS_TO_USECS(65535))
 		return (EINVAL);
 	info->value = usecs;
-	ticks = E1000_USECS_TO_TICKS(usecs);
+	ticks = EM_USECS_TO_TICKS(usecs);
 
 	adapter = info->adapter;
 	
-	EM_LOCK(adapter);
+	EM_CORE_LOCK(adapter);
 	regval = E1000_READ_OFFSET(&adapter->hw, info->offset);
 	regval = (regval & ~0xffff) | (ticks & 0xffff);
 	/* Handle a few special cases. */
 	switch (info->offset) {
 	case E1000_RDTR:
-	case E1000_82542_RDTR:
-		regval |= E1000_RDT_FPDB;
 		break;
 	case E1000_TIDV:
-	case E1000_82542_TIDV:
 		if (ticks == 0) {
 			adapter->txd_cmd &= ~E1000_TXD_CMD_IDE;
 			/* Don't write 0 into the TIDV register. */
 			regval++;
 		} else
-			adapter->txd_cmd |= E1000_TXD_CMD_IDE;
+			if (adapter->hw.mac.type != e1000_82575)
+				adapter->txd_cmd |= E1000_TXD_CMD_IDE;
 		break;
 	}
 	E1000_WRITE_OFFSET(&adapter->hw, info->offset, regval);
-	EM_UNLOCK(adapter);
+	EM_CORE_UNLOCK(adapter);
 	return (0);
 }
 
@@ -3798,9 +5300,9 @@
 	    info, 0, em_sysctl_int_delay, "I", description);
 }
 
-#ifndef DEVICE_POLLING
+#ifdef EM_FAST_IRQ
 static void
-em_add_int_process_limit(struct adapter *adapter, const char *name,
+em_add_rx_process_limit(struct adapter *adapter, const char *name,
 	const char *description, int *limit, int value)
 {
 	*limit = value;
--- /dev/null
+++ sys/dev/em/e1000_api.c
@@ -0,0 +1,1192 @@
+/*******************************************************************************
+
+  Copyright (c) 2001-2007, Intel Corporation 
+  All rights reserved.
+  
+  Redistribution and use in source and binary forms, with or without 
+  modification, are permitted provided that the following conditions are met:
+  
+   1. Redistributions of source code must retain the above copyright notice, 
+      this list of conditions and the following disclaimer.
+  
+   2. Redistributions in binary form must reproduce the above copyright 
+      notice, this list of conditions and the following disclaimer in the 
+      documentation and/or other materials provided with the distribution.
+  
+   3. Neither the name of the Intel Corporation nor the names of its 
+      contributors may be used to endorse or promote products derived from 
+      this software without specific prior written permission.
+  
+  THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
+  AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 
+  IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 
+  ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE 
+  LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 
+  CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 
+  SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 
+  INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 
+  CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 
+  ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
+  POSSIBILITY OF SUCH DAMAGE.
+
+*******************************************************************************/
+/* $FreeBSD: src/sys/dev/em/e1000_api.c,v 1.3.4.1 2007/11/28 23:24:37 jfv Exp $ */
+
+
+#include "e1000_api.h"
+#include "e1000_mac.h"
+#include "e1000_nvm.h"
+#include "e1000_phy.h"
+
+#ifndef NO_82542_SUPPORT
+extern void    e1000_init_function_pointers_82542(struct e1000_hw *hw);
+#endif
+extern void    e1000_init_function_pointers_82543(struct e1000_hw *hw);
+extern void    e1000_init_function_pointers_82540(struct e1000_hw *hw);
+extern void    e1000_init_function_pointers_82571(struct e1000_hw *hw);
+extern void    e1000_init_function_pointers_82541(struct e1000_hw *hw);
+extern void    e1000_init_function_pointers_80003es2lan(struct e1000_hw *hw);
+extern void    e1000_init_function_pointers_ich8lan(struct e1000_hw *hw);
+extern void    e1000_init_function_pointers_82575(struct e1000_hw *hw);
+
+/**
+ *  e1000_init_mac_params - Initialize MAC function pointers
+ *  @hw: pointer to the HW structure
+ *
+ *  This function initializes the function pointers for the MAC
+ *  set of functions.  Called by drivers or by e1000_setup_init_funcs.
+ **/
+s32 e1000_init_mac_params(struct e1000_hw *hw)
+{
+	s32 ret_val = E1000_SUCCESS;
+
+	if (hw->func.init_mac_params) {
+		ret_val = hw->func.init_mac_params(hw);
+		if (ret_val) {
+			DEBUGOUT("MAC Initialization Error\n");
+			goto out;
+		}
+	} else {
+		DEBUGOUT("mac.init_mac_params was NULL\n");
+		ret_val = -E1000_ERR_CONFIG;
+	}
+
+out:
+	return ret_val;
+}
+
+/**
+ *  e1000_init_nvm_params - Initialize NVM function pointers
+ *  @hw: pointer to the HW structure
+ *
+ *  This function initializes the function pointers for the NVM
+ *  set of functions.  Called by drivers or by e1000_setup_init_funcs.
+ **/
+s32 e1000_init_nvm_params(struct e1000_hw *hw)
+{
+	s32 ret_val = E1000_SUCCESS;
+
+	if (hw->func.init_nvm_params) {
+		ret_val = hw->func.init_nvm_params(hw);
+		if (ret_val) {
+			DEBUGOUT("NVM Initialization Error\n");
+			goto out;
+		}
+	} else {
+		DEBUGOUT("nvm.init_nvm_params was NULL\n");
+		ret_val = -E1000_ERR_CONFIG;
+	}
+
+out:
+	return ret_val;
+}
+
+/**
+ *  e1000_init_phy_params - Initialize PHY function pointers
+ *  @hw: pointer to the HW structure
+ *
+ *  This function initializes the function pointers for the PHY
+ *  set of functions.  Called by drivers or by e1000_setup_init_funcs.
+ **/
+s32 e1000_init_phy_params(struct e1000_hw *hw)
+{
+	s32 ret_val = E1000_SUCCESS;
+
+	if (hw->func.init_phy_params) {
+		ret_val = hw->func.init_phy_params(hw);
+		if (ret_val) {
+			DEBUGOUT("PHY Initialization Error\n");
+			goto out;
+		}
+	} else {
+		DEBUGOUT("phy.init_phy_params was NULL\n");
+		ret_val =  -E1000_ERR_CONFIG;
+	}
+
+out:
+	return ret_val;
+}
+
+/**
+ *  e1000_set_mac_type - Sets MAC type
+ *  @hw: pointer to the HW structure
+ *
+ *  This function sets the mac type of the adapter based on the
+ *  device ID stored in the hw structure.
+ *  MUST BE FIRST FUNCTION CALLED (explicitly or through
+ *  e1000_setup_init_funcs()).
+ **/
+s32 e1000_set_mac_type(struct e1000_hw *hw)
+{
+	struct e1000_mac_info *mac = &hw->mac;
+	s32 ret_val = E1000_SUCCESS;
+
+	DEBUGFUNC("e1000_set_mac_type");
+
+	switch (hw->device_id) {
+#ifndef NO_82542_SUPPORT
+	case E1000_DEV_ID_82542:
+		mac->type = e1000_82542;
+		break;
+#endif
+	case E1000_DEV_ID_82543GC_FIBER:
+	case E1000_DEV_ID_82543GC_COPPER:
+		mac->type = e1000_82543;
+		break;
+	case E1000_DEV_ID_82544EI_COPPER:
+	case E1000_DEV_ID_82544EI_FIBER:
+	case E1000_DEV_ID_82544GC_COPPER:
+	case E1000_DEV_ID_82544GC_LOM:
+		mac->type = e1000_82544;
+		break;
+	case E1000_DEV_ID_82540EM:
+	case E1000_DEV_ID_82540EM_LOM:
+	case E1000_DEV_ID_82540EP:
+	case E1000_DEV_ID_82540EP_LOM:
+	case E1000_DEV_ID_82540EP_LP:
+		mac->type = e1000_82540;
+		break;
+	case E1000_DEV_ID_82545EM_COPPER:
+	case E1000_DEV_ID_82545EM_FIBER:
+		mac->type = e1000_82545;
+		break;
+	case E1000_DEV_ID_82545GM_COPPER:
+	case E1000_DEV_ID_82545GM_FIBER:
+	case E1000_DEV_ID_82545GM_SERDES:
+		mac->type = e1000_82545_rev_3;
+		break;
+	case E1000_DEV_ID_82546EB_COPPER:
+	case E1000_DEV_ID_82546EB_FIBER:
+	case E1000_DEV_ID_82546EB_QUAD_COPPER:
+		mac->type = e1000_82546;
+		break;
+	case E1000_DEV_ID_82546GB_COPPER:
+	case E1000_DEV_ID_82546GB_FIBER:
+	case E1000_DEV_ID_82546GB_SERDES:
+	case E1000_DEV_ID_82546GB_PCIE:
+	case E1000_DEV_ID_82546GB_QUAD_COPPER:
+	case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
+		mac->type = e1000_82546_rev_3;
+		break;
+	case E1000_DEV_ID_82541EI:
+	case E1000_DEV_ID_82541EI_MOBILE:
+	case E1000_DEV_ID_82541ER_LOM:
+		mac->type = e1000_82541;
+		break;
+	case E1000_DEV_ID_82541ER:
+	case E1000_DEV_ID_82541GI:
+	case E1000_DEV_ID_82541GI_LF:
+	case E1000_DEV_ID_82541GI_MOBILE:
+		mac->type = e1000_82541_rev_2;
+		break;
+	case E1000_DEV_ID_82547EI:
+	case E1000_DEV_ID_82547EI_MOBILE:
+		mac->type = e1000_82547;
+		break;
+	case E1000_DEV_ID_82547GI:
+		mac->type = e1000_82547_rev_2;
+		break;
+	case E1000_DEV_ID_82571EB_COPPER:
+	case E1000_DEV_ID_82571EB_FIBER:
+	case E1000_DEV_ID_82571EB_SERDES:
+	case E1000_DEV_ID_82571EB_SERDES_DUAL:
+	case E1000_DEV_ID_82571EB_SERDES_QUAD:
+	case E1000_DEV_ID_82571EB_QUAD_COPPER:
+	case E1000_DEV_ID_82571PT_QUAD_COPPER:
+	case E1000_DEV_ID_82571EB_QUAD_FIBER:
+	case E1000_DEV_ID_82571EB_QUAD_COPPER_LP:
+		mac->type = e1000_82571;
+		break;
+	case E1000_DEV_ID_82572EI:
+	case E1000_DEV_ID_82572EI_COPPER:
+	case E1000_DEV_ID_82572EI_FIBER:
+	case E1000_DEV_ID_82572EI_SERDES:
+		mac->type = e1000_82572;
+		break;
+	case E1000_DEV_ID_82573E:
+	case E1000_DEV_ID_82573E_IAMT:
+	case E1000_DEV_ID_82573L:
+		mac->type = e1000_82573;
+		break;
+	case E1000_DEV_ID_80003ES2LAN_COPPER_DPT:
+	case E1000_DEV_ID_80003ES2LAN_SERDES_DPT:
+	case E1000_DEV_ID_80003ES2LAN_COPPER_SPT:
+	case E1000_DEV_ID_80003ES2LAN_SERDES_SPT:
+		mac->type = e1000_80003es2lan;
+		break;
+	case E1000_DEV_ID_ICH8_IFE:
+	case E1000_DEV_ID_ICH8_IFE_GT:
+	case E1000_DEV_ID_ICH8_IFE_G:
+	case E1000_DEV_ID_ICH8_IGP_M:
+	case E1000_DEV_ID_ICH8_IGP_M_AMT:
+	case E1000_DEV_ID_ICH8_IGP_AMT:
+	case E1000_DEV_ID_ICH8_IGP_C:
+		mac->type = e1000_ich8lan;
+		break;
+	case E1000_DEV_ID_ICH9_IFE:
+	case E1000_DEV_ID_ICH9_IFE_GT:
+	case E1000_DEV_ID_ICH9_IFE_G:
+	case E1000_DEV_ID_ICH9_IGP_AMT:
+	case E1000_DEV_ID_ICH9_IGP_C:
+		mac->type = e1000_ich9lan;
+		break;
+	case E1000_DEV_ID_82575EB_COPPER:
+	case E1000_DEV_ID_82575EB_FIBER_SERDES:
+	case E1000_DEV_ID_82575GB_QUAD_COPPER:
+		mac->type = e1000_82575;
+		break;
+	default:
+		/* Should never have loaded on this device */
+		ret_val = -E1000_ERR_MAC_INIT;
+		break;
+	}
+
+	return ret_val;
+}
+
+/**
+ *  e1000_setup_init_funcs - Initializes function pointers
+ *  @hw: pointer to the HW structure
+ *  @init_device: TRUE will initialize the rest of the function pointers
+ *                 getting the device ready for use.  FALSE will only set
+ *                 MAC type and the function pointers for the other init
+ *                 functions.  Passing FALSE will not generate any hardware
+ *                 reads or writes.
+ *
+ *  This function must be called by a driver in order to use the rest
+ *  of the 'shared' code files. Called by drivers only.
+ **/
+s32 e1000_setup_init_funcs(struct e1000_hw *hw, bool init_device)
+{
+	s32 ret_val;
+
+	/* Can't do much good without knowing the MAC type. */
+	ret_val = e1000_set_mac_type(hw);
+	if (ret_val) {
+		DEBUGOUT("ERROR: MAC type could not be set properly.\n");
+		goto out;
+	}
+
+	if (!hw->hw_addr) {
+		DEBUGOUT("ERROR: Registers not mapped\n");
+		ret_val = -E1000_ERR_CONFIG;
+		goto out;
+	}
+
+	/*
+	 * Init some generic function pointers that are currently all pointing
+	 * to generic implementations. We do this first allowing a driver
+	 * module to override it afterwards.
+	 */
+	hw->func.config_collision_dist = e1000_config_collision_dist_generic;
+	hw->func.rar_set = e1000_rar_set_generic;
+	hw->func.validate_mdi_setting = e1000_validate_mdi_setting_generic;
+	hw->func.mng_host_if_write = e1000_mng_host_if_write_generic;
+	hw->func.mng_write_cmd_header = e1000_mng_write_cmd_header_generic;
+	hw->func.mng_enable_host_if = e1000_mng_enable_host_if_generic;
+	hw->func.wait_autoneg = e1000_wait_autoneg_generic;
+	hw->func.reload_nvm = e1000_reload_nvm_generic;
+
+	/*
+	 * Set up the init function pointers. These are functions within the
+	 * adapter family file that sets up function pointers for the rest of
+	 * the functions in that family.
+	 */
+	switch (hw->mac.type) {
+#ifndef NO_82542_SUPPORT
+	case e1000_82542:
+		e1000_init_function_pointers_82542(hw);
+		break;
+#endif
+	case e1000_82543:
+	case e1000_82544:
+		e1000_init_function_pointers_82543(hw);
+		break;
+	case e1000_82540:
+	case e1000_82545:
+	case e1000_82545_rev_3:
+	case e1000_82546:
+	case e1000_82546_rev_3:
+		e1000_init_function_pointers_82540(hw);
+		break;
+	case e1000_82541:
+	case e1000_82541_rev_2:
+	case e1000_82547:
+	case e1000_82547_rev_2:
+		e1000_init_function_pointers_82541(hw);
+		break;
+	case e1000_82571:
+	case e1000_82572:
+	case e1000_82573:
+		e1000_init_function_pointers_82571(hw);
+		break;
+	case e1000_80003es2lan:
+		e1000_init_function_pointers_80003es2lan(hw);
+		break;
+	case e1000_ich8lan:
+	case e1000_ich9lan:
+		e1000_init_function_pointers_ich8lan(hw);
+		break;
+	case e1000_82575:
+		e1000_init_function_pointers_82575(hw);
+		break;
+	default:
+		DEBUGOUT("Hardware not supported\n");
+		ret_val = -E1000_ERR_CONFIG;
+		break;
+	}
+
+	/*
+	 * Initialize the rest of the function pointers. These require some
+	 * register reads/writes in some cases.
+	 */
+	if (!(ret_val) && init_device) {
+		ret_val = e1000_init_mac_params(hw);
+		if (ret_val)
+			goto out;
+
+		ret_val = e1000_init_nvm_params(hw);
+		if (ret_val)
+			goto out;
+
+		ret_val = e1000_init_phy_params(hw);
+		if (ret_val)
+			goto out;
+
+	}
+
+out:
+	return ret_val;
+}
+
+/**
+ *  e1000_remove_device - Free device specific structure
+ *  @hw: pointer to the HW structure
+ *
+ *  If a device specific structure was allocated, this function will
+ *  free it. This is a function pointer entry point called by drivers.
+ **/
+void e1000_remove_device(struct e1000_hw *hw)
+{
+	if (hw->func.remove_device)
+		hw->func.remove_device(hw);
+}
+
+/**
+ *  e1000_get_bus_info - Obtain bus information for adapter
+ *  @hw: pointer to the HW structure
+ *
+ *  This will obtain information about the HW bus for which the
+ *  adaper is attached and stores it in the hw structure. This is a
+ *  function pointer entry point called by drivers.
+ **/
+s32 e1000_get_bus_info(struct e1000_hw *hw)
+{
+	if (hw->func.get_bus_info)
+		return hw->func.get_bus_info(hw);
+
+	return E1000_SUCCESS;
+}
+
+/**
+ *  e1000_clear_vfta - Clear VLAN filter table
+ *  @hw: pointer to the HW structure
+ *
+ *  This clears the VLAN filter table on the adapter. This is a function
+ *  pointer entry point called by drivers.
+ **/
+void e1000_clear_vfta(struct e1000_hw *hw)
+{
+	if (hw->func.clear_vfta)
+		hw->func.clear_vfta (hw);
+}
+
+/**
+ *  e1000_write_vfta - Write value to VLAN filter table
+ *  @hw: pointer to the HW structure
+ *  @offset: the 32-bit offset in which to write the value to.
+ *  @value: the 32-bit value to write at location offset.
+ *
+ *  This writes a 32-bit value to a 32-bit offset in the VLAN filter
+ *  table. This is a function pointer entry point called by drivers.
+ **/
+void e1000_write_vfta(struct e1000_hw *hw, u32 offset, u32 value)
+{
+	if (hw->func.write_vfta)
+		hw->func.write_vfta(hw, offset, value);
+}
+
+/**
+ *  e1000_update_mc_addr_list - Update Multicast addresses
+ *  @hw: pointer to the HW structure
+ *  @mc_addr_list: array of multicast addresses to program
+ *  @mc_addr_count: number of multicast addresses to program
+ *  @rar_used_count: the first RAR register free to program
+ *  @rar_count: total number of supported Receive Address Registers
+ *
+ *  Updates the Receive Address Registers and Multicast Table Array.
+ *  The caller must have a packed mc_addr_list of multicast addresses.
+ *  The parameter rar_count will usually be hw->mac.rar_entry_count
+ *  unless there are workarounds that change this.  Currently no func pointer
+ *  exists and all implementations are handled in the generic version of this
+ *  function.
+ **/
+void e1000_update_mc_addr_list(struct e1000_hw *hw, u8 *mc_addr_list,
+                               u32 mc_addr_count, u32 rar_used_count,
+                               u32 rar_count)
+{
+	if (hw->func.update_mc_addr_list)
+		hw->func.update_mc_addr_list(hw,
+		                             mc_addr_list,
+		                             mc_addr_count,
+		                             rar_used_count,
+		                             rar_count);
+}
+
+/**
+ *  e1000_force_mac_fc - Force MAC flow control
+ *  @hw: pointer to the HW structure
+ *
+ *  Force the MAC's flow control settings. Currently no func pointer exists
+ *  and all implementations are handled in the generic version of this
+ *  function.
+ **/
+s32 e1000_force_mac_fc(struct e1000_hw *hw)
+{
+	return e1000_force_mac_fc_generic(hw);
+}
+
+/**
+ *  e1000_check_for_link - Check/Store link connection
+ *  @hw: pointer to the HW structure
+ *
+ *  This checks the link condition of the adapter and stores the
+ *  results in the hw->mac structure. This is a function pointer entry
+ *  point called by drivers.
+ **/
+s32 e1000_check_for_link(struct e1000_hw *hw)
+{
+	if (hw->func.check_for_link)
+		return hw->func.check_for_link(hw);
+
+	return -E1000_ERR_CONFIG;
+}
+
+/**
+ *  e1000_check_mng_mode - Check management mode
+ *  @hw: pointer to the HW structure
+ *
+ *  This checks if the adapter has manageability enabled.
+ *  This is a function pointer entry point called by drivers.
+ **/
+bool e1000_check_mng_mode(struct e1000_hw *hw)
+{
+	if (hw->func.check_mng_mode)
+		return hw->func.check_mng_mode(hw);
+
+	return FALSE;
+}
+
+/**
+ *  e1000_mng_write_dhcp_info - Writes DHCP info to host interface
+ *  @hw: pointer to the HW structure
+ *  @buffer: pointer to the host interface
+ *  @length: size of the buffer
+ *
+ *  Writes the DHCP information to the host interface.
+ **/
+s32 e1000_mng_write_dhcp_info(struct e1000_hw *hw, u8 *buffer, u16 length)
+{
+	return e1000_mng_write_dhcp_info_generic(hw, buffer, length);
+}
+
+/**
+ *  e1000_reset_hw - Reset hardware
+ *  @hw: pointer to the HW structure
+ *
+ *  This resets the hardware into a known state. This is a function pointer
+ *  entry point called by drivers.
+ **/
+s32 e1000_reset_hw(struct e1000_hw *hw)
+{
+	if (hw->func.reset_hw)
+		return hw->func.reset_hw(hw);
+
+	return -E1000_ERR_CONFIG;
+}
+
+/**
+ *  e1000_init_hw - Initialize hardware
+ *  @hw: pointer to the HW structure
+ *
+ *  This inits the hardware readying it for operation. This is a function
+ *  pointer entry point called by drivers.
+ **/
+s32 e1000_init_hw(struct e1000_hw *hw)
+{
+	if (hw->func.init_hw)
+		return hw->func.init_hw(hw);
+
+	return -E1000_ERR_CONFIG;
+}
+
+/**
+ *  e1000_setup_link - Configures link and flow control
+ *  @hw: pointer to the HW structure
+ *
+ *  This configures link and flow control settings for the adapter. This
+ *  is a function pointer entry point called by drivers. While modules can
+ *  also call this, they probably call their own version of this function.
+ **/
+s32 e1000_setup_link(struct e1000_hw *hw)
+{
+	if (hw->func.setup_link)
+		return hw->func.setup_link(hw);
+
+	return -E1000_ERR_CONFIG;
+}
+
+/**
+ *  e1000_get_speed_and_duplex - Returns current speed and duplex
+ *  @hw: pointer to the HW structure
+ *  @speed: pointer to a 16-bit value to store the speed
+ *  @duplex: pointer to a 16-bit value to store the duplex.
+ *
+ *  This returns the speed and duplex of the adapter in the two 'out'
+ *  variables passed in. This is a function pointer entry point called
+ *  by drivers.
+ **/
+s32 e1000_get_speed_and_duplex(struct e1000_hw *hw, u16 *speed, u16 *duplex)
+{
+	if (hw->func.get_link_up_info)
+		return hw->func.get_link_up_info(hw, speed, duplex);
+
+	return -E1000_ERR_CONFIG;
+}
+
+/**
+ *  e1000_setup_led - Configures SW controllable LED
+ *  @hw: pointer to the HW structure
+ *
+ *  This prepares the SW controllable LED for use and saves the current state
+ *  of the LED so it can be later restored. This is a function pointer entry
+ *  point called by drivers.
+ **/
+s32 e1000_setup_led(struct e1000_hw *hw)
+{
+	if (hw->func.setup_led)
+		return hw->func.setup_led(hw);
+
+	return E1000_SUCCESS;
+}
+
+/**
+ *  e1000_cleanup_led - Restores SW controllable LED
+ *  @hw: pointer to the HW structure
+ *
+ *  This restores the SW controllable LED to the value saved off by
+ *  e1000_setup_led. This is a function pointer entry point called by drivers.
+ **/
+s32 e1000_cleanup_led(struct e1000_hw *hw)
+{
+	if (hw->func.cleanup_led)
+		return hw->func.cleanup_led(hw);
+
+	return E1000_SUCCESS;
+}
+
+/**
+ *  e1000_blink_led - Blink SW controllable LED
+ *  @hw: pointer to the HW structure
+ *
+ *  This starts the adapter LED blinking. Request the LED to be setup first
+ *  and cleaned up after. This is a function pointer entry point called by
+ *  drivers.
+ **/
+s32 e1000_blink_led(struct e1000_hw *hw)
+{
+	if (hw->func.blink_led)
+		return hw->func.blink_led(hw);
+
+	return E1000_SUCCESS;
+}
+
+/**
+ *  e1000_led_on - Turn on SW controllable LED
+ *  @hw: pointer to the HW structure
+ *
+ *  Turns the SW defined LED on. This is a function pointer entry point
+ *  called by drivers.
+ **/
+s32 e1000_led_on(struct e1000_hw *hw)
+{
+	if (hw->func.led_on)
+		return hw->func.led_on(hw);
+
+	return E1000_SUCCESS;
+}
+
+/**
+ *  e1000_led_off - Turn off SW controllable LED
+ *  @hw: pointer to the HW structure
+ *
+ *  Turns the SW defined LED off. This is a function pointer entry point
+ *  called by drivers.
+ **/
+s32 e1000_led_off(struct e1000_hw *hw)
+{
+	if (hw->func.led_off)
+		return hw->func.led_off(hw);
+
+	return E1000_SUCCESS;
+}
+
+/**
+ *  e1000_reset_adaptive - Reset adaptive IFS
+ *  @hw: pointer to the HW structure
+ *
+ *  Resets the adaptive IFS. Currently no func pointer exists and all
+ *  implementations are handled in the generic version of this function.
+ **/
+void e1000_reset_adaptive(struct e1000_hw *hw)
+{
+	e1000_reset_adaptive_generic(hw);
+}
+
+/**
+ *  e1000_update_adaptive - Update adaptive IFS
+ *  @hw: pointer to the HW structure
+ *
+ *  Updates adapter IFS. Currently no func pointer exists and all
+ *  implementations are handled in the generic version of this function.
+ **/
+void e1000_update_adaptive(struct e1000_hw *hw)
+{
+	e1000_update_adaptive_generic(hw);
+}
+
+/**
+ *  e1000_disable_pcie_master - Disable PCI-Express master access
+ *  @hw: pointer to the HW structure
+ *
+ *  Disables PCI-Express master access and verifies there are no pending
+ *  requests. Currently no func pointer exists and all implementations are
+ *  handled in the generic version of this function.
+ **/
+s32 e1000_disable_pcie_master(struct e1000_hw *hw)
+{
+	return e1000_disable_pcie_master_generic(hw);
+}
+
+/**
+ *  e1000_config_collision_dist - Configure collision distance
+ *  @hw: pointer to the HW structure
+ *
+ *  Configures the collision distance to the default value and is used
+ *  during link setup.
+ **/
+void e1000_config_collision_dist(struct e1000_hw *hw)
+{
+	if (hw->func.config_collision_dist)
+		hw->func.config_collision_dist(hw);
+}
+
+/**
+ *  e1000_rar_set - Sets a receive address register
+ *  @hw: pointer to the HW structure
+ *  @addr: address to set the RAR to
+ *  @index: the RAR to set
+ *
+ *  Sets a Receive Address Register (RAR) to the specified address.
+ **/
+void e1000_rar_set(struct e1000_hw *hw, u8 *addr, u32 index)
+{
+	if (hw->func.rar_set)
+		hw->func.rar_set(hw, addr, index);
+}
+
+/**
+ *  e1000_validate_mdi_setting - Ensures valid MDI/MDIX SW state
+ *  @hw: pointer to the HW structure
+ *
+ *  Ensures that the MDI/MDIX SW state is valid.
+ **/
+s32 e1000_validate_mdi_setting(struct e1000_hw *hw)
+{
+	if (hw->func.validate_mdi_setting)
+		return hw->func.validate_mdi_setting(hw);
+
+	return E1000_SUCCESS;
+}
+
+/**
+ *  e1000_mta_set - Sets multicast table bit
+ *  @hw: pointer to the HW structure
+ *  @hash_value: Multicast hash value.
+ *
+ *  This sets the bit in the multicast table corresponding to the
+ *  hash value.  This is a function pointer entry point called by drivers.
+ **/
+void e1000_mta_set(struct e1000_hw *hw, u32 hash_value)
+{
+	if (hw->func.mta_set)
+		hw->func.mta_set(hw, hash_value);
+}
+
+/**
+ *  e1000_hash_mc_addr - Determines address location in multicast table
+ *  @hw: pointer to the HW structure
+ *  @mc_addr: Multicast address to hash.
+ *
+ *  This hashes an address to determine its location in the multicast
+ *  table. Currently no func pointer exists and all implementations
+ *  are handled in the generic version of this function.
+ **/
+u32 e1000_hash_mc_addr(struct e1000_hw *hw, u8 *mc_addr)
+{
+	return e1000_hash_mc_addr_generic(hw, mc_addr);
+}
+
+/**
+ *  e1000_enable_tx_pkt_filtering - Enable packet filtering on TX
+ *  @hw: pointer to the HW structure
+ *
+ *  Enables packet filtering on transmit packets if manageability is enabled
+ *  and host interface is enabled.
+ *  Currently no func pointer exists and all implementations are handled in the
+ *  generic version of this function.
+ **/
+bool e1000_enable_tx_pkt_filtering(struct e1000_hw *hw)
+{
+	return e1000_enable_tx_pkt_filtering_generic(hw);
+}
+
+/**
+ *  e1000_mng_host_if_write - Writes to the manageability host interface
+ *  @hw: pointer to the HW structure
+ *  @buffer: pointer to the host interface buffer
+ *  @length: size of the buffer
+ *  @offset: location in the buffer to write to
+ *  @sum: sum of the data (not checksum)
+ *
+ *  This function writes the buffer content at the offset given on the host if.
+ *  It also does alignment considerations to do the writes in most efficient
+ *  way.  Also fills up the sum of the buffer in *buffer parameter.
+ **/
+s32 e1000_mng_host_if_write(struct e1000_hw * hw, u8 *buffer, u16 length,
+                            u16 offset, u8 *sum)
+{
+	if (hw->func.mng_host_if_write)
+		return hw->func.mng_host_if_write(hw, buffer, length, offset,
+		                                  sum);
+
+	return E1000_NOT_IMPLEMENTED;
+}
+
+/**
+ *  e1000_mng_write_cmd_header - Writes manageability command header
+ *  @hw: pointer to the HW structure
+ *  @hdr: pointer to the host interface command header
+ *
+ *  Writes the command header after does the checksum calculation.
+ **/
+s32 e1000_mng_write_cmd_header(struct e1000_hw *hw,
+                               struct e1000_host_mng_command_header *hdr)
+{
+	if (hw->func.mng_write_cmd_header)
+		return hw->func.mng_write_cmd_header(hw, hdr);
+
+	return E1000_NOT_IMPLEMENTED;
+}
+
+/**
+ *  e1000_mng_enable_host_if - Checks host interface is enabled
+ *  @hw: pointer to the HW structure
+ *
+ *  Returns E1000_success upon success, else E1000_ERR_HOST_INTERFACE_COMMAND
+ *
+ *  This function checks whether the HOST IF is enabled for command operaton
+ *  and also checks whether the previous command is completed.  It busy waits
+ *  in case of previous command is not completed.
+ **/
+s32 e1000_mng_enable_host_if(struct e1000_hw * hw)
+{
+	if (hw->func.mng_enable_host_if)
+		return hw->func.mng_enable_host_if(hw);
+
+	return E1000_NOT_IMPLEMENTED;
+}
+
+/**
+ *  e1000_wait_autoneg - Waits for autonegotiation completion
+ *  @hw: pointer to the HW structure
+ *
+ *  Waits for autoneg to complete. Currently no func pointer exists and all
+ *  implementations are handled in the generic version of this function.
+ **/
+s32 e1000_wait_autoneg(struct e1000_hw *hw)
+{
+	if (hw->func.wait_autoneg)
+		return hw->func.wait_autoneg(hw);
+
+	return E1000_SUCCESS;
+}
+
+/**
+ *  e1000_check_reset_block - Verifies PHY can be reset
+ *  @hw: pointer to the HW structure
+ *
+ *  Checks if the PHY is in a state that can be reset or if manageability
+ *  has it tied up. This is a function pointer entry point called by drivers.
+ **/
+s32 e1000_check_reset_block(struct e1000_hw *hw)
+{
+	if (hw->func.check_reset_block)
+		return hw->func.check_reset_block(hw);
+
+	return E1000_SUCCESS;
+}
+
+/**
+ *  e1000_read_phy_reg - Reads PHY register
+ *  @hw: pointer to the HW structure
+ *  @offset: the register to read
+ *  @data: the buffer to store the 16-bit read.
+ *
+ *  Reads the PHY register and returns the value in data.
+ *  This is a function pointer entry point called by drivers.
+ **/
+s32 e1000_read_phy_reg(struct e1000_hw *hw, u32 offset, u16 *data)
+{
+	if (hw->func.read_phy_reg)
+		return hw->func.read_phy_reg(hw, offset, data);
+
+	return E1000_SUCCESS;
+}
+
+/**
+ *  e1000_write_phy_reg - Writes PHY register
+ *  @hw: pointer to the HW structure
+ *  @offset: the register to write
+ *  @data: the value to write.
+ *
+ *  Writes the PHY register at offset with the value in data.
+ *  This is a function pointer entry point called by drivers.
+ **/
+s32 e1000_write_phy_reg(struct e1000_hw *hw, u32 offset, u16 data)
+{
+	if (hw->func.write_phy_reg)
+		return hw->func.write_phy_reg(hw, offset, data);
+
+	return E1000_SUCCESS;
+}
+
+/**
+ *  e1000_read_kmrn_reg - Reads register using Kumeran interface
+ *  @hw: pointer to the HW structure
+ *  @offset: the register to read
+ *  @data: the location to store the 16-bit value read.
+ *
+ *  Reads a register out of the Kumeran interface. Currently no func pointer
+ *  exists and all implementations are handled in the generic version of
+ *  this function.
+ **/
+s32 e1000_read_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 *data)
+{
+	return e1000_read_kmrn_reg_generic(hw, offset, data);
+}
+
+/**
+ *  e1000_write_kmrn_reg - Writes register using Kumeran interface
+ *  @hw: pointer to the HW structure
+ *  @offset: the register to write
+ *  @data: the value to write.
+ *
+ *  Writes a register to the Kumeran interface. Currently no func pointer
+ *  exists and all implementations are handled in the generic version of
+ *  this function.
+ **/
+s32 e1000_write_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 data)
+{
+	return e1000_write_kmrn_reg_generic(hw, offset, data);
+}
+
+/**
+ *  e1000_get_cable_length - Retrieves cable length estimation
+ *  @hw: pointer to the HW structure
+ *
+ *  This function estimates the cable length and stores them in
+ *  hw->phy.min_length and hw->phy.max_length. This is a function pointer
+ *  entry point called by drivers.
+ **/
+s32 e1000_get_cable_length(struct e1000_hw *hw)
+{
+	if (hw->func.get_cable_length)
+		return hw->func.get_cable_length(hw);
+
+	return E1000_SUCCESS;
+}
+
+/**
+ *  e1000_get_phy_info - Retrieves PHY information from registers
+ *  @hw: pointer to the HW structure
+ *
+ *  This function gets some information from various PHY registers and
+ *  populates hw->phy values with it. This is a function pointer entry
+ *  point called by drivers.
+ **/
+s32 e1000_get_phy_info(struct e1000_hw *hw)
+{
+	if (hw->func.get_phy_info)
+		return hw->func.get_phy_info(hw);
+
+	return E1000_SUCCESS;
+}
+
+/**
+ *  e1000_phy_hw_reset - Hard PHY reset
+ *  @hw: pointer to the HW structure
+ *
+ *  Performs a hard PHY reset. This is a function pointer entry point called
+ *  by drivers.
+ **/
+s32 e1000_phy_hw_reset(struct e1000_hw *hw)
+{
+	if (hw->func.reset_phy)
+		return hw->func.reset_phy(hw);
+
+	return E1000_SUCCESS;
+}
+
+/**
+ *  e1000_phy_commit - Soft PHY reset
+ *  @hw: pointer to the HW structure
+ *
+ *  Performs a soft PHY reset on those that apply. This is a function pointer
+ *  entry point called by drivers.
+ **/
+s32 e1000_phy_commit(struct e1000_hw *hw)
+{
+	if (hw->func.commit_phy)
+		return hw->func.commit_phy(hw);
+
+	return E1000_SUCCESS;
+}
+
+/**
+ *  e1000_set_d3_lplu_state - Sets low power link up state for D0
+ *  @hw: pointer to the HW structure
+ *  @active: boolean used to enable/disable lplu
+ *
+ *  Success returns 0, Failure returns 1
+ *
+ *  The low power link up (lplu) state is set to the power management level D0
+ *  and SmartSpeed is disabled when active is true, else clear lplu for D0
+ *  and enable Smartspeed.  LPLU and Smartspeed are mutually exclusive.  LPLU
+ *  is used during Dx states where the power conservation is most important.
+ *  During driver activity, SmartSpeed should be enabled so performance is
+ *  maintained.  This is a function pointer entry point called by drivers.
+ **/
+s32 e1000_set_d0_lplu_state(struct e1000_hw *hw, bool active)
+{
+	if (hw->func.set_d0_lplu_state)
+		return hw->func.set_d0_lplu_state(hw, active);
+
+	return E1000_SUCCESS;
+}
+
+/**
+ *  e1000_set_d3_lplu_state - Sets low power link up state for D3
+ *  @hw: pointer to the HW structure
+ *  @active: boolean used to enable/disable lplu
+ *
+ *  Success returns 0, Failure returns 1
+ *
+ *  The low power link up (lplu) state is set to the power management level D3
+ *  and SmartSpeed is disabled when active is true, else clear lplu for D3
+ *  and enable Smartspeed.  LPLU and Smartspeed are mutually exclusive.  LPLU
+ *  is used during Dx states where the power conservation is most important.
+ *  During driver activity, SmartSpeed should be enabled so performance is
+ *  maintained.  This is a function pointer entry point called by drivers.
+ **/
+s32 e1000_set_d3_lplu_state(struct e1000_hw *hw, bool active)
+{
+	if (hw->func.set_d3_lplu_state)
+		return hw->func.set_d3_lplu_state(hw, active);
+
+	return E1000_SUCCESS;
+}
+
+/**
+ *  e1000_read_mac_addr - Reads MAC address
+ *  @hw: pointer to the HW structure
+ *
+ *  Reads the MAC address out of the adapter and stores it in the HW structure.
+ *  Currently no func pointer exists and all implementations are handled in the
+ *  generic version of this function.
+ **/
+s32 e1000_read_mac_addr(struct e1000_hw *hw)
+{
+	if (hw->func.read_mac_addr)
+		return hw->func.read_mac_addr(hw);
+
+	return e1000_read_mac_addr_generic(hw);
+}
+
+/**
+ *  e1000_read_pba_num - Read device part number
+ *  @hw: pointer to the HW structure
+ *  @pba_num: pointer to device part number
+ *
+ *  Reads the product board assembly (PBA) number from the EEPROM and stores
+ *  the value in pba_num.
+ *  Currently no func pointer exists and all implementations are handled in the
+ *  generic version of this function.
+ **/
+s32 e1000_read_pba_num(struct e1000_hw *hw, u32 *pba_num)
+{
+	return e1000_read_pba_num_generic(hw, pba_num);
+}
+
+/**
+ *  e1000_validate_nvm_checksum - Verifies NVM (EEPROM) checksum
+ *  @hw: pointer to the HW structure
+ *
+ *  Validates the NVM checksum is correct. This is a function pointer entry
+ *  point called by drivers.
+ **/
+s32 e1000_validate_nvm_checksum(struct e1000_hw *hw)
+{
+	if (hw->func.validate_nvm)
+		return hw->func.validate_nvm(hw);
+
+	return -E1000_ERR_CONFIG;
+}
+
+/**
+ *  e1000_update_nvm_checksum - Updates NVM (EEPROM) checksum
+ *  @hw: pointer to the HW structure
+ *
+ *  Updates the NVM checksum. Currently no func pointer exists and all
+ *  implementations are handled in the generic version of this function.
+ **/
+s32 e1000_update_nvm_checksum(struct e1000_hw *hw)
+{
+	if (hw->func.update_nvm)
+		return hw->func.update_nvm(hw);
+
+	return -E1000_ERR_CONFIG;
+}
+
+/**
+ *  e1000_reload_nvm - Reloads EEPROM
+ *  @hw: pointer to the HW structure
+ *
+ *  Reloads the EEPROM by setting the "Reinitialize from EEPROM" bit in the
+ *  extended control register.
+ **/
+void e1000_reload_nvm(struct e1000_hw *hw)
+{
+	if (hw->func.reload_nvm)
+		hw->func.reload_nvm(hw);
+}
+
+/**
+ *  e1000_read_nvm - Reads NVM (EEPROM)
+ *  @hw: pointer to the HW structure
+ *  @offset: the word offset to read
+ *  @words: number of 16-bit words to read
+ *  @data: pointer to the properly sized buffer for the data.
+ *
+ *  Reads 16-bit chunks of data from the NVM (EEPROM). This is a function
+ *  pointer entry point called by drivers.
+ **/
+s32 e1000_read_nvm(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
+{
+	if (hw->func.read_nvm)
+		return hw->func.read_nvm(hw, offset, words, data);
+
+	return -E1000_ERR_CONFIG;
+}
+
+/**
+ *  e1000_write_nvm - Writes to NVM (EEPROM)
+ *  @hw: pointer to the HW structure
+ *  @offset: the word offset to read
+ *  @words: number of 16-bit words to write
+ *  @data: pointer to the properly sized buffer for the data.
+ *
+ *  Writes 16-bit chunks of data to the NVM (EEPROM). This is a function
+ *  pointer entry point called by drivers.
+ **/
+s32 e1000_write_nvm(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
+{
+	if (hw->func.write_nvm)
+		return hw->func.write_nvm(hw, offset, words, data);
+
+	return E1000_SUCCESS;
+}
+
+/**
+ *  e1000_write_8bit_ctrl_reg - Writes 8bit Control register
+ *  @hw: pointer to the HW structure
+ *  @reg: 32bit register offset
+ *  @offset: the register to write
+ *  @data: the value to write.
+ *
+ *  Writes the PHY register at offset with the value in data.
+ *  This is a function pointer entry point called by drivers.
+ **/
+s32 e1000_write_8bit_ctrl_reg(struct e1000_hw *hw, u32 reg, u32 offset, u8 data)
+{
+	return e1000_write_8bit_ctrl_reg_generic(hw, reg, offset, data);
+}
+
+/**
+ * e1000_power_up_phy - Restores link in case of PHY power down
+ * @hw: pointer to the HW structure
+ *
+ * The phy may be powered down to save power, to turn off link when the
+ * driver is unloaded, or wake on lan is not enabled (among others).
+ **/
+void e1000_power_up_phy(struct e1000_hw *hw)
+{
+	if (hw->func.power_up_phy)
+		hw->func.power_up_phy(hw);
+
+	e1000_setup_link(hw);
+}
+
+/**
+ * e1000_power_down_phy - Power down PHY 
+ * @hw: pointer to the HW structure
+ *
+ * The phy may be powered down to save power, to turn off link when the
+ * driver is unloaded, or wake on lan is not enabled (among others).
+ **/
+void e1000_power_down_phy(struct e1000_hw *hw)
+{
+	if (hw->func.power_down_phy)
+		hw->func.power_down_phy(hw);
+}
+
--- /dev/null
+++ sys/dev/em/e1000_api.h
@@ -0,0 +1,167 @@
+/*******************************************************************************
+
+  Copyright (c) 2001-2007, Intel Corporation 
+  All rights reserved.
+  
+  Redistribution and use in source and binary forms, with or without 
+  modification, are permitted provided that the following conditions are met:
+  
+   1. Redistributions of source code must retain the above copyright notice, 
+      this list of conditions and the following disclaimer.
+  
+   2. Redistributions in binary form must reproduce the above copyright 
+      notice, this list of conditions and the following disclaimer in the 
+      documentation and/or other materials provided with the distribution.
+  
+   3. Neither the name of the Intel Corporation nor the names of its 
+      contributors may be used to endorse or promote products derived from 
+      this software without specific prior written permission.
+  
+  THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
+  AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 
+  IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 
+  ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE 
+  LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 
+  CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 
+  SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 
+  INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 
+  CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 
+  ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
+  POSSIBILITY OF SUCH DAMAGE.
+
+*******************************************************************************/
+/* $FreeBSD: src/sys/dev/em/e1000_api.h,v 1.3.4.1 2007/11/28 23:24:37 jfv Exp $ */
+
+
+#ifndef _E1000_API_H_
+#define _E1000_API_H_
+
+#include "e1000_hw.h"
+
+s32  e1000_set_mac_type(struct e1000_hw *hw);
+s32  e1000_setup_init_funcs(struct e1000_hw *hw, bool init_device);
+s32  e1000_init_mac_params(struct e1000_hw *hw);
+s32  e1000_init_nvm_params(struct e1000_hw *hw);
+s32  e1000_init_phy_params(struct e1000_hw *hw);
+void e1000_remove_device(struct e1000_hw *hw);
+s32  e1000_get_bus_info(struct e1000_hw *hw);
+void e1000_clear_vfta(struct e1000_hw *hw);
+void e1000_write_vfta(struct e1000_hw *hw, u32 offset, u32 value);
+s32  e1000_force_mac_fc(struct e1000_hw *hw);
+s32  e1000_check_for_link(struct e1000_hw *hw);
+s32  e1000_reset_hw(struct e1000_hw *hw);
+s32  e1000_init_hw(struct e1000_hw *hw);
+s32  e1000_setup_link(struct e1000_hw *hw);
+s32  e1000_get_speed_and_duplex(struct e1000_hw *hw, u16 *speed,
+                                u16 *duplex);
+s32  e1000_disable_pcie_master(struct e1000_hw *hw);
+void e1000_config_collision_dist(struct e1000_hw *hw);
+void e1000_rar_set(struct e1000_hw *hw, u8 *addr, u32 index);
+void e1000_mta_set(struct e1000_hw *hw, u32 hash_value);
+u32  e1000_hash_mc_addr(struct e1000_hw *hw, u8 *mc_addr);
+void e1000_update_mc_addr_list(struct e1000_hw *hw,
+                               u8 *mc_addr_list, u32 mc_addr_count,
+                               u32 rar_used_count, u32 rar_count);
+s32  e1000_setup_led(struct e1000_hw *hw);
+s32  e1000_cleanup_led(struct e1000_hw *hw);
+s32  e1000_check_reset_block(struct e1000_hw *hw);
+s32  e1000_blink_led(struct e1000_hw *hw);
+s32  e1000_led_on(struct e1000_hw *hw);
+s32  e1000_led_off(struct e1000_hw *hw);
+void e1000_reset_adaptive(struct e1000_hw *hw);
+void e1000_update_adaptive(struct e1000_hw *hw);
+s32  e1000_get_cable_length(struct e1000_hw *hw);
+s32  e1000_validate_mdi_setting(struct e1000_hw *hw);
+s32  e1000_read_phy_reg(struct e1000_hw *hw, u32 offset, u16 *data);
+s32  e1000_write_phy_reg(struct e1000_hw *hw, u32 offset, u16 data);
+s32  e1000_write_8bit_ctrl_reg(struct e1000_hw *hw, u32 reg,
+                               u32 offset, u8 data);
+s32  e1000_get_phy_info(struct e1000_hw *hw);
+s32  e1000_phy_hw_reset(struct e1000_hw *hw);
+s32  e1000_phy_commit(struct e1000_hw *hw);
+void e1000_power_up_phy(struct e1000_hw *hw);
+void e1000_power_down_phy(struct e1000_hw *hw);
+s32  e1000_read_mac_addr(struct e1000_hw *hw);
+s32  e1000_read_pba_num(struct e1000_hw *hw, u32 *part_num);
+void e1000_reload_nvm(struct e1000_hw *hw);
+s32  e1000_update_nvm_checksum(struct e1000_hw *hw);
+s32  e1000_validate_nvm_checksum(struct e1000_hw *hw);
+s32  e1000_read_nvm(struct e1000_hw *hw, u16 offset, u16 words, u16 *data);
+s32  e1000_read_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 *data);
+s32  e1000_write_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 data);
+s32  e1000_write_nvm(struct e1000_hw *hw, u16 offset, u16 words,
+                     u16 *data);
+s32  e1000_wait_autoneg(struct e1000_hw *hw);
+s32  e1000_set_d3_lplu_state(struct e1000_hw *hw, bool active);
+s32  e1000_set_d0_lplu_state(struct e1000_hw *hw, bool active);
+bool e1000_check_mng_mode(struct e1000_hw *hw);
+bool e1000_enable_mng_pass_thru(struct e1000_hw *hw);
+bool e1000_enable_tx_pkt_filtering(struct e1000_hw *hw);
+s32  e1000_mng_enable_host_if(struct e1000_hw *hw);
+s32  e1000_mng_host_if_write(struct e1000_hw *hw,
+                             u8 *buffer, u16 length, u16 offset, u8 *sum);
+s32  e1000_mng_write_cmd_header(struct e1000_hw *hw,
+                                struct e1000_host_mng_command_header *hdr);
+s32  e1000_mng_write_dhcp_info(struct e1000_hw * hw,
+                                    u8 *buffer, u16 length);
+void e1000_tbi_adjust_stats_82543(struct e1000_hw *hw,
+                                  struct e1000_hw_stats *stats,
+                                  u32 frame_len, u8 *mac_addr,
+                                  u32 max_frame_size);
+void e1000_set_tbi_compatibility_82543(struct e1000_hw *hw,
+                                       bool state);
+bool e1000_tbi_sbp_enabled_82543(struct e1000_hw *hw);
+#ifndef NO_82542_SUPPORT
+u32  e1000_translate_register_82542(u32 reg);
+#endif
+void e1000_init_script_state_82541(struct e1000_hw *hw, bool state);
+bool e1000_get_laa_state_82571(struct e1000_hw *hw);
+void e1000_set_laa_state_82571(struct e1000_hw *hw, bool state);
+void e1000_set_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw,
+                                                 bool state);
+void e1000_igp3_phy_powerdown_workaround_ich8lan(struct e1000_hw *hw);
+void e1000_gig_downshift_workaround_ich8lan(struct e1000_hw *hw);
+
+
+/*
+ * TBI_ACCEPT macro definition:
+ *
+ * This macro requires:
+ *      adapter = a pointer to struct e1000_hw
+ *      status = the 8 bit status field of the Rx descriptor with EOP set
+ *      error = the 8 bit error field of the Rx descriptor with EOP set
+ *      length = the sum of all the length fields of the Rx descriptors that
+ *               make up the current frame
+ *      last_byte = the last byte of the frame DMAed by the hardware
+ *      max_frame_length = the maximum frame length we want to accept.
+ *      min_frame_length = the minimum frame length we want to accept.
+ *
+ * This macro is a conditional that should be used in the interrupt
+ * handler's Rx processing routine when RxErrors have been detected.
+ *
+ * Typical use:
+ *  ...
+ *  if (TBI_ACCEPT) {
+ *      accept_frame = TRUE;
+ *      e1000_tbi_adjust_stats(adapter, MacAddress);
+ *      frame_length--;
+ *  } else {
+ *      accept_frame = FALSE;
+ *  }
+ *  ...
+ */
+
+/* The carrier extension symbol, as received by the NIC. */
+#define CARRIER_EXTENSION   0x0F
+
+#define TBI_ACCEPT(a, status, errors, length, last_byte, min_frame_size, max_frame_size) \
+    (e1000_tbi_sbp_enabled_82543(a) && \
+     (((errors) & E1000_RXD_ERR_FRAME_ERR_MASK) == E1000_RXD_ERR_CE) && \
+     ((last_byte) == CARRIER_EXTENSION) && \
+     (((status) & E1000_RXD_STAT_VP) ? \
+          (((length) > (min_frame_size - VLAN_TAG_SIZE)) && \
+           ((length) <= (max_frame_size + 1))) : \
+          (((length) > min_frame_size) && \
+           ((length) <= (max_frame_size + VLAN_TAG_SIZE + 1)))))
+
+#endif
--- sys/dev/em/if_em_hw.h
+++ /dev/null
@@ -1,3430 +0,0 @@
-/*******************************************************************************
-
-  Copyright (c) 2001-2005, Intel Corporation 
-  All rights reserved.
-  
-  Redistribution and use in source and binary forms, with or without 
-  modification, are permitted provided that the following conditions are met:
-  
-   1. Redistributions of source code must retain the above copyright notice, 
-      this list of conditions and the following disclaimer.
-  
-   2. Redistributions in binary form must reproduce the above copyright 
-      notice, this list of conditions and the following disclaimer in the 
-      documentation and/or other materials provided with the distribution.
-  
-   3. Neither the name of the Intel Corporation nor the names of its 
-      contributors may be used to endorse or promote products derived from 
-      this software without specific prior written permission.
-  
-  THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
-  AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 
-  IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 
-  ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE 
-  LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 
-  CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 
-  SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 
-  INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 
-  CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 
-  ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
-  POSSIBILITY OF SUCH DAMAGE.
-
-*******************************************************************************/
-
-/*$FreeBSD: /repoman/r/ncvs/src/sys/dev/em/if_em_hw.h,v 1.15.2.3 2006/08/08 09:20:26 glebius Exp $*/
-/* if_em_hw.h
- * Structures, enums, and macros for the MAC
- */
-
-#ifndef _EM_HW_H_
-#define _EM_HW_H_
-
-#ifdef LM
-#include "if_em_osdep.h"
-#else
-#include <dev/em/if_em_osdep.h>
-#endif
-
-
-/* Forward declarations of structures used by the shared code */
-struct em_hw;
-struct em_hw_stats;
-
-/* Enumerated types specific to the e1000 hardware */
-/* Media Access Controlers */
-typedef enum {
-    em_undefined = 0,
-    em_82542_rev2_0,
-    em_82542_rev2_1,
-    em_82543,
-    em_82544,
-    em_82540,
-    em_82545,
-    em_82545_rev_3,
-    em_82546,
-    em_82546_rev_3,
-    em_82541,
-    em_82541_rev_2,
-    em_82547,
-    em_82547_rev_2,
-    em_82571,
-    em_82572,
-    em_82573,
-    em_80003es2lan,
-    em_ich8lan,
-    em_num_macs
-} em_mac_type;
-
-typedef enum {
-    em_eeprom_uninitialized = 0,
-    em_eeprom_spi,
-    em_eeprom_microwire,
-    em_eeprom_flash,
-    em_eeprom_ich8,
-    em_eeprom_none, /* No NVM support */
-    em_num_eeprom_types
-} em_eeprom_type;
-
-/* Media Types */
-typedef enum {
-    em_media_type_copper = 0,
-    em_media_type_fiber = 1,
-    em_media_type_internal_serdes = 2,
-    em_num_media_types
-} em_media_type;
-
-typedef enum {
-    em_10_half = 0,
-    em_10_full = 1,
-    em_100_half = 2,
-    em_100_full = 3
-} em_speed_duplex_type;
-
-/* Flow Control Settings */
-typedef enum {
-    em_fc_none = 0,
-    em_fc_rx_pause = 1,
-    em_fc_tx_pause = 2,
-    em_fc_full = 3,
-    em_fc_default = 0xFF
-} em_fc_type;
-
-struct em_shadow_ram {
-    uint16_t    eeprom_word;
-    boolean_t   modified;
-};
-
-/* PCI bus types */
-typedef enum {
-    em_bus_type_unknown = 0,
-    em_bus_type_pci,
-    em_bus_type_pcix,
-    em_bus_type_pci_express,
-    em_bus_type_reserved
-} em_bus_type;
-
-/* PCI bus speeds */
-typedef enum {
-    em_bus_speed_unknown = 0,
-    em_bus_speed_33,
-    em_bus_speed_66,
-    em_bus_speed_100,
-    em_bus_speed_120,
-    em_bus_speed_133,
-    em_bus_speed_2500,
-    em_bus_speed_reserved
-} em_bus_speed;
-
-/* PCI bus widths */
-typedef enum {
-    em_bus_width_unknown = 0,
-    em_bus_width_32,
-    em_bus_width_64,
-    em_bus_width_pciex_1,
-    em_bus_width_pciex_2,
-    em_bus_width_pciex_4,
-    em_bus_width_reserved
-} em_bus_width;
-
-/* PHY status info structure and supporting enums */
-typedef enum {
-    em_cable_length_50 = 0,
-    em_cable_length_50_80,
-    em_cable_length_80_110,
-    em_cable_length_110_140,
-    em_cable_length_140,
-    em_cable_length_undefined = 0xFF
-} em_cable_length;
-
-typedef enum {
-    em_gg_cable_length_60 = 0,
-    em_gg_cable_length_60_115 = 1,
-    em_gg_cable_length_115_150 = 2,
-    em_gg_cable_length_150 = 4
-} em_gg_cable_length;
-
-typedef enum {
-    em_igp_cable_length_10  = 10,
-    em_igp_cable_length_20  = 20,
-    em_igp_cable_length_30  = 30,
-    em_igp_cable_length_40  = 40,
-    em_igp_cable_length_50  = 50,
-    em_igp_cable_length_60  = 60,
-    em_igp_cable_length_70  = 70,
-    em_igp_cable_length_80  = 80,
-    em_igp_cable_length_90  = 90,
-    em_igp_cable_length_100 = 100,
-    em_igp_cable_length_110 = 110,
-    em_igp_cable_length_115 = 115,
-    em_igp_cable_length_120 = 120,
-    em_igp_cable_length_130 = 130,
-    em_igp_cable_length_140 = 140,
-    em_igp_cable_length_150 = 150,
-    em_igp_cable_length_160 = 160,
-    em_igp_cable_length_170 = 170,
-    em_igp_cable_length_180 = 180
-} em_igp_cable_length;
-
-typedef enum {
-    em_10bt_ext_dist_enable_normal = 0,
-    em_10bt_ext_dist_enable_lower,
-    em_10bt_ext_dist_enable_undefined = 0xFF
-} em_10bt_ext_dist_enable;
-
-typedef enum {
-    em_rev_polarity_normal = 0,
-    em_rev_polarity_reversed,
-    em_rev_polarity_undefined = 0xFF
-} em_rev_polarity;
-
-typedef enum {
-    em_downshift_normal = 0,
-    em_downshift_activated,
-    em_downshift_undefined = 0xFF
-} em_downshift;
-
-typedef enum {
-    em_smart_speed_default = 0,
-    em_smart_speed_on,
-    em_smart_speed_off
-} em_smart_speed;
-
-typedef enum {
-    em_polarity_reversal_enabled = 0,
-    em_polarity_reversal_disabled,
-    em_polarity_reversal_undefined = 0xFF
-} em_polarity_reversal;
-
-typedef enum {
-    em_auto_x_mode_manual_mdi = 0,
-    em_auto_x_mode_manual_mdix,
-    em_auto_x_mode_auto1,
-    em_auto_x_mode_auto2,
-    em_auto_x_mode_undefined = 0xFF
-} em_auto_x_mode;
-
-typedef enum {
-    em_1000t_rx_status_not_ok = 0,
-    em_1000t_rx_status_ok,
-    em_1000t_rx_status_undefined = 0xFF
-} em_1000t_rx_status;
-
-typedef enum {
-    em_phy_m88 = 0,
-    em_phy_igp,
-    em_phy_igp_2,
-    em_phy_gg82563,
-    em_phy_igp_3,
-    em_phy_ife,
-    em_phy_undefined = 0xFF
-} em_phy_type;
-
-typedef enum {
-    em_ms_hw_default = 0,
-    em_ms_force_master,
-    em_ms_force_slave,
-    em_ms_auto
-} em_ms_type;
-
-typedef enum {
-    em_ffe_config_enabled = 0,
-    em_ffe_config_active,
-    em_ffe_config_blocked
-} em_ffe_config;
-
-typedef enum {
-    em_dsp_config_disabled = 0,
-    em_dsp_config_enabled,
-    em_dsp_config_activated,
-    em_dsp_config_undefined = 0xFF
-} em_dsp_config;
-
-struct em_phy_info {
-    em_cable_length cable_length;
-    em_10bt_ext_dist_enable extended_10bt_distance;
-    em_rev_polarity cable_polarity;
-    em_downshift downshift;
-    em_polarity_reversal polarity_correction;
-    em_auto_x_mode mdix_mode;
-    em_1000t_rx_status local_rx;
-    em_1000t_rx_status remote_rx;
-};
-
-struct em_phy_stats {
-    uint32_t idle_errors;
-    uint32_t receive_errors;
-};
-
-struct em_eeprom_info {
-    em_eeprom_type type;
-    uint16_t word_size;
-    uint16_t opcode_bits;
-    uint16_t address_bits;
-    uint16_t delay_usec;
-    uint16_t page_size;
-    boolean_t use_eerd;
-    boolean_t use_eewr;
-};
-
-/* Flex ASF Information */
-#define E1000_HOST_IF_MAX_SIZE  2048
-
-typedef enum {
-    em_byte_align = 0,
-    em_word_align = 1,
-    em_dword_align = 2
-} em_align_type;
-
-
-
-/* Error Codes */
-#define E1000_SUCCESS      0
-#define E1000_ERR_EEPROM   1
-#define E1000_ERR_PHY      2
-#define E1000_ERR_CONFIG   3
-#define E1000_ERR_PARAM    4
-#define E1000_ERR_MAC_TYPE 5
-#define E1000_ERR_PHY_TYPE 6
-#define E1000_ERR_RESET   9
-#define E1000_ERR_MASTER_REQUESTS_PENDING 10
-#define E1000_ERR_HOST_INTERFACE_COMMAND 11
-#define E1000_BLK_PHY_RESET   12
-#define E1000_ERR_SWFW_SYNC 13
-
-/* Function prototypes */
-/* Initialization */
-int32_t em_reset_hw(struct em_hw *hw);
-int32_t em_init_hw(struct em_hw *hw);
-int32_t em_id_led_init(struct em_hw * hw);
-int32_t em_set_mac_type(struct em_hw *hw);
-void em_set_media_type(struct em_hw *hw);
-
-/* Link Configuration */
-int32_t em_setup_link(struct em_hw *hw);
-int32_t em_phy_setup_autoneg(struct em_hw *hw);
-void em_config_collision_dist(struct em_hw *hw);
-int32_t em_config_fc_after_link_up(struct em_hw *hw);
-int32_t em_check_for_link(struct em_hw *hw);
-int32_t em_get_speed_and_duplex(struct em_hw *hw, uint16_t * speed, uint16_t * duplex);
-int32_t em_wait_autoneg(struct em_hw *hw);
-int32_t em_force_mac_fc(struct em_hw *hw);
-
-/* PHY */
-int32_t em_read_phy_reg(struct em_hw *hw, uint32_t reg_addr, uint16_t *phy_data);
-int32_t em_write_phy_reg(struct em_hw *hw, uint32_t reg_addr, uint16_t data);
-int32_t em_phy_hw_reset(struct em_hw *hw);
-int32_t em_phy_reset(struct em_hw *hw);
-void em_phy_powerdown_workaround(struct em_hw *hw);
-int32_t em_kumeran_lock_loss_workaround(struct em_hw *hw);
-int32_t em_duplex_reversal(struct em_hw *hw);
-int32_t em_init_lcd_from_nvm_config_region(struct em_hw *hw, uint32_t cnf_base_addr, uint32_t cnf_size);
-int32_t em_init_lcd_from_nvm(struct em_hw *hw);
-int32_t em_detect_gig_phy(struct em_hw *hw);
-int32_t em_phy_get_info(struct em_hw *hw, struct em_phy_info *phy_info);
-int32_t em_phy_m88_get_info(struct em_hw *hw, struct em_phy_info *phy_info);
-int32_t em_phy_igp_get_info(struct em_hw *hw, struct em_phy_info *phy_info);
-int32_t em_get_cable_length(struct em_hw *hw, uint16_t *min_length, uint16_t *max_length);
-int32_t em_check_polarity(struct em_hw *hw, uint16_t *polarity);
-int32_t em_check_downshift(struct em_hw *hw);
-int32_t em_validate_mdi_setting(struct em_hw *hw);
-int32_t em_read_kmrn_reg(struct em_hw *hw, uint32_t reg_addr, uint16_t *data);
-int32_t em_write_kmrn_reg(struct em_hw *hw, uint32_t reg_addr, uint16_t data);
-
-/* EEPROM Functions */
-int32_t em_init_eeprom_params(struct em_hw *hw);
-boolean_t em_is_onboard_nvm_eeprom(struct em_hw *hw);
-int32_t em_read_eeprom_eerd(struct em_hw *hw, uint16_t offset, uint16_t words, uint16_t *data);
-int32_t em_write_eeprom_eewr(struct em_hw *hw, uint16_t offset, uint16_t words, uint16_t *data);
-int32_t em_poll_eerd_eewr_done(struct em_hw *hw, int eerd);
-
-/* MNG HOST IF functions */
-uint32_t em_enable_mng_pass_thru(struct em_hw *hw);
-
-#define E1000_MNG_DHCP_TX_PAYLOAD_CMD   64
-#define E1000_HI_MAX_MNG_DATA_LENGTH    0x6F8   /* Host Interface data length */
-
-#define E1000_MNG_DHCP_COMMAND_TIMEOUT  10      /* Time in ms to process MNG command */
-#define E1000_MNG_DHCP_COOKIE_OFFSET    0x6F0   /* Cookie offset */
-#define E1000_MNG_DHCP_COOKIE_LENGTH    0x10    /* Cookie length */
-#define E1000_MNG_IAMT_MODE             0x3
-#define E1000_MNG_ICH_IAMT_MODE         0x2
-#define E1000_IAMT_SIGNATURE            0x544D4149 /* Intel(R) Active Management Technology signature */
-
-#define E1000_MNG_DHCP_COOKIE_STATUS_PARSING_SUPPORT 0x1 /* DHCP parsing enabled */
-#define E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT    0x2 /* DHCP parsing enabled */
-#define E1000_VFTA_ENTRY_SHIFT                       0x5
-#define E1000_VFTA_ENTRY_MASK                        0x7F
-#define E1000_VFTA_ENTRY_BIT_SHIFT_MASK              0x1F
-
-struct em_host_mng_command_header {
-    uint8_t command_id;
-    uint8_t checksum;
-    uint16_t reserved1;
-    uint16_t reserved2;
-    uint16_t command_length;
-};
-
-struct em_host_mng_command_info {
-    struct em_host_mng_command_header command_header;  /* Command Head/Command Result Head has 4 bytes */
-    uint8_t command_data[E1000_HI_MAX_MNG_DATA_LENGTH];   /* Command data can length 0..0x658*/
-};
-struct em_host_mng_dhcp_cookie{
-    uint32_t signature;
-    uint8_t status;
-    uint8_t reserved0;
-    uint16_t vlan_id;
-    uint32_t reserved1;
-    uint16_t reserved2;
-    uint8_t reserved3;
-    uint8_t checksum;
-};
-
-int32_t em_mng_write_dhcp_info(struct em_hw *hw, uint8_t *buffer,
-                                  uint16_t length);
-boolean_t em_check_mng_mode(struct em_hw *hw);
-boolean_t em_enable_tx_pkt_filtering(struct em_hw *hw);
-int32_t em_mng_enable_host_if(struct em_hw *hw);
-int32_t em_mng_host_if_write(struct em_hw *hw, uint8_t *buffer,
-                            uint16_t length, uint16_t offset, uint8_t *sum);
-int32_t em_mng_write_cmd_header(struct em_hw* hw,
-                                   struct em_host_mng_command_header* hdr);
-
-int32_t em_mng_write_commit(struct em_hw *hw);
-
-int32_t em_read_eeprom(struct em_hw *hw, uint16_t reg, uint16_t words, uint16_t *data);
-int32_t em_validate_eeprom_checksum(struct em_hw *hw);
-int32_t em_update_eeprom_checksum(struct em_hw *hw);
-int32_t em_write_eeprom(struct em_hw *hw, uint16_t reg, uint16_t words, uint16_t *data);
-int32_t em_read_part_num(struct em_hw *hw, uint32_t * part_num);
-int32_t em_read_mac_addr(struct em_hw * hw);
-int32_t em_swfw_sync_acquire(struct em_hw *hw, uint16_t mask);
-void em_swfw_sync_release(struct em_hw *hw, uint16_t mask);
-void em_release_software_flag(struct em_hw *hw);
-int32_t em_get_software_flag(struct em_hw *hw);
-
-/* Filters (multicast, vlan, receive) */
-void em_init_rx_addrs(struct em_hw *hw);
-void em_mc_addr_list_update(struct em_hw *hw, uint8_t * mc_addr_list, uint32_t mc_addr_count, uint32_t pad, uint32_t rar_used_count);
-uint32_t em_hash_mc_addr(struct em_hw *hw, uint8_t * mc_addr);
-void em_mta_set(struct em_hw *hw, uint32_t hash_value);
-void em_rar_set(struct em_hw *hw, uint8_t * mc_addr, uint32_t rar_index);
-void em_write_vfta(struct em_hw *hw, uint32_t offset, uint32_t value);
-void em_clear_vfta(struct em_hw *hw);
-
-/* LED functions */
-int32_t em_setup_led(struct em_hw *hw);
-int32_t em_cleanup_led(struct em_hw *hw);
-int32_t em_led_on(struct em_hw *hw);
-int32_t em_led_off(struct em_hw *hw);
-int32_t em_blink_led_start(struct em_hw *hw);
-
-/* Adaptive IFS Functions */
-
-/* Everything else */
-void em_clear_hw_cntrs(struct em_hw *hw);
-void em_reset_adaptive(struct em_hw *hw);
-void em_update_adaptive(struct em_hw *hw);
-void em_tbi_adjust_stats(struct em_hw *hw, struct em_hw_stats *stats, uint32_t frame_len, uint8_t * mac_addr);
-void em_get_bus_info(struct em_hw *hw);
-void em_pci_set_mwi(struct em_hw *hw);
-void em_pci_clear_mwi(struct em_hw *hw);
-void em_read_pci_cfg(struct em_hw *hw, uint32_t reg, uint16_t * value);
-void em_write_pci_cfg(struct em_hw *hw, uint32_t reg, uint16_t * value);
-/* Port I/O is only supported on 82544 and newer */
-uint32_t em_read_reg_io(struct em_hw *hw, uint32_t offset);
-void em_write_reg_io(struct em_hw *hw, uint32_t offset, uint32_t value);
-int32_t em_config_dsp_after_link_change(struct em_hw *hw, boolean_t link_up);
-int32_t em_set_d3_lplu_state(struct em_hw *hw, boolean_t active);
-int32_t em_set_d0_lplu_state(struct em_hw *hw, boolean_t active);
-void em_set_pci_express_master_disable(struct em_hw *hw);
-void em_enable_pciex_master(struct em_hw *hw);
-int32_t em_disable_pciex_master(struct em_hw *hw);
-int32_t em_get_auto_rd_done(struct em_hw *hw);
-int32_t em_get_phy_cfg_done(struct em_hw *hw);
-int32_t em_get_software_semaphore(struct em_hw *hw);
-void em_release_software_semaphore(struct em_hw *hw);
-int32_t em_check_phy_reset_block(struct em_hw *hw);
-int32_t em_get_hw_eeprom_semaphore(struct em_hw *hw);
-void em_put_hw_eeprom_semaphore(struct em_hw *hw);
-int32_t em_commit_shadow_ram(struct em_hw *hw);
-uint8_t em_arc_subsystem_valid(struct em_hw *hw);
-int32_t em_set_pci_ex_no_snoop(struct em_hw *hw, uint32_t no_snoop);
-
-int32_t em_read_ich8_byte(struct em_hw *hw, uint32_t index,
-                             uint8_t *data);
-int32_t em_verify_write_ich8_byte(struct em_hw *hw, uint32_t index,
-                                     uint8_t byte);
-int32_t em_write_ich8_byte(struct em_hw *hw, uint32_t index,
-                              uint8_t byte);
-int32_t em_read_ich8_word(struct em_hw *hw, uint32_t index,
-                             uint16_t *data);
-int32_t em_write_ich8_word(struct em_hw *hw, uint32_t index,
-                              uint16_t word);
-int32_t em_read_ich8_data(struct em_hw *hw, uint32_t index,
-                             uint32_t size, uint16_t *data);
-int32_t em_write_ich8_data(struct em_hw *hw, uint32_t index,
-                              uint32_t size, uint16_t data);
-int32_t em_read_eeprom_ich8(struct em_hw *hw, uint16_t offset,
-                               uint16_t words, uint16_t *data);
-int32_t em_write_eeprom_ich8(struct em_hw *hw, uint16_t offset,
-                                uint16_t words, uint16_t *data);
-int32_t em_erase_ich8_4k_segment(struct em_hw *hw, uint32_t segment);
-int32_t em_ich8_cycle_init(struct em_hw *hw);
-int32_t em_ich8_flash_cycle(struct em_hw *hw, uint32_t timeout);
-int32_t em_phy_ife_get_info(struct em_hw *hw,
-                               struct em_phy_info *phy_info);
-int32_t em_ife_disable_dynamic_power_down(struct em_hw *hw);
-int32_t em_ife_enable_dynamic_power_down(struct em_hw *hw);
-
-#define E1000_BAR_TYPE(v)		((v) & E1000_BAR_TYPE_MASK)
-#define E1000_BAR_TYPE_MASK		0x00000001
-#define E1000_BAR_TYPE_MEM		0x00000000
-#define E1000_BAR_TYPE_IO		0x00000001
-#define E1000_BAR_MEM_TYPE(v)		((v) & E1000_BAR_MEM_TYPE_MASK)
-#define E1000_BAR_MEM_TYPE_MASK		0x00000006
-#define E1000_BAR_MEM_TYPE_32BIT	0x00000000
-#define E1000_BAR_MEM_TYPE_64BIT	0x00000004
-
-#ifndef E1000_READ_REG_IO
-#define E1000_READ_REG_IO(a, reg) \
-    em_read_reg_io((a), E1000_##reg)
-#define E1000_WRITE_REG_IO(a, reg, val) \
-    em_write_reg_io((a), E1000_##reg, val)
-#endif
-
-/* PCI Device IDs */
-#define E1000_DEV_ID_82542               0x1000
-#define E1000_DEV_ID_82543GC_FIBER       0x1001
-#define E1000_DEV_ID_82543GC_COPPER      0x1004
-#define E1000_DEV_ID_82544EI_COPPER      0x1008
-#define E1000_DEV_ID_82544EI_FIBER       0x1009
-#define E1000_DEV_ID_82544GC_COPPER      0x100C
-#define E1000_DEV_ID_82544GC_LOM         0x100D
-#define E1000_DEV_ID_82540EM             0x100E
-#define E1000_DEV_ID_82540EM_LOM         0x1015
-#define E1000_DEV_ID_82540EP_LOM         0x1016
-#define E1000_DEV_ID_82540EP             0x1017
-#define E1000_DEV_ID_82540EP_LP          0x101E
-#define E1000_DEV_ID_82545EM_COPPER      0x100F
-#define E1000_DEV_ID_82545EM_FIBER       0x1011
-#define E1000_DEV_ID_82545GM_COPPER      0x1026
-#define E1000_DEV_ID_82545GM_FIBER       0x1027
-#define E1000_DEV_ID_82545GM_SERDES      0x1028
-#define E1000_DEV_ID_82546EB_COPPER      0x1010
-#define E1000_DEV_ID_82546EB_FIBER       0x1012
-#define E1000_DEV_ID_82546EB_QUAD_COPPER 0x101D
-#define E1000_DEV_ID_82541EI             0x1013
-#define E1000_DEV_ID_82541EI_MOBILE      0x1018
-#define E1000_DEV_ID_82541ER_LOM         0x1014
-#define E1000_DEV_ID_82541ER             0x1078
-#define E1000_DEV_ID_82547GI             0x1075
-#define E1000_DEV_ID_82541GI             0x1076
-#define E1000_DEV_ID_82541GI_MOBILE      0x1077
-#define E1000_DEV_ID_82541GI_LF          0x107C
-#define E1000_DEV_ID_82546GB_COPPER      0x1079
-#define E1000_DEV_ID_82546GB_FIBER       0x107A
-#define E1000_DEV_ID_82546GB_SERDES      0x107B
-#define E1000_DEV_ID_82546GB_PCIE        0x108A
-#define E1000_DEV_ID_82546GB_QUAD_COPPER 0x1099
-#define E1000_DEV_ID_82547EI             0x1019
-#define E1000_DEV_ID_82547EI_MOBILE      0x101A
-#define E1000_DEV_ID_82571EB_COPPER      0x105E
-#define E1000_DEV_ID_82571EB_FIBER       0x105F
-#define E1000_DEV_ID_82571EB_SERDES      0x1060
-#define E1000_DEV_ID_82571EB_QUAD_COPPER 0x10A4
-#define E1000_DEV_ID_82572EI_COPPER      0x107D
-#define E1000_DEV_ID_82572EI_FIBER       0x107E
-#define E1000_DEV_ID_82572EI_SERDES      0x107F
-#define E1000_DEV_ID_82572EI             0x10B9
-#define E1000_DEV_ID_82573E              0x108B
-#define E1000_DEV_ID_82573E_IAMT         0x108C
-#define E1000_DEV_ID_82573L              0x109A
-#define E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3 0x10B5
-#define E1000_DEV_ID_80003ES2LAN_COPPER_DPT     0x1096
-#define E1000_DEV_ID_80003ES2LAN_SERDES_DPT     0x1098
-#define E1000_DEV_ID_80003ES2LAN_COPPER_SPT     0x10BA
-#define E1000_DEV_ID_80003ES2LAN_SERDES_SPT     0x10BB
-
-#define E1000_DEV_ID_ICH8_IGP_M_AMT      0x1049
-#define E1000_DEV_ID_ICH8_IGP_AMT        0x104A
-#define E1000_DEV_ID_ICH8_IGP_C          0x104B
-#define E1000_DEV_ID_ICH8_IFE            0x104C
-#define E1000_DEV_ID_ICH8_IGP_M          0x104D
-
-
-#define NODE_ADDRESS_SIZE 6
-#define ETH_LENGTH_OF_ADDRESS 6
-
-/* MAC decode size is 128K - This is the size of BAR0 */
-#define MAC_DECODE_SIZE (128 * 1024)
-
-#define E1000_82542_2_0_REV_ID 2
-#define E1000_82542_2_1_REV_ID 3
-#define E1000_REVISION_0       0
-#define E1000_REVISION_1       1
-#define E1000_REVISION_2       2
-#define E1000_REVISION_3       3
-
-#define SPEED_10    10
-#define SPEED_100   100
-#define SPEED_1000  1000
-#define HALF_DUPLEX 1
-#define FULL_DUPLEX 2
-
-/* The sizes (in bytes) of a ethernet packet */
-#define ENET_HEADER_SIZE             14
-#define MAXIMUM_ETHERNET_FRAME_SIZE  1518 /* With FCS */
-#define MINIMUM_ETHERNET_FRAME_SIZE  64   /* With FCS */
-#define ETHERNET_FCS_SIZE            4
-#define MAXIMUM_ETHERNET_PACKET_SIZE \
-    (MAXIMUM_ETHERNET_FRAME_SIZE - ETHERNET_FCS_SIZE)
-#define MINIMUM_ETHERNET_PACKET_SIZE \
-    (MINIMUM_ETHERNET_FRAME_SIZE - ETHERNET_FCS_SIZE)
-#define CRC_LENGTH                   ETHERNET_FCS_SIZE
-#define MAX_JUMBO_FRAME_SIZE         0x3F00
-
-
-/* 802.1q VLAN Packet Sizes */
-#define VLAN_TAG_SIZE  4     /* 802.3ac tag (not DMAed) */
-
-/* Ethertype field values */
-#define ETHERNET_IEEE_VLAN_TYPE 0x8100  /* 802.3ac packet */
-#define ETHERNET_IP_TYPE        0x0800  /* IP packets */
-#define ETHERNET_ARP_TYPE       0x0806  /* Address Resolution Protocol (ARP) */
-
-/* Packet Header defines */
-#define IP_PROTOCOL_TCP    6
-#define IP_PROTOCOL_UDP    0x11
-
-/* This defines the bits that are set in the Interrupt Mask
- * Set/Read Register.  Each bit is documented below:
- *   o RXDMT0 = Receive Descriptor Minimum Threshold hit (ring 0)
- *   o RXSEQ  = Receive Sequence Error
- */
-#define POLL_IMS_ENABLE_MASK ( \
-    E1000_IMS_RXDMT0 |         \
-    E1000_IMS_RXSEQ)
-
-/* This defines the bits that are set in the Interrupt Mask
- * Set/Read Register.  Each bit is documented below:
- *   o RXT0   = Receiver Timer Interrupt (ring 0)
- *   o TXDW   = Transmit Descriptor Written Back
- *   o RXDMT0 = Receive Descriptor Minimum Threshold hit (ring 0)
- *   o RXSEQ  = Receive Sequence Error
- *   o LSC    = Link Status Change
- */
-#define IMS_ENABLE_MASK ( \
-    E1000_IMS_RXT0   |    \
-    E1000_IMS_TXDW   |    \
-    E1000_IMS_RXDMT0 |    \
-    E1000_IMS_RXSEQ  |    \
-    E1000_IMS_RXO    |    \
-    E1000_IMS_LSC)
-
-/* Additional interrupts need to be handled for em_ich8lan:
-    DSW = The FW changed the status of the DISSW bit in FWSM
-    PHYINT = The LAN connected device generates an interrupt
-    EPRST = Manageability reset event */
-#define IMS_ICH8LAN_ENABLE_MASK (\
-    E1000_IMS_DSW   | \
-    E1000_IMS_PHYINT | \
-    E1000_IMS_EPRST)
-
-/* Number of high/low register pairs in the RAR. The RAR (Receive Address
- * Registers) holds the directed and multicast addresses that we monitor. We
- * reserve one of these spots for our directed address, allowing us room for
- * E1000_RAR_ENTRIES - 1 multicast addresses.
- */
-#define E1000_RAR_ENTRIES 15
-#define E1000_RAR_ENTRIES_ICH8LAN  7
-
-#define MIN_NUMBER_OF_DESCRIPTORS 8
-#define MAX_NUMBER_OF_DESCRIPTORS 0xFFF8
-
-/* Receive Descriptor */
-struct em_rx_desc {
-    uint64_t buffer_addr; /* Address of the descriptor's data buffer */
-    uint16_t length;     /* Length of data DMAed into data buffer */
-    uint16_t csum;       /* Packet checksum */
-    uint8_t status;      /* Descriptor status */
-    uint8_t errors;      /* Descriptor Errors */
-    uint16_t special;
-};
-
-/* Receive Descriptor - Extended */
-union em_rx_desc_extended {
-    struct {
-        uint64_t buffer_addr;
-        uint64_t reserved;
-    } read;
-    struct {
-        struct {
-            uint32_t mrq;              /* Multiple Rx Queues */
-            union {
-                uint32_t rss;          /* RSS Hash */
-                struct {
-                    uint16_t ip_id;    /* IP id */
-                    uint16_t csum;     /* Packet Checksum */
-                } csum_ip;
-            } hi_dword;
-        } lower;
-        struct {
-            uint32_t status_error;     /* ext status/error */
-            uint16_t length;
-            uint16_t vlan;             /* VLAN tag */
-        } upper;
-    } wb;  /* writeback */
-};
-
-#define MAX_PS_BUFFERS 4
-/* Receive Descriptor - Packet Split */
-union em_rx_desc_packet_split {
-    struct {
-        /* one buffer for protocol header(s), three data buffers */
-        uint64_t buffer_addr[MAX_PS_BUFFERS];
-    } read;
-    struct {
-        struct {
-            uint32_t mrq;              /* Multiple Rx Queues */
-            union {
-                uint32_t rss;          /* RSS Hash */
-                struct {
-                    uint16_t ip_id;    /* IP id */
-                    uint16_t csum;     /* Packet Checksum */
-                } csum_ip;
-            } hi_dword;
-        } lower;
-        struct {
-            uint32_t status_error;     /* ext status/error */
-            uint16_t length0;          /* length of buffer 0 */
-            uint16_t vlan;             /* VLAN tag */
-        } middle;
-        struct {
-            uint16_t header_status;
-            uint16_t length[3];        /* length of buffers 1-3 */
-        } upper;
-        uint64_t reserved;
-    } wb; /* writeback */
-};
-
-/* Receive Decriptor bit definitions */
-#define E1000_RXD_STAT_DD       0x01    /* Descriptor Done */
-#define E1000_RXD_STAT_EOP      0x02    /* End of Packet */
-#define E1000_RXD_STAT_IXSM     0x04    /* Ignore checksum */
-#define E1000_RXD_STAT_VP       0x08    /* IEEE VLAN Packet */
-#define E1000_RXD_STAT_UDPCS    0x10    /* UDP xsum caculated */
-#define E1000_RXD_STAT_TCPCS    0x20    /* TCP xsum calculated */
-#define E1000_RXD_STAT_IPCS     0x40    /* IP xsum calculated */
-#define E1000_RXD_STAT_PIF      0x80    /* passed in-exact filter */
-#define E1000_RXD_STAT_IPIDV    0x200   /* IP identification valid */
-#define E1000_RXD_STAT_UDPV     0x400   /* Valid UDP checksum */
-#define E1000_RXD_STAT_ACK      0x8000  /* ACK Packet indication */
-#define E1000_RXD_ERR_CE        0x01    /* CRC Error */
-#define E1000_RXD_ERR_SE        0x02    /* Symbol Error */
-#define E1000_RXD_ERR_SEQ       0x04    /* Sequence Error */
-#define E1000_RXD_ERR_CXE       0x10    /* Carrier Extension Error */
-#define E1000_RXD_ERR_TCPE      0x20    /* TCP/UDP Checksum Error */
-#define E1000_RXD_ERR_IPE       0x40    /* IP Checksum Error */
-#define E1000_RXD_ERR_RXE       0x80    /* Rx Data Error */
-#define E1000_RXD_SPC_VLAN_MASK 0x0FFF  /* VLAN ID is in lower 12 bits */
-#define E1000_RXD_SPC_PRI_MASK  0xE000  /* Priority is in upper 3 bits */
-#define E1000_RXD_SPC_PRI_SHIFT 13
-#define E1000_RXD_SPC_CFI_MASK  0x1000  /* CFI is bit 12 */
-#define E1000_RXD_SPC_CFI_SHIFT 12
-
-#define E1000_RXDEXT_STATERR_CE    0x01000000
-#define E1000_RXDEXT_STATERR_SE    0x02000000
-#define E1000_RXDEXT_STATERR_SEQ   0x04000000
-#define E1000_RXDEXT_STATERR_CXE   0x10000000
-#define E1000_RXDEXT_STATERR_TCPE  0x20000000
-#define E1000_RXDEXT_STATERR_IPE   0x40000000
-#define E1000_RXDEXT_STATERR_RXE   0x80000000
-
-#define E1000_RXDPS_HDRSTAT_HDRSP        0x00008000
-#define E1000_RXDPS_HDRSTAT_HDRLEN_MASK  0x000003FF
-
-/* mask to determine if packets should be dropped due to frame errors */
-#define E1000_RXD_ERR_FRAME_ERR_MASK ( \
-    E1000_RXD_ERR_CE  |                \
-    E1000_RXD_ERR_SE  |                \
-    E1000_RXD_ERR_SEQ |                \
-    E1000_RXD_ERR_CXE |                \
-    E1000_RXD_ERR_RXE)
-
-
-/* Same mask, but for extended and packet split descriptors */
-#define E1000_RXDEXT_ERR_FRAME_ERR_MASK ( \
-    E1000_RXDEXT_STATERR_CE  |            \
-    E1000_RXDEXT_STATERR_SE  |            \
-    E1000_RXDEXT_STATERR_SEQ |            \
-    E1000_RXDEXT_STATERR_CXE |            \
-    E1000_RXDEXT_STATERR_RXE)
-
-/* Transmit Descriptor */
-struct em_tx_desc {
-    uint64_t buffer_addr;       /* Address of the descriptor's data buffer */
-    union {
-        uint32_t data;
-        struct {
-            uint16_t length;    /* Data buffer length */
-            uint8_t cso;        /* Checksum offset */
-            uint8_t cmd;        /* Descriptor control */
-        } flags;
-    } lower;
-    union {
-        uint32_t data;
-        struct {
-            uint8_t status;     /* Descriptor status */
-            uint8_t css;        /* Checksum start */
-            uint16_t special;
-        } fields;
-    } upper;
-};
-
-/* Transmit Descriptor bit definitions */
-#define E1000_TXD_DTYP_D     0x00100000 /* Data Descriptor */
-#define E1000_TXD_DTYP_C     0x00000000 /* Context Descriptor */
-#define E1000_TXD_POPTS_IXSM 0x01       /* Insert IP checksum */
-#define E1000_TXD_POPTS_TXSM 0x02       /* Insert TCP/UDP checksum */
-#define E1000_TXD_CMD_EOP    0x01000000 /* End of Packet */
-#define E1000_TXD_CMD_IFCS   0x02000000 /* Insert FCS (Ethernet CRC) */
-#define E1000_TXD_CMD_IC     0x04000000 /* Insert Checksum */
-#define E1000_TXD_CMD_RS     0x08000000 /* Report Status */
-#define E1000_TXD_CMD_RPS    0x10000000 /* Report Packet Sent */
-#define E1000_TXD_CMD_DEXT   0x20000000 /* Descriptor extension (0 = legacy) */
-#define E1000_TXD_CMD_VLE    0x40000000 /* Add VLAN tag */
-#define E1000_TXD_CMD_IDE    0x80000000 /* Enable Tidv register */
-#define E1000_TXD_STAT_DD    0x00000001 /* Descriptor Done */
-#define E1000_TXD_STAT_EC    0x00000002 /* Excess Collisions */
-#define E1000_TXD_STAT_LC    0x00000004 /* Late Collisions */
-#define E1000_TXD_STAT_TU    0x00000008 /* Transmit underrun */
-#define E1000_TXD_CMD_TCP    0x01000000 /* TCP packet */
-#define E1000_TXD_CMD_IP     0x02000000 /* IP packet */
-#define E1000_TXD_CMD_TSE    0x04000000 /* TCP Seg enable */
-#define E1000_TXD_STAT_TC    0x00000004 /* Tx Underrun */
-
-/* Offload Context Descriptor */
-struct em_context_desc {
-    union {
-        uint32_t ip_config;
-        struct {
-            uint8_t ipcss;      /* IP checksum start */
-            uint8_t ipcso;      /* IP checksum offset */
-            uint16_t ipcse;     /* IP checksum end */
-        } ip_fields;
-    } lower_setup;
-    union {
-        uint32_t tcp_config;
-        struct {
-            uint8_t tucss;      /* TCP checksum start */
-            uint8_t tucso;      /* TCP checksum offset */
-            uint16_t tucse;     /* TCP checksum end */
-        } tcp_fields;
-    } upper_setup;
-    uint32_t cmd_and_length;    /* */
-    union {
-        uint32_t data;
-        struct {
-            uint8_t status;     /* Descriptor status */
-            uint8_t hdr_len;    /* Header length */
-            uint16_t mss;       /* Maximum segment size */
-        } fields;
-    } tcp_seg_setup;
-};
-
-/* Offload data descriptor */
-struct em_data_desc {
-    uint64_t buffer_addr;       /* Address of the descriptor's buffer address */
-    union {
-        uint32_t data;
-        struct {
-            uint16_t length;    /* Data buffer length */
-            uint8_t typ_len_ext;        /* */
-            uint8_t cmd;        /* */
-        } flags;
-    } lower;
-    union {
-        uint32_t data;
-        struct {
-            uint8_t status;     /* Descriptor status */
-            uint8_t popts;      /* Packet Options */
-            uint16_t special;   /* */
-        } fields;
-    } upper;
-};
-
-/* Filters */
-#define E1000_NUM_UNICAST          16   /* Unicast filter entries */
-#define E1000_MC_TBL_SIZE          128  /* Multicast Filter Table (4096 bits) */
-#define E1000_VLAN_FILTER_TBL_SIZE 128  /* VLAN Filter Table (4096 bits) */
-
-#define E1000_NUM_UNICAST_ICH8LAN  7
-#define E1000_MC_TBL_SIZE_ICH8LAN  32
-
-
-/* Receive Address Register */
-struct em_rar {
-    volatile uint32_t low;      /* receive address low */
-    volatile uint32_t high;     /* receive address high */
-};
-
-/* Number of entries in the Multicast Table Array (MTA). */
-#define E1000_NUM_MTA_REGISTERS 128
-#define E1000_NUM_MTA_REGISTERS_ICH8LAN 32
-
-/* IPv4 Address Table Entry */
-struct em_ipv4_at_entry {
-    volatile uint32_t ipv4_addr;        /* IP Address (RW) */
-    volatile uint32_t reserved;
-};
-
-/* Four wakeup IP addresses are supported */
-#define E1000_WAKEUP_IP_ADDRESS_COUNT_MAX 4
-#define E1000_IP4AT_SIZE                  E1000_WAKEUP_IP_ADDRESS_COUNT_MAX
-#define E1000_IP4AT_SIZE_ICH8LAN          3
-#define E1000_IP6AT_SIZE                  1
-
-/* IPv6 Address Table Entry */
-struct em_ipv6_at_entry {
-    volatile uint8_t ipv6_addr[16];
-};
-
-/* Flexible Filter Length Table Entry */
-struct em_fflt_entry {
-    volatile uint32_t length;   /* Flexible Filter Length (RW) */
-    volatile uint32_t reserved;
-};
-
-/* Flexible Filter Mask Table Entry */
-struct em_ffmt_entry {
-    volatile uint32_t mask;     /* Flexible Filter Mask (RW) */
-    volatile uint32_t reserved;
-};
-
-/* Flexible Filter Value Table Entry */
-struct em_ffvt_entry {
-    volatile uint32_t value;    /* Flexible Filter Value (RW) */
-    volatile uint32_t reserved;
-};
-
-/* Four Flexible Filters are supported */
-#define E1000_FLEXIBLE_FILTER_COUNT_MAX 4
-
-/* Each Flexible Filter is at most 128 (0x80) bytes in length */
-#define E1000_FLEXIBLE_FILTER_SIZE_MAX  128
-
-#define E1000_FFLT_SIZE E1000_FLEXIBLE_FILTER_COUNT_MAX
-#define E1000_FFMT_SIZE E1000_FLEXIBLE_FILTER_SIZE_MAX
-#define E1000_FFVT_SIZE E1000_FLEXIBLE_FILTER_SIZE_MAX
-
-#define E1000_DISABLE_SERDES_LOOPBACK   0x0400
-
-/* Register Set. (82543, 82544)
- *
- * Registers are defined to be 32 bits and  should be accessed as 32 bit values.
- * These registers are physically located on the NIC, but are mapped into the
- * host memory address space.
- *
- * RW - register is both readable and writable
- * RO - register is read only
- * WO - register is write only
- * R/clr - register is read only and is cleared when read
- * A - register array
- */
-#define E1000_CTRL     0x00000  /* Device Control - RW */
-#define E1000_CTRL_DUP 0x00004  /* Device Control Duplicate (Shadow) - RW */
-#define E1000_STATUS   0x00008  /* Device Status - RO */
-#define E1000_EECD     0x00010  /* EEPROM/Flash Control - RW */
-#define E1000_EERD     0x00014  /* EEPROM Read - RW */
-#define E1000_CTRL_EXT 0x00018  /* Extended Device Control - RW */
-#define E1000_FLA      0x0001C  /* Flash Access - RW */
-#define E1000_MDIC     0x00020  /* MDI Control - RW */
-#define E1000_SCTL     0x00024  /* SerDes Control - RW */
-#define E1000_FEXTNVM  0x00028  /* Future Extended NVM register */
-#define E1000_FCAL     0x00028  /* Flow Control Address Low - RW */
-#define E1000_FCAH     0x0002C  /* Flow Control Address High -RW */
-#define E1000_FCT      0x00030  /* Flow Control Type - RW */
-#define E1000_VET      0x00038  /* VLAN Ether Type - RW */
-#define E1000_ICR      0x000C0  /* Interrupt Cause Read - R/clr */
-#define E1000_ITR      0x000C4  /* Interrupt Throttling Rate - RW */
-#define E1000_ICS      0x000C8  /* Interrupt Cause Set - WO */
-#define E1000_IMS      0x000D0  /* Interrupt Mask Set - RW */
-#define E1000_IMC      0x000D8  /* Interrupt Mask Clear - WO */
-#define E1000_IAM      0x000E0  /* Interrupt Acknowledge Auto Mask */
-#define E1000_RCTL     0x00100  /* RX Control - RW */
-#define E1000_RDTR1    0x02820  /* RX Delay Timer (1) - RW */
-#define E1000_RDBAL1   0x02900  /* RX Descriptor Base Address Low (1) - RW */
-#define E1000_RDBAH1   0x02904  /* RX Descriptor Base Address High (1) - RW */
-#define E1000_RDLEN1   0x02908  /* RX Descriptor Length (1) - RW */
-#define E1000_RDH1     0x02910  /* RX Descriptor Head (1) - RW */
-#define E1000_RDT1     0x02918  /* RX Descriptor Tail (1) - RW */
-#define E1000_FCTTV    0x00170  /* Flow Control Transmit Timer Value - RW */
-#define E1000_TXCW     0x00178  /* TX Configuration Word - RW */
-#define E1000_RXCW     0x00180  /* RX Configuration Word - RO */
-#define E1000_TCTL     0x00400  /* TX Control - RW */
-#define E1000_TCTL_EXT 0x00404  /* Extended TX Control - RW */
-#define E1000_TIPG     0x00410  /* TX Inter-packet gap -RW */
-#define E1000_TBT      0x00448  /* TX Burst Timer - RW */
-#define E1000_AIT      0x00458  /* Adaptive Interframe Spacing Throttle - RW */
-#define E1000_LEDCTL   0x00E00  /* LED Control - RW */
-#define E1000_EXTCNF_CTRL  0x00F00  /* Extended Configuration Control */
-#define E1000_EXTCNF_SIZE  0x00F08  /* Extended Configuration Size */
-#define E1000_PHY_CTRL     0x00F10  /* PHY Control Register in CSR */
-#define FEXTNVM_SW_CONFIG  0x0001
-#define E1000_PBA      0x01000  /* Packet Buffer Allocation - RW */
-#define E1000_PBS      0x01008  /* Packet Buffer Size */
-#define E1000_EEMNGCTL 0x01010  /* MNG EEprom Control */
-#define E1000_FLASH_UPDATES 1000
-#define E1000_EEARBC   0x01024  /* EEPROM Auto Read Bus Control */
-#define E1000_FLASHT   0x01028  /* FLASH Timer Register */
-#define E1000_EEWR     0x0102C  /* EEPROM Write Register - RW */
-#define E1000_FLSWCTL  0x01030  /* FLASH control register */
-#define E1000_FLSWDATA 0x01034  /* FLASH data register */
-#define E1000_FLSWCNT  0x01038  /* FLASH Access Counter */
-#define E1000_FLOP     0x0103C  /* FLASH Opcode Register */
-#define E1000_ERT      0x02008  /* Early Rx Threshold - RW */
-#define E1000_FCRTL    0x02160  /* Flow Control Receive Threshold Low - RW */
-#define E1000_FCRTH    0x02168  /* Flow Control Receive Threshold High - RW */
-#define E1000_PSRCTL   0x02170  /* Packet Split Receive Control - RW */
-#define E1000_RDBAL    0x02800  /* RX Descriptor Base Address Low - RW */
-#define E1000_RDBAH    0x02804  /* RX Descriptor Base Address High - RW */
-#define E1000_RDLEN    0x02808  /* RX Descriptor Length - RW */
-#define E1000_RDH      0x02810  /* RX Descriptor Head - RW */
-#define E1000_RDT      0x02818  /* RX Descriptor Tail - RW */
-#define E1000_RDTR     0x02820  /* RX Delay Timer - RW */
-#define E1000_RDBAL0   E1000_RDBAL /* RX Desc Base Address Low (0) - RW */
-#define E1000_RDBAH0   E1000_RDBAH /* RX Desc Base Address High (0) - RW */
-#define E1000_RDLEN0   E1000_RDLEN /* RX Desc Length (0) - RW */
-#define E1000_RDH0     E1000_RDH   /* RX Desc Head (0) - RW */
-#define E1000_RDT0     E1000_RDT   /* RX Desc Tail (0) - RW */
-#define E1000_RDTR0    E1000_RDTR  /* RX Delay Timer (0) - RW */
-#define E1000_RXDCTL   0x02828  /* RX Descriptor Control queue 0 - RW */
-#define E1000_RXDCTL1  0x02928  /* RX Descriptor Control queue 1 - RW */
-#define E1000_RADV     0x0282C  /* RX Interrupt Absolute Delay Timer - RW */
-#define E1000_RSRPD    0x02C00  /* RX Small Packet Detect - RW */
-#define E1000_RAID     0x02C08  /* Receive Ack Interrupt Delay - RW */
-#define E1000_TXDMAC   0x03000  /* TX DMA Control - RW */
-#define E1000_KABGTXD  0x03004  /* AFE Band Gap Transmit Ref Data */
-#define E1000_TDFH     0x03410  /* TX Data FIFO Head - RW */
-#define E1000_TDFT     0x03418  /* TX Data FIFO Tail - RW */
-#define E1000_TDFHS    0x03420  /* TX Data FIFO Head Saved - RW */
-#define E1000_TDFTS    0x03428  /* TX Data FIFO Tail Saved - RW */
-#define E1000_TDFPC    0x03430  /* TX Data FIFO Packet Count - RW */
-#define E1000_TDBAL    0x03800  /* TX Descriptor Base Address Low - RW */
-#define E1000_TDBAH    0x03804  /* TX Descriptor Base Address High - RW */
-#define E1000_TDLEN    0x03808  /* TX Descriptor Length - RW */
-#define E1000_TDH      0x03810  /* TX Descriptor Head - RW */
-#define E1000_TDT      0x03818  /* TX Descripotr Tail - RW */
-#define E1000_TIDV     0x03820  /* TX Interrupt Delay Value - RW */
-#define E1000_TXDCTL   0x03828  /* TX Descriptor Control - RW */
-#define E1000_TADV     0x0382C  /* TX Interrupt Absolute Delay Val - RW */
-#define E1000_TSPMT    0x03830  /* TCP Segmentation PAD & Min Threshold - RW */
-#define E1000_TARC0    0x03840  /* TX Arbitration Count (0) */
-#define E1000_TDBAL1   0x03900  /* TX Desc Base Address Low (1) - RW */
-#define E1000_TDBAH1   0x03904  /* TX Desc Base Address High (1) - RW */
-#define E1000_TDLEN1   0x03908  /* TX Desc Length (1) - RW */
-#define E1000_TDH1     0x03910  /* TX Desc Head (1) - RW */
-#define E1000_TDT1     0x03918  /* TX Desc Tail (1) - RW */
-#define E1000_TXDCTL1  0x03928  /* TX Descriptor Control (1) - RW */
-#define E1000_TARC1    0x03940  /* TX Arbitration Count (1) */
-#define E1000_CRCERRS  0x04000  /* CRC Error Count - R/clr */
-#define E1000_ALGNERRC 0x04004  /* Alignment Error Count - R/clr */
-#define E1000_SYMERRS  0x04008  /* Symbol Error Count - R/clr */
-#define E1000_RXERRC   0x0400C  /* Receive Error Count - R/clr */
-#define E1000_MPC      0x04010  /* Missed Packet Count - R/clr */
-#define E1000_SCC      0x04014  /* Single Collision Count - R/clr */
-#define E1000_ECOL     0x04018  /* Excessive Collision Count - R/clr */
-#define E1000_MCC      0x0401C  /* Multiple Collision Count - R/clr */
-#define E1000_LATECOL  0x04020  /* Late Collision Count - R/clr */
-#define E1000_COLC     0x04028  /* Collision Count - R/clr */
-#define E1000_DC       0x04030  /* Defer Count - R/clr */
-#define E1000_TNCRS    0x04034  /* TX-No CRS - R/clr */
-#define E1000_SEC      0x04038  /* Sequence Error Count - R/clr */
-#define E1000_CEXTERR  0x0403C  /* Carrier Extension Error Count - R/clr */
-#define E1000_RLEC     0x04040  /* Receive Length Error Count - R/clr */
-#define E1000_XONRXC   0x04048  /* XON RX Count - R/clr */
-#define E1000_XONTXC   0x0404C  /* XON TX Count - R/clr */
-#define E1000_XOFFRXC  0x04050  /* XOFF RX Count - R/clr */
-#define E1000_XOFFTXC  0x04054  /* XOFF TX Count - R/clr */
-#define E1000_FCRUC    0x04058  /* Flow Control RX Unsupported Count- R/clr */
-#define E1000_PRC64    0x0405C  /* Packets RX (64 bytes) - R/clr */
-#define E1000_PRC127   0x04060  /* Packets RX (65-127 bytes) - R/clr */
-#define E1000_PRC255   0x04064  /* Packets RX (128-255 bytes) - R/clr */
-#define E1000_PRC511   0x04068  /* Packets RX (255-511 bytes) - R/clr */
-#define E1000_PRC1023  0x0406C  /* Packets RX (512-1023 bytes) - R/clr */
-#define E1000_PRC1522  0x04070  /* Packets RX (1024-1522 bytes) - R/clr */
-#define E1000_GPRC     0x04074  /* Good Packets RX Count - R/clr */
-#define E1000_BPRC     0x04078  /* Broadcast Packets RX Count - R/clr */
-#define E1000_MPRC     0x0407C  /* Multicast Packets RX Count - R/clr */
-#define E1000_GPTC     0x04080  /* Good Packets TX Count - R/clr */
-#define E1000_GORCL    0x04088  /* Good Octets RX Count Low - R/clr */
-#define E1000_GORCH    0x0408C  /* Good Octets RX Count High - R/clr */
-#define E1000_GOTCL    0x04090  /* Good Octets TX Count Low - R/clr */
-#define E1000_GOTCH    0x04094  /* Good Octets TX Count High - R/clr */
-#define E1000_RNBC     0x040A0  /* RX No Buffers Count - R/clr */
-#define E1000_RUC      0x040A4  /* RX Undersize Count - R/clr */
-#define E1000_RFC      0x040A8  /* RX Fragment Count - R/clr */
-#define E1000_ROC      0x040AC  /* RX Oversize Count - R/clr */
-#define E1000_RJC      0x040B0  /* RX Jabber Count - R/clr */
-#define E1000_MGTPRC   0x040B4  /* Management Packets RX Count - R/clr */
-#define E1000_MGTPDC   0x040B8  /* Management Packets Dropped Count - R/clr */
-#define E1000_MGTPTC   0x040BC  /* Management Packets TX Count - R/clr */
-#define E1000_TORL     0x040C0  /* Total Octets RX Low - R/clr */
-#define E1000_TORH     0x040C4  /* Total Octets RX High - R/clr */
-#define E1000_TOTL     0x040C8  /* Total Octets TX Low - R/clr */
-#define E1000_TOTH     0x040CC  /* Total Octets TX High - R/clr */
-#define E1000_TPR      0x040D0  /* Total Packets RX - R/clr */
-#define E1000_TPT      0x040D4  /* Total Packets TX - R/clr */
-#define E1000_PTC64    0x040D8  /* Packets TX (64 bytes) - R/clr */
-#define E1000_PTC127   0x040DC  /* Packets TX (65-127 bytes) - R/clr */
-#define E1000_PTC255   0x040E0  /* Packets TX (128-255 bytes) - R/clr */
-#define E1000_PTC511   0x040E4  /* Packets TX (256-511 bytes) - R/clr */
-#define E1000_PTC1023  0x040E8  /* Packets TX (512-1023 bytes) - R/clr */
-#define E1000_PTC1522  0x040EC  /* Packets TX (1024-1522 Bytes) - R/clr */
-#define E1000_MPTC     0x040F0  /* Multicast Packets TX Count - R/clr */
-#define E1000_BPTC     0x040F4  /* Broadcast Packets TX Count - R/clr */
-#define E1000_TSCTC    0x040F8  /* TCP Segmentation Context TX - R/clr */
-#define E1000_TSCTFC   0x040FC  /* TCP Segmentation Context TX Fail - R/clr */
-#define E1000_IAC      0x04100  /* Interrupt Assertion Count */
-#define E1000_ICRXPTC  0x04104  /* Interrupt Cause Rx Packet Timer Expire Count */
-#define E1000_ICRXATC  0x04108  /* Interrupt Cause Rx Absolute Timer Expire Count */
-#define E1000_ICTXPTC  0x0410C  /* Interrupt Cause Tx Packet Timer Expire Count */
-#define E1000_ICTXATC  0x04110  /* Interrupt Cause Tx Absolute Timer Expire Count */
-#define E1000_ICTXQEC  0x04118  /* Interrupt Cause Tx Queue Empty Count */
-#define E1000_ICTXQMTC 0x0411C  /* Interrupt Cause Tx Queue Minimum Threshold Count */
-#define E1000_ICRXDMTC 0x04120  /* Interrupt Cause Rx Descriptor Minimum Threshold Count */
-#define E1000_ICRXOC   0x04124  /* Interrupt Cause Receiver Overrun Count */
-#define E1000_RXCSUM   0x05000  /* RX Checksum Control - RW */
-#define E1000_RFCTL    0x05008  /* Receive Filter Control*/
-#define E1000_MTA      0x05200  /* Multicast Table Array - RW Array */
-#define E1000_RA       0x05400  /* Receive Address - RW Array */
-#define E1000_VFTA     0x05600  /* VLAN Filter Table Array - RW Array */
-#define E1000_WUC      0x05800  /* Wakeup Control - RW */
-#define E1000_WUFC     0x05808  /* Wakeup Filter Control - RW */
-#define E1000_WUS      0x05810  /* Wakeup Status - RO */
-#define E1000_MANC     0x05820  /* Management Control - RW */
-#define E1000_IPAV     0x05838  /* IP Address Valid - RW */
-#define E1000_IP4AT    0x05840  /* IPv4 Address Table - RW Array */
-#define E1000_IP6AT    0x05880  /* IPv6 Address Table - RW Array */
-#define E1000_WUPL     0x05900  /* Wakeup Packet Length - RW */
-#define E1000_WUPM     0x05A00  /* Wakeup Packet Memory - RO A */
-#define E1000_FFLT     0x05F00  /* Flexible Filter Length Table - RW Array */
-#define E1000_HOST_IF  0x08800  /* Host Interface */
-#define E1000_FFMT     0x09000  /* Flexible Filter Mask Table - RW Array */
-#define E1000_FFVT     0x09800  /* Flexible Filter Value Table - RW Array */
-
-#define E1000_KUMCTRLSTA 0x00034 /* MAC-PHY interface - RW */
-#define E1000_MDPHYA     0x0003C  /* PHY address - RW */
-#define E1000_MANC2H     0x05860  /* Managment Control To Host - RW */
-#define E1000_SW_FW_SYNC 0x05B5C /* Software-Firmware Synchronization - RW */
-
-#define E1000_GCR       0x05B00 /* PCI-Ex Control */
-#define E1000_GSCL_1    0x05B10 /* PCI-Ex Statistic Control #1 */
-#define E1000_GSCL_2    0x05B14 /* PCI-Ex Statistic Control #2 */
-#define E1000_GSCL_3    0x05B18 /* PCI-Ex Statistic Control #3 */
-#define E1000_GSCL_4    0x05B1C /* PCI-Ex Statistic Control #4 */
-#define E1000_FACTPS    0x05B30 /* Function Active and Power State to MNG */
-#define E1000_SWSM      0x05B50 /* SW Semaphore */
-#define E1000_FWSM      0x05B54 /* FW Semaphore */
-#define E1000_FFLT_DBG  0x05F04 /* Debug Register */
-#define E1000_HICR      0x08F00 /* Host Inteface Control */
-
-/* RSS registers */
-#define E1000_CPUVEC    0x02C10 /* CPU Vector Register - RW */
-#define E1000_MRQC      0x05818 /* Multiple Receive Control - RW */
-#define E1000_RETA      0x05C00 /* Redirection Table - RW Array */
-#define E1000_RSSRK     0x05C80 /* RSS Random Key - RW Array */
-#define E1000_RSSIM     0x05864 /* RSS Interrupt Mask */
-#define E1000_RSSIR     0x05868 /* RSS Interrupt Request */
-/* Register Set (82542)
- *
- * Some of the 82542 registers are located at different offsets than they are
- * in more current versions of the 8254x. Despite the difference in location,
- * the registers function in the same manner.
- */
-#define E1000_82542_CTRL     E1000_CTRL
-#define E1000_82542_CTRL_DUP E1000_CTRL_DUP
-#define E1000_82542_STATUS   E1000_STATUS
-#define E1000_82542_EECD     E1000_EECD
-#define E1000_82542_EERD     E1000_EERD
-#define E1000_82542_CTRL_EXT E1000_CTRL_EXT
-#define E1000_82542_FLA      E1000_FLA
-#define E1000_82542_MDIC     E1000_MDIC
-#define E1000_82542_SCTL     E1000_SCTL
-#define E1000_82542_FEXTNVM  E1000_FEXTNVM
-#define E1000_82542_FCAL     E1000_FCAL
-#define E1000_82542_FCAH     E1000_FCAH
-#define E1000_82542_FCT      E1000_FCT
-#define E1000_82542_VET      E1000_VET
-#define E1000_82542_RA       0x00040
-#define E1000_82542_ICR      E1000_ICR
-#define E1000_82542_ITR      E1000_ITR
-#define E1000_82542_ICS      E1000_ICS
-#define E1000_82542_IMS      E1000_IMS
-#define E1000_82542_IMC      E1000_IMC
-#define E1000_82542_RCTL     E1000_RCTL
-#define E1000_82542_RDTR     0x00108
-#define E1000_82542_RDBAL    0x00110
-#define E1000_82542_RDBAH    0x00114
-#define E1000_82542_RDLEN    0x00118
-#define E1000_82542_RDH      0x00120
-#define E1000_82542_RDT      0x00128
-#define E1000_82542_RDTR0    E1000_82542_RDTR
-#define E1000_82542_RDBAL0   E1000_82542_RDBAL
-#define E1000_82542_RDBAH0   E1000_82542_RDBAH
-#define E1000_82542_RDLEN0   E1000_82542_RDLEN
-#define E1000_82542_RDH0     E1000_82542_RDH
-#define E1000_82542_RDT0     E1000_82542_RDT
-#define E1000_82542_SRRCTL(_n) (0x280C + ((_n) << 8)) /* Split and Replication
-                                                       * RX Control - RW */
-#define E1000_82542_DCA_RXCTRL(_n) (0x02814 + ((_n) << 8))
-#define E1000_82542_RDBAH3   0x02B04 /* RX Desc Base High Queue 3 - RW */
-#define E1000_82542_RDBAL3   0x02B00 /* RX Desc Low Queue 3 - RW */
-#define E1000_82542_RDLEN3   0x02B08 /* RX Desc Length Queue 3 - RW */
-#define E1000_82542_RDH3     0x02B10 /* RX Desc Head Queue 3 - RW */
-#define E1000_82542_RDT3     0x02B18 /* RX Desc Tail Queue 3 - RW */
-#define E1000_82542_RDBAL2   0x02A00 /* RX Desc Base Low Queue 2 - RW */
-#define E1000_82542_RDBAH2   0x02A04 /* RX Desc Base High Queue 2 - RW */
-#define E1000_82542_RDLEN2   0x02A08 /* RX Desc Length Queue 2 - RW */
-#define E1000_82542_RDH2     0x02A10 /* RX Desc Head Queue 2 - RW */
-#define E1000_82542_RDT2     0x02A18 /* RX Desc Tail Queue 2 - RW */
-#define E1000_82542_RDTR1    0x00130
-#define E1000_82542_RDBAL1   0x00138
-#define E1000_82542_RDBAH1   0x0013C
-#define E1000_82542_RDLEN1   0x00140
-#define E1000_82542_RDH1     0x00148
-#define E1000_82542_RDT1     0x00150
-#define E1000_82542_FCRTH    0x00160
-#define E1000_82542_FCRTL    0x00168
-#define E1000_82542_FCTTV    E1000_FCTTV
-#define E1000_82542_TXCW     E1000_TXCW
-#define E1000_82542_RXCW     E1000_RXCW
-#define E1000_82542_MTA      0x00200
-#define E1000_82542_TCTL     E1000_TCTL
-#define E1000_82542_TCTL_EXT E1000_TCTL_EXT
-#define E1000_82542_TIPG     E1000_TIPG
-#define E1000_82542_TDBAL    0x00420
-#define E1000_82542_TDBAH    0x00424
-#define E1000_82542_TDLEN    0x00428
-#define E1000_82542_TDH      0x00430
-#define E1000_82542_TDT      0x00438
-#define E1000_82542_TIDV     0x00440
-#define E1000_82542_TBT      E1000_TBT
-#define E1000_82542_AIT      E1000_AIT
-#define E1000_82542_VFTA     0x00600
-#define E1000_82542_LEDCTL   E1000_LEDCTL
-#define E1000_82542_PBA      E1000_PBA
-#define E1000_82542_PBS      E1000_PBS
-#define E1000_82542_EEMNGCTL E1000_EEMNGCTL
-#define E1000_82542_EEARBC   E1000_EEARBC
-#define E1000_82542_FLASHT   E1000_FLASHT
-#define E1000_82542_EEWR     E1000_EEWR
-#define E1000_82542_FLSWCTL  E1000_FLSWCTL
-#define E1000_82542_FLSWDATA E1000_FLSWDATA
-#define E1000_82542_FLSWCNT  E1000_FLSWCNT
-#define E1000_82542_FLOP     E1000_FLOP
-#define E1000_82542_EXTCNF_CTRL  E1000_EXTCNF_CTRL
-#define E1000_82542_EXTCNF_SIZE  E1000_EXTCNF_SIZE
-#define E1000_82542_PHY_CTRL E1000_PHY_CTRL
-#define E1000_82542_ERT      E1000_ERT
-#define E1000_82542_RXDCTL   E1000_RXDCTL
-#define E1000_82542_RXDCTL1  E1000_RXDCTL1
-#define E1000_82542_RADV     E1000_RADV
-#define E1000_82542_RSRPD    E1000_RSRPD
-#define E1000_82542_TXDMAC   E1000_TXDMAC
-#define E1000_82542_KABGTXD  E1000_KABGTXD
-#define E1000_82542_TDFHS    E1000_TDFHS
-#define E1000_82542_TDFTS    E1000_TDFTS
-#define E1000_82542_TDFPC    E1000_TDFPC
-#define E1000_82542_TXDCTL   E1000_TXDCTL
-#define E1000_82542_TADV     E1000_TADV
-#define E1000_82542_TSPMT    E1000_TSPMT
-#define E1000_82542_CRCERRS  E1000_CRCERRS
-#define E1000_82542_ALGNERRC E1000_ALGNERRC
-#define E1000_82542_SYMERRS  E1000_SYMERRS
-#define E1000_82542_RXERRC   E1000_RXERRC
-#define E1000_82542_MPC      E1000_MPC
-#define E1000_82542_SCC      E1000_SCC
-#define E1000_82542_ECOL     E1000_ECOL
-#define E1000_82542_MCC      E1000_MCC
-#define E1000_82542_LATECOL  E1000_LATECOL
-#define E1000_82542_COLC     E1000_COLC
-#define E1000_82542_DC       E1000_DC
-#define E1000_82542_TNCRS    E1000_TNCRS
-#define E1000_82542_SEC      E1000_SEC
-#define E1000_82542_CEXTERR  E1000_CEXTERR
-#define E1000_82542_RLEC     E1000_RLEC
-#define E1000_82542_XONRXC   E1000_XONRXC
-#define E1000_82542_XONTXC   E1000_XONTXC
-#define E1000_82542_XOFFRXC  E1000_XOFFRXC
-#define E1000_82542_XOFFTXC  E1000_XOFFTXC
-#define E1000_82542_FCRUC    E1000_FCRUC
-#define E1000_82542_PRC64    E1000_PRC64
-#define E1000_82542_PRC127   E1000_PRC127
-#define E1000_82542_PRC255   E1000_PRC255
-#define E1000_82542_PRC511   E1000_PRC511
-#define E1000_82542_PRC1023  E1000_PRC1023
-#define E1000_82542_PRC1522  E1000_PRC1522
-#define E1000_82542_GPRC     E1000_GPRC
-#define E1000_82542_BPRC     E1000_BPRC
-#define E1000_82542_MPRC     E1000_MPRC
-#define E1000_82542_GPTC     E1000_GPTC
-#define E1000_82542_GORCL    E1000_GORCL
-#define E1000_82542_GORCH    E1000_GORCH
-#define E1000_82542_GOTCL    E1000_GOTCL
-#define E1000_82542_GOTCH    E1000_GOTCH
-#define E1000_82542_RNBC     E1000_RNBC
-#define E1000_82542_RUC      E1000_RUC
-#define E1000_82542_RFC      E1000_RFC
-#define E1000_82542_ROC      E1000_ROC
-#define E1000_82542_RJC      E1000_RJC
-#define E1000_82542_MGTPRC   E1000_MGTPRC
-#define E1000_82542_MGTPDC   E1000_MGTPDC
-#define E1000_82542_MGTPTC   E1000_MGTPTC
-#define E1000_82542_TORL     E1000_TORL
-#define E1000_82542_TORH     E1000_TORH
-#define E1000_82542_TOTL     E1000_TOTL
-#define E1000_82542_TOTH     E1000_TOTH
-#define E1000_82542_TPR      E1000_TPR
-#define E1000_82542_TPT      E1000_TPT
-#define E1000_82542_PTC64    E1000_PTC64
-#define E1000_82542_PTC127   E1000_PTC127
-#define E1000_82542_PTC255   E1000_PTC255
-#define E1000_82542_PTC511   E1000_PTC511
-#define E1000_82542_PTC1023  E1000_PTC1023
-#define E1000_82542_PTC1522  E1000_PTC1522
-#define E1000_82542_MPTC     E1000_MPTC
-#define E1000_82542_BPTC     E1000_BPTC
-#define E1000_82542_TSCTC    E1000_TSCTC
-#define E1000_82542_TSCTFC   E1000_TSCTFC
-#define E1000_82542_RXCSUM   E1000_RXCSUM
-#define E1000_82542_WUC      E1000_WUC
-#define E1000_82542_WUFC     E1000_WUFC
-#define E1000_82542_WUS      E1000_WUS
-#define E1000_82542_MANC     E1000_MANC
-#define E1000_82542_IPAV     E1000_IPAV
-#define E1000_82542_IP4AT    E1000_IP4AT
-#define E1000_82542_IP6AT    E1000_IP6AT
-#define E1000_82542_WUPL     E1000_WUPL
-#define E1000_82542_WUPM     E1000_WUPM
-#define E1000_82542_FFLT     E1000_FFLT
-#define E1000_82542_TDFH     0x08010
-#define E1000_82542_TDFT     0x08018
-#define E1000_82542_FFMT     E1000_FFMT
-#define E1000_82542_FFVT     E1000_FFVT
-#define E1000_82542_HOST_IF  E1000_HOST_IF
-#define E1000_82542_IAM         E1000_IAM
-#define E1000_82542_EEMNGCTL    E1000_EEMNGCTL
-#define E1000_82542_PSRCTL      E1000_PSRCTL
-#define E1000_82542_RAID        E1000_RAID
-#define E1000_82542_TARC0       E1000_TARC0
-#define E1000_82542_TDBAL1      E1000_TDBAL1
-#define E1000_82542_TDBAH1      E1000_TDBAH1
-#define E1000_82542_TDLEN1      E1000_TDLEN1
-#define E1000_82542_TDH1        E1000_TDH1
-#define E1000_82542_TDT1        E1000_TDT1
-#define E1000_82542_TXDCTL1     E1000_TXDCTL1
-#define E1000_82542_TARC1       E1000_TARC1
-#define E1000_82542_RFCTL       E1000_RFCTL
-#define E1000_82542_GCR         E1000_GCR
-#define E1000_82542_GSCL_1      E1000_GSCL_1
-#define E1000_82542_GSCL_2      E1000_GSCL_2
-#define E1000_82542_GSCL_3      E1000_GSCL_3
-#define E1000_82542_GSCL_4      E1000_GSCL_4
-#define E1000_82542_FACTPS      E1000_FACTPS
-#define E1000_82542_SWSM        E1000_SWSM
-#define E1000_82542_FWSM        E1000_FWSM
-#define E1000_82542_FFLT_DBG    E1000_FFLT_DBG
-#define E1000_82542_IAC         E1000_IAC
-#define E1000_82542_ICRXPTC     E1000_ICRXPTC
-#define E1000_82542_ICRXATC     E1000_ICRXATC
-#define E1000_82542_ICTXPTC     E1000_ICTXPTC
-#define E1000_82542_ICTXATC     E1000_ICTXATC
-#define E1000_82542_ICTXQEC     E1000_ICTXQEC
-#define E1000_82542_ICTXQMTC    E1000_ICTXQMTC
-#define E1000_82542_ICRXDMTC    E1000_ICRXDMTC
-#define E1000_82542_ICRXOC      E1000_ICRXOC
-#define E1000_82542_HICR        E1000_HICR
-
-#define E1000_82542_CPUVEC      E1000_CPUVEC
-#define E1000_82542_MRQC        E1000_MRQC
-#define E1000_82542_RETA        E1000_RETA
-#define E1000_82542_RSSRK       E1000_RSSRK
-#define E1000_82542_RSSIM       E1000_RSSIM
-#define E1000_82542_RSSIR       E1000_RSSIR
-#define E1000_82542_KUMCTRLSTA E1000_KUMCTRLSTA
-#define E1000_82542_SW_FW_SYNC E1000_SW_FW_SYNC
-
-/* Statistics counters collected by the MAC */
-struct em_hw_stats {
-    uint64_t crcerrs;
-    uint64_t algnerrc;
-    uint64_t symerrs;
-    uint64_t rxerrc;
-    uint64_t mpc;
-    uint64_t scc;
-    uint64_t ecol;
-    uint64_t mcc;
-    uint64_t latecol;
-    uint64_t colc;
-    uint64_t dc;
-    uint64_t tncrs;
-    uint64_t sec;
-    uint64_t cexterr;
-    uint64_t rlec;
-    uint64_t xonrxc;
-    uint64_t xontxc;
-    uint64_t xoffrxc;
-    uint64_t xofftxc;
-    uint64_t fcruc;
-    uint64_t prc64;
-    uint64_t prc127;
-    uint64_t prc255;
-    uint64_t prc511;
-    uint64_t prc1023;
-    uint64_t prc1522;
-    uint64_t gprc;
-    uint64_t bprc;
-    uint64_t mprc;
-    uint64_t gptc;
-    uint64_t gorcl;
-    uint64_t gorch;
-    uint64_t gotcl;
-    uint64_t gotch;
-    uint64_t rnbc;
-    uint64_t ruc;
-    uint64_t rfc;
-    uint64_t roc;
-    uint64_t rjc;
-    uint64_t mgprc;
-    uint64_t mgpdc;
-    uint64_t mgptc;
-    uint64_t torl;
-    uint64_t torh;
-    uint64_t totl;
-    uint64_t toth;
-    uint64_t tpr;
-    uint64_t tpt;
-    uint64_t ptc64;
-    uint64_t ptc127;
-    uint64_t ptc255;
-    uint64_t ptc511;
-    uint64_t ptc1023;
-    uint64_t ptc1522;
-    uint64_t mptc;
-    uint64_t bptc;
-    uint64_t tsctc;
-    uint64_t tsctfc;
-    uint64_t iac;
-    uint64_t icrxptc;
-    uint64_t icrxatc;
-    uint64_t ictxptc;
-    uint64_t ictxatc;
-    uint64_t ictxqec;
-    uint64_t ictxqmtc;
-    uint64_t icrxdmtc;
-    uint64_t icrxoc;
-};
-
-/* Structure containing variables used by the shared code (em_hw.c) */
-struct em_hw {
-    uint8_t *hw_addr;
-    uint8_t *flash_address;
-    em_mac_type mac_type;
-    em_phy_type phy_type;
-    uint32_t phy_init_script;
-    em_media_type media_type;
-    void *back;
-    struct em_shadow_ram *eeprom_shadow_ram;
-    uint32_t flash_bank_size;
-    uint32_t flash_base_addr;
-    em_fc_type fc;
-    em_bus_speed bus_speed;
-    em_bus_width bus_width;
-    em_bus_type bus_type;
-    struct em_eeprom_info eeprom;
-    em_ms_type master_slave;
-    em_ms_type original_master_slave;
-    em_ffe_config ffe_config_state;
-    uint32_t asf_firmware_present;
-    uint32_t eeprom_semaphore_present;
-    uint32_t swfw_sync_present;
-    uint32_t swfwhw_semaphore_present;
-    unsigned long io_base;
-    uint32_t phy_id;
-    uint32_t phy_revision;
-    uint32_t phy_addr;
-    uint32_t original_fc;
-    uint32_t txcw;
-    uint32_t autoneg_failed;
-    uint32_t max_frame_size;
-    uint32_t min_frame_size;
-    uint32_t mc_filter_type;
-    uint32_t num_mc_addrs;
-    uint32_t collision_delta;
-    uint32_t tx_packet_delta;
-    uint32_t ledctl_default;
-    uint32_t ledctl_mode1;
-    uint32_t ledctl_mode2;
-    boolean_t tx_pkt_filtering;
-    struct em_host_mng_dhcp_cookie mng_cookie;
-    uint16_t phy_spd_default;
-    uint16_t autoneg_advertised;
-    uint16_t pci_cmd_word;
-    uint16_t fc_high_water;
-    uint16_t fc_low_water;
-    uint16_t fc_pause_time;
-    uint16_t current_ifs_val;
-    uint16_t ifs_min_val;
-    uint16_t ifs_max_val;
-    uint16_t ifs_step_size;
-    uint16_t ifs_ratio;
-    uint16_t device_id;
-    uint16_t vendor_id;
-    uint16_t subsystem_id;
-    uint16_t subsystem_vendor_id;
-    uint8_t revision_id;
-    uint8_t autoneg;
-    uint8_t mdix;
-    uint8_t forced_speed_duplex;
-    uint8_t wait_autoneg_complete;
-    uint8_t dma_fairness;
-    uint8_t mac_addr[NODE_ADDRESS_SIZE];
-    uint8_t perm_mac_addr[NODE_ADDRESS_SIZE];
-    boolean_t disable_polarity_correction;
-    boolean_t speed_downgraded;
-    em_smart_speed smart_speed;
-    em_dsp_config dsp_config_state;
-    boolean_t get_link_status;
-    boolean_t serdes_link_down;
-    boolean_t tbi_compatibility_en;
-    boolean_t tbi_compatibility_on;
-    boolean_t laa_is_present;
-    boolean_t phy_reset_disable;
-    boolean_t fc_send_xon;
-    boolean_t fc_strict_ieee;
-    boolean_t report_tx_early;
-    boolean_t adaptive_ifs;
-    boolean_t ifs_params_forced;
-    boolean_t in_ifs_mode;
-    boolean_t mng_reg_access_disabled;
-    boolean_t leave_av_bit_off;
-    boolean_t kmrn_lock_loss_workaround_disabled;
-};
-
-
-#define E1000_EEPROM_SWDPIN0   0x0001   /* SWDPIN 0 EEPROM Value */
-#define E1000_EEPROM_LED_LOGIC 0x0020   /* Led Logic Word */
-#define E1000_EEPROM_RW_REG_DATA   16   /* Offset to data in EEPROM read/write registers */
-#define E1000_EEPROM_RW_REG_DONE   2    /* Offset to READ/WRITE done bit */
-#define E1000_EEPROM_RW_REG_START  1    /* First bit for telling part to start operation */
-#define E1000_EEPROM_RW_ADDR_SHIFT 2    /* Shift to the address bits */
-#define E1000_EEPROM_POLL_WRITE    1    /* Flag for polling for write complete */
-#define E1000_EEPROM_POLL_READ     0    /* Flag for polling for read complete */
-/* Register Bit Masks */
-/* Device Control */
-#define E1000_CTRL_FD       0x00000001  /* Full duplex.0=half; 1=full */
-#define E1000_CTRL_BEM      0x00000002  /* Endian Mode.0=little,1=big */
-#define E1000_CTRL_PRIOR    0x00000004  /* Priority on PCI. 0=rx,1=fair */
-#define E1000_CTRL_GIO_MASTER_DISABLE 0x00000004 /*Blocks new Master requests */
-#define E1000_CTRL_LRST     0x00000008  /* Link reset. 0=normal,1=reset */
-#define E1000_CTRL_TME      0x00000010  /* Test mode. 0=normal,1=test */
-#define E1000_CTRL_SLE      0x00000020  /* Serial Link on 0=dis,1=en */
-#define E1000_CTRL_ASDE     0x00000020  /* Auto-speed detect enable */
-#define E1000_CTRL_SLU      0x00000040  /* Set link up (Force Link) */
-#define E1000_CTRL_ILOS     0x00000080  /* Invert Loss-Of Signal */
-#define E1000_CTRL_SPD_SEL  0x00000300  /* Speed Select Mask */
-#define E1000_CTRL_SPD_10   0x00000000  /* Force 10Mb */
-#define E1000_CTRL_SPD_100  0x00000100  /* Force 100Mb */
-#define E1000_CTRL_SPD_1000 0x00000200  /* Force 1Gb */
-#define E1000_CTRL_BEM32    0x00000400  /* Big Endian 32 mode */
-#define E1000_CTRL_FRCSPD   0x00000800  /* Force Speed */
-#define E1000_CTRL_FRCDPX   0x00001000  /* Force Duplex */
-#define E1000_CTRL_D_UD_EN  0x00002000  /* Dock/Undock enable */
-#define E1000_CTRL_D_UD_POLARITY 0x00004000 /* Defined polarity of Dock/Undock indication in SDP[0] */
-#define E1000_CTRL_FORCE_PHY_RESET 0x00008000 /* Reset both PHY ports, through PHYRST_N pin */
-#define E1000_CTRL_EXT_LINK_EN 0x00010000 /* enable link status from external LINK_0 and LINK_1 pins */
-#define E1000_CTRL_SWDPIN0  0x00040000  /* SWDPIN 0 value */
-#define E1000_CTRL_SWDPIN1  0x00080000  /* SWDPIN 1 value */
-#define E1000_CTRL_SWDPIN2  0x00100000  /* SWDPIN 2 value */
-#define E1000_CTRL_SWDPIN3  0x00200000  /* SWDPIN 3 value */
-#define E1000_CTRL_SWDPIO0  0x00400000  /* SWDPIN 0 Input or output */
-#define E1000_CTRL_SWDPIO1  0x00800000  /* SWDPIN 1 input or output */
-#define E1000_CTRL_SWDPIO2  0x01000000  /* SWDPIN 2 input or output */
-#define E1000_CTRL_SWDPIO3  0x02000000  /* SWDPIN 3 input or output */
-#define E1000_CTRL_RST      0x04000000  /* Global reset */
-#define E1000_CTRL_RFCE     0x08000000  /* Receive Flow Control enable */
-#define E1000_CTRL_TFCE     0x10000000  /* Transmit flow control enable */
-#define E1000_CTRL_RTE      0x20000000  /* Routing tag enable */
-#define E1000_CTRL_VME      0x40000000  /* IEEE VLAN mode enable */
-#define E1000_CTRL_PHY_RST  0x80000000  /* PHY Reset */
-#define E1000_CTRL_SW2FW_INT 0x02000000  /* Initiate an interrupt to manageability engine */
-
-/* Device Status */
-#define E1000_STATUS_FD         0x00000001      /* Full duplex.0=half,1=full */
-#define E1000_STATUS_LU         0x00000002      /* Link up.0=no,1=link */
-#define E1000_STATUS_FUNC_MASK  0x0000000C      /* PCI Function Mask */
-#define E1000_STATUS_FUNC_SHIFT 2
-#define E1000_STATUS_FUNC_0     0x00000000      /* Function 0 */
-#define E1000_STATUS_FUNC_1     0x00000004      /* Function 1 */
-#define E1000_STATUS_TXOFF      0x00000010      /* transmission paused */
-#define E1000_STATUS_TBIMODE    0x00000020      /* TBI mode */
-#define E1000_STATUS_SPEED_MASK 0x000000C0
-#define E1000_STATUS_SPEED_10   0x00000000      /* Speed 10Mb/s */
-#define E1000_STATUS_SPEED_100  0x00000040      /* Speed 100Mb/s */
-#define E1000_STATUS_SPEED_1000 0x00000080      /* Speed 1000Mb/s */
-#define E1000_STATUS_LAN_INIT_DONE 0x00000200   /* Lan Init Completion
-                                                   by EEPROM/Flash */
-#define E1000_STATUS_ASDV       0x00000300      /* Auto speed detect value */
-#define E1000_STATUS_DOCK_CI    0x00000800      /* Change in Dock/Undock state. Clear on write '0'. */
-#define E1000_STATUS_GIO_MASTER_ENABLE 0x00080000 /* Status of Master requests. */
-#define E1000_STATUS_MTXCKOK    0x00000400      /* MTX clock running OK */
-#define E1000_STATUS_PCI66      0x00000800      /* In 66Mhz slot */
-#define E1000_STATUS_BUS64      0x00001000      /* In 64 bit slot */
-#define E1000_STATUS_PCIX_MODE  0x00002000      /* PCI-X mode */
-#define E1000_STATUS_PCIX_SPEED 0x0000C000      /* PCI-X bus speed */
-#define E1000_STATUS_BMC_SKU_0  0x00100000 /* BMC USB redirect disabled */
-#define E1000_STATUS_BMC_SKU_1  0x00200000 /* BMC SRAM disabled */
-#define E1000_STATUS_BMC_SKU_2  0x00400000 /* BMC SDRAM disabled */
-#define E1000_STATUS_BMC_CRYPTO 0x00800000 /* BMC crypto disabled */
-#define E1000_STATUS_BMC_LITE   0x01000000 /* BMC external code execution disabled */
-#define E1000_STATUS_RGMII_ENABLE 0x02000000 /* RGMII disabled */
-#define E1000_STATUS_FUSE_8       0x04000000
-#define E1000_STATUS_FUSE_9       0x08000000
-#define E1000_STATUS_SERDES0_DIS  0x10000000 /* SERDES disabled on port 0 */
-#define E1000_STATUS_SERDES1_DIS  0x20000000 /* SERDES disabled on port 1 */
-
-/* Constants used to intrepret the masked PCI-X bus speed. */
-#define E1000_STATUS_PCIX_SPEED_66  0x00000000 /* PCI-X bus speed  50-66 MHz */
-#define E1000_STATUS_PCIX_SPEED_100 0x00004000 /* PCI-X bus speed  66-100 MHz */
-#define E1000_STATUS_PCIX_SPEED_133 0x00008000 /* PCI-X bus speed 100-133 MHz */
-
-/* EEPROM/Flash Control */
-#define E1000_EECD_SK        0x00000001 /* EEPROM Clock */
-#define E1000_EECD_CS        0x00000002 /* EEPROM Chip Select */
-#define E1000_EECD_DI        0x00000004 /* EEPROM Data In */
-#define E1000_EECD_DO        0x00000008 /* EEPROM Data Out */
-#define E1000_EECD_FWE_MASK  0x00000030
-#define E1000_EECD_FWE_DIS   0x00000010 /* Disable FLASH writes */
-#define E1000_EECD_FWE_EN    0x00000020 /* Enable FLASH writes */
-#define E1000_EECD_FWE_SHIFT 4
-#define E1000_EECD_REQ       0x00000040 /* EEPROM Access Request */
-#define E1000_EECD_GNT       0x00000080 /* EEPROM Access Grant */
-#define E1000_EECD_PRES      0x00000100 /* EEPROM Present */
-#define E1000_EECD_SIZE      0x00000200 /* EEPROM Size (0=64 word 1=256 word) */
-#define E1000_EECD_ADDR_BITS 0x00000400 /* EEPROM Addressing bits based on type
-                                         * (0-small, 1-large) */
-#define E1000_EECD_TYPE      0x00002000 /* EEPROM Type (1-SPI, 0-Microwire) */
-#ifndef E1000_EEPROM_GRANT_ATTEMPTS
-#define E1000_EEPROM_GRANT_ATTEMPTS 1000 /* EEPROM # attempts to gain grant */
-#endif
-#define E1000_EECD_AUTO_RD          0x00000200  /* EEPROM Auto Read done */
-#define E1000_EECD_SIZE_EX_MASK     0x00007800  /* EEprom Size */
-#define E1000_EECD_SIZE_EX_SHIFT    11
-#define E1000_EECD_NVADDS    0x00018000 /* NVM Address Size */
-#define E1000_EECD_SELSHAD   0x00020000 /* Select Shadow RAM */
-#define E1000_EECD_INITSRAM  0x00040000 /* Initialize Shadow RAM */
-#define E1000_EECD_FLUPD     0x00080000 /* Update FLASH */
-#define E1000_EECD_AUPDEN    0x00100000 /* Enable Autonomous FLASH update */
-#define E1000_EECD_SHADV     0x00200000 /* Shadow RAM Data Valid */
-#define E1000_EECD_SEC1VAL   0x00400000 /* Sector One Valid */
-#define E1000_EECD_SECVAL_SHIFT      22
-#define E1000_STM_OPCODE     0xDB00
-#define E1000_HICR_FW_RESET  0xC0
-
-#define E1000_SHADOW_RAM_WORDS     2048
-#define E1000_ICH8_NVM_SIG_WORD    0x13
-#define E1000_ICH8_NVM_SIG_MASK    0xC0
-
-/* EEPROM Read */
-#define E1000_EERD_START      0x00000001 /* Start Read */
-#define E1000_EERD_DONE       0x00000010 /* Read Done */
-#define E1000_EERD_ADDR_SHIFT 8
-#define E1000_EERD_ADDR_MASK  0x0000FF00 /* Read Address */
-#define E1000_EERD_DATA_SHIFT 16
-#define E1000_EERD_DATA_MASK  0xFFFF0000 /* Read Data */
-
-/* SPI EEPROM Status Register */
-#define EEPROM_STATUS_RDY_SPI  0x01
-#define EEPROM_STATUS_WEN_SPI  0x02
-#define EEPROM_STATUS_BP0_SPI  0x04
-#define EEPROM_STATUS_BP1_SPI  0x08
-#define EEPROM_STATUS_WPEN_SPI 0x80
-
-/* Extended Device Control */
-#define E1000_CTRL_EXT_GPI0_EN   0x00000001 /* Maps SDP4 to GPI0 */
-#define E1000_CTRL_EXT_GPI1_EN   0x00000002 /* Maps SDP5 to GPI1 */
-#define E1000_CTRL_EXT_PHYINT_EN E1000_CTRL_EXT_GPI1_EN
-#define E1000_CTRL_EXT_GPI2_EN   0x00000004 /* Maps SDP6 to GPI2 */
-#define E1000_CTRL_EXT_GPI3_EN   0x00000008 /* Maps SDP7 to GPI3 */
-#define E1000_CTRL_EXT_SDP4_DATA 0x00000010 /* Value of SW Defineable Pin 4 */
-#define E1000_CTRL_EXT_SDP5_DATA 0x00000020 /* Value of SW Defineable Pin 5 */
-#define E1000_CTRL_EXT_PHY_INT   E1000_CTRL_EXT_SDP5_DATA
-#define E1000_CTRL_EXT_SDP6_DATA 0x00000040 /* Value of SW Defineable Pin 6 */
-#define E1000_CTRL_EXT_SDP7_DATA 0x00000080 /* Value of SW Defineable Pin 7 */
-#define E1000_CTRL_EXT_SDP4_DIR  0x00000100 /* Direction of SDP4 0=in 1=out */
-#define E1000_CTRL_EXT_SDP5_DIR  0x00000200 /* Direction of SDP5 0=in 1=out */
-#define E1000_CTRL_EXT_SDP6_DIR  0x00000400 /* Direction of SDP6 0=in 1=out */
-#define E1000_CTRL_EXT_SDP7_DIR  0x00000800 /* Direction of SDP7 0=in 1=out */
-#define E1000_CTRL_EXT_ASDCHK    0x00001000 /* Initiate an ASD sequence */
-#define E1000_CTRL_EXT_EE_RST    0x00002000 /* Reinitialize from EEPROM */
-#define E1000_CTRL_EXT_IPS       0x00004000 /* Invert Power State */
-#define E1000_CTRL_EXT_SPD_BYPS  0x00008000 /* Speed Select Bypass */
-#define E1000_CTRL_EXT_RO_DIS    0x00020000 /* Relaxed Ordering disable */
-#define E1000_CTRL_EXT_LINK_MODE_MASK 0x00C00000
-#define E1000_CTRL_EXT_LINK_MODE_GMII 0x00000000
-#define E1000_CTRL_EXT_LINK_MODE_TBI  0x00C00000
-#define E1000_CTRL_EXT_LINK_MODE_KMRN    0x00000000
-#define E1000_CTRL_EXT_LINK_MODE_SERDES  0x00C00000
-#define E1000_CTRL_EXT_WR_WMARK_MASK  0x03000000
-#define E1000_CTRL_EXT_WR_WMARK_256   0x00000000
-#define E1000_CTRL_EXT_WR_WMARK_320   0x01000000
-#define E1000_CTRL_EXT_WR_WMARK_384   0x02000000
-#define E1000_CTRL_EXT_WR_WMARK_448   0x03000000
-#define E1000_CTRL_EXT_DRV_LOAD       0x10000000  /* Driver loaded bit for FW */
-#define E1000_CTRL_EXT_IAME           0x08000000  /* Interrupt acknowledge Auto-mask */
-#define E1000_CTRL_EXT_INT_TIMER_CLR  0x20000000  /* Clear Interrupt timers after IMS clear */
-#define E1000_CRTL_EXT_PB_PAREN       0x01000000 /* packet buffer parity error detection enabled */
-#define E1000_CTRL_EXT_DF_PAREN       0x02000000 /* descriptor FIFO parity error detection enable */
-#define E1000_CTRL_EXT_GHOST_PAREN    0x40000000
-
-/* MDI Control */
-#define E1000_MDIC_DATA_MASK 0x0000FFFF
-#define E1000_MDIC_REG_MASK  0x001F0000
-#define E1000_MDIC_REG_SHIFT 16
-#define E1000_MDIC_PHY_MASK  0x03E00000
-#define E1000_MDIC_PHY_SHIFT 21
-#define E1000_MDIC_OP_WRITE  0x04000000
-#define E1000_MDIC_OP_READ   0x08000000
-#define E1000_MDIC_READY     0x10000000
-#define E1000_MDIC_INT_EN    0x20000000
-#define E1000_MDIC_ERROR     0x40000000
-
-#define E1000_KUMCTRLSTA_MASK           0x0000FFFF
-#define E1000_KUMCTRLSTA_OFFSET         0x001F0000
-#define E1000_KUMCTRLSTA_OFFSET_SHIFT   16
-#define E1000_KUMCTRLSTA_REN            0x00200000
-
-#define E1000_KUMCTRLSTA_OFFSET_FIFO_CTRL      0x00000000
-#define E1000_KUMCTRLSTA_OFFSET_CTRL           0x00000001
-#define E1000_KUMCTRLSTA_OFFSET_INB_CTRL       0x00000002
-#define E1000_KUMCTRLSTA_OFFSET_DIAG           0x00000003
-#define E1000_KUMCTRLSTA_OFFSET_TIMEOUTS       0x00000004
-#define E1000_KUMCTRLSTA_OFFSET_INB_PARAM      0x00000009
-#define E1000_KUMCTRLSTA_OFFSET_HD_CTRL        0x00000010
-#define E1000_KUMCTRLSTA_OFFSET_M2P_SERDES     0x0000001E
-#define E1000_KUMCTRLSTA_OFFSET_M2P_MODES      0x0000001F
-
-/* FIFO Control */
-#define E1000_KUMCTRLSTA_FIFO_CTRL_RX_BYPASS   0x00000008
-#define E1000_KUMCTRLSTA_FIFO_CTRL_TX_BYPASS   0x00000800
-
-/* In-Band Control */
-#define E1000_KUMCTRLSTA_INB_CTRL_LINK_STATUS_TX_TIMEOUT_DEFAULT    0x00000500
-#define E1000_KUMCTRLSTA_INB_CTRL_DIS_PADDING  0x00000010
-
-/* Half-Duplex Control */
-#define E1000_KUMCTRLSTA_HD_CTRL_10_100_DEFAULT 0x00000004
-#define E1000_KUMCTRLSTA_HD_CTRL_1000_DEFAULT  0x00000000
-
-#define E1000_KUMCTRLSTA_OFFSET_K0S_CTRL       0x0000001E
-
-#define E1000_KUMCTRLSTA_DIAG_FELPBK           0x2000
-#define E1000_KUMCTRLSTA_DIAG_NELPBK           0x1000
-
-#define E1000_KUMCTRLSTA_K0S_100_EN            0x2000
-#define E1000_KUMCTRLSTA_K0S_GBE_EN            0x1000
-#define E1000_KUMCTRLSTA_K0S_ENTRY_LATENCY_MASK   0x0003
-
-#define E1000_KABGTXD_BGSQLBIAS                0x00050000
-
-#define E1000_PHY_CTRL_SPD_EN                  0x00000001
-#define E1000_PHY_CTRL_D0A_LPLU                0x00000002
-#define E1000_PHY_CTRL_NOND0A_LPLU             0x00000004
-#define E1000_PHY_CTRL_NOND0A_GBE_DISABLE      0x00000008
-#define E1000_PHY_CTRL_GBE_DISABLE             0x00000040
-#define E1000_PHY_CTRL_B2B_EN                  0x00000080
-
-/* LED Control */
-#define E1000_LEDCTL_LED0_MODE_MASK       0x0000000F
-#define E1000_LEDCTL_LED0_MODE_SHIFT      0
-#define E1000_LEDCTL_LED0_BLINK_RATE      0x0000020
-#define E1000_LEDCTL_LED0_IVRT            0x00000040
-#define E1000_LEDCTL_LED0_BLINK           0x00000080
-#define E1000_LEDCTL_LED1_MODE_MASK       0x00000F00
-#define E1000_LEDCTL_LED1_MODE_SHIFT      8
-#define E1000_LEDCTL_LED1_BLINK_RATE      0x0002000
-#define E1000_LEDCTL_LED1_IVRT            0x00004000
-#define E1000_LEDCTL_LED1_BLINK           0x00008000
-#define E1000_LEDCTL_LED2_MODE_MASK       0x000F0000
-#define E1000_LEDCTL_LED2_MODE_SHIFT      16
-#define E1000_LEDCTL_LED2_BLINK_RATE      0x00200000
-#define E1000_LEDCTL_LED2_IVRT            0x00400000
-#define E1000_LEDCTL_LED2_BLINK           0x00800000
-#define E1000_LEDCTL_LED3_MODE_MASK       0x0F000000
-#define E1000_LEDCTL_LED3_MODE_SHIFT      24
-#define E1000_LEDCTL_LED3_BLINK_RATE      0x20000000
-#define E1000_LEDCTL_LED3_IVRT            0x40000000
-#define E1000_LEDCTL_LED3_BLINK           0x80000000
-
-#define E1000_LEDCTL_MODE_LINK_10_1000  0x0
-#define E1000_LEDCTL_MODE_LINK_100_1000 0x1
-#define E1000_LEDCTL_MODE_LINK_UP       0x2
-#define E1000_LEDCTL_MODE_ACTIVITY      0x3
-#define E1000_LEDCTL_MODE_LINK_ACTIVITY 0x4
-#define E1000_LEDCTL_MODE_LINK_10       0x5
-#define E1000_LEDCTL_MODE_LINK_100      0x6
-#define E1000_LEDCTL_MODE_LINK_1000     0x7
-#define E1000_LEDCTL_MODE_PCIX_MODE     0x8
-#define E1000_LEDCTL_MODE_FULL_DUPLEX   0x9
-#define E1000_LEDCTL_MODE_COLLISION     0xA
-#define E1000_LEDCTL_MODE_BUS_SPEED     0xB
-#define E1000_LEDCTL_MODE_BUS_SIZE      0xC
-#define E1000_LEDCTL_MODE_PAUSED        0xD
-#define E1000_LEDCTL_MODE_LED_ON        0xE
-#define E1000_LEDCTL_MODE_LED_OFF       0xF
-
-/* Receive Address */
-#define E1000_RAH_AV  0x80000000        /* Receive descriptor valid */
-
-/* Interrupt Cause Read */
-#define E1000_ICR_TXDW          0x00000001 /* Transmit desc written back */
-#define E1000_ICR_TXQE          0x00000002 /* Transmit Queue empty */
-#define E1000_ICR_LSC           0x00000004 /* Link Status Change */
-#define E1000_ICR_RXSEQ         0x00000008 /* rx sequence error */
-#define E1000_ICR_RXDMT0        0x00000010 /* rx desc min. threshold (0) */
-#define E1000_ICR_RXO           0x00000040 /* rx overrun */
-#define E1000_ICR_RXT0          0x00000080 /* rx timer intr (ring 0) */
-#define E1000_ICR_MDAC          0x00000200 /* MDIO access complete */
-#define E1000_ICR_RXCFG         0x00000400 /* RX /c/ ordered set */
-#define E1000_ICR_GPI_EN0       0x00000800 /* GP Int 0 */
-#define E1000_ICR_GPI_EN1       0x00001000 /* GP Int 1 */
-#define E1000_ICR_GPI_EN2       0x00002000 /* GP Int 2 */
-#define E1000_ICR_GPI_EN3       0x00004000 /* GP Int 3 */
-#define E1000_ICR_TXD_LOW       0x00008000
-#define E1000_ICR_SRPD          0x00010000
-#define E1000_ICR_ACK           0x00020000 /* Receive Ack frame */
-#define E1000_ICR_MNG           0x00040000 /* Manageability event */
-#define E1000_ICR_DOCK          0x00080000 /* Dock/Undock */
-#define E1000_ICR_INT_ASSERTED  0x80000000 /* If this bit asserted, the driver should claim the interrupt */
-#define E1000_ICR_RXD_FIFO_PAR0 0x00100000 /* queue 0 Rx descriptor FIFO parity error */
-#define E1000_ICR_TXD_FIFO_PAR0 0x00200000 /* queue 0 Tx descriptor FIFO parity error */
-#define E1000_ICR_HOST_ARB_PAR  0x00400000 /* host arb read buffer parity error */
-#define E1000_ICR_PB_PAR        0x00800000 /* packet buffer parity error */
-#define E1000_ICR_RXD_FIFO_PAR1 0x01000000 /* queue 1 Rx descriptor FIFO parity error */
-#define E1000_ICR_TXD_FIFO_PAR1 0x02000000 /* queue 1 Tx descriptor FIFO parity error */
-#define E1000_ICR_ALL_PARITY    0x03F00000 /* all parity error bits */
-#define E1000_ICR_DSW           0x00000020 /* FW changed the status of DISSW bit in the FWSM */
-#define E1000_ICR_PHYINT        0x00001000 /* LAN connected device generates an interrupt */
-#define E1000_ICR_EPRST         0x00100000 /* ME handware reset occurs */
-
-/* Interrupt Cause Set */
-#define E1000_ICS_TXDW      E1000_ICR_TXDW      /* Transmit desc written back */
-#define E1000_ICS_TXQE      E1000_ICR_TXQE      /* Transmit Queue empty */
-#define E1000_ICS_LSC       E1000_ICR_LSC       /* Link Status Change */
-#define E1000_ICS_RXSEQ     E1000_ICR_RXSEQ     /* rx sequence error */
-#define E1000_ICS_RXDMT0    E1000_ICR_RXDMT0    /* rx desc min. threshold */
-#define E1000_ICS_RXO       E1000_ICR_RXO       /* rx overrun */
-#define E1000_ICS_RXT0      E1000_ICR_RXT0      /* rx timer intr */
-#define E1000_ICS_MDAC      E1000_ICR_MDAC      /* MDIO access complete */
-#define E1000_ICS_RXCFG     E1000_ICR_RXCFG     /* RX /c/ ordered set */
-#define E1000_ICS_GPI_EN0   E1000_ICR_GPI_EN0   /* GP Int 0 */
-#define E1000_ICS_GPI_EN1   E1000_ICR_GPI_EN1   /* GP Int 1 */
-#define E1000_ICS_GPI_EN2   E1000_ICR_GPI_EN2   /* GP Int 2 */
-#define E1000_ICS_GPI_EN3   E1000_ICR_GPI_EN3   /* GP Int 3 */
-#define E1000_ICS_TXD_LOW   E1000_ICR_TXD_LOW
-#define E1000_ICS_SRPD      E1000_ICR_SRPD
-#define E1000_ICS_ACK       E1000_ICR_ACK       /* Receive Ack frame */
-#define E1000_ICS_MNG       E1000_ICR_MNG       /* Manageability event */
-#define E1000_ICS_DOCK      E1000_ICR_DOCK      /* Dock/Undock */
-#define E1000_ICS_RXD_FIFO_PAR0 E1000_ICR_RXD_FIFO_PAR0 /* queue 0 Rx descriptor FIFO parity error */
-#define E1000_ICS_TXD_FIFO_PAR0 E1000_ICR_TXD_FIFO_PAR0 /* queue 0 Tx descriptor FIFO parity error */
-#define E1000_ICS_HOST_ARB_PAR  E1000_ICR_HOST_ARB_PAR  /* host arb read buffer parity error */
-#define E1000_ICS_PB_PAR        E1000_ICR_PB_PAR        /* packet buffer parity error */
-#define E1000_ICS_RXD_FIFO_PAR1 E1000_ICR_RXD_FIFO_PAR1 /* queue 1 Rx descriptor FIFO parity error */
-#define E1000_ICS_TXD_FIFO_PAR1 E1000_ICR_TXD_FIFO_PAR1 /* queue 1 Tx descriptor FIFO parity error */
-#define E1000_ICS_DSW       E1000_ICR_DSW
-#define E1000_ICS_PHYINT    E1000_ICR_PHYINT
-#define E1000_ICS_EPRST     E1000_ICR_EPRST
-
-/* Interrupt Mask Set */
-#define E1000_IMS_TXDW      E1000_ICR_TXDW      /* Transmit desc written back */
-#define E1000_IMS_TXQE      E1000_ICR_TXQE      /* Transmit Queue empty */
-#define E1000_IMS_LSC       E1000_ICR_LSC       /* Link Status Change */
-#define E1000_IMS_RXSEQ     E1000_ICR_RXSEQ     /* rx sequence error */
-#define E1000_IMS_RXDMT0    E1000_ICR_RXDMT0    /* rx desc min. threshold */
-#define E1000_IMS_RXO       E1000_ICR_RXO       /* rx overrun */
-#define E1000_IMS_RXT0      E1000_ICR_RXT0      /* rx timer intr */
-#define E1000_IMS_MDAC      E1000_ICR_MDAC      /* MDIO access complete */
-#define E1000_IMS_RXCFG     E1000_ICR_RXCFG     /* RX /c/ ordered set */
-#define E1000_IMS_GPI_EN0   E1000_ICR_GPI_EN0   /* GP Int 0 */
-#define E1000_IMS_GPI_EN1   E1000_ICR_GPI_EN1   /* GP Int 1 */
-#define E1000_IMS_GPI_EN2   E1000_ICR_GPI_EN2   /* GP Int 2 */
-#define E1000_IMS_GPI_EN3   E1000_ICR_GPI_EN3   /* GP Int 3 */
-#define E1000_IMS_TXD_LOW   E1000_ICR_TXD_LOW
-#define E1000_IMS_SRPD      E1000_ICR_SRPD
-#define E1000_IMS_ACK       E1000_ICR_ACK       /* Receive Ack frame */
-#define E1000_IMS_MNG       E1000_ICR_MNG       /* Manageability event */
-#define E1000_IMS_DOCK      E1000_ICR_DOCK      /* Dock/Undock */
-#define E1000_IMS_RXD_FIFO_PAR0 E1000_ICR_RXD_FIFO_PAR0 /* queue 0 Rx descriptor FIFO parity error */
-#define E1000_IMS_TXD_FIFO_PAR0 E1000_ICR_TXD_FIFO_PAR0 /* queue 0 Tx descriptor FIFO parity error */
-#define E1000_IMS_HOST_ARB_PAR  E1000_ICR_HOST_ARB_PAR  /* host arb read buffer parity error */
-#define E1000_IMS_PB_PAR        E1000_ICR_PB_PAR        /* packet buffer parity error */
-#define E1000_IMS_RXD_FIFO_PAR1 E1000_ICR_RXD_FIFO_PAR1 /* queue 1 Rx descriptor FIFO parity error */
-#define E1000_IMS_TXD_FIFO_PAR1 E1000_ICR_TXD_FIFO_PAR1 /* queue 1 Tx descriptor FIFO parity error */
-#define E1000_IMS_DSW       E1000_ICR_DSW
-#define E1000_IMS_PHYINT    E1000_ICR_PHYINT
-#define E1000_IMS_EPRST     E1000_ICR_EPRST
-
-/* Interrupt Mask Clear */
-#define E1000_IMC_TXDW      E1000_ICR_TXDW      /* Transmit desc written back */
-#define E1000_IMC_TXQE      E1000_ICR_TXQE      /* Transmit Queue empty */
-#define E1000_IMC_LSC       E1000_ICR_LSC       /* Link Status Change */
-#define E1000_IMC_RXSEQ     E1000_ICR_RXSEQ     /* rx sequence error */
-#define E1000_IMC_RXDMT0    E1000_ICR_RXDMT0    /* rx desc min. threshold */
-#define E1000_IMC_RXO       E1000_ICR_RXO       /* rx overrun */
-#define E1000_IMC_RXT0      E1000_ICR_RXT0      /* rx timer intr */
-#define E1000_IMC_MDAC      E1000_ICR_MDAC      /* MDIO access complete */
-#define E1000_IMC_RXCFG     E1000_ICR_RXCFG     /* RX /c/ ordered set */
-#define E1000_IMC_GPI_EN0   E1000_ICR_GPI_EN0   /* GP Int 0 */
-#define E1000_IMC_GPI_EN1   E1000_ICR_GPI_EN1   /* GP Int 1 */
-#define E1000_IMC_GPI_EN2   E1000_ICR_GPI_EN2   /* GP Int 2 */
-#define E1000_IMC_GPI_EN3   E1000_ICR_GPI_EN3   /* GP Int 3 */
-#define E1000_IMC_TXD_LOW   E1000_ICR_TXD_LOW
-#define E1000_IMC_SRPD      E1000_ICR_SRPD
-#define E1000_IMC_ACK       E1000_ICR_ACK       /* Receive Ack frame */
-#define E1000_IMC_MNG       E1000_ICR_MNG       /* Manageability event */
-#define E1000_IMC_DOCK      E1000_ICR_DOCK      /* Dock/Undock */
-#define E1000_IMC_RXD_FIFO_PAR0 E1000_ICR_RXD_FIFO_PAR0 /* queue 0 Rx descriptor FIFO parity error */
-#define E1000_IMC_TXD_FIFO_PAR0 E1000_ICR_TXD_FIFO_PAR0 /* queue 0 Tx descriptor FIFO parity error */
-#define E1000_IMC_HOST_ARB_PAR  E1000_ICR_HOST_ARB_PAR  /* host arb read buffer parity error */
-#define E1000_IMC_PB_PAR        E1000_ICR_PB_PAR        /* packet buffer parity error */
-#define E1000_IMC_RXD_FIFO_PAR1 E1000_ICR_RXD_FIFO_PAR1 /* queue 1 Rx descriptor FIFO parity error */
-#define E1000_IMC_TXD_FIFO_PAR1 E1000_ICR_TXD_FIFO_PAR1 /* queue 1 Tx descriptor FIFO parity error */
-#define E1000_IMC_DSW       E1000_ICR_DSW
-#define E1000_IMC_PHYINT    E1000_ICR_PHYINT
-#define E1000_IMC_EPRST     E1000_ICR_EPRST
-
-/* Receive Control */
-#define E1000_RCTL_RST            0x00000001    /* Software reset */
-#define E1000_RCTL_EN             0x00000002    /* enable */
-#define E1000_RCTL_SBP            0x00000004    /* store bad packet */
-#define E1000_RCTL_UPE            0x00000008    /* unicast promiscuous enable */
-#define E1000_RCTL_MPE            0x00000010    /* multicast promiscuous enab */
-#define E1000_RCTL_LPE            0x00000020    /* long packet enable */
-#define E1000_RCTL_LBM_NO         0x00000000    /* no loopback mode */
-#define E1000_RCTL_LBM_MAC        0x00000040    /* MAC loopback mode */
-#define E1000_RCTL_LBM_SLP        0x00000080    /* serial link loopback mode */
-#define E1000_RCTL_LBM_TCVR       0x000000C0    /* tcvr loopback mode */
-#define E1000_RCTL_DTYP_MASK      0x00000C00    /* Descriptor type mask */
-#define E1000_RCTL_DTYP_PS        0x00000400    /* Packet Split descriptor */
-#define E1000_RCTL_RDMTS_HALF     0x00000000    /* rx desc min threshold size */
-#define E1000_RCTL_RDMTS_QUAT     0x00000100    /* rx desc min threshold size */
-#define E1000_RCTL_RDMTS_EIGTH    0x00000200    /* rx desc min threshold size */
-#define E1000_RCTL_MO_SHIFT       12            /* multicast offset shift */
-#define E1000_RCTL_MO_0           0x00000000    /* multicast offset 11:0 */
-#define E1000_RCTL_MO_1           0x00001000    /* multicast offset 12:1 */
-#define E1000_RCTL_MO_2           0x00002000    /* multicast offset 13:2 */
-#define E1000_RCTL_MO_3           0x00003000    /* multicast offset 15:4 */
-#define E1000_RCTL_MDR            0x00004000    /* multicast desc ring 0 */
-#define E1000_RCTL_BAM            0x00008000    /* broadcast enable */
-/* these buffer sizes are valid if E1000_RCTL_BSEX is 0 */
-#define E1000_RCTL_SZ_2048        0x00000000    /* rx buffer size 2048 */
-#define E1000_RCTL_SZ_1024        0x00010000    /* rx buffer size 1024 */
-#define E1000_RCTL_SZ_512         0x00020000    /* rx buffer size 512 */
-#define E1000_RCTL_SZ_256         0x00030000    /* rx buffer size 256 */
-/* these buffer sizes are valid if E1000_RCTL_BSEX is 1 */
-#define E1000_RCTL_SZ_16384       0x00010000    /* rx buffer size 16384 */
-#define E1000_RCTL_SZ_8192        0x00020000    /* rx buffer size 8192 */
-#define E1000_RCTL_SZ_4096        0x00030000    /* rx buffer size 4096 */
-#define E1000_RCTL_VFE            0x00040000    /* vlan filter enable */
-#define E1000_RCTL_CFIEN          0x00080000    /* canonical form enable */
-#define E1000_RCTL_CFI            0x00100000    /* canonical form indicator */
-#define E1000_RCTL_DPF            0x00400000    /* discard pause frames */
-#define E1000_RCTL_PMCF           0x00800000    /* pass MAC control frames */
-#define E1000_RCTL_BSEX           0x02000000    /* Buffer size extension */
-#define E1000_RCTL_SECRC          0x04000000    /* Strip Ethernet CRC */
-#define E1000_RCTL_FLXBUF_MASK    0x78000000    /* Flexible buffer size */
-#define E1000_RCTL_FLXBUF_SHIFT   27            /* Flexible buffer shift */
-
-/* Use byte values for the following shift parameters
- * Usage:
- *     psrctl |= (((ROUNDUP(value0, 128) >> E1000_PSRCTL_BSIZE0_SHIFT) &
- *                  E1000_PSRCTL_BSIZE0_MASK) |
- *                ((ROUNDUP(value1, 1024) >> E1000_PSRCTL_BSIZE1_SHIFT) &
- *                  E1000_PSRCTL_BSIZE1_MASK) |
- *                ((ROUNDUP(value2, 1024) << E1000_PSRCTL_BSIZE2_SHIFT) &
- *                  E1000_PSRCTL_BSIZE2_MASK) |
- *                ((ROUNDUP(value3, 1024) << E1000_PSRCTL_BSIZE3_SHIFT) |;
- *                  E1000_PSRCTL_BSIZE3_MASK))
- * where value0 = [128..16256],  default=256
- *       value1 = [1024..64512], default=4096
- *       value2 = [0..64512],    default=4096
- *       value3 = [0..64512],    default=0
- */
-
-#define E1000_PSRCTL_BSIZE0_MASK   0x0000007F
-#define E1000_PSRCTL_BSIZE1_MASK   0x00003F00
-#define E1000_PSRCTL_BSIZE2_MASK   0x003F0000
-#define E1000_PSRCTL_BSIZE3_MASK   0x3F000000
-
-#define E1000_PSRCTL_BSIZE0_SHIFT  7            /* Shift _right_ 7 */
-#define E1000_PSRCTL_BSIZE1_SHIFT  2            /* Shift _right_ 2 */
-#define E1000_PSRCTL_BSIZE2_SHIFT  6            /* Shift _left_ 6 */
-#define E1000_PSRCTL_BSIZE3_SHIFT 14            /* Shift _left_ 14 */
-
-/* SW_W_SYNC definitions */
-#define E1000_SWFW_EEP_SM     0x0001
-#define E1000_SWFW_PHY0_SM    0x0002
-#define E1000_SWFW_PHY1_SM    0x0004
-#define E1000_SWFW_MAC_CSR_SM 0x0008
-
-/* Receive Descriptor */
-#define E1000_RDT_DELAY 0x0000ffff      /* Delay timer (1=1024us) */
-#define E1000_RDT_FPDB  0x80000000      /* Flush descriptor block */
-#define E1000_RDLEN_LEN 0x0007ff80      /* descriptor length */
-#define E1000_RDH_RDH   0x0000ffff      /* receive descriptor head */
-#define E1000_RDT_RDT   0x0000ffff      /* receive descriptor tail */
-
-/* Flow Control */
-#define E1000_FCRTH_RTH  0x0000FFF8     /* Mask Bits[15:3] for RTH */
-#define E1000_FCRTH_XFCE 0x80000000     /* External Flow Control Enable */
-#define E1000_FCRTL_RTL  0x0000FFF8     /* Mask Bits[15:3] for RTL */
-#define E1000_FCRTL_XONE 0x80000000     /* Enable XON frame transmission */
-
-/* Header split receive */
-#define E1000_RFCTL_ISCSI_DIS           0x00000001
-#define E1000_RFCTL_ISCSI_DWC_MASK      0x0000003E
-#define E1000_RFCTL_ISCSI_DWC_SHIFT     1
-#define E1000_RFCTL_NFSW_DIS            0x00000040
-#define E1000_RFCTL_NFSR_DIS            0x00000080
-#define E1000_RFCTL_NFS_VER_MASK        0x00000300
-#define E1000_RFCTL_NFS_VER_SHIFT       8
-#define E1000_RFCTL_IPV6_DIS            0x00000400
-#define E1000_RFCTL_IPV6_XSUM_DIS       0x00000800
-#define E1000_RFCTL_ACK_DIS             0x00001000
-#define E1000_RFCTL_ACKD_DIS            0x00002000
-#define E1000_RFCTL_IPFRSP_DIS          0x00004000
-#define E1000_RFCTL_EXTEN               0x00008000
-#define E1000_RFCTL_IPV6_EX_DIS         0x00010000
-#define E1000_RFCTL_NEW_IPV6_EXT_DIS    0x00020000
-
-/* Receive Descriptor Control */
-#define E1000_RXDCTL_PTHRESH 0x0000003F /* RXDCTL Prefetch Threshold */
-#define E1000_RXDCTL_HTHRESH 0x00003F00 /* RXDCTL Host Threshold */
-#define E1000_RXDCTL_WTHRESH 0x003F0000 /* RXDCTL Writeback Threshold */
-#define E1000_RXDCTL_GRAN    0x01000000 /* RXDCTL Granularity */
-
-/* Transmit Descriptor Control */
-#define E1000_TXDCTL_PTHRESH 0x000000FF /* TXDCTL Prefetch Threshold */
-#define E1000_TXDCTL_HTHRESH 0x0000FF00 /* TXDCTL Host Threshold */
-#define E1000_TXDCTL_WTHRESH 0x00FF0000 /* TXDCTL Writeback Threshold */
-#define E1000_TXDCTL_GRAN    0x01000000 /* TXDCTL Granularity */
-#define E1000_TXDCTL_LWTHRESH 0xFE000000 /* TXDCTL Low Threshold */
-#define E1000_TXDCTL_FULL_TX_DESC_WB 0x01010000 /* GRAN=1, WTHRESH=1 */
-#define E1000_TXDCTL_COUNT_DESC 0x00400000 /* Enable the counting of desc.
-                                              still to be processed. */
-/* Transmit Configuration Word */
-#define E1000_TXCW_FD         0x00000020        /* TXCW full duplex */
-#define E1000_TXCW_HD         0x00000040        /* TXCW half duplex */
-#define E1000_TXCW_PAUSE      0x00000080        /* TXCW sym pause request */
-#define E1000_TXCW_ASM_DIR    0x00000100        /* TXCW astm pause direction */
-#define E1000_TXCW_PAUSE_MASK 0x00000180        /* TXCW pause request mask */
-#define E1000_TXCW_RF         0x00003000        /* TXCW remote fault */
-#define E1000_TXCW_NP         0x00008000        /* TXCW next page */
-#define E1000_TXCW_CW         0x0000ffff        /* TxConfigWord mask */
-#define E1000_TXCW_TXC        0x40000000        /* Transmit Config control */
-#define E1000_TXCW_ANE        0x80000000        /* Auto-neg enable */
-
-/* Receive Configuration Word */
-#define E1000_RXCW_CW    0x0000ffff     /* RxConfigWord mask */
-#define E1000_RXCW_NC    0x04000000     /* Receive config no carrier */
-#define E1000_RXCW_IV    0x08000000     /* Receive config invalid */
-#define E1000_RXCW_CC    0x10000000     /* Receive config change */
-#define E1000_RXCW_C     0x20000000     /* Receive config */
-#define E1000_RXCW_SYNCH 0x40000000     /* Receive config synch */
-#define E1000_RXCW_ANC   0x80000000     /* Auto-neg complete */
-
-/* Transmit Control */
-#define E1000_TCTL_RST    0x00000001    /* software reset */
-#define E1000_TCTL_EN     0x00000002    /* enable tx */
-#define E1000_TCTL_BCE    0x00000004    /* busy check enable */
-#define E1000_TCTL_PSP    0x00000008    /* pad short packets */
-#define E1000_TCTL_CT     0x00000ff0    /* collision threshold */
-#define E1000_TCTL_COLD   0x003ff000    /* collision distance */
-#define E1000_TCTL_SWXOFF 0x00400000    /* SW Xoff transmission */
-#define E1000_TCTL_PBE    0x00800000    /* Packet Burst Enable */
-#define E1000_TCTL_RTLC   0x01000000    /* Re-transmit on late collision */
-#define E1000_TCTL_NRTU   0x02000000    /* No Re-transmit on underrun */
-#define E1000_TCTL_MULR   0x10000000    /* Multiple request support */
-/* Extended Transmit Control */
-#define E1000_TCTL_EXT_BST_MASK  0x000003FF /* Backoff Slot Time */
-#define E1000_TCTL_EXT_GCEX_MASK 0x000FFC00 /* Gigabit Carry Extend Padding */
-
-#define DEFAULT_80003ES2LAN_TCTL_EXT_GCEX   0x00010000
-
-/* Receive Checksum Control */
-#define E1000_RXCSUM_PCSS_MASK 0x000000FF   /* Packet Checksum Start */
-#define E1000_RXCSUM_IPOFL     0x00000100   /* IPv4 checksum offload */
-#define E1000_RXCSUM_TUOFL     0x00000200   /* TCP / UDP checksum offload */
-#define E1000_RXCSUM_IPV6OFL   0x00000400   /* IPv6 checksum offload */
-#define E1000_RXCSUM_IPPCSE    0x00001000   /* IP payload checksum enable */
-#define E1000_RXCSUM_PCSD      0x00002000   /* packet checksum disabled */
-
-/* Multiple Receive Queue Control */
-#define E1000_MRQC_ENABLE_MASK              0x00000003
-#define E1000_MRQC_ENABLE_RSS_2Q            0x00000001
-#define E1000_MRQC_ENABLE_RSS_INT           0x00000004
-#define E1000_MRQC_RSS_FIELD_MASK           0xFFFF0000
-#define E1000_MRQC_RSS_FIELD_IPV4_TCP       0x00010000
-#define E1000_MRQC_RSS_FIELD_IPV4           0x00020000
-#define E1000_MRQC_RSS_FIELD_IPV6_TCP_EX    0x00040000
-#define E1000_MRQC_RSS_FIELD_IPV6_EX        0x00080000
-#define E1000_MRQC_RSS_FIELD_IPV6           0x00100000
-#define E1000_MRQC_RSS_FIELD_IPV6_TCP       0x00200000
-
-/* Definitions for power management and wakeup registers */
-/* Wake Up Control */
-#define E1000_WUC_APME       0x00000001 /* APM Enable */
-#define E1000_WUC_PME_EN     0x00000002 /* PME Enable */
-#define E1000_WUC_PME_STATUS 0x00000004 /* PME Status */
-#define E1000_WUC_APMPME     0x00000008 /* Assert PME on APM Wakeup */
-#define E1000_WUC_SPM        0x80000000 /* Enable SPM */
-
-/* Wake Up Filter Control */
-#define E1000_WUFC_LNKC 0x00000001 /* Link Status Change Wakeup Enable */
-#define E1000_WUFC_MAG  0x00000002 /* Magic Packet Wakeup Enable */
-#define E1000_WUFC_EX   0x00000004 /* Directed Exact Wakeup Enable */
-#define E1000_WUFC_MC   0x00000008 /* Directed Multicast Wakeup Enable */
-#define E1000_WUFC_BC   0x00000010 /* Broadcast Wakeup Enable */
-#define E1000_WUFC_ARP  0x00000020 /* ARP Request Packet Wakeup Enable */
-#define E1000_WUFC_IPV4 0x00000040 /* Directed IPv4 Packet Wakeup Enable */
-#define E1000_WUFC_IPV6 0x00000080 /* Directed IPv6 Packet Wakeup Enable */
-#define E1000_WUFC_IGNORE_TCO      0x00008000 /* Ignore WakeOn TCO packets */
-#define E1000_WUFC_FLX0 0x00010000 /* Flexible Filter 0 Enable */
-#define E1000_WUFC_FLX1 0x00020000 /* Flexible Filter 1 Enable */
-#define E1000_WUFC_FLX2 0x00040000 /* Flexible Filter 2 Enable */
-#define E1000_WUFC_FLX3 0x00080000 /* Flexible Filter 3 Enable */
-#define E1000_WUFC_ALL_FILTERS 0x000F00FF /* Mask for all wakeup filters */
-#define E1000_WUFC_FLX_OFFSET 16       /* Offset to the Flexible Filters bits */
-#define E1000_WUFC_FLX_FILTERS 0x000F0000 /* Mask for the 4 flexible filters */
-
-/* Wake Up Status */
-#define E1000_WUS_LNKC 0x00000001 /* Link Status Changed */
-#define E1000_WUS_MAG  0x00000002 /* Magic Packet Received */
-#define E1000_WUS_EX   0x00000004 /* Directed Exact Received */
-#define E1000_WUS_MC   0x00000008 /* Directed Multicast Received */
-#define E1000_WUS_BC   0x00000010 /* Broadcast Received */
-#define E1000_WUS_ARP  0x00000020 /* ARP Request Packet Received */
-#define E1000_WUS_IPV4 0x00000040 /* Directed IPv4 Packet Wakeup Received */
-#define E1000_WUS_IPV6 0x00000080 /* Directed IPv6 Packet Wakeup Received */
-#define E1000_WUS_FLX0 0x00010000 /* Flexible Filter 0 Match */
-#define E1000_WUS_FLX1 0x00020000 /* Flexible Filter 1 Match */
-#define E1000_WUS_FLX2 0x00040000 /* Flexible Filter 2 Match */
-#define E1000_WUS_FLX3 0x00080000 /* Flexible Filter 3 Match */
-#define E1000_WUS_FLX_FILTERS 0x000F0000 /* Mask for the 4 flexible filters */
-
-/* Management Control */
-#define E1000_MANC_SMBUS_EN      0x00000001 /* SMBus Enabled - RO */
-#define E1000_MANC_ASF_EN        0x00000002 /* ASF Enabled - RO */
-#define E1000_MANC_R_ON_FORCE    0x00000004 /* Reset on Force TCO - RO */
-#define E1000_MANC_RMCP_EN       0x00000100 /* Enable RCMP 026Fh Filtering */
-#define E1000_MANC_0298_EN       0x00000200 /* Enable RCMP 0298h Filtering */
-#define E1000_MANC_IPV4_EN       0x00000400 /* Enable IPv4 */
-#define E1000_MANC_IPV6_EN       0x00000800 /* Enable IPv6 */
-#define E1000_MANC_SNAP_EN       0x00001000 /* Accept LLC/SNAP */
-#define E1000_MANC_ARP_EN        0x00002000 /* Enable ARP Request Filtering */
-#define E1000_MANC_NEIGHBOR_EN   0x00004000 /* Enable Neighbor Discovery
-                                             * Filtering */
-#define E1000_MANC_ARP_RES_EN    0x00008000 /* Enable ARP response Filtering */
-#define E1000_MANC_TCO_RESET     0x00010000 /* TCO Reset Occurred */
-#define E1000_MANC_RCV_TCO_EN    0x00020000 /* Receive TCO Packets Enabled */
-#define E1000_MANC_REPORT_STATUS 0x00040000 /* Status Reporting Enabled */
-#define E1000_MANC_RCV_ALL       0x00080000 /* Receive All Enabled */
-#define E1000_MANC_BLK_PHY_RST_ON_IDE   0x00040000 /* Block phy resets */
-#define E1000_MANC_EN_MAC_ADDR_FILTER   0x00100000 /* Enable MAC address
-                                                    * filtering */
-#define E1000_MANC_EN_MNG2HOST   0x00200000 /* Enable MNG packets to host
-                                             * memory */
-#define E1000_MANC_EN_IP_ADDR_FILTER    0x00400000 /* Enable IP address
-                                                    * filtering */
-#define E1000_MANC_EN_XSUM_FILTER   0x00800000 /* Enable checksum filtering */
-#define E1000_MANC_BR_EN         0x01000000 /* Enable broadcast filtering */
-#define E1000_MANC_SMB_REQ       0x01000000 /* SMBus Request */
-#define E1000_MANC_SMB_GNT       0x02000000 /* SMBus Grant */
-#define E1000_MANC_SMB_CLK_IN    0x04000000 /* SMBus Clock In */
-#define E1000_MANC_SMB_DATA_IN   0x08000000 /* SMBus Data In */
-#define E1000_MANC_SMB_DATA_OUT  0x10000000 /* SMBus Data Out */
-#define E1000_MANC_SMB_CLK_OUT   0x20000000 /* SMBus Clock Out */
-
-#define E1000_MANC_SMB_DATA_OUT_SHIFT  28 /* SMBus Data Out Shift */
-#define E1000_MANC_SMB_CLK_OUT_SHIFT   29 /* SMBus Clock Out Shift */
-
-/* SW Semaphore Register */
-#define E1000_SWSM_SMBI         0x00000001 /* Driver Semaphore bit */
-#define E1000_SWSM_SWESMBI      0x00000002 /* FW Semaphore bit */
-#define E1000_SWSM_WMNG         0x00000004 /* Wake MNG Clock */
-#define E1000_SWSM_DRV_LOAD     0x00000008 /* Driver Loaded Bit */
-
-/* FW Semaphore Register */
-#define E1000_FWSM_MODE_MASK    0x0000000E /* FW mode */
-#define E1000_FWSM_MODE_SHIFT            1
-#define E1000_FWSM_FW_VALID     0x00008000 /* FW established a valid mode */
-
-#define E1000_FWSM_RSPCIPHY        0x00000040 /* Reset PHY on PCI reset */
-#define E1000_FWSM_DISSW           0x10000000 /* FW disable SW Write Access */
-#define E1000_FWSM_SKUSEL_MASK     0x60000000 /* LAN SKU select */
-#define E1000_FWSM_SKUEL_SHIFT     29
-#define E1000_FWSM_SKUSEL_EMB      0x0 /* Embedded SKU */
-#define E1000_FWSM_SKUSEL_CONS     0x1 /* Consumer SKU */
-#define E1000_FWSM_SKUSEL_PERF_100 0x2 /* Perf & Corp 10/100 SKU */
-#define E1000_FWSM_SKUSEL_PERF_GBE 0x3 /* Perf & Copr GbE SKU */
-
-/* FFLT Debug Register */
-#define E1000_FFLT_DBG_INVC     0x00100000 /* Invalid /C/ code handling */
-
-typedef enum {
-    em_mng_mode_none     = 0,
-    em_mng_mode_asf,
-    em_mng_mode_pt,
-    em_mng_mode_ipmi,
-    em_mng_mode_host_interface_only
-} em_mng_mode;
-
-/* Host Inteface Control Register */
-#define E1000_HICR_EN           0x00000001  /* Enable Bit - RO */
-#define E1000_HICR_C            0x00000002  /* Driver sets this bit when done
-                                             * to put command in RAM */
-#define E1000_HICR_SV           0x00000004  /* Status Validity */
-#define E1000_HICR_FWR          0x00000080  /* FW reset. Set by the Host */
-
-/* Host Interface Command Interface - Address range 0x8800-0x8EFF */
-#define E1000_HI_MAX_DATA_LENGTH         252 /* Host Interface data length */
-#define E1000_HI_MAX_BLOCK_BYTE_LENGTH  1792 /* Number of bytes in range */
-#define E1000_HI_MAX_BLOCK_DWORD_LENGTH  448 /* Number of dwords in range */
-#define E1000_HI_COMMAND_TIMEOUT         500 /* Time in ms to process HI command */
-
-struct em_host_command_header {
-    uint8_t command_id;
-    uint8_t command_length;
-    uint8_t command_options;   /* I/F bits for command, status for return */
-    uint8_t checksum;
-};
-struct em_host_command_info {
-    struct em_host_command_header command_header;  /* Command Head/Command Result Head has 4 bytes */
-    uint8_t command_data[E1000_HI_MAX_DATA_LENGTH];   /* Command data can length 0..252 */
-};
-
-/* Host SMB register #0 */
-#define E1000_HSMC0R_CLKIN      0x00000001  /* SMB Clock in */
-#define E1000_HSMC0R_DATAIN     0x00000002  /* SMB Data in */
-#define E1000_HSMC0R_DATAOUT    0x00000004  /* SMB Data out */
-#define E1000_HSMC0R_CLKOUT     0x00000008  /* SMB Clock out */
-
-/* Host SMB register #1 */
-#define E1000_HSMC1R_CLKIN      E1000_HSMC0R_CLKIN
-#define E1000_HSMC1R_DATAIN     E1000_HSMC0R_DATAIN
-#define E1000_HSMC1R_DATAOUT    E1000_HSMC0R_DATAOUT
-#define E1000_HSMC1R_CLKOUT     E1000_HSMC0R_CLKOUT
-
-/* FW Status Register */
-#define E1000_FWSTS_FWS_MASK    0x000000FF  /* FW Status */
-
-/* Wake Up Packet Length */
-#define E1000_WUPL_LENGTH_MASK 0x0FFF   /* Only the lower 12 bits are valid */
-
-#define E1000_MDALIGN          4096
-
-/* PCI-Ex registers*/
-
-/* PCI-Ex Control Register */
-#define E1000_GCR_RXD_NO_SNOOP          0x00000001
-#define E1000_GCR_RXDSCW_NO_SNOOP       0x00000002
-#define E1000_GCR_RXDSCR_NO_SNOOP       0x00000004
-#define E1000_GCR_TXD_NO_SNOOP          0x00000008
-#define E1000_GCR_TXDSCW_NO_SNOOP       0x00000010
-#define E1000_GCR_TXDSCR_NO_SNOOP       0x00000020
-
-#define PCI_EX_NO_SNOOP_ALL (E1000_GCR_RXD_NO_SNOOP         | \
-                             E1000_GCR_RXDSCW_NO_SNOOP      | \
-                             E1000_GCR_RXDSCR_NO_SNOOP      | \
-                             E1000_GCR_TXD_NO_SNOOP         | \
-                             E1000_GCR_TXDSCW_NO_SNOOP      | \
-                             E1000_GCR_TXDSCR_NO_SNOOP)
-
-#define PCI_EX_82566_SNOOP_ALL PCI_EX_NO_SNOOP_ALL
-
-#define E1000_GCR_L1_ACT_WITHOUT_L0S_RX 0x08000000
-/* Function Active and Power State to MNG */
-#define E1000_FACTPS_FUNC0_POWER_STATE_MASK         0x00000003
-#define E1000_FACTPS_LAN0_VALID                     0x00000004
-#define E1000_FACTPS_FUNC0_AUX_EN                   0x00000008
-#define E1000_FACTPS_FUNC1_POWER_STATE_MASK         0x000000C0
-#define E1000_FACTPS_FUNC1_POWER_STATE_SHIFT        6
-#define E1000_FACTPS_LAN1_VALID                     0x00000100
-#define E1000_FACTPS_FUNC1_AUX_EN                   0x00000200
-#define E1000_FACTPS_FUNC2_POWER_STATE_MASK         0x00003000
-#define E1000_FACTPS_FUNC2_POWER_STATE_SHIFT        12
-#define E1000_FACTPS_IDE_ENABLE                     0x00004000
-#define E1000_FACTPS_FUNC2_AUX_EN                   0x00008000
-#define E1000_FACTPS_FUNC3_POWER_STATE_MASK         0x000C0000
-#define E1000_FACTPS_FUNC3_POWER_STATE_SHIFT        18
-#define E1000_FACTPS_SP_ENABLE                      0x00100000
-#define E1000_FACTPS_FUNC3_AUX_EN                   0x00200000
-#define E1000_FACTPS_FUNC4_POWER_STATE_MASK         0x03000000
-#define E1000_FACTPS_FUNC4_POWER_STATE_SHIFT        24
-#define E1000_FACTPS_IPMI_ENABLE                    0x04000000
-#define E1000_FACTPS_FUNC4_AUX_EN                   0x08000000
-#define E1000_FACTPS_MNGCG                          0x20000000
-#define E1000_FACTPS_LAN_FUNC_SEL                   0x40000000
-#define E1000_FACTPS_PM_STATE_CHANGED               0x80000000
-
-/* EEPROM Commands - Microwire */
-#define EEPROM_READ_OPCODE_MICROWIRE  0x6  /* EEPROM read opcode */
-#define EEPROM_WRITE_OPCODE_MICROWIRE 0x5  /* EEPROM write opcode */
-#define EEPROM_ERASE_OPCODE_MICROWIRE 0x7  /* EEPROM erase opcode */
-#define EEPROM_EWEN_OPCODE_MICROWIRE  0x13 /* EEPROM erase/write enable */
-#define EEPROM_EWDS_OPCODE_MICROWIRE  0x10 /* EEPROM erast/write disable */
-
-/* EEPROM Commands - SPI */
-#define EEPROM_MAX_RETRY_SPI        5000 /* Max wait of 5ms, for RDY signal */
-#define EEPROM_READ_OPCODE_SPI      0x03  /* EEPROM read opcode */
-#define EEPROM_WRITE_OPCODE_SPI     0x02  /* EEPROM write opcode */
-#define EEPROM_A8_OPCODE_SPI        0x08  /* opcode bit-3 = address bit-8 */
-#define EEPROM_WREN_OPCODE_SPI      0x06  /* EEPROM set Write Enable latch */
-#define EEPROM_WRDI_OPCODE_SPI      0x04  /* EEPROM reset Write Enable latch */
-#define EEPROM_RDSR_OPCODE_SPI      0x05  /* EEPROM read Status register */
-#define EEPROM_WRSR_OPCODE_SPI      0x01  /* EEPROM write Status register */
-#define EEPROM_ERASE4K_OPCODE_SPI   0x20  /* EEPROM ERASE 4KB */
-#define EEPROM_ERASE64K_OPCODE_SPI  0xD8  /* EEPROM ERASE 64KB */
-#define EEPROM_ERASE256_OPCODE_SPI  0xDB  /* EEPROM ERASE 256B */
-
-/* EEPROM Size definitions */
-#define EEPROM_WORD_SIZE_SHIFT  6
-#define EEPROM_SIZE_SHIFT       10
-#define EEPROM_SIZE_MASK        0x1C00
-
-/* EEPROM Word Offsets */
-#define EEPROM_COMPAT                 0x0003
-#define EEPROM_ID_LED_SETTINGS        0x0004
-#define EEPROM_VERSION                0x0005
-#define EEPROM_SERDES_AMPLITUDE       0x0006 /* For SERDES output amplitude adjustment. */
-#define EEPROM_PHY_CLASS_WORD         0x0007
-#define EEPROM_INIT_CONTROL1_REG      0x000A
-#define EEPROM_INIT_CONTROL2_REG      0x000F
-#define EEPROM_SWDEF_PINS_CTRL_PORT_1 0x0010
-#define EEPROM_INIT_CONTROL3_PORT_B   0x0014
-#define EEPROM_INIT_3GIO_3            0x001A
-#define EEPROM_SWDEF_PINS_CTRL_PORT_0 0x0020
-#define EEPROM_INIT_CONTROL3_PORT_A   0x0024
-#define EEPROM_CFG                    0x0012
-#define EEPROM_FLASH_VERSION          0x0032
-#define EEPROM_CHECKSUM_REG           0x003F
-
-#define E1000_EEPROM_CFG_DONE         0x00040000   /* MNG config cycle done */
-#define E1000_EEPROM_CFG_DONE_PORT_1  0x00080000   /* ...for second port */
-
-/* Word definitions for ID LED Settings */
-#define ID_LED_RESERVED_0000 0x0000
-#define ID_LED_RESERVED_FFFF 0xFFFF
-#define ID_LED_RESERVED_82573  0xF746
-#define ID_LED_DEFAULT_82573   0x1811
-#define ID_LED_DEFAULT       ((ID_LED_OFF1_ON2 << 12) | \
-                              (ID_LED_OFF1_OFF2 << 8) | \
-                              (ID_LED_DEF1_DEF2 << 4) | \
-                              (ID_LED_DEF1_DEF2))
-#define ID_LED_DEFAULT_ICH8LAN  ((ID_LED_DEF1_DEF2 << 12) | \
-                                 (ID_LED_DEF1_OFF2 <<  8) | \
-                                 (ID_LED_DEF1_ON2  <<  4) | \
-                                 (ID_LED_DEF1_DEF2))
-#define ID_LED_DEF1_DEF2     0x1
-#define ID_LED_DEF1_ON2      0x2
-#define ID_LED_DEF1_OFF2     0x3
-#define ID_LED_ON1_DEF2      0x4
-#define ID_LED_ON1_ON2       0x5
-#define ID_LED_ON1_OFF2      0x6
-#define ID_LED_OFF1_DEF2     0x7
-#define ID_LED_OFF1_ON2      0x8
-#define ID_LED_OFF1_OFF2     0x9
-
-#define IGP_ACTIVITY_LED_MASK   0xFFFFF0FF
-#define IGP_ACTIVITY_LED_ENABLE 0x0300
-#define IGP_LED3_MODE           0x07000000
-
-
-/* Mask bits for SERDES amplitude adjustment in Word 6 of the EEPROM */
-#define EEPROM_SERDES_AMPLITUDE_MASK  0x000F
-
-/* Mask bit for PHY class in Word 7 of the EEPROM */
-#define EEPROM_PHY_CLASS_A   0x8000
-
-/* Mask bits for fields in Word 0x0a of the EEPROM */
-#define EEPROM_WORD0A_ILOS   0x0010
-#define EEPROM_WORD0A_SWDPIO 0x01E0
-#define EEPROM_WORD0A_LRST   0x0200
-#define EEPROM_WORD0A_FD     0x0400
-#define EEPROM_WORD0A_66MHZ  0x0800
-
-/* Mask bits for fields in Word 0x0f of the EEPROM */
-#define EEPROM_WORD0F_PAUSE_MASK 0x3000
-#define EEPROM_WORD0F_PAUSE      0x1000
-#define EEPROM_WORD0F_ASM_DIR    0x2000
-#define EEPROM_WORD0F_ANE        0x0800
-#define EEPROM_WORD0F_SWPDIO_EXT 0x00F0
-#define EEPROM_WORD0F_LPLU       0x0001
-
-/* Mask bits for fields in Word 0x10/0x20 of the EEPROM */
-#define EEPROM_WORD1020_GIGA_DISABLE         0x0010
-#define EEPROM_WORD1020_GIGA_DISABLE_NON_D0A 0x0008
-
-/* Mask bits for fields in Word 0x1a of the EEPROM */
-#define EEPROM_WORD1A_ASPM_MASK  0x000C
-
-/* For checksumming, the sum of all words in the EEPROM should equal 0xBABA. */
-#define EEPROM_SUM 0xBABA
-
-/* EEPROM Map defines (WORD OFFSETS)*/
-#define EEPROM_NODE_ADDRESS_BYTE_0 0
-#define EEPROM_PBA_BYTE_1          8
-
-#define EEPROM_RESERVED_WORD          0xFFFF
-
-/* EEPROM Map Sizes (Byte Counts) */
-#define PBA_SIZE 4
-
-/* Collision related configuration parameters */
-#define E1000_COLLISION_THRESHOLD       15
-#define E1000_CT_SHIFT                  4
-/* Collision distance is a 0-based value that applies to
- * half-duplex-capable hardware only. */
-#define E1000_COLLISION_DISTANCE        63
-#define E1000_COLLISION_DISTANCE_82542  64
-#define E1000_FDX_COLLISION_DISTANCE    E1000_COLLISION_DISTANCE
-#define E1000_HDX_COLLISION_DISTANCE    E1000_COLLISION_DISTANCE
-#define E1000_COLD_SHIFT                12
-
-/* Number of Transmit and Receive Descriptors must be a multiple of 8 */
-#define REQ_TX_DESCRIPTOR_MULTIPLE  8
-#define REQ_RX_DESCRIPTOR_MULTIPLE  8
-
-/* Default values for the transmit IPG register */
-#define DEFAULT_82542_TIPG_IPGT        10
-#define DEFAULT_82543_TIPG_IPGT_FIBER  9
-#define DEFAULT_82543_TIPG_IPGT_COPPER 8
-
-#define E1000_TIPG_IPGT_MASK  0x000003FF
-#define E1000_TIPG_IPGR1_MASK 0x000FFC00
-#define E1000_TIPG_IPGR2_MASK 0x3FF00000
-
-#define DEFAULT_82542_TIPG_IPGR1 2
-#define DEFAULT_82543_TIPG_IPGR1 8
-#define E1000_TIPG_IPGR1_SHIFT  10
-
-#define DEFAULT_82542_TIPG_IPGR2 10
-#define DEFAULT_82543_TIPG_IPGR2 6
-#define DEFAULT_80003ES2LAN_TIPG_IPGR2 7
-#define E1000_TIPG_IPGR2_SHIFT  20
-
-#define DEFAULT_80003ES2LAN_TIPG_IPGT_10_100 0x00000009
-#define DEFAULT_80003ES2LAN_TIPG_IPGT_1000   0x00000008
-#define E1000_TXDMAC_DPP 0x00000001
-
-/* Adaptive IFS defines */
-#define TX_THRESHOLD_START     8
-#define TX_THRESHOLD_INCREMENT 10
-#define TX_THRESHOLD_DECREMENT 1
-#define TX_THRESHOLD_STOP      190
-#define TX_THRESHOLD_DISABLE   0
-#define TX_THRESHOLD_TIMER_MS  10000
-#define MIN_NUM_XMITS          1000
-#define IFS_MAX                80
-#define IFS_STEP               10
-#define IFS_MIN                40
-#define IFS_RATIO              4
-
-/* Extended Configuration Control and Size */
-#define E1000_EXTCNF_CTRL_PCIE_WRITE_ENABLE 0x00000001
-#define E1000_EXTCNF_CTRL_PHY_WRITE_ENABLE  0x00000002
-#define E1000_EXTCNF_CTRL_D_UD_ENABLE       0x00000004
-#define E1000_EXTCNF_CTRL_D_UD_LATENCY      0x00000008
-#define E1000_EXTCNF_CTRL_D_UD_OWNER        0x00000010
-#define E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP 0x00000020
-#define E1000_EXTCNF_CTRL_MDIO_HW_OWNERSHIP 0x00000040
-#define E1000_EXTCNF_CTRL_EXT_CNF_POINTER   0x0FFF0000
-
-#define E1000_EXTCNF_SIZE_EXT_PHY_LENGTH    0x000000FF
-#define E1000_EXTCNF_SIZE_EXT_DOCK_LENGTH   0x0000FF00
-#define E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH   0x00FF0000
-#define E1000_EXTCNF_CTRL_LCD_WRITE_ENABLE  0x00000001
-#define E1000_EXTCNF_CTRL_SWFLAG            0x00000020
-
-/* PBA constants */
-#define E1000_PBA_8K 0x0008    /* 8KB, default Rx allocation */
-#define E1000_PBA_12K 0x000C    /* 12KB, default Rx allocation */
-#define E1000_PBA_16K 0x0010    /* 16KB, default TX allocation */
-#define E1000_PBA_22K 0x0016
-#define E1000_PBA_24K 0x0018
-#define E1000_PBA_30K 0x001E
-#define E1000_PBA_32K 0x0020
-#define E1000_PBA_34K 0x0022
-#define E1000_PBA_38K 0x0026
-#define E1000_PBA_40K 0x0028
-#define E1000_PBA_48K 0x0030    /* 48KB, default RX allocation */
-
-#define E1000_PBS_16K E1000_PBA_16K
-
-/* Flow Control Constants */
-#define FLOW_CONTROL_ADDRESS_LOW  0x00C28001
-#define FLOW_CONTROL_ADDRESS_HIGH 0x00000100
-#define FLOW_CONTROL_TYPE         0x8808
-
-/* The historical defaults for the flow control values are given below. */
-#define FC_DEFAULT_HI_THRESH        (0x8000)    /* 32KB */
-#define FC_DEFAULT_LO_THRESH        (0x4000)    /* 16KB */
-#define FC_DEFAULT_TX_TIMER         (0x100)     /* ~130 us */
-
-/* PCIX Config space */
-#define PCIX_COMMAND_REGISTER    0xE6
-#define PCIX_STATUS_REGISTER_LO  0xE8
-#define PCIX_STATUS_REGISTER_HI  0xEA
-
-#define PCIX_COMMAND_MMRBC_MASK      0x000C
-#define PCIX_COMMAND_MMRBC_SHIFT     0x2
-#define PCIX_STATUS_HI_MMRBC_MASK    0x0060
-#define PCIX_STATUS_HI_MMRBC_SHIFT   0x5
-#define PCIX_STATUS_HI_MMRBC_4K      0x3
-#define PCIX_STATUS_HI_MMRBC_2K      0x2
-
-
-/* Number of bits required to shift right the "pause" bits from the
- * EEPROM (bits 13:12) to the "pause" (bits 8:7) field in the TXCW register.
- */
-#define PAUSE_SHIFT 5
-
-/* Number of bits required to shift left the "SWDPIO" bits from the
- * EEPROM (bits 8:5) to the "SWDPIO" (bits 25:22) field in the CTRL register.
- */
-#define SWDPIO_SHIFT 17
-
-/* Number of bits required to shift left the "SWDPIO_EXT" bits from the
- * EEPROM word F (bits 7:4) to the bits 11:8 of The Extended CTRL register.
- */
-#define SWDPIO__EXT_SHIFT 4
-
-/* Number of bits required to shift left the "ILOS" bit from the EEPROM
- * (bit 4) to the "ILOS" (bit 7) field in the CTRL register.
- */
-#define ILOS_SHIFT  3
-
-
-#define RECEIVE_BUFFER_ALIGN_SIZE  (256)
-
-/* Number of milliseconds we wait for auto-negotiation to complete */
-#define LINK_UP_TIMEOUT             500
-
-/* Number of 100 microseconds we wait for PCI Express master disable */
-#define MASTER_DISABLE_TIMEOUT      800
-/* Number of milliseconds we wait for Eeprom auto read bit done after MAC reset */
-#define AUTO_READ_DONE_TIMEOUT      10
-/* Number of milliseconds we wait for PHY configuration done after MAC reset */
-#define PHY_CFG_TIMEOUT             100
-
-#define E1000_TX_BUFFER_SIZE ((uint32_t)1514)
-
-/* The carrier extension symbol, as received by the NIC. */
-#define CARRIER_EXTENSION   0x0F
-
-/* TBI_ACCEPT macro definition:
- *
- * This macro requires:
- *      adapter = a pointer to struct em_hw
- *      status = the 8 bit status field of the RX descriptor with EOP set
- *      error = the 8 bit error field of the RX descriptor with EOP set
- *      length = the sum of all the length fields of the RX descriptors that
- *               make up the current frame
- *      last_byte = the last byte of the frame DMAed by the hardware
- *      max_frame_length = the maximum frame length we want to accept.
- *      min_frame_length = the minimum frame length we want to accept.
- *
- * This macro is a conditional that should be used in the interrupt
- * handler's Rx processing routine when RxErrors have been detected.
- *
- * Typical use:
- *  ...
- *  if (TBI_ACCEPT) {
- *      accept_frame = TRUE;
- *      em_tbi_adjust_stats(adapter, MacAddress);
- *      frame_length--;
- *  } else {
- *      accept_frame = FALSE;
- *  }
- *  ...
- */
-
-#define TBI_ACCEPT(adapter, status, errors, length, last_byte) \
-    ((adapter)->tbi_compatibility_on && \
-     (((errors) & E1000_RXD_ERR_FRAME_ERR_MASK) == E1000_RXD_ERR_CE) && \
-     ((last_byte) == CARRIER_EXTENSION) && \
-     (((status) & E1000_RXD_STAT_VP) ? \
-          (((length) > ((adapter)->min_frame_size - VLAN_TAG_SIZE)) && \
-           ((length) <= ((adapter)->max_frame_size + 1))) : \
-          (((length) > (adapter)->min_frame_size) && \
-           ((length) <= ((adapter)->max_frame_size + VLAN_TAG_SIZE + 1)))))
-
-
-/* Structures, enums, and macros for the PHY */
-
-/* Bit definitions for the Management Data IO (MDIO) and Management Data
- * Clock (MDC) pins in the Device Control Register.
- */
-#define E1000_CTRL_PHY_RESET_DIR  E1000_CTRL_SWDPIO0
-#define E1000_CTRL_PHY_RESET      E1000_CTRL_SWDPIN0
-#define E1000_CTRL_MDIO_DIR       E1000_CTRL_SWDPIO2
-#define E1000_CTRL_MDIO           E1000_CTRL_SWDPIN2
-#define E1000_CTRL_MDC_DIR        E1000_CTRL_SWDPIO3
-#define E1000_CTRL_MDC            E1000_CTRL_SWDPIN3
-#define E1000_CTRL_PHY_RESET_DIR4 E1000_CTRL_EXT_SDP4_DIR
-#define E1000_CTRL_PHY_RESET4     E1000_CTRL_EXT_SDP4_DATA
-
-/* PHY 1000 MII Register/Bit Definitions */
-/* PHY Registers defined by IEEE */
-#define PHY_CTRL         0x00 /* Control Register */
-#define PHY_STATUS       0x01 /* Status Regiser */
-#define PHY_ID1          0x02 /* Phy Id Reg (word 1) */
-#define PHY_ID2          0x03 /* Phy Id Reg (word 2) */
-#define PHY_AUTONEG_ADV  0x04 /* Autoneg Advertisement */
-#define PHY_LP_ABILITY   0x05 /* Link Partner Ability (Base Page) */
-#define PHY_AUTONEG_EXP  0x06 /* Autoneg Expansion Reg */
-#define PHY_NEXT_PAGE_TX 0x07 /* Next Page TX */
-#define PHY_LP_NEXT_PAGE 0x08 /* Link Partner Next Page */
-#define PHY_1000T_CTRL   0x09 /* 1000Base-T Control Reg */
-#define PHY_1000T_STATUS 0x0A /* 1000Base-T Status Reg */
-#define PHY_EXT_STATUS   0x0F /* Extended Status Reg */
-
-#define MAX_PHY_REG_ADDRESS        0x1F  /* 5 bit address bus (0-0x1F) */
-#define MAX_PHY_MULTI_PAGE_REG     0xF   /* Registers equal on all pages */
-
-/* M88E1000 Specific Registers */
-#define M88E1000_PHY_SPEC_CTRL     0x10  /* PHY Specific Control Register */
-#define M88E1000_PHY_SPEC_STATUS   0x11  /* PHY Specific Status Register */
-#define M88E1000_INT_ENABLE        0x12  /* Interrupt Enable Register */
-#define M88E1000_INT_STATUS        0x13  /* Interrupt Status Register */
-#define M88E1000_EXT_PHY_SPEC_CTRL 0x14  /* Extended PHY Specific Control */
-#define M88E1000_RX_ERR_CNTR       0x15  /* Receive Error Counter */
-
-#define M88E1000_PHY_EXT_CTRL      0x1A  /* PHY extend control register */
-#define M88E1000_PHY_PAGE_SELECT   0x1D  /* Reg 29 for page number setting */
-#define M88E1000_PHY_GEN_CONTROL   0x1E  /* Its meaning depends on reg 29 */
-#define M88E1000_PHY_VCO_REG_BIT8  0x100 /* Bits 8 & 11 are adjusted for */
-#define M88E1000_PHY_VCO_REG_BIT11 0x800    /* improved BER performance */
-
-#define IGP01E1000_IEEE_REGS_PAGE  0x0000
-#define IGP01E1000_IEEE_RESTART_AUTONEG 0x3300
-#define IGP01E1000_IEEE_FORCE_GIGA      0x0140
-
-/* IGP01E1000 Specific Registers */
-#define IGP01E1000_PHY_PORT_CONFIG 0x10 /* PHY Specific Port Config Register */
-#define IGP01E1000_PHY_PORT_STATUS 0x11 /* PHY Specific Status Register */
-#define IGP01E1000_PHY_PORT_CTRL   0x12 /* PHY Specific Control Register */
-#define IGP01E1000_PHY_LINK_HEALTH 0x13 /* PHY Link Health Register */
-#define IGP01E1000_GMII_FIFO       0x14 /* GMII FIFO Register */
-#define IGP01E1000_PHY_CHANNEL_QUALITY 0x15 /* PHY Channel Quality Register */
-#define IGP02E1000_PHY_POWER_MGMT      0x19
-#define IGP01E1000_PHY_PAGE_SELECT     0x1F /* PHY Page Select Core Register */
-
-/* IGP01E1000 AGC Registers - stores the cable length values*/
-#define IGP01E1000_PHY_AGC_A        0x1172
-#define IGP01E1000_PHY_AGC_B        0x1272
-#define IGP01E1000_PHY_AGC_C        0x1472
-#define IGP01E1000_PHY_AGC_D        0x1872
-
-/* IGP02E1000 AGC Registers for cable length values */
-#define IGP02E1000_PHY_AGC_A        0x11B1
-#define IGP02E1000_PHY_AGC_B        0x12B1
-#define IGP02E1000_PHY_AGC_C        0x14B1
-#define IGP02E1000_PHY_AGC_D        0x18B1
-
-/* IGP01E1000 DSP Reset Register */
-#define IGP01E1000_PHY_DSP_RESET   0x1F33
-#define IGP01E1000_PHY_DSP_SET     0x1F71
-#define IGP01E1000_PHY_DSP_FFE     0x1F35
-
-#define IGP01E1000_PHY_CHANNEL_NUM    4
-#define IGP02E1000_PHY_CHANNEL_NUM    4
-
-#define IGP01E1000_PHY_AGC_PARAM_A    0x1171
-#define IGP01E1000_PHY_AGC_PARAM_B    0x1271
-#define IGP01E1000_PHY_AGC_PARAM_C    0x1471
-#define IGP01E1000_PHY_AGC_PARAM_D    0x1871
-
-#define IGP01E1000_PHY_EDAC_MU_INDEX        0xC000
-#define IGP01E1000_PHY_EDAC_SIGN_EXT_9_BITS 0x8000
-
-#define IGP01E1000_PHY_ANALOG_TX_STATE      0x2890
-#define IGP01E1000_PHY_ANALOG_CLASS_A       0x2000
-#define IGP01E1000_PHY_FORCE_ANALOG_ENABLE  0x0004
-#define IGP01E1000_PHY_DSP_FFE_CM_CP        0x0069
-
-#define IGP01E1000_PHY_DSP_FFE_DEFAULT      0x002A
-/* IGP01E1000 PCS Initialization register - stores the polarity status when
- * speed = 1000 Mbps. */
-#define IGP01E1000_PHY_PCS_INIT_REG  0x00B4
-#define IGP01E1000_PHY_PCS_CTRL_REG  0x00B5
-
-#define IGP01E1000_ANALOG_REGS_PAGE  0x20C0
-
-/* Bits...
- * 15-5: page
- * 4-0: register offset
- */
-#define GG82563_PAGE_SHIFT        5
-#define GG82563_REG(page, reg)    \
-        (((page) << GG82563_PAGE_SHIFT) | ((reg) & MAX_PHY_REG_ADDRESS))
-#define GG82563_MIN_ALT_REG       30
-
-/* GG82563 Specific Registers */
-#define GG82563_PHY_SPEC_CTRL           \
-        GG82563_REG(0, 16) /* PHY Specific Control */
-#define GG82563_PHY_SPEC_STATUS         \
-        GG82563_REG(0, 17) /* PHY Specific Status */
-#define GG82563_PHY_INT_ENABLE          \
-        GG82563_REG(0, 18) /* Interrupt Enable */
-#define GG82563_PHY_SPEC_STATUS_2       \
-        GG82563_REG(0, 19) /* PHY Specific Status 2 */
-#define GG82563_PHY_RX_ERR_CNTR         \
-        GG82563_REG(0, 21) /* Receive Error Counter */
-#define GG82563_PHY_PAGE_SELECT         \
-        GG82563_REG(0, 22) /* Page Select */
-#define GG82563_PHY_SPEC_CTRL_2         \
-        GG82563_REG(0, 26) /* PHY Specific Control 2 */
-#define GG82563_PHY_PAGE_SELECT_ALT     \
-        GG82563_REG(0, 29) /* Alternate Page Select */
-#define GG82563_PHY_TEST_CLK_CTRL       \
-        GG82563_REG(0, 30) /* Test Clock Control (use reg. 29 to select) */
-
-#define GG82563_PHY_MAC_SPEC_CTRL       \
-        GG82563_REG(2, 21) /* MAC Specific Control Register */
-#define GG82563_PHY_MAC_SPEC_CTRL_2     \
-        GG82563_REG(2, 26) /* MAC Specific Control 2 */
-
-#define GG82563_PHY_DSP_DISTANCE    \
-        GG82563_REG(5, 26) /* DSP Distance */
-
-/* Page 193 - Port Control Registers */
-#define GG82563_PHY_KMRN_MODE_CTRL   \
-        GG82563_REG(193, 16) /* Kumeran Mode Control */
-#define GG82563_PHY_PORT_RESET          \
-        GG82563_REG(193, 17) /* Port Reset */
-#define GG82563_PHY_REVISION_ID         \
-        GG82563_REG(193, 18) /* Revision ID */
-#define GG82563_PHY_DEVICE_ID           \
-        GG82563_REG(193, 19) /* Device ID */
-#define GG82563_PHY_PWR_MGMT_CTRL       \
-        GG82563_REG(193, 20) /* Power Management Control */
-#define GG82563_PHY_RATE_ADAPT_CTRL     \
-        GG82563_REG(193, 25) /* Rate Adaptation Control */
-
-/* Page 194 - KMRN Registers */
-#define GG82563_PHY_KMRN_FIFO_CTRL_STAT \
-        GG82563_REG(194, 16) /* FIFO's Control/Status */
-#define GG82563_PHY_KMRN_CTRL           \
-        GG82563_REG(194, 17) /* Control */
-#define GG82563_PHY_INBAND_CTRL         \
-        GG82563_REG(194, 18) /* Inband Control */
-#define GG82563_PHY_KMRN_DIAGNOSTIC     \
-        GG82563_REG(194, 19) /* Diagnostic */
-#define GG82563_PHY_ACK_TIMEOUTS        \
-        GG82563_REG(194, 20) /* Acknowledge Timeouts */
-#define GG82563_PHY_ADV_ABILITY         \
-        GG82563_REG(194, 21) /* Advertised Ability */
-#define GG82563_PHY_LINK_PARTNER_ADV_ABILITY \
-        GG82563_REG(194, 23) /* Link Partner Advertised Ability */
-#define GG82563_PHY_ADV_NEXT_PAGE       \
-        GG82563_REG(194, 24) /* Advertised Next Page */
-#define GG82563_PHY_LINK_PARTNER_ADV_NEXT_PAGE \
-        GG82563_REG(194, 25) /* Link Partner Advertised Next page */
-#define GG82563_PHY_KMRN_MISC           \
-        GG82563_REG(194, 26) /* Misc. */
-
-/* PHY Control Register */
-#define MII_CR_SPEED_SELECT_MSB 0x0040  /* bits 6,13: 10=1000, 01=100, 00=10 */
-#define MII_CR_COLL_TEST_ENABLE 0x0080  /* Collision test enable */
-#define MII_CR_FULL_DUPLEX      0x0100  /* FDX =1, half duplex =0 */
-#define MII_CR_RESTART_AUTO_NEG 0x0200  /* Restart auto negotiation */
-#define MII_CR_ISOLATE          0x0400  /* Isolate PHY from MII */
-#define MII_CR_POWER_DOWN       0x0800  /* Power down */
-#define MII_CR_AUTO_NEG_EN      0x1000  /* Auto Neg Enable */
-#define MII_CR_SPEED_SELECT_LSB 0x2000  /* bits 6,13: 10=1000, 01=100, 00=10 */
-#define MII_CR_LOOPBACK         0x4000  /* 0 = normal, 1 = loopback */
-#define MII_CR_RESET            0x8000  /* 0 = normal, 1 = PHY reset */
-
-/* PHY Status Register */
-#define MII_SR_EXTENDED_CAPS     0x0001 /* Extended register capabilities */
-#define MII_SR_JABBER_DETECT     0x0002 /* Jabber Detected */
-#define MII_SR_LINK_STATUS       0x0004 /* Link Status 1 = link */
-#define MII_SR_AUTONEG_CAPS      0x0008 /* Auto Neg Capable */
-#define MII_SR_REMOTE_FAULT      0x0010 /* Remote Fault Detect */
-#define MII_SR_AUTONEG_COMPLETE  0x0020 /* Auto Neg Complete */
-#define MII_SR_PREAMBLE_SUPPRESS 0x0040 /* Preamble may be suppressed */
-#define MII_SR_EXTENDED_STATUS   0x0100 /* Ext. status info in Reg 0x0F */
-#define MII_SR_100T2_HD_CAPS     0x0200 /* 100T2 Half Duplex Capable */
-#define MII_SR_100T2_FD_CAPS     0x0400 /* 100T2 Full Duplex Capable */
-#define MII_SR_10T_HD_CAPS       0x0800 /* 10T   Half Duplex Capable */
-#define MII_SR_10T_FD_CAPS       0x1000 /* 10T   Full Duplex Capable */
-#define MII_SR_100X_HD_CAPS      0x2000 /* 100X  Half Duplex Capable */
-#define MII_SR_100X_FD_CAPS      0x4000 /* 100X  Full Duplex Capable */
-#define MII_SR_100T4_CAPS        0x8000 /* 100T4 Capable */
-
-/* Autoneg Advertisement Register */
-#define NWAY_AR_SELECTOR_FIELD 0x0001   /* indicates IEEE 802.3 CSMA/CD */
-#define NWAY_AR_10T_HD_CAPS    0x0020   /* 10T   Half Duplex Capable */
-#define NWAY_AR_10T_FD_CAPS    0x0040   /* 10T   Full Duplex Capable */
-#define NWAY_AR_100TX_HD_CAPS  0x0080   /* 100TX Half Duplex Capable */
-#define NWAY_AR_100TX_FD_CAPS  0x0100   /* 100TX Full Duplex Capable */
-#define NWAY_AR_100T4_CAPS     0x0200   /* 100T4 Capable */
-#define NWAY_AR_PAUSE          0x0400   /* Pause operation desired */
-#define NWAY_AR_ASM_DIR        0x0800   /* Asymmetric Pause Direction bit */
-#define NWAY_AR_REMOTE_FAULT   0x2000   /* Remote Fault detected */
-#define NWAY_AR_NEXT_PAGE      0x8000   /* Next Page ability supported */
-
-/* Link Partner Ability Register (Base Page) */
-#define NWAY_LPAR_SELECTOR_FIELD 0x0000 /* LP protocol selector field */
-#define NWAY_LPAR_10T_HD_CAPS    0x0020 /* LP is 10T   Half Duplex Capable */
-#define NWAY_LPAR_10T_FD_CAPS    0x0040 /* LP is 10T   Full Duplex Capable */
-#define NWAY_LPAR_100TX_HD_CAPS  0x0080 /* LP is 100TX Half Duplex Capable */
-#define NWAY_LPAR_100TX_FD_CAPS  0x0100 /* LP is 100TX Full Duplex Capable */
-#define NWAY_LPAR_100T4_CAPS     0x0200 /* LP is 100T4 Capable */
-#define NWAY_LPAR_PAUSE          0x0400 /* LP Pause operation desired */
-#define NWAY_LPAR_ASM_DIR        0x0800 /* LP Asymmetric Pause Direction bit */
-#define NWAY_LPAR_REMOTE_FAULT   0x2000 /* LP has detected Remote Fault */
-#define NWAY_LPAR_ACKNOWLEDGE    0x4000 /* LP has rx'd link code word */
-#define NWAY_LPAR_NEXT_PAGE      0x8000 /* Next Page ability supported */
-
-/* Autoneg Expansion Register */
-#define NWAY_ER_LP_NWAY_CAPS      0x0001 /* LP has Auto Neg Capability */
-#define NWAY_ER_PAGE_RXD          0x0002 /* LP is 10T   Half Duplex Capable */
-#define NWAY_ER_NEXT_PAGE_CAPS    0x0004 /* LP is 10T   Full Duplex Capable */
-#define NWAY_ER_LP_NEXT_PAGE_CAPS 0x0008 /* LP is 100TX Half Duplex Capable */
-#define NWAY_ER_PAR_DETECT_FAULT  0x0010 /* LP is 100TX Full Duplex Capable */
-
-/* Next Page TX Register */
-#define NPTX_MSG_CODE_FIELD 0x0001 /* NP msg code or unformatted data */
-#define NPTX_TOGGLE         0x0800 /* Toggles between exchanges
-                                    * of different NP
-                                    */
-#define NPTX_ACKNOWLDGE2    0x1000 /* 1 = will comply with msg
-                                    * 0 = cannot comply with msg
-                                    */
-#define NPTX_MSG_PAGE       0x2000 /* formatted(1)/unformatted(0) pg */
-#define NPTX_NEXT_PAGE      0x8000 /* 1 = addition NP will follow
-                                    * 0 = sending last NP
-                                    */
-
-/* Link Partner Next Page Register */
-#define LP_RNPR_MSG_CODE_FIELD 0x0001 /* NP msg code or unformatted data */
-#define LP_RNPR_TOGGLE         0x0800 /* Toggles between exchanges
-                                       * of different NP
-                                       */
-#define LP_RNPR_ACKNOWLDGE2    0x1000 /* 1 = will comply with msg
-                                       * 0 = cannot comply with msg
-                                       */
-#define LP_RNPR_MSG_PAGE       0x2000  /* formatted(1)/unformatted(0) pg */
-#define LP_RNPR_ACKNOWLDGE     0x4000  /* 1 = ACK / 0 = NO ACK */
-#define LP_RNPR_NEXT_PAGE      0x8000  /* 1 = addition NP will follow
-                                        * 0 = sending last NP
-                                        */
-
-/* 1000BASE-T Control Register */
-#define CR_1000T_ASYM_PAUSE      0x0080 /* Advertise asymmetric pause bit */
-#define CR_1000T_HD_CAPS         0x0100 /* Advertise 1000T HD capability */
-#define CR_1000T_FD_CAPS         0x0200 /* Advertise 1000T FD capability  */
-#define CR_1000T_REPEATER_DTE    0x0400 /* 1=Repeater/switch device port */
-                                        /* 0=DTE device */
-#define CR_1000T_MS_VALUE        0x0800 /* 1=Configure PHY as Master */
-                                        /* 0=Configure PHY as Slave */
-#define CR_1000T_MS_ENABLE       0x1000 /* 1=Master/Slave manual config value */
-                                        /* 0=Automatic Master/Slave config */
-#define CR_1000T_TEST_MODE_NORMAL 0x0000 /* Normal Operation */
-#define CR_1000T_TEST_MODE_1     0x2000 /* Transmit Waveform test */
-#define CR_1000T_TEST_MODE_2     0x4000 /* Master Transmit Jitter test */
-#define CR_1000T_TEST_MODE_3     0x6000 /* Slave Transmit Jitter test */
-#define CR_1000T_TEST_MODE_4     0x8000 /* Transmitter Distortion test */
-
-/* 1000BASE-T Status Register */
-#define SR_1000T_IDLE_ERROR_CNT   0x00FF /* Num idle errors since last read */
-#define SR_1000T_ASYM_PAUSE_DIR   0x0100 /* LP asymmetric pause direction bit */
-#define SR_1000T_LP_HD_CAPS       0x0400 /* LP is 1000T HD capable */
-#define SR_1000T_LP_FD_CAPS       0x0800 /* LP is 1000T FD capable */
-#define SR_1000T_REMOTE_RX_STATUS 0x1000 /* Remote receiver OK */
-#define SR_1000T_LOCAL_RX_STATUS  0x2000 /* Local receiver OK */
-#define SR_1000T_MS_CONFIG_RES    0x4000 /* 1=Local TX is Master, 0=Slave */
-#define SR_1000T_MS_CONFIG_FAULT  0x8000 /* Master/Slave config fault */
-#define SR_1000T_REMOTE_RX_STATUS_SHIFT          12
-#define SR_1000T_LOCAL_RX_STATUS_SHIFT           13
-#define SR_1000T_PHY_EXCESSIVE_IDLE_ERR_COUNT    5
-#define FFE_IDLE_ERR_COUNT_TIMEOUT_20            20
-#define FFE_IDLE_ERR_COUNT_TIMEOUT_100           100
-
-/* Extended Status Register */
-#define IEEE_ESR_1000T_HD_CAPS 0x1000 /* 1000T HD capable */
-#define IEEE_ESR_1000T_FD_CAPS 0x2000 /* 1000T FD capable */
-#define IEEE_ESR_1000X_HD_CAPS 0x4000 /* 1000X HD capable */
-#define IEEE_ESR_1000X_FD_CAPS 0x8000 /* 1000X FD capable */
-
-#define PHY_TX_POLARITY_MASK   0x0100 /* register 10h bit 8 (polarity bit) */
-#define PHY_TX_NORMAL_POLARITY 0      /* register 10h bit 8 (normal polarity) */
-
-#define AUTO_POLARITY_DISABLE  0x0010 /* register 11h bit 4 */
-                                      /* (0=enable, 1=disable) */
-
-/* M88E1000 PHY Specific Control Register */
-#define M88E1000_PSCR_JABBER_DISABLE    0x0001 /* 1=Jabber Function disabled */
-#define M88E1000_PSCR_POLARITY_REVERSAL 0x0002 /* 1=Polarity Reversal enabled */
-#define M88E1000_PSCR_SQE_TEST          0x0004 /* 1=SQE Test enabled */
-#define M88E1000_PSCR_CLK125_DISABLE    0x0010 /* 1=CLK125 low,
-                                                * 0=CLK125 toggling
-                                                */
-#define M88E1000_PSCR_MDI_MANUAL_MODE  0x0000  /* MDI Crossover Mode bits 6:5 */
-                                               /* Manual MDI configuration */
-#define M88E1000_PSCR_MDIX_MANUAL_MODE 0x0020  /* Manual MDIX configuration */
-#define M88E1000_PSCR_AUTO_X_1000T     0x0040  /* 1000BASE-T: Auto crossover,
-                                                *  100BASE-TX/10BASE-T:
-                                                *  MDI Mode
-                                                */
-#define M88E1000_PSCR_AUTO_X_MODE      0x0060  /* Auto crossover enabled
-                                                * all speeds.
-                                                */
-#define M88E1000_PSCR_10BT_EXT_DIST_ENABLE 0x0080
-                                        /* 1=Enable Extended 10BASE-T distance
-                                         * (Lower 10BASE-T RX Threshold)
-                                         * 0=Normal 10BASE-T RX Threshold */
-#define M88E1000_PSCR_MII_5BIT_ENABLE      0x0100
-                                        /* 1=5-Bit interface in 100BASE-TX
-                                         * 0=MII interface in 100BASE-TX */
-#define M88E1000_PSCR_SCRAMBLER_DISABLE    0x0200 /* 1=Scrambler disable */
-#define M88E1000_PSCR_FORCE_LINK_GOOD      0x0400 /* 1=Force link good */
-#define M88E1000_PSCR_ASSERT_CRS_ON_TX     0x0800 /* 1=Assert CRS on Transmit */
-
-#define M88E1000_PSCR_POLARITY_REVERSAL_SHIFT    1
-#define M88E1000_PSCR_AUTO_X_MODE_SHIFT          5
-#define M88E1000_PSCR_10BT_EXT_DIST_ENABLE_SHIFT 7
-
-/* M88E1000 PHY Specific Status Register */
-#define M88E1000_PSSR_JABBER             0x0001 /* 1=Jabber */
-#define M88E1000_PSSR_REV_POLARITY       0x0002 /* 1=Polarity reversed */
-#define M88E1000_PSSR_DOWNSHIFT          0x0020 /* 1=Downshifted */
-#define M88E1000_PSSR_MDIX               0x0040 /* 1=MDIX; 0=MDI */
-#define M88E1000_PSSR_CABLE_LENGTH       0x0380 /* 0=<50M;1=50-80M;2=80-110M;
-                                            * 3=110-140M;4=>140M */
-#define M88E1000_PSSR_LINK               0x0400 /* 1=Link up, 0=Link down */
-#define M88E1000_PSSR_SPD_DPLX_RESOLVED  0x0800 /* 1=Speed & Duplex resolved */
-#define M88E1000_PSSR_PAGE_RCVD          0x1000 /* 1=Page received */
-#define M88E1000_PSSR_DPLX               0x2000 /* 1=Duplex 0=Half Duplex */
-#define M88E1000_PSSR_SPEED              0xC000 /* Speed, bits 14:15 */
-#define M88E1000_PSSR_10MBS              0x0000 /* 00=10Mbs */
-#define M88E1000_PSSR_100MBS             0x4000 /* 01=100Mbs */
-#define M88E1000_PSSR_1000MBS            0x8000 /* 10=1000Mbs */
-
-#define M88E1000_PSSR_REV_POLARITY_SHIFT 1
-#define M88E1000_PSSR_DOWNSHIFT_SHIFT    5
-#define M88E1000_PSSR_MDIX_SHIFT         6
-#define M88E1000_PSSR_CABLE_LENGTH_SHIFT 7
-
-/* M88E1000 Extended PHY Specific Control Register */
-#define M88E1000_EPSCR_FIBER_LOOPBACK 0x4000 /* 1=Fiber loopback */
-#define M88E1000_EPSCR_DOWN_NO_IDLE   0x8000 /* 1=Lost lock detect enabled.
-                                              * Will assert lost lock and bring
-                                              * link down if idle not seen
-                                              * within 1ms in 1000BASE-T
-                                              */
-/* Number of times we will attempt to autonegotiate before downshifting if we
- * are the master */
-#define M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK 0x0C00
-#define M88E1000_EPSCR_MASTER_DOWNSHIFT_1X   0x0000
-#define M88E1000_EPSCR_MASTER_DOWNSHIFT_2X   0x0400
-#define M88E1000_EPSCR_MASTER_DOWNSHIFT_3X   0x0800
-#define M88E1000_EPSCR_MASTER_DOWNSHIFT_4X   0x0C00
-/* Number of times we will attempt to autonegotiate before downshifting if we
- * are the slave */
-#define M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK  0x0300
-#define M88E1000_EPSCR_SLAVE_DOWNSHIFT_DIS   0x0000
-#define M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X    0x0100
-#define M88E1000_EPSCR_SLAVE_DOWNSHIFT_2X    0x0200
-#define M88E1000_EPSCR_SLAVE_DOWNSHIFT_3X    0x0300
-#define M88E1000_EPSCR_TX_CLK_2_5     0x0060 /* 2.5 MHz TX_CLK */
-#define M88E1000_EPSCR_TX_CLK_25      0x0070 /* 25  MHz TX_CLK */
-#define M88E1000_EPSCR_TX_CLK_0       0x0000 /* NO  TX_CLK */
-
-/* M88EC018 Rev 2 specific DownShift settings */
-#define M88EC018_EPSCR_DOWNSHIFT_COUNTER_MASK  0x0E00
-#define M88EC018_EPSCR_DOWNSHIFT_COUNTER_1X    0x0000
-#define M88EC018_EPSCR_DOWNSHIFT_COUNTER_2X    0x0200
-#define M88EC018_EPSCR_DOWNSHIFT_COUNTER_3X    0x0400
-#define M88EC018_EPSCR_DOWNSHIFT_COUNTER_4X    0x0600
-#define M88EC018_EPSCR_DOWNSHIFT_COUNTER_5X    0x0800
-#define M88EC018_EPSCR_DOWNSHIFT_COUNTER_6X    0x0A00
-#define M88EC018_EPSCR_DOWNSHIFT_COUNTER_7X    0x0C00
-#define M88EC018_EPSCR_DOWNSHIFT_COUNTER_8X    0x0E00
-
-/* IGP01E1000 Specific Port Config Register - R/W */
-#define IGP01E1000_PSCFR_AUTO_MDIX_PAR_DETECT  0x0010
-#define IGP01E1000_PSCFR_PRE_EN                0x0020
-#define IGP01E1000_PSCFR_SMART_SPEED           0x0080
-#define IGP01E1000_PSCFR_DISABLE_TPLOOPBACK    0x0100
-#define IGP01E1000_PSCFR_DISABLE_JABBER        0x0400
-#define IGP01E1000_PSCFR_DISABLE_TRANSMIT      0x2000
-
-/* IGP01E1000 Specific Port Status Register - R/O */
-#define IGP01E1000_PSSR_AUTONEG_FAILED         0x0001 /* RO LH SC */
-#define IGP01E1000_PSSR_POLARITY_REVERSED      0x0002
-#define IGP01E1000_PSSR_CABLE_LENGTH           0x007C
-#define IGP01E1000_PSSR_FULL_DUPLEX            0x0200
-#define IGP01E1000_PSSR_LINK_UP                0x0400
-#define IGP01E1000_PSSR_MDIX                   0x0800
-#define IGP01E1000_PSSR_SPEED_MASK             0xC000 /* speed bits mask */
-#define IGP01E1000_PSSR_SPEED_10MBPS           0x4000
-#define IGP01E1000_PSSR_SPEED_100MBPS          0x8000
-#define IGP01E1000_PSSR_SPEED_1000MBPS         0xC000
-#define IGP01E1000_PSSR_CABLE_LENGTH_SHIFT     0x0002 /* shift right 2 */
-#define IGP01E1000_PSSR_MDIX_SHIFT             0x000B /* shift right 11 */
-
-/* IGP01E1000 Specific Port Control Register - R/W */
-#define IGP01E1000_PSCR_TP_LOOPBACK            0x0010
-#define IGP01E1000_PSCR_CORRECT_NC_SCMBLR      0x0200
-#define IGP01E1000_PSCR_TEN_CRS_SELECT         0x0400
-#define IGP01E1000_PSCR_FLIP_CHIP              0x0800
-#define IGP01E1000_PSCR_AUTO_MDIX              0x1000
-#define IGP01E1000_PSCR_FORCE_MDI_MDIX         0x2000 /* 0-MDI, 1-MDIX */
-
-/* IGP01E1000 Specific Port Link Health Register */
-#define IGP01E1000_PLHR_SS_DOWNGRADE           0x8000
-#define IGP01E1000_PLHR_GIG_SCRAMBLER_ERROR    0x4000
-#define IGP01E1000_PLHR_MASTER_FAULT           0x2000
-#define IGP01E1000_PLHR_MASTER_RESOLUTION      0x1000
-#define IGP01E1000_PLHR_GIG_REM_RCVR_NOK       0x0800 /* LH */
-#define IGP01E1000_PLHR_IDLE_ERROR_CNT_OFLOW   0x0400 /* LH */
-#define IGP01E1000_PLHR_DATA_ERR_1             0x0200 /* LH */
-#define IGP01E1000_PLHR_DATA_ERR_0             0x0100
-#define IGP01E1000_PLHR_AUTONEG_FAULT          0x0040
-#define IGP01E1000_PLHR_AUTONEG_ACTIVE         0x0010
-#define IGP01E1000_PLHR_VALID_CHANNEL_D        0x0008
-#define IGP01E1000_PLHR_VALID_CHANNEL_C        0x0004
-#define IGP01E1000_PLHR_VALID_CHANNEL_B        0x0002
-#define IGP01E1000_PLHR_VALID_CHANNEL_A        0x0001
-
-/* IGP01E1000 Channel Quality Register */
-#define IGP01E1000_MSE_CHANNEL_D        0x000F
-#define IGP01E1000_MSE_CHANNEL_C        0x00F0
-#define IGP01E1000_MSE_CHANNEL_B        0x0F00
-#define IGP01E1000_MSE_CHANNEL_A        0xF000
-
-#define IGP02E1000_PM_SPD                         0x0001  /* Smart Power Down */
-#define IGP02E1000_PM_D3_LPLU                     0x0004  /* Enable LPLU in non-D0a modes */
-#define IGP02E1000_PM_D0_LPLU                     0x0002  /* Enable LPLU in D0a mode */
-
-/* IGP01E1000 DSP reset macros */
-#define DSP_RESET_ENABLE     0x0
-#define DSP_RESET_DISABLE    0x2
-#define E1000_MAX_DSP_RESETS 10
-
-/* IGP01E1000 & IGP02E1000 AGC Registers */
-
-#define IGP01E1000_AGC_LENGTH_SHIFT 7         /* Coarse - 13:11, Fine - 10:7 */
-#define IGP02E1000_AGC_LENGTH_SHIFT 9         /* Coarse - 15:13, Fine - 12:9 */
-
-/* IGP02E1000 AGC Register Length 9-bit mask */
-#define IGP02E1000_AGC_LENGTH_MASK  0x7F
-
-/* 7 bits (3 Coarse + 4 Fine) --> 128 optional values */
-#define IGP01E1000_AGC_LENGTH_TABLE_SIZE 128
-#define IGP02E1000_AGC_LENGTH_TABLE_SIZE 113
-
-/* The precision error of the cable length is +/- 10 meters */
-#define IGP01E1000_AGC_RANGE    10
-#define IGP02E1000_AGC_RANGE    15
-
-/* IGP01E1000 PCS Initialization register */
-/* bits 3:6 in the PCS registers stores the channels polarity */
-#define IGP01E1000_PHY_POLARITY_MASK    0x0078
-
-/* IGP01E1000 GMII FIFO Register */
-#define IGP01E1000_GMII_FLEX_SPD               0x10 /* Enable flexible speed
-                                                     * on Link-Up */
-#define IGP01E1000_GMII_SPD                    0x20 /* Enable SPD */
-
-/* IGP01E1000 Analog Register */
-#define IGP01E1000_ANALOG_SPARE_FUSE_STATUS       0x20D1
-#define IGP01E1000_ANALOG_FUSE_STATUS             0x20D0
-#define IGP01E1000_ANALOG_FUSE_CONTROL            0x20DC
-#define IGP01E1000_ANALOG_FUSE_BYPASS             0x20DE
-
-#define IGP01E1000_ANALOG_FUSE_POLY_MASK            0xF000
-#define IGP01E1000_ANALOG_FUSE_FINE_MASK            0x0F80
-#define IGP01E1000_ANALOG_FUSE_COARSE_MASK          0x0070
-#define IGP01E1000_ANALOG_SPARE_FUSE_ENABLED        0x0100
-#define IGP01E1000_ANALOG_FUSE_ENABLE_SW_CONTROL    0x0002
-
-#define IGP01E1000_ANALOG_FUSE_COARSE_THRESH        0x0040
-#define IGP01E1000_ANALOG_FUSE_COARSE_10            0x0010
-#define IGP01E1000_ANALOG_FUSE_FINE_1               0x0080
-#define IGP01E1000_ANALOG_FUSE_FINE_10              0x0500
-
-/* GG82563 PHY Specific Status Register (Page 0, Register 16 */
-#define GG82563_PSCR_DISABLE_JABBER             0x0001 /* 1=Disable Jabber */
-#define GG82563_PSCR_POLARITY_REVERSAL_DISABLE  0x0002 /* 1=Polarity Reversal Disabled */
-#define GG82563_PSCR_POWER_DOWN                 0x0004 /* 1=Power Down */
-#define GG82563_PSCR_COPPER_TRANSMITER_DISABLE  0x0008 /* 1=Transmitter Disabled */
-#define GG82563_PSCR_CROSSOVER_MODE_MASK        0x0060
-#define GG82563_PSCR_CROSSOVER_MODE_MDI         0x0000 /* 00=Manual MDI configuration */
-#define GG82563_PSCR_CROSSOVER_MODE_MDIX        0x0020 /* 01=Manual MDIX configuration */
-#define GG82563_PSCR_CROSSOVER_MODE_AUTO        0x0060 /* 11=Automatic crossover */
-#define GG82563_PSCR_ENALBE_EXTENDED_DISTANCE   0x0080 /* 1=Enable Extended Distance */
-#define GG82563_PSCR_ENERGY_DETECT_MASK         0x0300
-#define GG82563_PSCR_ENERGY_DETECT_OFF          0x0000 /* 00,01=Off */
-#define GG82563_PSCR_ENERGY_DETECT_RX           0x0200 /* 10=Sense on Rx only (Energy Detect) */
-#define GG82563_PSCR_ENERGY_DETECT_RX_TM        0x0300 /* 11=Sense and Tx NLP */
-#define GG82563_PSCR_FORCE_LINK_GOOD            0x0400 /* 1=Force Link Good */
-#define GG82563_PSCR_DOWNSHIFT_ENABLE           0x0800 /* 1=Enable Downshift */
-#define GG82563_PSCR_DOWNSHIFT_COUNTER_MASK     0x7000
-#define GG82563_PSCR_DOWNSHIFT_COUNTER_SHIFT    12
-
-/* PHY Specific Status Register (Page 0, Register 17) */
-#define GG82563_PSSR_JABBER                0x0001 /* 1=Jabber */
-#define GG82563_PSSR_POLARITY              0x0002 /* 1=Polarity Reversed */
-#define GG82563_PSSR_LINK                  0x0008 /* 1=Link is Up */
-#define GG82563_PSSR_ENERGY_DETECT         0x0010 /* 1=Sleep, 0=Active */
-#define GG82563_PSSR_DOWNSHIFT             0x0020 /* 1=Downshift */
-#define GG82563_PSSR_CROSSOVER_STATUS      0x0040 /* 1=MDIX, 0=MDI */
-#define GG82563_PSSR_RX_PAUSE_ENABLED      0x0100 /* 1=Receive Pause Enabled */
-#define GG82563_PSSR_TX_PAUSE_ENABLED      0x0200 /* 1=Transmit Pause Enabled */
-#define GG82563_PSSR_LINK_UP               0x0400 /* 1=Link Up */
-#define GG82563_PSSR_SPEED_DUPLEX_RESOLVED 0x0800 /* 1=Resolved */
-#define GG82563_PSSR_PAGE_RECEIVED         0x1000 /* 1=Page Received */
-#define GG82563_PSSR_DUPLEX                0x2000 /* 1-Full-Duplex */
-#define GG82563_PSSR_SPEED_MASK            0xC000
-#define GG82563_PSSR_SPEED_10MBPS          0x0000 /* 00=10Mbps */
-#define GG82563_PSSR_SPEED_100MBPS         0x4000 /* 01=100Mbps */
-#define GG82563_PSSR_SPEED_1000MBPS        0x8000 /* 10=1000Mbps */
-
-/* PHY Specific Status Register 2 (Page 0, Register 19) */
-#define GG82563_PSSR2_JABBER                0x0001 /* 1=Jabber */
-#define GG82563_PSSR2_POLARITY_CHANGED      0x0002 /* 1=Polarity Changed */
-#define GG82563_PSSR2_ENERGY_DETECT_CHANGED 0x0010 /* 1=Energy Detect Changed */
-#define GG82563_PSSR2_DOWNSHIFT_INTERRUPT   0x0020 /* 1=Downshift Detected */
-#define GG82563_PSSR2_MDI_CROSSOVER_CHANGE  0x0040 /* 1=Crossover Changed */
-#define GG82563_PSSR2_FALSE_CARRIER         0x0100 /* 1=False Carrier */
-#define GG82563_PSSR2_SYMBOL_ERROR          0x0200 /* 1=Symbol Error */
-#define GG82563_PSSR2_LINK_STATUS_CHANGED   0x0400 /* 1=Link Status Changed */
-#define GG82563_PSSR2_AUTO_NEG_COMPLETED    0x0800 /* 1=Auto-Neg Completed */
-#define GG82563_PSSR2_PAGE_RECEIVED         0x1000 /* 1=Page Received */
-#define GG82563_PSSR2_DUPLEX_CHANGED        0x2000 /* 1=Duplex Changed */
-#define GG82563_PSSR2_SPEED_CHANGED         0x4000 /* 1=Speed Changed */
-#define GG82563_PSSR2_AUTO_NEG_ERROR        0x8000 /* 1=Auto-Neg Error */
-
-/* PHY Specific Control Register 2 (Page 0, Register 26) */
-#define GG82563_PSCR2_10BT_POLARITY_FORCE           0x0002 /* 1=Force Negative Polarity */
-#define GG82563_PSCR2_1000MB_TEST_SELECT_MASK       0x000C
-#define GG82563_PSCR2_1000MB_TEST_SELECT_NORMAL     0x0000 /* 00,01=Normal Operation */
-#define GG82563_PSCR2_1000MB_TEST_SELECT_112NS      0x0008 /* 10=Select 112ns Sequence */
-#define GG82563_PSCR2_1000MB_TEST_SELECT_16NS       0x000C /* 11=Select 16ns Sequence */
-#define GG82563_PSCR2_REVERSE_AUTO_NEG              0x2000 /* 1=Reverse Auto-Negotiation */
-#define GG82563_PSCR2_1000BT_DISABLE                0x4000 /* 1=Disable 1000BASE-T */
-#define GG82563_PSCR2_TRANSMITER_TYPE_MASK          0x8000
-#define GG82563_PSCR2_TRANSMITTER_TYPE_CLASS_B      0x0000 /* 0=Class B */
-#define GG82563_PSCR2_TRANSMITTER_TYPE_CLASS_A      0x8000 /* 1=Class A */
-
-/* MAC Specific Control Register (Page 2, Register 21) */
-/* Tx clock speed for Link Down and 1000BASE-T for the following speeds */
-#define GG82563_MSCR_TX_CLK_MASK                    0x0007
-#define GG82563_MSCR_TX_CLK_10MBPS_2_5MHZ           0x0004
-#define GG82563_MSCR_TX_CLK_100MBPS_25MHZ           0x0005
-#define GG82563_MSCR_TX_CLK_1000MBPS_2_5MHZ         0x0006
-#define GG82563_MSCR_TX_CLK_1000MBPS_25MHZ          0x0007
-
-#define GG82563_MSCR_ASSERT_CRS_ON_TX               0x0010 /* 1=Assert */
-
-/* DSP Distance Register (Page 5, Register 26) */
-#define GG82563_DSPD_CABLE_LENGTH               0x0007 /* 0 = <50M;
-                                                          1 = 50-80M;
-                                                          2 = 80-110M;
-                                                          3 = 110-140M;
-                                                          4 = >140M */
-
-/* Kumeran Mode Control Register (Page 193, Register 16) */
-#define GG82563_KMCR_PHY_LEDS_EN                    0x0020 /* 1=PHY LEDs, 0=Kumeran Inband LEDs */
-#define GG82563_KMCR_FORCE_LINK_UP                  0x0040 /* 1=Force Link Up */
-#define GG82563_KMCR_SUPPRESS_SGMII_EPD_EXT         0x0080
-#define GG82563_KMCR_MDIO_BUS_SPEED_SELECT_MASK     0x0400
-#define GG82563_KMCR_MDIO_BUS_SPEED_SELECT          0x0400 /* 1=6.25MHz, 0=0.8MHz */
-#define GG82563_KMCR_PASS_FALSE_CARRIER             0x0800
-
-/* Power Management Control Register (Page 193, Register 20) */
-#define GG82563_PMCR_ENABLE_ELECTRICAL_IDLE         0x0001 /* 1=Enalbe SERDES Electrical Idle */
-#define GG82563_PMCR_DISABLE_PORT                   0x0002 /* 1=Disable Port */
-#define GG82563_PMCR_DISABLE_SERDES                 0x0004 /* 1=Disable SERDES */
-#define GG82563_PMCR_REVERSE_AUTO_NEG               0x0008 /* 1=Enable Reverse Auto-Negotiation */
-#define GG82563_PMCR_DISABLE_1000_NON_D0            0x0010 /* 1=Disable 1000Mbps Auto-Neg in non D0 */
-#define GG82563_PMCR_DISABLE_1000                   0x0020 /* 1=Disable 1000Mbps Auto-Neg Always */
-#define GG82563_PMCR_REVERSE_AUTO_NEG_D0A           0x0040 /* 1=Enable D0a Reverse Auto-Negotiation */
-#define GG82563_PMCR_FORCE_POWER_STATE              0x0080 /* 1=Force Power State */
-#define GG82563_PMCR_PROGRAMMED_POWER_STATE_MASK    0x0300
-#define GG82563_PMCR_PROGRAMMED_POWER_STATE_DR      0x0000 /* 00=Dr */
-#define GG82563_PMCR_PROGRAMMED_POWER_STATE_D0U     0x0100 /* 01=D0u */
-#define GG82563_PMCR_PROGRAMMED_POWER_STATE_D0A     0x0200 /* 10=D0a */
-#define GG82563_PMCR_PROGRAMMED_POWER_STATE_D3      0x0300 /* 11=D3 */
-
-/* In-Band Control Register (Page 194, Register 18) */
-#define GG82563_ICR_DIS_PADDING                     0x0010 /* Disable Padding Use */
-
-
-/* Bit definitions for valid PHY IDs. */
-/* I = Integrated
- * E = External
- */
-#define M88E1000_E_PHY_ID  0x01410C50
-#define M88E1000_I_PHY_ID  0x01410C30
-#define M88E1011_I_PHY_ID  0x01410C20
-#define IGP01E1000_I_PHY_ID  0x02A80380
-#define M88E1000_12_PHY_ID M88E1000_E_PHY_ID
-#define M88E1000_14_PHY_ID M88E1000_E_PHY_ID
-#define M88E1011_I_REV_4   0x04
-#define M88E1111_I_PHY_ID  0x01410CC0
-#define L1LXT971A_PHY_ID   0x001378E0
-#define GG82563_E_PHY_ID   0x01410CA0
-
-
-/* Bits...
- * 15-5: page
- * 4-0: register offset
- */
-#define PHY_PAGE_SHIFT        5
-#define PHY_REG(page, reg)    \
-        (((page) << PHY_PAGE_SHIFT) | ((reg) & MAX_PHY_REG_ADDRESS))
-
-#define IGP3_PHY_PORT_CTRL           \
-        PHY_REG(769, 17) /* Port General Configuration */
-#define IGP3_PHY_RATE_ADAPT_CTRL \
-        PHY_REG(769, 25) /* Rate Adapter Control Register */
-
-#define IGP3_KMRN_FIFO_CTRL_STATS \
-        PHY_REG(770, 16) /* KMRN FIFO's control/status register */
-#define IGP3_KMRN_POWER_MNG_CTRL \
-        PHY_REG(770, 17) /* KMRN Power Management Control Register */
-#define IGP3_KMRN_INBAND_CTRL \
-        PHY_REG(770, 18) /* KMRN Inband Control Register */
-#define IGP3_KMRN_DIAG \
-        PHY_REG(770, 19) /* KMRN Diagnostic register */
-#define IGP3_KMRN_DIAG_PCS_LOCK_LOSS 0x0002 /* RX PCS is not synced */
-#define IGP3_KMRN_ACK_TIMEOUT \
-        PHY_REG(770, 20) /* KMRN Acknowledge Timeouts register */
-
-#define IGP3_VR_CTRL \
-        PHY_REG(776, 18) /* Voltage regulator control register */
-#define IGP3_VR_CTRL_MODE_SHUT       0x0200 /* Enter powerdown, shutdown VRs */
-
-#define IGP3_CAPABILITY \
-        PHY_REG(776, 19) /* IGP3 Capability Register */
-
-/* Capabilities for SKU Control  */
-#define IGP3_CAP_INITIATE_TEAM       0x0001 /* Able to initiate a team */
-#define IGP3_CAP_WFM                 0x0002 /* Support WoL and PXE */
-#define IGP3_CAP_ASF                 0x0004 /* Support ASF */
-#define IGP3_CAP_LPLU                0x0008 /* Support Low Power Link Up */
-#define IGP3_CAP_DC_AUTO_SPEED       0x0010 /* Support AC/DC Auto Link Speed */
-#define IGP3_CAP_SPD                 0x0020 /* Support Smart Power Down */
-#define IGP3_CAP_MULT_QUEUE          0x0040 /* Support 2 tx & 2 rx queues */
-#define IGP3_CAP_RSS                 0x0080 /* Support RSS */
-#define IGP3_CAP_8021PQ              0x0100 /* Support 802.1Q & 802.1p */
-#define IGP3_CAP_AMT_CB              0x0200 /* Support active manageability and circuit breaker */
-
-#define IGP3_PPC_JORDAN_EN           0x0001
-#define IGP3_PPC_JORDAN_GIGA_SPEED   0x0002
-
-#define IGP3_KMRN_PMC_EE_IDLE_LINK_DIS         0x0001
-#define IGP3_KMRN_PMC_K0S_ENTRY_LATENCY_MASK   0x001E
-#define IGP3_KMRN_PMC_K0S_MODE1_EN_GIGA        0x0020
-#define IGP3_KMRN_PMC_K0S_MODE1_EN_100         0x0040
-
-#define IGP3E1000_PHY_MISC_CTRL                0x1B   /* Misc. Ctrl register */
-#define IGP3_PHY_MISC_DUPLEX_MANUAL_SET        0x1000 /* Duplex Manual Set */
-
-#define IGP3_KMRN_EXT_CTRL  PHY_REG(770, 18)
-#define IGP3_KMRN_EC_DIS_INBAND    0x0080
-
-#define IGP03E1000_E_PHY_ID  0x02A80390
-#define IFE_E_PHY_ID         0x02A80330 /* 10/100 PHY */
-#define IFE_PLUS_E_PHY_ID    0x02A80320
-#define IFE_C_E_PHY_ID       0x02A80310
-
-#define IFE_PHY_EXTENDED_STATUS_CONTROL   0x10  /* 100BaseTx Extended Status, Control and Address */
-#define IFE_PHY_SPECIAL_CONTROL           0x11  /* 100BaseTx PHY special control register */
-#define IFE_PHY_RCV_FALSE_CARRIER         0x13  /* 100BaseTx Receive False Carrier Counter */
-#define IFE_PHY_RCV_DISCONNECT            0x14  /* 100BaseTx Receive Disconnet Counter */
-#define IFE_PHY_RCV_ERROT_FRAME           0x15  /* 100BaseTx Receive Error Frame Counter */
-#define IFE_PHY_RCV_SYMBOL_ERR            0x16  /* Receive Symbol Error Counter */
-#define IFE_PHY_PREM_EOF_ERR              0x17  /* 100BaseTx Receive Premature End Of Frame Error Counter */
-#define IFE_PHY_RCV_EOF_ERR               0x18  /* 10BaseT Receive End Of Frame Error Counter */
-#define IFE_PHY_TX_JABBER_DETECT          0x19  /* 10BaseT Transmit Jabber Detect Counter */
-#define IFE_PHY_EQUALIZER                 0x1A  /* PHY Equalizer Control and Status */
-#define IFE_PHY_SPECIAL_CONTROL_LED       0x1B  /* PHY special control and LED configuration */
-#define IFE_PHY_MDIX_CONTROL              0x1C  /* MDI/MDI-X Control register */
-#define IFE_PHY_HWI_CONTROL               0x1D  /* Hardware Integrity Control (HWI) */
-
-#define IFE_PESC_REDUCED_POWER_DOWN_DISABLE  0x2000  /* Defaut 1 = Disable auto reduced power down */
-#define IFE_PESC_100BTX_POWER_DOWN           0x0400  /* Indicates the power state of 100BASE-TX */
-#define IFE_PESC_10BTX_POWER_DOWN            0x0200  /* Indicates the power state of 10BASE-T */
-#define IFE_PESC_POLARITY_REVERSED           0x0100  /* Indicates 10BASE-T polarity */
-#define IFE_PESC_PHY_ADDR_MASK               0x007C  /* Bit 6:2 for sampled PHY address */
-#define IFE_PESC_SPEED                       0x0002  /* Auto-negotiation speed result 1=100Mbs, 0=10Mbs */
-#define IFE_PESC_DUPLEX                      0x0001  /* Auto-negotiation duplex result 1=Full, 0=Half */
-#define IFE_PESC_POLARITY_REVERSED_SHIFT     8
-
-#define IFE_PSC_DISABLE_DYNAMIC_POWER_DOWN   0x0100  /* 1 = Dyanmic Power Down disabled */
-#define IFE_PSC_FORCE_POLARITY               0x0020  /* 1=Reversed Polarity, 0=Normal */
-#define IFE_PSC_AUTO_POLARITY_DISABLE        0x0010  /* 1=Auto Polarity Disabled, 0=Enabled */
-#define IFE_PSC_JABBER_FUNC_DISABLE          0x0001  /* 1=Jabber Disabled, 0=Normal Jabber Operation */
-#define IFE_PSC_FORCE_POLARITY_SHIFT         5
-#define IFE_PSC_AUTO_POLARITY_DISABLE_SHIFT  4
-
-#define IFE_PMC_AUTO_MDIX                    0x0080  /* 1=enable MDI/MDI-X feature, default 0=disabled */
-#define IFE_PMC_FORCE_MDIX                   0x0040  /* 1=force MDIX-X, 0=force MDI */
-#define IFE_PMC_MDIX_STATUS                  0x0020  /* 1=MDI-X, 0=MDI */
-#define IFE_PMC_AUTO_MDIX_COMPLETE           0x0010  /* Resolution algorthm is completed */
-#define IFE_PMC_MDIX_MODE_SHIFT              6
-#define IFE_PHC_MDIX_RESET_ALL_MASK          0x0000  /* Disable auto MDI-X */
-
-#define IFE_PHC_HWI_ENABLE                   0x8000  /* Enable the HWI feature */
-#define IFE_PHC_ABILITY_CHECK                0x4000  /* 1= Test Passed, 0=failed */
-#define IFE_PHC_TEST_EXEC                    0x2000  /* PHY launch test pulses on the wire */
-#define IFE_PHC_HIGHZ                        0x0200  /* 1 = Open Circuit */
-#define IFE_PHC_LOWZ                         0x0400  /* 1 = Short Circuit */
-#define IFE_PHC_LOW_HIGH_Z_MASK              0x0600  /* Mask for indication type of problem on the line */
-#define IFE_PHC_DISTANCE_MASK                0x01FF  /* Mask for distance to the cable problem, in 80cm granularity */
-#define IFE_PHC_RESET_ALL_MASK               0x0000  /* Disable HWI */
-#define IFE_PSCL_PROBE_MODE                  0x0020  /* LED Probe mode */
-#define IFE_PSCL_PROBE_LEDS_OFF              0x0006  /* Force LEDs 0 and 2 off */
-#define IFE_PSCL_PROBE_LEDS_ON               0x0007  /* Force LEDs 0 and 2 on */
-
-#define ICH8_FLASH_COMMAND_TIMEOUT           500   /* 500 ms , should be adjusted */
-#define ICH8_FLASH_CYCLE_REPEAT_COUNT        10    /* 10 cycles , should be adjusted */
-#define ICH8_FLASH_SEG_SIZE_256              256
-#define ICH8_FLASH_SEG_SIZE_4K               4096
-#define ICH8_FLASH_SEG_SIZE_64K              65536
-
-#define ICH8_CYCLE_READ                      0x0
-#define ICH8_CYCLE_RESERVED                  0x1
-#define ICH8_CYCLE_WRITE                     0x2
-#define ICH8_CYCLE_ERASE                     0x3
-
-#define ICH8_FLASH_GFPREG   0x0000
-#define ICH8_FLASH_HSFSTS   0x0004
-#define ICH8_FLASH_HSFCTL   0x0006
-#define ICH8_FLASH_FADDR    0x0008
-#define ICH8_FLASH_FDATA0   0x0010
-#define ICH8_FLASH_FRACC    0x0050
-#define ICH8_FLASH_FREG0    0x0054
-#define ICH8_FLASH_FREG1    0x0058
-#define ICH8_FLASH_FREG2    0x005C
-#define ICH8_FLASH_FREG3    0x0060
-#define ICH8_FLASH_FPR0     0x0074
-#define ICH8_FLASH_FPR1     0x0078
-#define ICH8_FLASH_SSFSTS   0x0090
-#define ICH8_FLASH_SSFCTL   0x0092
-#define ICH8_FLASH_PREOP    0x0094
-#define ICH8_FLASH_OPTYPE   0x0096
-#define ICH8_FLASH_OPMENU   0x0098
-
-#define ICH8_FLASH_REG_MAPSIZE      0x00A0
-#define ICH8_FLASH_SECTOR_SIZE      4096
-#define ICH8_GFPREG_BASE_MASK       0x1FFF
-#define ICH8_FLASH_LINEAR_ADDR_MASK 0x00FFFFFF
-
-/* ICH8 GbE Flash Hardware Sequencing Flash Status Register bit breakdown */
-/* Offset 04h HSFSTS */
-union ich8_hws_flash_status {
-    struct ich8_hsfsts {
-        uint16_t flcdone        :1;   /* bit 0 Flash Cycle Done */
-        uint16_t flcerr         :1;   /* bit 1 Flash Cycle Error */
-        uint16_t dael           :1;   /* bit 2 Direct Access error Log */
-        uint16_t berasesz       :2;   /* bit 4:3 Block/Sector Erase Size */
-        uint16_t flcinprog      :1;   /* bit 5 flash SPI cycle in Progress */
-        uint16_t reserved1      :2;   /* bit 13:6 Reserved */
-        uint16_t reserved2      :6;   /* bit 13:6 Reserved */
-        uint16_t fldesvalid     :1;   /* bit 14 Flash Descriptor Valid */
-        uint16_t flockdn        :1;   /* bit 15 Flash Configuration Lock-Down */
-    } hsf_status;
-    uint16_t regval;
-};
-
-/* ICH8 GbE Flash Hardware Sequencing Flash control Register bit breakdown */
-/* Offset 06h FLCTL */
-union ich8_hws_flash_ctrl {
-    struct ich8_hsflctl {
-        uint16_t flcgo          :1;   /* 0 Flash Cycle Go */
-        uint16_t flcycle        :2;   /* 2:1 Flash Cycle */
-        uint16_t reserved       :5;   /* 7:3 Reserved  */
-        uint16_t fldbcount      :2;   /* 9:8 Flash Data Byte Count */
-        uint16_t flockdn        :6;   /* 15:10 Reserved */
-    } hsf_ctrl;
-    uint16_t regval;
-};
-
-/* ICH8 Flash Region Access Permissions */
-union ich8_hws_flash_regacc {
-    struct ich8_flracc {
-        uint32_t grra           :8;   /* 0:7 GbE region Read Access */
-        uint32_t grwa           :8;   /* 8:15 GbE region Write Access */
-        uint32_t gmrag          :8;   /* 23:16 GbE Master Read Access Grant  */
-        uint32_t gmwag          :8;   /* 31:24 GbE Master Write Access Grant */
-    } hsf_flregacc;
-    uint16_t regval;
-};
-
-/* Miscellaneous PHY bit definitions. */
-#define PHY_PREAMBLE        0xFFFFFFFF
-#define PHY_SOF             0x01
-#define PHY_OP_READ         0x02
-#define PHY_OP_WRITE        0x01
-#define PHY_TURNAROUND      0x02
-#define PHY_PREAMBLE_SIZE   32
-#define MII_CR_SPEED_1000   0x0040
-#define MII_CR_SPEED_100    0x2000
-#define MII_CR_SPEED_10     0x0000
-#define E1000_PHY_ADDRESS   0x01
-#define PHY_AUTO_NEG_TIME   45  /* 4.5 Seconds */
-#define PHY_FORCE_TIME      20  /* 2.0 Seconds */
-#define PHY_REVISION_MASK   0xFFFFFFF0
-#define DEVICE_SPEED_MASK   0x00000300  /* Device Ctrl Reg Speed Mask */
-#define REG4_SPEED_MASK     0x01E0
-#define REG9_SPEED_MASK     0x0300
-#define ADVERTISE_10_HALF   0x0001
-#define ADVERTISE_10_FULL   0x0002
-#define ADVERTISE_100_HALF  0x0004
-#define ADVERTISE_100_FULL  0x0008
-#define ADVERTISE_1000_HALF 0x0010
-#define ADVERTISE_1000_FULL 0x0020
-#define AUTONEG_ADVERTISE_SPEED_DEFAULT 0x002F  /* Everything but 1000-Half */
-#define AUTONEG_ADVERTISE_10_100_ALL    0x000F /* All 10/100 speeds*/
-#define AUTONEG_ADVERTISE_10_ALL        0x0003 /* 10Mbps Full & Half speeds*/
-
-#endif /* _EM_HW_H_ */
--- /dev/null
+++ sys/dev/em/e1000_82542.c
@@ -0,0 +1,552 @@
+/*******************************************************************************
+
+  Copyright (c) 2001-2007, Intel Corporation 
+  All rights reserved.
+  
+  Redistribution and use in source and binary forms, with or without 
+  modification, are permitted provided that the following conditions are met:
+  
+   1. Redistributions of source code must retain the above copyright notice, 
+      this list of conditions and the following disclaimer.
+  
+   2. Redistributions in binary form must reproduce the above copyright 
+      notice, this list of conditions and the following disclaimer in the 
+      documentation and/or other materials provided with the distribution.
+  
+   3. Neither the name of the Intel Corporation nor the names of its 
+      contributors may be used to endorse or promote products derived from 
+      this software without specific prior written permission.
+  
+  THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
+  AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 
+  IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 
+  ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE 
+  LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 
+  CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 
+  SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 
+  INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 
+  CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 
+  ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
+  POSSIBILITY OF SUCH DAMAGE.
+
+*******************************************************************************/
+/* $FreeBSD: src/sys/dev/em/e1000_82542.c,v 1.3.4.1 2007/11/28 23:24:37 jfv Exp $ */
+
+
+/* e1000_82542 (rev 1 & 2)
+ */
+
+#include "e1000_api.h"
+
+void e1000_init_function_pointers_82542(struct e1000_hw *hw);
+
+STATIC s32  e1000_init_phy_params_82542(struct e1000_hw *hw);
+STATIC s32  e1000_init_nvm_params_82542(struct e1000_hw *hw);
+STATIC s32  e1000_init_mac_params_82542(struct e1000_hw *hw);
+STATIC s32  e1000_get_bus_info_82542(struct e1000_hw *hw);
+STATIC s32  e1000_reset_hw_82542(struct e1000_hw *hw);
+STATIC s32  e1000_init_hw_82542(struct e1000_hw *hw);
+STATIC s32  e1000_setup_link_82542(struct e1000_hw *hw);
+STATIC s32  e1000_led_on_82542(struct e1000_hw *hw);
+STATIC s32  e1000_led_off_82542(struct e1000_hw *hw);
+STATIC void e1000_clear_hw_cntrs_82542(struct e1000_hw *hw);
+
+struct e1000_dev_spec_82542 {
+	bool dma_fairness;
+};
+
+/**
+ *  e1000_init_phy_params_82542 - Init PHY func ptrs.
+ *  @hw: pointer to the HW structure
+ *
+ *  This is a function pointer entry point called by the api module.
+ **/
+STATIC s32 e1000_init_phy_params_82542(struct e1000_hw *hw)
+{
+	struct e1000_phy_info *phy = &hw->phy;
+	s32 ret_val = E1000_SUCCESS;
+
+	DEBUGFUNC("e1000_init_phy_params_82542");
+
+	phy->type               = e1000_phy_none;
+
+	return ret_val;
+}
+
+/**
+ *  e1000_init_nvm_params_82542 - Init NVM func ptrs.
+ *  @hw: pointer to the HW structure
+ *
+ *  This is a function pointer entry point called by the api module.
+ **/
+STATIC s32 e1000_init_nvm_params_82542(struct e1000_hw *hw)
+{
+	struct e1000_nvm_info *nvm = &hw->nvm;
+	struct e1000_functions *func = &hw->func;
+
+	DEBUGFUNC("e1000_init_nvm_params_82542");
+
+	nvm->address_bits       =  6;
+	nvm->delay_usec         = 50;
+	nvm->opcode_bits        =  3;
+	nvm->type               = e1000_nvm_eeprom_microwire;
+	nvm->word_size          = 64;
+
+	/* Function Pointers */
+	func->read_nvm          = e1000_read_nvm_microwire;
+	func->release_nvm       = e1000_stop_nvm;
+	func->write_nvm         = e1000_write_nvm_microwire;
+	func->update_nvm        = e1000_update_nvm_checksum_generic;
+	func->validate_nvm      = e1000_validate_nvm_checksum_generic;
+
+	return E1000_SUCCESS;
+}
+
+/**
+ *  e1000_init_mac_params_82542 - Init MAC func ptrs.
+ *  @hw: pointer to the HW structure
+ *
+ *  This is a function pointer entry point called by the api module.
+ **/
+STATIC s32 e1000_init_mac_params_82542(struct e1000_hw *hw)
+{
+	struct e1000_mac_info *mac = &hw->mac;
+	struct e1000_functions *func = &hw->func;
+	s32 ret_val = E1000_SUCCESS;
+
+	DEBUGFUNC("e1000_init_mac_params_82542");
+
+	/* Set media type */
+	hw->phy.media_type = e1000_media_type_fiber;
+
+	/* Set mta register count */
+	mac->mta_reg_count = 128;
+	/* Set rar entry count */
+	mac->rar_entry_count = E1000_RAR_ENTRIES;
+
+	/* Function pointers */
+
+	/* bus type/speed/width */
+	func->get_bus_info = e1000_get_bus_info_82542;
+	/* reset */
+	func->reset_hw = e1000_reset_hw_82542;
+	/* hw initialization */
+	func->init_hw = e1000_init_hw_82542;
+	/* link setup */
+	func->setup_link = e1000_setup_link_82542;
+	/* phy/fiber/serdes setup */
+	func->setup_physical_interface = e1000_setup_fiber_serdes_link_generic;
+	/* check for link */
+	func->check_for_link = e1000_check_for_fiber_link_generic;
+	/* multicast address update */
+	func->update_mc_addr_list = e1000_update_mc_addr_list_generic;
+	/* writing VFTA */
+	func->write_vfta = e1000_write_vfta_generic;
+	/* clearing VFTA */
+	func->clear_vfta = e1000_clear_vfta_generic;
+	/* setting MTA */
+	func->mta_set = e1000_mta_set_generic;
+	/* turn on/off LED */
+	func->led_on = e1000_led_on_82542;
+	func->led_off = e1000_led_off_82542;
+	/* remove device */
+	func->remove_device = e1000_remove_device_generic;
+	/* clear hardware counters */
+	func->clear_hw_cntrs = e1000_clear_hw_cntrs_82542;
+	/* link info */
+	func->get_link_up_info = e1000_get_speed_and_duplex_fiber_serdes_generic;
+
+	hw->dev_spec_size = sizeof(struct e1000_dev_spec_82542);
+
+	/* Device-specific structure allocation */
+	ret_val = e1000_alloc_zeroed_dev_spec_struct(hw, hw->dev_spec_size);
+
+	return ret_val;
+}
+
+/**
+ *  e1000_init_function_pointers_82542 - Init func ptrs.
+ *  @hw: pointer to the HW structure
+ *
+ *  The only function explicitly called by the api module to initialize
+ *  all function pointers and parameters.
+ **/
+void e1000_init_function_pointers_82542(struct e1000_hw *hw)
+{
+	DEBUGFUNC("e1000_init_function_pointers_82542");
+
+	hw->func.init_mac_params = e1000_init_mac_params_82542;
+	hw->func.init_nvm_params = e1000_init_nvm_params_82542;
+	hw->func.init_phy_params = e1000_init_phy_params_82542;
+}
+
+/**
+ *  e1000_get_bus_info_82542 - Obtain bus information for adapter
+ *  @hw: pointer to the HW structure
+ *
+ *  This will obtain information about the HW bus for which the
+ *  adaper is attached and stores it in the hw structure.  This is a function
+ *  pointer entry point called by the api module.
+ **/
+STATIC s32 e1000_get_bus_info_82542(struct e1000_hw *hw)
+{
+	DEBUGFUNC("e1000_get_bus_info_82542");
+
+	hw->bus.type = e1000_bus_type_pci;
+	hw->bus.speed = e1000_bus_speed_unknown;
+	hw->bus.width = e1000_bus_width_unknown;
+
+	return E1000_SUCCESS;
+}
+
+/**
+ *  e1000_reset_hw_82542 - Reset hardware
+ *  @hw: pointer to the HW structure
+ *
+ *  This resets the hardware into a known state.  This is a
+ *  function pointer entry point called by the api module.
+ **/
+STATIC s32 e1000_reset_hw_82542(struct e1000_hw *hw)
+{
+	struct e1000_bus_info *bus = &hw->bus;
+	s32 ret_val = E1000_SUCCESS;
+	u32 ctrl, icr;
+
+	DEBUGFUNC("e1000_reset_hw_82542");
+
+	if (hw->revision_id == E1000_REVISION_2) {
+		DEBUGOUT("Disabling MWI on 82542 rev 2\n");
+		e1000_pci_clear_mwi(hw);
+	}
+
+	DEBUGOUT("Masking off all interrupts\n");
+	E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff);
+
+	E1000_WRITE_REG(hw, E1000_RCTL, 0);
+	E1000_WRITE_REG(hw, E1000_TCTL, E1000_TCTL_PSP);
+	E1000_WRITE_FLUSH(hw);
+
+	/*
+	 * Delay to allow any outstanding PCI transactions to complete before
+	 * resetting the device
+	 */
+	msec_delay(10);
+
+	ctrl = E1000_READ_REG(hw, E1000_CTRL);
+
+	DEBUGOUT("Issuing a global reset to 82542/82543 MAC\n");
+	E1000_WRITE_REG(hw, E1000_CTRL, ctrl | E1000_CTRL_RST);
+
+	e1000_reload_nvm(hw);
+	msec_delay(2);
+
+	E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff);
+	icr = E1000_READ_REG(hw, E1000_ICR);
+
+	if (hw->revision_id == E1000_REVISION_2) {
+		if (bus->pci_cmd_word & CMD_MEM_WRT_INVALIDATE)
+			e1000_pci_set_mwi(hw);
+	}
+
+	return ret_val;
+}
+
+/**
+ *  e1000_init_hw_82542 - Initialize hardware
+ *  @hw: pointer to the HW structure
+ *
+ *  This inits the hardware readying it for operation.  This is a
+ *  function pointer entry point called by the api module.
+ **/
+STATIC s32 e1000_init_hw_82542(struct e1000_hw *hw)
+{
+	struct e1000_mac_info *mac = &hw->mac;
+	struct e1000_dev_spec_82542 *dev_spec;
+	s32 ret_val = E1000_SUCCESS;
+	u32 ctrl;
+	u16 i;
+
+	DEBUGFUNC("e1000_init_hw_82542");
+
+	dev_spec = (struct e1000_dev_spec_82542 *)hw->dev_spec;
+
+	/* Disabling VLAN filtering */
+	E1000_WRITE_REG(hw, E1000_VET, 0);
+	e1000_clear_vfta(hw);
+
+	/* For 82542 (rev 2.0), disable MWI and put the receiver into reset */
+	if (hw->revision_id == E1000_REVISION_2) {
+		DEBUGOUT("Disabling MWI on 82542 rev 2.0\n");
+		e1000_pci_clear_mwi(hw);
+		E1000_WRITE_REG(hw, E1000_RCTL, E1000_RCTL_RST);
+		E1000_WRITE_FLUSH(hw);
+		msec_delay(5);
+	}
+
+	/* Setup the receive address. */
+	e1000_init_rx_addrs_generic(hw, mac->rar_entry_count);
+
+	/* For 82542 (rev 2.0), take the receiver out of reset and enable MWI */
+	if (hw->revision_id == E1000_REVISION_2) {
+		E1000_WRITE_REG(hw, E1000_RCTL, 0);
+		E1000_WRITE_FLUSH(hw);
+		msec_delay(1);
+		if (hw->bus.pci_cmd_word & CMD_MEM_WRT_INVALIDATE)
+			e1000_pci_set_mwi(hw);
+	}
+
+	/* Zero out the Multicast HASH table */
+	DEBUGOUT("Zeroing the MTA\n");
+	for (i = 0; i < mac->mta_reg_count; i++)
+		E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
+
+	/*
+	 * Set the PCI priority bit correctly in the CTRL register.  This
+	 * determines if the adapter gives priority to receives, or if it
+	 * gives equal priority to transmits and receives.
+	 */
+	if (dev_spec->dma_fairness) {
+		ctrl = E1000_READ_REG(hw, E1000_CTRL);
+		E1000_WRITE_REG(hw, E1000_CTRL, ctrl | E1000_CTRL_PRIOR);
+	}
+
+	/* Setup link and flow control */
+	ret_val = e1000_setup_link_82542(hw);
+
+	/*
+	 * Clear all of the statistics registers (clear on read).  It is
+	 * important that we do this after we have tried to establish link
+	 * because the symbol error count will increment wildly if there
+	 * is no link.
+	 */
+	e1000_clear_hw_cntrs_82542(hw);
+
+	return ret_val;
+}
+
+/**
+ *  e1000_setup_link_82542 - Setup flow control and link settings
+ *  @hw: pointer to the HW structure
+ *
+ *  Determines which flow control settings to use, then configures flow
+ *  control.  Calls the appropriate media-specific link configuration
+ *  function.  Assuming the adapter has a valid link partner, a valid link
+ *  should be established.  Assumes the hardware has previously been reset
+ *  and the transmitter and receiver are not enabled.  This is a function
+ *  pointer entry point called by the api module.
+ **/
+STATIC s32 e1000_setup_link_82542(struct e1000_hw *hw)
+{
+	struct e1000_mac_info *mac = &hw->mac;
+	struct e1000_functions *func = &hw->func;
+	s32 ret_val = E1000_SUCCESS;
+
+	DEBUGFUNC("e1000_setup_link_82542");
+
+	ret_val = e1000_set_default_fc_generic(hw);
+	if (ret_val)
+		goto out;
+
+	hw->fc.type &= ~e1000_fc_tx_pause;
+
+	if (mac->report_tx_early == 1)
+		hw->fc.type &= ~e1000_fc_rx_pause;
+
+	/*
+	 * We want to save off the original Flow Control configuration just in
+	 * case we get disconnected and then reconnected into a different hub
+	 * or switch with different Flow Control capabilities.
+	 */
+	hw->fc.original_type = hw->fc.type;
+
+	DEBUGOUT1("After fix-ups FlowControl is now = %x\n", hw->fc.type);
+
+	/* Call the necessary subroutine to configure the link. */
+	ret_val = func->setup_physical_interface(hw);
+	if (ret_val)
+		goto out;
+
+	/*
+	 * Initialize the flow control address, type, and PAUSE timer
+	 * registers to their default values.  This is done even if flow
+	 * control is disabled, because it does not hurt anything to
+	 * initialize these registers.
+	 */
+	DEBUGOUT("Initializing Flow Control address, type and timer regs\n");
+
+	E1000_WRITE_REG(hw, E1000_FCAL, FLOW_CONTROL_ADDRESS_LOW);
+	E1000_WRITE_REG(hw, E1000_FCAH, FLOW_CONTROL_ADDRESS_HIGH);
+	E1000_WRITE_REG(hw, E1000_FCT, FLOW_CONTROL_TYPE);
+
+	E1000_WRITE_REG(hw, E1000_FCTTV, hw->fc.pause_time);
+
+	ret_val = e1000_set_fc_watermarks_generic(hw);
+
+out:
+	return ret_val;
+}
+
+/**
+ *  e1000_led_on_82542 - Turn on SW controllable LED
+ *  @hw: pointer to the HW structure
+ *
+ *  Turns the SW defined LED on.  This is a function pointer entry point
+ *  called by the api module.
+ **/
+STATIC s32 e1000_led_on_82542(struct e1000_hw *hw)
+{
+	u32 ctrl = E1000_READ_REG(hw, E1000_CTRL);
+
+	DEBUGFUNC("e1000_led_on_82542");
+
+	ctrl |= E1000_CTRL_SWDPIN0;
+	ctrl |= E1000_CTRL_SWDPIO0;
+	E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
+
+	return E1000_SUCCESS;
+}
+
+/**
+ *  e1000_led_off_82542 - Turn off SW controllable LED
+ *  @hw: pointer to the HW structure
+ *
+ *  Turns the SW defined LED off.  This is a function pointer entry point
+ *  called by the api module.
+ **/
+STATIC s32 e1000_led_off_82542(struct e1000_hw *hw)
+{
+	u32 ctrl = E1000_READ_REG(hw, E1000_CTRL);
+
+	DEBUGFUNC("e1000_led_off_82542");
+
+	ctrl &= ~E1000_CTRL_SWDPIN0;
+	ctrl |= E1000_CTRL_SWDPIO0;
+	E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
+
+	return E1000_SUCCESS;
+}
+
+/**
+ *  e1000_translate_register_82542 - Translate the proper regiser offset
+ *  @reg: e1000 register to be read
+ *
+ *  Registers in 82542 are located in different offsets than other adapters
+ *  even though they function in the same manner.  This function takes in
+ *  the name of the register to read and returns the correct offset for
+ *  82542 silicon.
+ **/
+u32 e1000_translate_register_82542(u32 reg)
+{
+	/*
+	 * Some of the 82542 registers are located at different
+	 * offsets than they are in newer adapters.
+	 * Despite the difference in location, the registers
+	 * function in the same manner.
+	 */
+	switch (reg) {
+	case E1000_RA:
+		reg = 0x00040;
+		break;
+	case E1000_RDTR:
+		reg = 0x00108;
+		break;
+	case E1000_RDBAL(0):
+		reg = 0x00110;
+		break;
+	case E1000_RDBAH(0):
+		reg = 0x00114;
+		break;
+	case E1000_RDLEN(0):
+		reg = 0x00118;
+		break;
+	case E1000_RDH(0):
+		reg = 0x00120;
+		break;
+	case E1000_RDT(0):
+		reg = 0x00128;
+		break;
+	case E1000_RDBAL(1):
+		reg = 0x00138;
+		break;
+	case E1000_RDBAH(1):
+		reg = 0x0013C;
+		break;
+	case E1000_RDLEN(1):
+		reg = 0x00140;
+		break;
+	case E1000_RDH(1):
+		reg = 0x00148;
+		break;
+	case E1000_RDT(1):
+		reg = 0x00150;
+		break;
+	case E1000_FCRTH:
+		reg = 0x00160;
+		break;
+	case E1000_FCRTL:
+		reg = 0x00168;
+		break;
+	case E1000_MTA:
+		reg = 0x00200;
+		break;
+	case E1000_TDBAL(0):
+		reg = 0x00420;
+		break;
+	case E1000_TDBAH(0):
+		reg = 0x00424;
+		break;
+	case E1000_TDLEN(0):
+		reg = 0x00428;
+		break;
+	case E1000_TDH(0):
+		reg = 0x00430;
+		break;
+	case E1000_TDT(0):
+		reg = 0x00438;
+		break;
+	case E1000_TIDV:
+		reg = 0x00440;
+		break;
+	case E1000_VFTA:
+		reg = 0x00600;
+		break;
+	case E1000_TDFH:
+		reg = 0x08010;
+		break;
+	case E1000_TDFT:
+		reg = 0x08018;
+		break;
+	default:
+		break;
+	}
+
+	return reg;
+}
+
+/**
+ *  e1000_clear_hw_cntrs_82542 - Clear device specific hardware counters
+ *  @hw: pointer to the HW structure
+ *
+ *  Clears the hardware counters by reading the counter registers.
+ **/
+STATIC void e1000_clear_hw_cntrs_82542(struct e1000_hw *hw)
+{
+	volatile u32 temp;
+
+	DEBUGFUNC("e1000_clear_hw_cntrs_82542");
+
+	e1000_clear_hw_cntrs_base_generic(hw);
+
+	temp = E1000_READ_REG(hw, E1000_PRC64);
+	temp = E1000_READ_REG(hw, E1000_PRC127);
+	temp = E1000_READ_REG(hw, E1000_PRC255);
+	temp = E1000_READ_REG(hw, E1000_PRC511);
+	temp = E1000_READ_REG(hw, E1000_PRC1023);
+	temp = E1000_READ_REG(hw, E1000_PRC1522);
+	temp = E1000_READ_REG(hw, E1000_PTC64);
+	temp = E1000_READ_REG(hw, E1000_PTC127);
+	temp = E1000_READ_REG(hw, E1000_PTC255);
+	temp = E1000_READ_REG(hw, E1000_PTC511);
+	temp = E1000_READ_REG(hw, E1000_PTC1023);
+	temp = E1000_READ_REG(hw, E1000_PTC1522);
+}
--- /dev/null
+++ sys/dev/em/e1000_82541.h
@@ -0,0 +1,91 @@
+/*******************************************************************************
+
+  Copyright (c) 2001-2007, Intel Corporation 
+  All rights reserved.
+  
+  Redistribution and use in source and binary forms, with or without 
+  modification, are permitted provided that the following conditions are met:
+  
+   1. Redistributions of source code must retain the above copyright notice, 
+      this list of conditions and the following disclaimer.
+  
+   2. Redistributions in binary form must reproduce the above copyright 
+      notice, this list of conditions and the following disclaimer in the 
+      documentation and/or other materials provided with the distribution.
+  
+   3. Neither the name of the Intel Corporation nor the names of its 
+      contributors may be used to endorse or promote products derived from 
+      this software without specific prior written permission.
+  
+  THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
+  AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 
+  IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 
+  ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE 
+  LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 
+  CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 
+  SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 
+  INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 
+  CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 
+  ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
+  POSSIBILITY OF SUCH DAMAGE.
+
+*******************************************************************************/
+/* $FreeBSD: src/sys/dev/em/e1000_82541.h,v 1.3.4.1 2007/11/28 23:24:37 jfv Exp $ */
+
+
+#ifndef _E1000_82541_H_
+#define _E1000_82541_H_
+
+#define NVM_WORD_SIZE_BASE_SHIFT_82541 (NVM_WORD_SIZE_BASE_SHIFT + 1)
+
+#define IGP01E1000_PHY_CHANNEL_NUM                    4
+
+#define IGP01E1000_PHY_AGC_A                     0x1172
+#define IGP01E1000_PHY_AGC_B                     0x1272
+#define IGP01E1000_PHY_AGC_C                     0x1472
+#define IGP01E1000_PHY_AGC_D                     0x1872
+
+#define IGP01E1000_PHY_AGC_PARAM_A               0x1171
+#define IGP01E1000_PHY_AGC_PARAM_B               0x1271
+#define IGP01E1000_PHY_AGC_PARAM_C               0x1471
+#define IGP01E1000_PHY_AGC_PARAM_D               0x1871
+
+#define IGP01E1000_PHY_EDAC_MU_INDEX             0xC000
+#define IGP01E1000_PHY_EDAC_SIGN_EXT_9_BITS      0x8000
+
+#define IGP01E1000_PHY_DSP_RESET                 0x1F33
+
+#define IGP01E1000_PHY_DSP_FFE                   0x1F35
+#define IGP01E1000_PHY_DSP_FFE_CM_CP             0x0069
+#define IGP01E1000_PHY_DSP_FFE_DEFAULT           0x002A
+
+#define IGP01E1000_IEEE_FORCE_GIG                0x0140
+#define IGP01E1000_IEEE_RESTART_AUTONEG          0x3300
+
+#define IGP01E1000_AGC_LENGTH_SHIFT                   7
+#define IGP01E1000_AGC_RANGE                         10
+
+#define FFE_IDLE_ERR_COUNT_TIMEOUT_20                20
+#define FFE_IDLE_ERR_COUNT_TIMEOUT_100              100
+
+#define IGP01E1000_ANALOG_FUSE_STATUS            0x20D0
+#define IGP01E1000_ANALOG_SPARE_FUSE_STATUS      0x20D1
+#define IGP01E1000_ANALOG_FUSE_CONTROL           0x20DC
+#define IGP01E1000_ANALOG_FUSE_BYPASS            0x20DE
+
+#define IGP01E1000_ANALOG_SPARE_FUSE_ENABLED     0x0100
+#define IGP01E1000_ANALOG_FUSE_FINE_MASK         0x0F80
+#define IGP01E1000_ANALOG_FUSE_COARSE_MASK       0x0070
+#define IGP01E1000_ANALOG_FUSE_COARSE_THRESH     0x0040
+#define IGP01E1000_ANALOG_FUSE_COARSE_10         0x0010
+#define IGP01E1000_ANALOG_FUSE_FINE_1            0x0080
+#define IGP01E1000_ANALOG_FUSE_FINE_10           0x0500
+#define IGP01E1000_ANALOG_FUSE_POLY_MASK         0xF000
+#define IGP01E1000_ANALOG_FUSE_ENABLE_SW_CONTROL 0x0002
+
+#define IGP01E1000_MSE_CHANNEL_D                 0x000F
+#define IGP01E1000_MSE_CHANNEL_C                 0x00F0
+#define IGP01E1000_MSE_CHANNEL_B                 0x0F00
+#define IGP01E1000_MSE_CHANNEL_A                 0xF000
+
+#endif
Index: if_em.h
===================================================================
RCS file: /home/cvs/src/sys/dev/em/if_em.h,v
retrieving revision 1.3
retrieving revision 1.4
diff -L sys/dev/em/if_em.h -L sys/dev/em/if_em.h -u -r1.3 -r1.4
--- sys/dev/em/if_em.h
+++ sys/dev/em/if_em.h
@@ -1,6 +1,6 @@
 /**************************************************************************
 
-Copyright (c) 2001-2006, Intel Corporation
+Copyright (c) 2001-2007, Intel Corporation
 All rights reserved.
 
 Redistribution and use in source and binary forms, with or without
@@ -30,14 +30,18 @@
 POSSIBILITY OF SUCH DAMAGE.
 
 ***************************************************************************/
-
-/*$FreeBSD: /repoman/r/ncvs/src/sys/dev/em/if_em.h,v 1.32.2.3 2006/08/08 09:20:26 glebius Exp $*/
+/* $FreeBSD: src/sys/dev/em/if_em.h,v 1.62.2.1 2007/11/28 23:24:38 jfv Exp $ */
 
 #ifndef _EM_H_DEFINED_
 #define _EM_H_DEFINED_
 
 /* Tunables */
 
+/* Set FAST handling on by default */
+#if __FreeBSD_version > 700000
+#define EM_FAST_IRQ
+#endif
+
 /*
  * EM_TXD: Maximum number of Transmit Descriptors
  * Valid Range: 80-256 for 82542 and 82543-based adapters
@@ -48,7 +52,7 @@
  *   descriptor is 16 bytes.
  *   Since TDLEN should be multiple of 128bytes, the number of transmit
  *   desscriptors should meet the following condition.
- *      (num_tx_desc * sizeof(struct em_tx_desc)) % 128 == 0
+ *      (num_tx_desc * sizeof(struct e1000_tx_desc)) % 128 == 0
  */
 #define EM_MIN_TXD		80
 #define EM_MAX_TXD_82543	256
@@ -66,12 +70,12 @@
  *   descriptor. The maximum MTU size is 16110.
  *   Since TDLEN should be multiple of 128bytes, the number of transmit
  *   desscriptors should meet the following condition.
- *      (num_tx_desc * sizeof(struct em_tx_desc)) % 128 == 0
+ *      (num_tx_desc * sizeof(struct e1000_tx_desc)) % 128 == 0
  */
 #define EM_MIN_RXD		80
 #define EM_MAX_RXD_82543	256
 #define EM_MAX_RXD		4096
-#define EM_DEFAULT_RXD		EM_MAX_RXD_82543
+#define EM_DEFAULT_RXD	EM_MAX_RXD_82543
 
 /*
  * EM_TIDV - Transmit Interrupt Delay Value
@@ -86,7 +90,8 @@
 #define EM_TIDV                         64
 
 /*
- * EM_TADV - Transmit Absolute Interrupt Delay Value (Not valid for 82542/82543/82544)
+ * EM_TADV - Transmit Absolute Interrupt Delay Value
+ * (Not valid for 82542/82543/82544)
  * Valid Range: 0-65535 (0=off)
  * Default Value: 64
  *   This value, in units of 1.024 microseconds, limits the delay in which a
@@ -112,10 +117,10 @@
  *
  *   CAUTION: When setting EM_RDTR to a value other than 0, adapters
  *            may hang (stop transmitting) under certain network conditions.
- *            If this occurs a WATCHDOG message is logged in the system event log.
- *            In addition, the controller is automatically reset, restoring the
- *            network connection. To eliminate the potential for the hang
- *            ensure that EM_RDTR is set to 0.
+ *            If this occurs a WATCHDOG message is logged in the system
+ *            event log. In addition, the controller is automatically reset,
+ *            restoring the network connection. To eliminate the potential
+ *            for the hang ensure that EM_RDTR is set to 0.
  */
 #define EM_RDTR                         0
 
@@ -133,20 +138,16 @@
 #define EM_RADV                         64
 
 /*
- * Inform the stack about transmit checksum offload capabilities.
- */
-#define EM_CHECKSUM_FEATURES            (CSUM_TCP | CSUM_UDP)
-
-/*
  * This parameter controls the duration of transmit watchdog timer.
  */
-#define EM_TX_TIMEOUT                   5    /* set to 5 seconds */
+#define EM_TX_TIMEOUT                   5
 
 /*
  * This parameter controls when the driver calls the routine to reclaim
  * transmit descriptors.
  */
-#define EM_TX_CLEANUP_THRESHOLD		(adapter->num_tx_desc / 8)
+#define EM_TX_CLEANUP_THRESHOLD	(adapter->num_tx_desc / 8)
+#define EM_TX_OP_THRESHOLD	(adapter->num_tx_desc / 32)
 
 /*
  * This parameter controls whether or not autonegotation is enabled.
@@ -163,35 +164,39 @@
  */
 #define WAIT_FOR_AUTO_NEG_DEFAULT       0
 
-/*
- * EM_MASTER_SLAVE is only defined to enable a workaround for a known compatibility issue
- * with 82541/82547 devices and some switches.  See the "Known Limitations" section of
- * the README file for a complete description and a list of affected switches.
- *
- *              0 = Hardware default
- *              1 = Master mode
- *              2 = Slave mode
- *              3 = Auto master/slave
- */
-/* #define EM_MASTER_SLAVE      2 */
-
 /* Tunables -- End */
 
-#define AUTONEG_ADV_DEFAULT             (ADVERTISE_10_HALF | ADVERTISE_10_FULL | \
-                                         ADVERTISE_100_HALF | ADVERTISE_100_FULL | \
-                                         ADVERTISE_1000_FULL)
+#define AUTONEG_ADV_DEFAULT	(ADVERTISE_10_HALF | ADVERTISE_10_FULL | \
+				ADVERTISE_100_HALF | ADVERTISE_100_FULL | \
+				ADVERTISE_1000_FULL)
+
+#define AUTO_ALL_MODES		0
+
+/* PHY master/slave setting */
+#define EM_MASTER_SLAVE		e1000_ms_hw_default
 
+/*
+ * Micellaneous constants
+ */
 #define EM_VENDOR_ID                    0x8086
-#define EM_FLASH			0x0014	/* Flash memory on ICH8 */
+#define EM_FLASH                        0x0014 
 
 #define EM_JUMBO_PBA                    0x00000028
 #define EM_DEFAULT_PBA                  0x00000030
 #define EM_SMARTSPEED_DOWNSHIFT         3
 #define EM_SMARTSPEED_MAX               15
+#define EM_MAX_INTR			10
 
 #define MAX_NUM_MULTICAST_ADDRESSES     128
 #define PCI_ANY_ID                      (~0U)
 #define ETHER_ALIGN                     2
+#define EM_FC_PAUSE_TIME		0x0680
+#define EM_EEPROM_APME			0x400;
+
+/* Code compatilbility between 6 and 7 */
+#ifndef ETHER_BPF_MTAP
+#define ETHER_BPF_MTAP			BPF_MTAP
+#endif
 
 /*
  * TDBA/RDBA should be aligned on 16 byte boundary. But TDLEN/RDLEN should be
@@ -202,6 +207,18 @@
 
 #define SPEED_MODE_BIT (1<<21)		/* On PCI-E MACs only */
 
+/* PCI Config defines */
+#define EM_BAR_TYPE(v)		((v) & EM_BAR_TYPE_MASK)
+#define EM_BAR_TYPE_MASK	0x00000001
+#define EM_BAR_TYPE_MMEM	0x00000000
+#define EM_BAR_TYPE_IO		0x00000001
+#define EM_BAR_TYPE_FLASH	0x0014 
+#define EM_BAR_MEM_TYPE(v)	((v) & EM_BAR_MEM_TYPE_MASK)
+#define EM_BAR_MEM_TYPE_MASK	0x00000006
+#define EM_BAR_MEM_TYPE_32BIT	0x00000000
+#define EM_BAR_MEM_TYPE_64BIT	0x00000004
+#define EM_MSIX_BAR		3	/* On 82575 */
+
 /* Defines for printing debug information */
 #define DEBUG_INIT  0
 #define DEBUG_IOCTL 0
@@ -217,67 +234,68 @@
 #define HW_DEBUGOUT1(S, A)          if (DEBUG_HW) printf(S "\n", A)
 #define HW_DEBUGOUT2(S, A, B)       if (DEBUG_HW) printf(S "\n", A, B)
 
+#define EM_MAX_SCATTER		64
+#define EM_TSO_SIZE		(65535 + sizeof(struct ether_vlan_header))
+#define EM_TSO_SEG_SIZE		4096	/* Max dma segment size */
+#define ETH_ZLEN		60
+#define ETH_ADDR_LEN		6
+#define CSUM_OFFLOAD		7	/* Offload bits in mbuf flag */
 
-/* Supported RX Buffer Sizes */
-#define EM_RXBUFFER_2048        2048
-#define EM_RXBUFFER_4096        4096
-#define EM_RXBUFFER_8192        8192
-#define EM_RXBUFFER_16384      16384
-
-#define EM_MAX_SCATTER            64
-
-typedef enum _XSUM_CONTEXT_T {
-	OFFLOAD_NONE,
-	OFFLOAD_TCP_IP,
-	OFFLOAD_UDP_IP
-} XSUM_CONTEXT_T;
+struct adapter;
 
-struct adapter adapter;		/* XXX: ugly forward declaration */
 struct em_int_delay_info {
-	struct adapter *adapter;	/* XXX: ugly pointer */
-	int offset;		/* Register offset to read/write */
-	int value;		/* Current value in usecs */
+	struct adapter *adapter;	/* Back-pointer to the adapter struct */
+	int offset;			/* Register offset to read/write */
+	int value;			/* Current value in usecs */
 };
 
 /*
  * Bus dma allocation structure used by
- * em_dma_malloc() and em_dma_free().
+ * e1000_dma_malloc and e1000_dma_free.
  */
 struct em_dma_alloc {
-	bus_addr_t		dma_paddr;
-	caddr_t			dma_vaddr;
-	bus_dma_tag_t		dma_tag;
-	bus_dmamap_t		dma_map;
-	bus_dma_segment_t	dma_seg;
-	int			dma_nseg;
+        bus_addr_t              dma_paddr;
+        caddr_t                 dma_vaddr;
+        bus_dma_tag_t           dma_tag;
+        bus_dmamap_t            dma_map;
+        bus_dma_segment_t       dma_seg;
+        int                     dma_nseg;
 };
 
-/* Driver softc. */
+/* Our adapter structure */
 struct adapter {
 	struct ifnet	*ifp;
-	struct em_hw	hw;
+	struct e1000_hw	hw;
 
 	/* FreeBSD operating-system-specific structures. */
-	struct em_osdep osdep;
+	struct e1000_osdep osdep;
 	struct device	*dev;
 	struct resource *res_memory;
 	struct resource *flash_mem;
+	struct resource *msix_mem;
 	struct resource	*res_ioport;
 	struct resource	*res_interrupt;
 	void		*int_handler_tag;
 	struct ifmedia	media;
 	struct callout	timer;
 	struct callout	tx_fifo_timer;
+	int		watchdog_timer;
 	int		io_rid;
+	int		msi;
 	int		if_flags;
-	struct mtx	mtx;
+	int		max_frame_size;
+	int		min_frame_size;
+	struct mtx	core_mtx;
+	struct mtx	tx_mtx;
 	int		em_insert_vlan_header;
-	struct task	link_task;
-	struct task	rxtx_task;
-	struct taskqueue *tq;		/* private task queue */
+	struct task     link_task;
+	struct task     rxtx_task;
+	struct taskqueue *tq;           /* private task queue */
+	/* Management and WOL features */
+	int		wol;
+	int		has_manage;
 
 	/* Info about the board itself */
-	uint32_t	part_num;
 	uint8_t		link_active;
 	uint16_t	link_speed;
 	uint16_t	link_duplex;
@@ -287,8 +305,6 @@
 	struct em_int_delay_info rx_int_delay;
 	struct em_int_delay_info rx_abs_int_delay;
 
-	XSUM_CONTEXT_T  active_checksum_context;
-
 	/*
 	 * Transmit definitions
 	 *
@@ -299,14 +315,21 @@
 	 * The number of remaining tx_desc is num_tx_desc_avail.
 	 */
 	struct em_dma_alloc	txdma;		/* bus_dma glue for tx desc */
-	struct em_tx_desc	*tx_desc_base;
+	struct e1000_tx_desc	*tx_desc_base;
 	uint32_t		next_avail_tx_desc;
-	uint32_t		oldest_used_tx_desc;
+	uint32_t		next_tx_to_clean;
 	volatile uint16_t	num_tx_desc_avail;
         uint16_t		num_tx_desc;
         uint32_t		txd_cmd;
 	struct em_buffer	*tx_buffer_area;
 	bus_dma_tag_t		txtag;		/* dma tag for tx */
+	uint32_t	   	tx_tso;		/* last tx was tso */
+
+	/*
+	 * Transmit function pointer:
+	 *      legacy or advanced (82575 and later)
+	 */
+	int (*em_xmit) (struct adapter *adapter, struct mbuf **m_headp);
 
 	/* 
 	 * Receive definitions
@@ -317,7 +340,7 @@
 	 * The next pair to check on receive is at offset next_rx_desc_to_check
 	 */
 	struct em_dma_alloc	rxdma;		/* bus_dma glue for rx desc */
-	struct em_rx_desc	*rx_desc_base;
+	struct e1000_rx_desc	*rx_desc_base;
 	uint32_t		next_rx_desc_to_check;
 	uint32_t		rx_buffer_len;
 	uint16_t		num_rx_desc;
@@ -326,11 +349,15 @@
 	bus_dma_tag_t		rxtag;
 	bus_dmamap_t		rx_sparemap;
 
-	/* First/last mbuf pointers, for collecting multisegment RX packets. */
+	/*
+	 * First/last mbuf pointers, for
+	 * collecting multisegment RX packets.
+	 */
 	struct mbuf	       *fmp;
 	struct mbuf	       *lmp;
 
 	/* Misc stats maintained by the driver */
+	unsigned long	dropped_pkts;
 	unsigned long	mbuf_alloc_failed;
 	unsigned long	mbuf_cluster_failed;
 	unsigned long	no_tx_desc_avail1;
@@ -359,7 +386,7 @@
 	boolean_t       pcix_82544;
 	boolean_t       in_detach;
 
-	struct em_hw_stats stats;
+	struct e1000_hw_stats stats;
 };
 
 /* ******************************************************************************
@@ -379,6 +406,7 @@
 
 
 struct em_buffer {
+	int		next_eop;  /* Index of the desc to watch */
         struct mbuf    *m_head;
         bus_dmamap_t    map;         /* bus_dma map for packet */
 };
@@ -386,21 +414,27 @@
 /* For 82544 PCIX  Workaround */
 typedef struct _ADDRESS_LENGTH_PAIR
 {
-    u_int64_t   address;
-    u_int32_t   length;
+	uint64_t   address;
+	uint32_t   length;
 } ADDRESS_LENGTH_PAIR, *PADDRESS_LENGTH_PAIR;
 
 typedef struct _DESCRIPTOR_PAIR
 {
-    ADDRESS_LENGTH_PAIR descriptor[4];
-    u_int32_t   elements;
+	ADDRESS_LENGTH_PAIR descriptor[4];
+	uint32_t   elements;
 } DESC_ARRAY, *PDESC_ARRAY;
 
-#define	EM_LOCK_INIT(_sc, _name) \
-	mtx_init(&(_sc)->mtx, _name, MTX_NETWORK_LOCK, MTX_DEF)
-#define	EM_LOCK_DESTROY(_sc)	mtx_destroy(&(_sc)->mtx)
-#define	EM_LOCK(_sc)		mtx_lock(&(_sc)->mtx)
-#define	EM_UNLOCK(_sc)		mtx_unlock(&(_sc)->mtx)
-#define	EM_LOCK_ASSERT(_sc)	mtx_assert(&(_sc)->mtx, MA_OWNED)
+#define	EM_CORE_LOCK_INIT(_sc, _name) \
+	mtx_init(&(_sc)->core_mtx, _name, "EM Core Lock", MTX_DEF)
+#define	EM_TX_LOCK_INIT(_sc, _name) \
+	mtx_init(&(_sc)->tx_mtx, _name, "EM TX Lock", MTX_DEF)
+#define	EM_CORE_LOCK_DESTROY(_sc)	mtx_destroy(&(_sc)->core_mtx)
+#define	EM_TX_LOCK_DESTROY(_sc)		mtx_destroy(&(_sc)->tx_mtx)
+#define	EM_CORE_LOCK(_sc)		mtx_lock(&(_sc)->core_mtx)
+#define	EM_TX_LOCK(_sc)			mtx_lock(&(_sc)->tx_mtx)
+#define	EM_CORE_UNLOCK(_sc)		mtx_unlock(&(_sc)->core_mtx)
+#define	EM_TX_UNLOCK(_sc)		mtx_unlock(&(_sc)->tx_mtx)
+#define	EM_CORE_LOCK_ASSERT(_sc)	mtx_assert(&(_sc)->core_mtx, MA_OWNED)
+#define	EM_TX_LOCK_ASSERT(_sc)		mtx_assert(&(_sc)->tx_mtx, MA_OWNED)
 
 #endif /* _EM_H_DEFINED_ */
--- /dev/null
+++ sys/dev/em/e1000_82571.c
@@ -0,0 +1,1439 @@
+/*******************************************************************************
+
+  Copyright (c) 2001-2007, Intel Corporation 
+  All rights reserved.
+  
+  Redistribution and use in source and binary forms, with or without 
+  modification, are permitted provided that the following conditions are met:
+  
+   1. Redistributions of source code must retain the above copyright notice, 
+      this list of conditions and the following disclaimer.
+  
+   2. Redistributions in binary form must reproduce the above copyright 
+      notice, this list of conditions and the following disclaimer in the 
+      documentation and/or other materials provided with the distribution.
+  
+   3. Neither the name of the Intel Corporation nor the names of its 
+      contributors may be used to endorse or promote products derived from 
+      this software without specific prior written permission.
+  
+  THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
+  AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 
+  IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 
+  ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE 
+  LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 
+  CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 
+  SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 
+  INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 
+  CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 
+  ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
+  POSSIBILITY OF SUCH DAMAGE.
+
+*******************************************************************************/
+/* $FreeBSD: src/sys/dev/em/e1000_82571.c,v 1.3.4.1 2007/11/28 23:24:37 jfv Exp $ */
+
+
+/* e1000_82571
+ * e1000_82572
+ * e1000_82573
+ * e1000_82574
+ */
+
+#include "e1000_api.h"
+#include "e1000_82571.h"
+
+void e1000_init_function_pointers_82571(struct e1000_hw *hw);
+
+STATIC s32  e1000_init_phy_params_82571(struct e1000_hw *hw);
+STATIC s32  e1000_init_nvm_params_82571(struct e1000_hw *hw);
+STATIC s32  e1000_init_mac_params_82571(struct e1000_hw *hw);
+STATIC s32  e1000_acquire_nvm_82571(struct e1000_hw *hw);
+STATIC void e1000_release_nvm_82571(struct e1000_hw *hw);
+STATIC s32  e1000_write_nvm_82571(struct e1000_hw *hw, u16 offset,
+                                  u16 words, u16 *data);
+STATIC s32  e1000_update_nvm_checksum_82571(struct e1000_hw *hw);
+STATIC s32  e1000_validate_nvm_checksum_82571(struct e1000_hw *hw);
+STATIC s32  e1000_get_cfg_done_82571(struct e1000_hw *hw);
+STATIC s32  e1000_set_d0_lplu_state_82571(struct e1000_hw *hw,
+                                          bool active);
+STATIC s32  e1000_reset_hw_82571(struct e1000_hw *hw);
+STATIC s32  e1000_init_hw_82571(struct e1000_hw *hw);
+STATIC void e1000_clear_vfta_82571(struct e1000_hw *hw);
+STATIC void e1000_update_mc_addr_list_82571(struct e1000_hw *hw,
+                                            u8 *mc_addr_list, u32 mc_addr_count,
+                                            u32 rar_used_count, u32 rar_count);
+STATIC s32  e1000_setup_link_82571(struct e1000_hw *hw);
+STATIC s32  e1000_setup_copper_link_82571(struct e1000_hw *hw);
+STATIC s32  e1000_setup_fiber_serdes_link_82571(struct e1000_hw *hw);
+STATIC s32  e1000_valid_led_default_82571(struct e1000_hw *hw, u16 *data);
+STATIC void e1000_clear_hw_cntrs_82571(struct e1000_hw *hw);
+static s32  e1000_get_hw_semaphore_82571(struct e1000_hw *hw);
+static s32  e1000_fix_nvm_checksum_82571(struct e1000_hw *hw);
+static s32  e1000_get_phy_id_82571(struct e1000_hw *hw);
+static void e1000_put_hw_semaphore_82571(struct e1000_hw *hw);
+static void e1000_initialize_hw_bits_82571(struct e1000_hw *hw);
+static s32  e1000_write_nvm_eewr_82571(struct e1000_hw *hw, u16 offset,
+                                       u16 words, u16 *data);
+STATIC s32  e1000_read_mac_addr_82571(struct e1000_hw *hw);
+STATIC void e1000_power_down_phy_copper_82571(struct e1000_hw *hw);
+
+struct e1000_dev_spec_82571 {
+	bool laa_is_present;
+};
+
+/**
+ *  e1000_init_phy_params_82571 - Init PHY func ptrs.
+ *  @hw: pointer to the HW structure
+ *
+ *  This is a function pointer entry point called by the api module.
+ **/
+STATIC s32 e1000_init_phy_params_82571(struct e1000_hw *hw)
+{
+	struct e1000_phy_info *phy = &hw->phy;
+	struct e1000_functions *func = &hw->func;
+	s32 ret_val = E1000_SUCCESS;
+
+	DEBUGFUNC("e1000_init_phy_params_82571");
+
+	if (hw->phy.media_type != e1000_media_type_copper) {
+		phy->type        = e1000_phy_none;
+		goto out;
+	}
+
+	phy->addr                        = 1;
+	phy->autoneg_mask                = AUTONEG_ADVERTISE_SPEED_DEFAULT;
+	phy->reset_delay_us              = 100;
+
+	func->acquire_phy                = e1000_get_hw_semaphore_82571;
+	func->check_polarity             = e1000_check_polarity_igp;
+	func->check_reset_block          = e1000_check_reset_block_generic;
+	func->release_phy                = e1000_put_hw_semaphore_82571;
+	func->reset_phy                  = e1000_phy_hw_reset_generic;
+	func->set_d0_lplu_state          = e1000_set_d0_lplu_state_82571;
+	func->set_d3_lplu_state          = e1000_set_d3_lplu_state_generic;
+	func->power_up_phy               = e1000_power_up_phy_copper;
+	func->power_down_phy             = e1000_power_down_phy_copper_82571;
+
+	switch (hw->mac.type) {
+	case e1000_82571:
+	case e1000_82572:
+		phy->type                = e1000_phy_igp_2;
+		func->get_cfg_done       = e1000_get_cfg_done_82571;
+		func->get_phy_info       = e1000_get_phy_info_igp;
+		func->force_speed_duplex = e1000_phy_force_speed_duplex_igp;
+		func->get_cable_length   = e1000_get_cable_length_igp_2;
+		func->read_phy_reg       = e1000_read_phy_reg_igp;
+		func->write_phy_reg      = e1000_write_phy_reg_igp;
+
+		/* This uses above function pointers */
+		ret_val = e1000_get_phy_id_82571(hw);
+
+		/* Verify PHY ID */
+		if (phy->id != IGP01E1000_I_PHY_ID) {
+			ret_val = -E1000_ERR_PHY;
+			goto out;
+		}
+		break;
+	case e1000_82573:
+		phy->type                = e1000_phy_m88;
+		func->get_cfg_done       = e1000_get_cfg_done_generic;
+		func->get_phy_info       = e1000_get_phy_info_m88;
+		func->commit_phy         = e1000_phy_sw_reset_generic;
+		func->force_speed_duplex = e1000_phy_force_speed_duplex_m88;
+		func->get_cable_length   = e1000_get_cable_length_m88;
+		func->read_phy_reg       = e1000_read_phy_reg_m88;
+		func->write_phy_reg      = e1000_write_phy_reg_m88;
+
+		/* This uses above function pointers */
+		ret_val = e1000_get_phy_id_82571(hw);
+
+		/* Verify PHY ID */
+		if (phy->id != M88E1111_I_PHY_ID) {
+			ret_val = -E1000_ERR_PHY;
+			DEBUGOUT1("PHY ID unknown: type = 0x%08x\n", phy->id);
+			goto out;
+		}
+		break;
+	default:
+		ret_val = -E1000_ERR_PHY;
+		goto out;
+		break;
+	}
+
+out:
+	return ret_val;
+}
+
+/**
+ *  e1000_init_nvm_params_82571 - Init NVM func ptrs.
+ *  @hw: pointer to the HW structure
+ *
+ *  This is a function pointer entry point called by the api module.
+ **/
+STATIC s32 e1000_init_nvm_params_82571(struct e1000_hw *hw)
+{
+	struct e1000_nvm_info *nvm = &hw->nvm;
+	struct e1000_functions *func = &hw->func;
+	u32 eecd = E1000_READ_REG(hw, E1000_EECD);
+	u16 size;
+
+	DEBUGFUNC("e1000_init_nvm_params_82571");
+
+	nvm->opcode_bits          = 8;
+	nvm->delay_usec           = 1;
+	switch (nvm->override) {
+	case e1000_nvm_override_spi_large:
+		nvm->page_size    = 32;
+		nvm->address_bits = 16;
+		break;
+	case e1000_nvm_override_spi_small:
+		nvm->page_size    = 8;
+		nvm->address_bits = 8;
+		break;
+	default:
+		nvm->page_size    = eecd & E1000_EECD_ADDR_BITS ? 32 : 8;
+		nvm->address_bits = eecd & E1000_EECD_ADDR_BITS ? 16 : 8;
+		break;
+	}
+
+	switch (hw->mac.type) {
+	case e1000_82573:
+		if (((eecd >> 15) & 0x3) == 0x3) {
+			nvm->type = e1000_nvm_flash_hw;
+			nvm->word_size = 2048;
+			/*
+			 * Autonomous Flash update bit must be cleared due
+			 * to Flash update issue.
+			 */
+			eecd &= ~E1000_EECD_AUPDEN;
+			E1000_WRITE_REG(hw, E1000_EECD, eecd);
+			break;
+		}
+		/* Fall Through */
+	default:
+		nvm->type	= e1000_nvm_eeprom_spi;
+		size = (u16)((eecd & E1000_EECD_SIZE_EX_MASK) >>
+		                  E1000_EECD_SIZE_EX_SHIFT);
+		/*
+		 * Added to a constant, "size" becomes the left-shift value
+		 * for setting word_size.
+		 */
+		size += NVM_WORD_SIZE_BASE_SHIFT;
+
+		/* EEPROM access above 16k is unsupported */
+		if (size > 14)
+			size = 14;
+		nvm->word_size	= 1 << size;
+		break;
+	}
+
+	/* Function Pointers */
+	func->acquire_nvm       = e1000_acquire_nvm_82571;
+	func->read_nvm          = (hw->mac.type == e1000_82573)
+	                          ? e1000_read_nvm_eerd
+	                          : e1000_read_nvm_spi;
+	func->release_nvm       = e1000_release_nvm_82571;
+	func->update_nvm        = e1000_update_nvm_checksum_82571;
+	func->validate_nvm      = e1000_validate_nvm_checksum_82571;
+	func->valid_led_default = e1000_valid_led_default_82571;
+	func->write_nvm         = e1000_write_nvm_82571;
+
+	return E1000_SUCCESS;
+}
+
+/**
+ *  e1000_init_mac_params_82571 - Init MAC func ptrs.
+ *  @hw: pointer to the HW structure
+ *
+ *  This is a function pointer entry point called by the api module.
+ **/
+STATIC s32 e1000_init_mac_params_82571(struct e1000_hw *hw)
+{
+	struct e1000_mac_info *mac = &hw->mac;
+	struct e1000_functions *func = &hw->func;
+	s32 ret_val = E1000_SUCCESS;
+
+	DEBUGFUNC("e1000_init_mac_params_82571");
+
+	/* Set media type */
+	switch (hw->device_id) {
+	case E1000_DEV_ID_82571EB_FIBER:
+	case E1000_DEV_ID_82572EI_FIBER:
+	case E1000_DEV_ID_82571EB_QUAD_FIBER:
+		hw->phy.media_type = e1000_media_type_fiber;
+		break;
+	case E1000_DEV_ID_82571EB_SERDES:
+	case E1000_DEV_ID_82571EB_SERDES_DUAL:
+	case E1000_DEV_ID_82571EB_SERDES_QUAD:
+	case E1000_DEV_ID_82572EI_SERDES:
+		hw->phy.media_type = e1000_media_type_internal_serdes;
+		break;
+	default:
+		hw->phy.media_type = e1000_media_type_copper;
+		break;
+	}
+
+	/* Set mta register count */
+	mac->mta_reg_count = 128;
+	/* Set rar entry count */
+	mac->rar_entry_count = E1000_RAR_ENTRIES;
+	/* Set if part includes ASF firmware */
+	mac->asf_firmware_present = TRUE;
+	/* Set if manageability features are enabled. */
+	mac->arc_subsystem_valid =
+	        (E1000_READ_REG(hw, E1000_FWSM) & E1000_FWSM_MODE_MASK)
+	                ? TRUE : FALSE;
+
+	/* Function pointers */
+
+	/* bus type/speed/width */
+	func->get_bus_info = e1000_get_bus_info_pcie_generic;
+	/* reset */
+	func->reset_hw = e1000_reset_hw_82571;
+	/* hw initialization */
+	func->init_hw = e1000_init_hw_82571;
+	/* link setup */
+	func->setup_link = e1000_setup_link_82571;
+	/* physical interface link setup */
+	func->setup_physical_interface =
+	        (hw->phy.media_type == e1000_media_type_copper)
+	                ? e1000_setup_copper_link_82571
+	                : e1000_setup_fiber_serdes_link_82571;
+	/* check for link */
+	switch (hw->phy.media_type) {
+	case e1000_media_type_copper:
+		func->check_for_link = e1000_check_for_copper_link_generic;
+		break;
+	case e1000_media_type_fiber:
+		func->check_for_link = e1000_check_for_fiber_link_generic;
+		break;
+	case e1000_media_type_internal_serdes:
+		func->check_for_link = e1000_check_for_serdes_link_generic;
+		break;
+	default:
+		ret_val = -E1000_ERR_CONFIG;
+		goto out;
+		break;
+	}
+	/* check management mode */
+	func->check_mng_mode = e1000_check_mng_mode_generic;
+	/* multicast address update */
+	func->update_mc_addr_list = e1000_update_mc_addr_list_82571;
+	/* writing VFTA */
+	func->write_vfta = e1000_write_vfta_generic;
+	/* clearing VFTA */
+	func->clear_vfta = e1000_clear_vfta_82571;
+	/* setting MTA */
+	func->mta_set = e1000_mta_set_generic;
+	/* read mac address */
+	func->read_mac_addr = e1000_read_mac_addr_82571;
+	/* blink LED */
+	func->blink_led = e1000_blink_led_generic;
+	/* setup LED */
+	func->setup_led = e1000_setup_led_generic;
+	/* cleanup LED */
+	func->cleanup_led = e1000_cleanup_led_generic;
+	/* turn on/off LED */
+	func->led_on = e1000_led_on_generic;
+	func->led_off = e1000_led_off_generic;
+	/* remove device */
+	func->remove_device = e1000_remove_device_generic;
+	/* clear hardware counters */
+	func->clear_hw_cntrs = e1000_clear_hw_cntrs_82571;
+	/* link info */
+	func->get_link_up_info =
+	        (hw->phy.media_type == e1000_media_type_copper)
+	                ? e1000_get_speed_and_duplex_copper_generic
+	                : e1000_get_speed_and_duplex_fiber_serdes_generic;
+
+	hw->dev_spec_size = sizeof(struct e1000_dev_spec_82571);
+
+	/* Device-specific structure allocation */
+	ret_val = e1000_alloc_zeroed_dev_spec_struct(hw, hw->dev_spec_size);
+
+out:
+	return ret_val;
+}
+
+/**
+ *  e1000_init_function_pointers_82571 - Init func ptrs.
+ *  @hw: pointer to the HW structure
+ *
+ *  The only function explicitly called by the api module to initialize
+ *  all function pointers and parameters.
+ **/
+void e1000_init_function_pointers_82571(struct e1000_hw *hw)
+{
+	DEBUGFUNC("e1000_init_function_pointers_82571");
+
+	hw->func.init_mac_params = e1000_init_mac_params_82571;
+	hw->func.init_nvm_params = e1000_init_nvm_params_82571;
+	hw->func.init_phy_params = e1000_init_phy_params_82571;
+}
+
+/**
+ *  e1000_get_phy_id_82571 - Retrieve the PHY ID and revision
+ *  @hw: pointer to the HW structure
+ *
+ *  Reads the PHY registers and stores the PHY ID and possibly the PHY
+ *  revision in the hardware structure.
+ **/
+static s32 e1000_get_phy_id_82571(struct e1000_hw *hw)
+{
+	struct e1000_phy_info *phy = &hw->phy;
+	s32 ret_val = E1000_SUCCESS;
+
+	DEBUGFUNC("e1000_get_phy_id_82571");
+
+	switch (hw->mac.type) {
+	case e1000_82571:
+	case e1000_82572:
+		/*
+		 * The 82571 firmware may still be configuring the PHY.
+		 * In this case, we cannot access the PHY until the
+		 * configuration is done.  So we explicitly set the
+		 * PHY ID.
+		 */
+		phy->id = IGP01E1000_I_PHY_ID;
+		break;
+	case e1000_82573:
+		ret_val = e1000_get_phy_id(hw);
+		break;
+	default:
+		ret_val = -E1000_ERR_PHY;
+		break;
+	}
+
+	return ret_val;
+}
+
+/**
+ *  e1000_get_hw_semaphore_82571 - Acquire hardware semaphore
+ *  @hw: pointer to the HW structure
+ *
+ *  Acquire the HW semaphore to access the PHY or NVM
+ **/
+s32 e1000_get_hw_semaphore_82571(struct e1000_hw *hw)
+{
+	u32 swsm;
+	s32 ret_val = E1000_SUCCESS;
+	s32 timeout = hw->nvm.word_size + 1;
+	s32 i = 0;
+
+	DEBUGFUNC("e1000_get_hw_semaphore_82571");
+
+	/* Get the FW semaphore. */
+	for (i = 0; i < timeout; i++) {
+		swsm = E1000_READ_REG(hw, E1000_SWSM);
+		E1000_WRITE_REG(hw, E1000_SWSM, swsm | E1000_SWSM_SWESMBI);
+
+		/* Semaphore acquired if bit latched */
+		if (E1000_READ_REG(hw, E1000_SWSM) & E1000_SWSM_SWESMBI)
+			break;
+
+		usec_delay(50);
+	}
+
+	if (i == timeout) {
+		/* Release semaphores */
+		e1000_put_hw_semaphore_generic(hw);
+		DEBUGOUT("Driver can't access the NVM\n");
+		ret_val = -E1000_ERR_NVM;
+		goto out;
+	}
+
+out:
+	return ret_val;
+}
+
+/**
+ *  e1000_put_hw_semaphore_82571 - Release hardware semaphore
+ *  @hw: pointer to the HW structure
+ *
+ *  Release hardware semaphore used to access the PHY or NVM
+ **/
+void e1000_put_hw_semaphore_82571(struct e1000_hw *hw)
+{
+	u32 swsm;
+
+	DEBUGFUNC("e1000_put_hw_semaphore_82571");
+
+	swsm = E1000_READ_REG(hw, E1000_SWSM);
+
+	swsm &= ~E1000_SWSM_SWESMBI;
+
+	E1000_WRITE_REG(hw, E1000_SWSM, swsm);
+}
+
+/**
+ *  e1000_acquire_nvm_82571 - Request for access to the EEPROM
+ *  @hw: pointer to the HW structure
+ *
+ *  To gain access to the EEPROM, first we must obtain a hardware semaphore.
+ *  Then for non-82573 hardware, set the EEPROM access request bit and wait
+ *  for EEPROM access grant bit.  If the access grant bit is not set, release
+ *  hardware semaphore.
+ **/
+STATIC s32 e1000_acquire_nvm_82571(struct e1000_hw *hw)
+{
+	s32 ret_val;
+
+	DEBUGFUNC("e1000_acquire_nvm_82571");
+
+	ret_val = e1000_get_hw_semaphore_82571(hw);
+	if (ret_val)
+		goto out;
+
+	if (hw->mac.type != e1000_82573)
+		ret_val = e1000_acquire_nvm_generic(hw);
+
+	if (ret_val)
+		e1000_put_hw_semaphore_82571(hw);
+
+out:
+	return ret_val;
+}
+
+/**
+ *  e1000_release_nvm_82571 - Release exclusive access to EEPROM
+ *  @hw: pointer to the HW structure
+ *
+ *  Stop any current commands to the EEPROM and clear the EEPROM request bit.
+ **/
+STATIC void e1000_release_nvm_82571(struct e1000_hw *hw)
+{
+	DEBUGFUNC("e1000_release_nvm_82571");
+
+	e1000_release_nvm_generic(hw);
+	e1000_put_hw_semaphore_82571(hw);
+}
+
+/**
+ *  e1000_write_nvm_82571 - Write to EEPROM using appropriate interface
+ *  @hw: pointer to the HW structure
+ *  @offset: offset within the EEPROM to be written to
+ *  @words: number of words to write
+ *  @data: 16 bit word(s) to be written to the EEPROM
+ *
+ *  For non-82573 silicon, write data to EEPROM at offset using SPI interface.
+ *
+ *  If e1000_update_nvm_checksum is not called after this function, the
+ *  EEPROM will most likley contain an invalid checksum.
+ **/
+STATIC s32 e1000_write_nvm_82571(struct e1000_hw *hw, u16 offset, u16 words,
+                                 u16 *data)
+{
+	s32 ret_val = E1000_SUCCESS;
+
+	DEBUGFUNC("e1000_write_nvm_82571");
+
+	switch (hw->mac.type) {
+	case e1000_82573:
+		ret_val = e1000_write_nvm_eewr_82571(hw, offset, words, data);
+		break;
+	case e1000_82571:
+	case e1000_82572:
+		ret_val = e1000_write_nvm_spi(hw, offset, words, data);
+		break;
+	default:
+		ret_val = -E1000_ERR_NVM;
+		break;
+	}
+
+	return ret_val;
+}
+
+/**
+ *  e1000_update_nvm_checksum_82571 - Update EEPROM checksum
+ *  @hw: pointer to the HW structure
+ *
+ *  Updates the EEPROM checksum by reading/adding each word of the EEPROM
+ *  up to the checksum.  Then calculates the EEPROM checksum and writes the
+ *  value to the EEPROM.
+ **/
+STATIC s32 e1000_update_nvm_checksum_82571(struct e1000_hw *hw)
+{
+	u32 eecd;
+	s32 ret_val;
+	u16 i;
+
+	DEBUGFUNC("e1000_update_nvm_checksum_82571");
+
+	ret_val = e1000_update_nvm_checksum_generic(hw);
+	if (ret_val)
+		goto out;
+
+	/*
+	 * If our nvm is an EEPROM, then we're done
+	 * otherwise, commit the checksum to the flash NVM.
+	 */
+	if (hw->nvm.type != e1000_nvm_flash_hw)
+		goto out;
+
+	/* Check for pending operations. */
+	for (i = 0; i < E1000_FLASH_UPDATES; i++) {
+		msec_delay(1);
+		if ((E1000_READ_REG(hw, E1000_EECD) & E1000_EECD_FLUPD) == 0)
+			break;
+	}
+
+	if (i == E1000_FLASH_UPDATES) {
+		ret_val = -E1000_ERR_NVM;
+		goto out;
+	}
+
+	/* Reset the firmware if using STM opcode. */
+	if ((E1000_READ_REG(hw, E1000_FLOP) & 0xFF00) == E1000_STM_OPCODE) {
+		/*
+		 * The enabling of and the actual reset must be done
+		 * in two write cycles.
+		 */
+		E1000_WRITE_REG(hw, E1000_HICR, E1000_HICR_FW_RESET_ENABLE);
+		E1000_WRITE_FLUSH(hw);
+		E1000_WRITE_REG(hw, E1000_HICR, E1000_HICR_FW_RESET);
+	}
+
+	/* Commit the write to flash */
+	eecd = E1000_READ_REG(hw, E1000_EECD) | E1000_EECD_FLUPD;
+	E1000_WRITE_REG(hw, E1000_EECD, eecd);
+
+	for (i = 0; i < E1000_FLASH_UPDATES; i++) {
+		msec_delay(1);
+		if ((E1000_READ_REG(hw, E1000_EECD) & E1000_EECD_FLUPD) == 0)
+			break;
+	}
+
+	if (i == E1000_FLASH_UPDATES) {
+		ret_val = -E1000_ERR_NVM;
+		goto out;
+	}
+
+out:
+	return ret_val;
+}
+
+/**
+ *  e1000_validate_nvm_checksum_82571 - Validate EEPROM checksum
+ *  @hw: pointer to the HW structure
+ *
+ *  Calculates the EEPROM checksum by reading/adding each word of the EEPROM
+ *  and then verifies that the sum of the EEPROM is equal to 0xBABA.
+ **/
+STATIC s32 e1000_validate_nvm_checksum_82571(struct e1000_hw *hw)
+{
+	DEBUGFUNC("e1000_validate_nvm_checksum_82571");
+
+	if (hw->nvm.type == e1000_nvm_flash_hw)
+		e1000_fix_nvm_checksum_82571(hw);
+
+	return e1000_validate_nvm_checksum_generic(hw);
+}
+
+/**
+ *  e1000_write_nvm_eewr_82571 - Write to EEPROM for 82573 silicon
+ *  @hw: pointer to the HW structure
+ *  @offset: offset within the EEPROM to be written to
+ *  @words: number of words to write
+ *  @data: 16 bit word(s) to be written to the EEPROM
+ *
+ *  After checking for invalid values, poll the EEPROM to ensure the previous
+ *  command has completed before trying to write the next word.  After write
+ *  poll for completion.
+ *
+ *  If e1000_update_nvm_checksum is not called after this function, the
+ *  EEPROM will most likley contain an invalid checksum.
+ **/
+static s32 e1000_write_nvm_eewr_82571(struct e1000_hw *hw, u16 offset,
+                                      u16 words, u16 *data)
+{
+	struct e1000_nvm_info *nvm = &hw->nvm;
+	u32 i, eewr = 0;
+	s32 ret_val = 0;
+
+	DEBUGFUNC("e1000_write_nvm_eewr_82571");
+
+	/*
+	 * A check for invalid values:  offset too large, too many words,
+	 * and not enough words.
+	 */
+	if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
+	    (words == 0)) {
+		DEBUGOUT("nvm parameter(s) out of bounds\n");
+		ret_val = -E1000_ERR_NVM;
+		goto out;
+	}
+
+	for (i = 0; i < words; i++) {
+		eewr = (data[i] << E1000_NVM_RW_REG_DATA) |
+		       ((offset+i) << E1000_NVM_RW_ADDR_SHIFT) |
+		       E1000_NVM_RW_REG_START;
+
+		ret_val = e1000_poll_eerd_eewr_done(hw, E1000_NVM_POLL_WRITE);
+		if (ret_val)
+			break;
+
+		E1000_WRITE_REG(hw, E1000_EEWR, eewr);
+
+		ret_val = e1000_poll_eerd_eewr_done(hw, E1000_NVM_POLL_WRITE);
+		if (ret_val)
+			break;
+	}
+
+out:
+	return ret_val;
+}
+
+/**
+ *  e1000_get_cfg_done_82571 - Poll for configuration done
+ *  @hw: pointer to the HW structure
+ *
+ *  Reads the management control register for the config done bit to be set.
+ **/
+STATIC s32 e1000_get_cfg_done_82571(struct e1000_hw *hw)
+{
+	s32 timeout = PHY_CFG_TIMEOUT;
+	s32 ret_val = E1000_SUCCESS;
+
+	DEBUGFUNC("e1000_get_cfg_done_82571");
+
+	while (timeout) {
+		if (E1000_READ_REG(hw, E1000_EEMNGCTL) & E1000_NVM_CFG_DONE_PORT_0)
+			break;
+		msec_delay(1);
+		timeout--;
+	}
+	if (!timeout) {
+		DEBUGOUT("MNG configuration cycle has not completed.\n");
+		ret_val = -E1000_ERR_RESET;
+		goto out;
+	}
+
+out:
+	return ret_val;
+}
+
+/**
+ *  e1000_set_d0_lplu_state_82571 - Set Low Power Linkup D0 state
+ *  @hw: pointer to the HW structure
+ *  @active: TRUE to enable LPLU, FALSE to disable
+ *
+ *  Sets the LPLU D0 state according to the active flag.  When activating LPLU
+ *  this function also disables smart speed and vice versa.  LPLU will not be
+ *  activated unless the device autonegotiation advertisement meets standards
+ *  of either 10 or 10/100 or 10/100/1000 at all duplexes.  This is a function
+ *  pointer entry point only called by PHY setup routines.
+ **/
+STATIC s32 e1000_set_d0_lplu_state_82571(struct e1000_hw *hw, bool active)
+{
+	struct e1000_phy_info *phy = &hw->phy;
+	s32 ret_val;
+	u16 data;
+
+	DEBUGFUNC("e1000_set_d0_lplu_state_82571");
+
+	ret_val = e1000_read_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, &data);
+	if (ret_val)
+		goto out;
+
+	if (active) {
+		data |= IGP02E1000_PM_D0_LPLU;
+		ret_val = e1000_write_phy_reg(hw,
+		                              IGP02E1000_PHY_POWER_MGMT,
+		                              data);
+		if (ret_val)
+			goto out;
+
+		/* When LPLU is enabled, we should disable SmartSpeed */
+		ret_val = e1000_read_phy_reg(hw,
+		                             IGP01E1000_PHY_PORT_CONFIG,
+		                             &data);
+		data &= ~IGP01E1000_PSCFR_SMART_SPEED;
+		ret_val = e1000_write_phy_reg(hw,
+		                              IGP01E1000_PHY_PORT_CONFIG,
+		                              data);
+		if (ret_val)
+			goto out;
+	} else {
+		data &= ~IGP02E1000_PM_D0_LPLU;
+		ret_val = e1000_write_phy_reg(hw,
+		                              IGP02E1000_PHY_POWER_MGMT,
+		                              data);
+		/*
+		 * LPLU and SmartSpeed are mutually exclusive.  LPLU is used
+		 * during Dx states where the power conservation is most
+		 * important.  During driver activity we should enable
+		 * SmartSpeed, so performance is maintained.
+		 */
+		if (phy->smart_speed == e1000_smart_speed_on) {
+			ret_val = e1000_read_phy_reg(hw,
+			                             IGP01E1000_PHY_PORT_CONFIG,
+			                             &data);
+			if (ret_val)
+				goto out;
+
+			data |= IGP01E1000_PSCFR_SMART_SPEED;
+			ret_val = e1000_write_phy_reg(hw,
+			                             IGP01E1000_PHY_PORT_CONFIG,
+			                             data);
+			if (ret_val)
+				goto out;
+		} else if (phy->smart_speed == e1000_smart_speed_off) {
+			ret_val = e1000_read_phy_reg(hw,
+			                             IGP01E1000_PHY_PORT_CONFIG,
+			                             &data);
+			if (ret_val)
+				goto out;
+
+			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
+			ret_val = e1000_write_phy_reg(hw,
+			                             IGP01E1000_PHY_PORT_CONFIG,
+			                             data);
+			if (ret_val)
+				goto out;
+		}
+	}
+
+out:
+	return ret_val;
+}
+
+/**
+ *  e1000_reset_hw_82571 - Reset hardware
+ *  @hw: pointer to the HW structure
+ *
+ *  This resets the hardware into a known state.  This is a
+ *  function pointer entry point called by the api module.
+ **/
+STATIC s32 e1000_reset_hw_82571(struct e1000_hw *hw)
+{
+	u32 ctrl, extcnf_ctrl, ctrl_ext, icr;
+	s32 ret_val;
+	u16 i = 0;
+
+	DEBUGFUNC("e1000_reset_hw_82571");
+
+	/*
+	 * Prevent the PCI-E bus from sticking if there is no TLP connection
+	 * on the last TLP read/write transaction when MAC is reset.
+	 */
+	ret_val = e1000_disable_pcie_master_generic(hw);
+	if (ret_val) {
+		DEBUGOUT("PCI-E Master disable polling has failed.\n");
+	}
+
+	DEBUGOUT("Masking off all interrupts\n");
+	E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff);
+
+	E1000_WRITE_REG(hw, E1000_RCTL, 0);
+	E1000_WRITE_REG(hw, E1000_TCTL, E1000_TCTL_PSP);
+	E1000_WRITE_FLUSH(hw);
+
+	msec_delay(10);
+
+	/*
+	 * Must acquire the MDIO ownership before MAC reset.
+	 * Ownership defaults to firmware after a reset.
+	 */
+	if (hw->mac.type == e1000_82573) {
+		extcnf_ctrl = E1000_READ_REG(hw, E1000_EXTCNF_CTRL);
+		extcnf_ctrl |= E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP;
+
+		do {
+			E1000_WRITE_REG(hw, E1000_EXTCNF_CTRL, extcnf_ctrl);
+			extcnf_ctrl = E1000_READ_REG(hw, E1000_EXTCNF_CTRL);
+
+			if (extcnf_ctrl & E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP)
+				break;
+
+			extcnf_ctrl |= E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP;
+
+			msec_delay(2);
+			i++;
+		} while (i < MDIO_OWNERSHIP_TIMEOUT);
+	}
+
+	ctrl = E1000_READ_REG(hw, E1000_CTRL);
+
+	DEBUGOUT("Issuing a global reset to MAC\n");
+	E1000_WRITE_REG(hw, E1000_CTRL, ctrl | E1000_CTRL_RST);
+
+	if (hw->nvm.type == e1000_nvm_flash_hw) {
+		usec_delay(10);
+		ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
+		ctrl_ext |= E1000_CTRL_EXT_EE_RST;
+		E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
+		E1000_WRITE_FLUSH(hw);
+	}
+
+	ret_val = e1000_get_auto_rd_done_generic(hw);
+	if (ret_val)
+		/* We don't want to continue accessing MAC registers. */
+		goto out;
+
+	/*
+	 * Phy configuration from NVM just starts after EECD_AUTO_RD is set.
+	 * Need to wait for Phy configuration completion before accessing
+	 * NVM and Phy.
+	 */
+	if (hw->mac.type == e1000_82573)
+		msec_delay(25);
+
+	/* Clear any pending interrupt events. */
+	E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff);
+	icr = E1000_READ_REG(hw, E1000_ICR);
+
+	if (!(e1000_check_alt_mac_addr_generic(hw)))
+		e1000_set_laa_state_82571(hw, TRUE);
+
+out:
+	return ret_val;
+}
+
+/**
+ *  e1000_init_hw_82571 - Initialize hardware
+ *  @hw: pointer to the HW structure
+ *
+ *  This inits the hardware readying it for operation.
+ **/
+STATIC s32 e1000_init_hw_82571(struct e1000_hw *hw)
+{
+	struct e1000_mac_info *mac = &hw->mac;
+	u32 reg_data;
+	s32 ret_val;
+	u16 i, rar_count = mac->rar_entry_count;
+
+	DEBUGFUNC("e1000_init_hw_82571");
+
+	e1000_initialize_hw_bits_82571(hw);
+
+	/* Initialize identification LED */
+	ret_val = e1000_id_led_init_generic(hw);
+	if (ret_val) {
+		DEBUGOUT("Error initializing identification LED\n");
+		/* This is not fatal and we should not stop init due to this */
+	}
+
+	/* Disabling VLAN filtering */
+	DEBUGOUT("Initializing the IEEE VLAN\n");
+	e1000_clear_vfta(hw);
+
+	/* Setup the receive address. */
+	/*
+	 * If, however, a locally administered address was assigned to the
+	 * 82571, we must reserve a RAR for it to work around an issue where
+	 * resetting one port will reload the MAC on the other port.
+	 */
+	if (e1000_get_laa_state_82571(hw))
+		rar_count--;
+	e1000_init_rx_addrs_generic(hw, rar_count);
+
+	/* Zero out the Multicast HASH table */
+	DEBUGOUT("Zeroing the MTA\n");
+	for (i = 0; i < mac->mta_reg_count; i++)
+		E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
+
+	/* Setup link and flow control */
+	ret_val = e1000_setup_link(hw);
+
+	/* Set the transmit descriptor write-back policy */
+	reg_data = E1000_READ_REG(hw, E1000_TXDCTL(0));
+	reg_data = (reg_data & ~E1000_TXDCTL_WTHRESH) |
+	           E1000_TXDCTL_FULL_TX_DESC_WB |
+	           E1000_TXDCTL_COUNT_DESC;
+	E1000_WRITE_REG(hw, E1000_TXDCTL(0), reg_data);
+
+	/* ...for both queues. */
+	if (mac->type != e1000_82573) {
+		reg_data = E1000_READ_REG(hw, E1000_TXDCTL(1));
+		reg_data = (reg_data & ~E1000_TXDCTL_WTHRESH) |
+		           E1000_TXDCTL_FULL_TX_DESC_WB |
+		           E1000_TXDCTL_COUNT_DESC;
+		E1000_WRITE_REG(hw, E1000_TXDCTL(1), reg_data);
+	} else {
+		e1000_enable_tx_pkt_filtering(hw);
+		reg_data = E1000_READ_REG(hw, E1000_GCR);
+		reg_data |= E1000_GCR_L1_ACT_WITHOUT_L0S_RX;
+		E1000_WRITE_REG(hw, E1000_GCR, reg_data);
+	}
+
+	/*
+	 * Clear all of the statistics registers (clear on read).  It is
+	 * important that we do this after we have tried to establish link
+	 * because the symbol error count will increment wildly if there
+	 * is no link.
+	 */
+	e1000_clear_hw_cntrs_82571(hw);
+
+	return ret_val;
+}
+
+/**
+ *  e1000_initialize_hw_bits_82571 - Initialize hardware-dependent bits
+ *  @hw: pointer to the HW structure
+ *
+ *  Initializes required hardware-dependent bits needed for normal operation.
+ **/
+static void e1000_initialize_hw_bits_82571(struct e1000_hw *hw)
+{
+	u32 reg;
+
+	DEBUGFUNC("e1000_initialize_hw_bits_82571");
+
+	if (hw->mac.disable_hw_init_bits)
+		goto out;
+
+	/* Transmit Descriptor Control 0 */
+	reg = E1000_READ_REG(hw, E1000_TXDCTL(0));
+	reg |= (1 << 22);
+	E1000_WRITE_REG(hw, E1000_TXDCTL(0), reg);
+
+	/* Transmit Descriptor Control 1 */
+	reg = E1000_READ_REG(hw, E1000_TXDCTL(1));
+	reg |= (1 << 22);
+	E1000_WRITE_REG(hw, E1000_TXDCTL(1), reg);
+
+	/* Transmit Arbitration Control 0 */
+	reg = E1000_READ_REG(hw, E1000_TARC(0));
+	reg &= ~(0xF << 27); /* 30:27 */
+	switch (hw->mac.type) {
+	case e1000_82571:
+	case e1000_82572:
+		reg |= (1 << 23) | (1 << 24) | (1 << 25) | (1 << 26);
+		break;
+	default:
+		break;
+	}
+	E1000_WRITE_REG(hw, E1000_TARC(0), reg);
+
+	/* Transmit Arbitration Control 1 */
+	reg = E1000_READ_REG(hw, E1000_TARC(1));
+	switch (hw->mac.type) {
+	case e1000_82571:
+	case e1000_82572:
+		reg &= ~((1 << 29) | (1 << 30));
+		reg |= (1 << 22) | (1 << 24) | (1 << 25) | (1 << 26);
+		if (E1000_READ_REG(hw, E1000_TCTL) & E1000_TCTL_MULR)
+			reg &= ~(1 << 28);
+		else
+			reg |= (1 << 28);
+		E1000_WRITE_REG(hw, E1000_TARC(1), reg);
+		break;
+	default:
+		break;
+	}
+
+	/* Device Control */
+	if (hw->mac.type == e1000_82573) {
+		reg = E1000_READ_REG(hw, E1000_CTRL);
+		reg &= ~(1 << 29);
+		E1000_WRITE_REG(hw, E1000_CTRL, reg);
+	}
+
+	/* Extended Device Control */
+	if (hw->mac.type == e1000_82573) {
+		reg = E1000_READ_REG(hw, E1000_CTRL_EXT);
+		reg &= ~(1 << 23);
+		reg |= (1 << 22);
+		E1000_WRITE_REG(hw, E1000_CTRL_EXT, reg);
+	}
+
+out:
+	return;
+}
+
+/**
+ *  e1000_clear_vfta_82571 - Clear VLAN filter table
+ *  @hw: pointer to the HW structure
+ *
+ *  Clears the register array which contains the VLAN filter table by
+ *  setting all the values to 0.
+ **/
+STATIC void e1000_clear_vfta_82571(struct e1000_hw *hw)
+{
+	u32 offset;
+	u32 vfta_value = 0;
+	u32 vfta_offset = 0;
+	u32 vfta_bit_in_reg = 0;
+
+	DEBUGFUNC("e1000_clear_vfta_82571");
+
+	if (hw->mac.type == e1000_82573) {
+		if (hw->mng_cookie.vlan_id != 0) {
+			/*
+			 * The VFTA is a 4096b bit-field, each identifying
+			 * a single VLAN ID.  The following operations
+			 * determine which 32b entry (i.e. offset) into the
+			 * array we want to set the VLAN ID (i.e. bit) of
+			 * the manageability unit.
+			 */
+			vfta_offset = (hw->mng_cookie.vlan_id >>
+			               E1000_VFTA_ENTRY_SHIFT) &
+			              E1000_VFTA_ENTRY_MASK;
+			vfta_bit_in_reg = 1 << (hw->mng_cookie.vlan_id &
+			                       E1000_VFTA_ENTRY_BIT_SHIFT_MASK);
+		}
+	}
+	for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) {
+		/*
+		 * If the offset we want to clear is the same offset of the
+		 * manageability VLAN ID, then clear all bits except that of
+		 * the manageability unit.
+		 */
+		vfta_value = (offset == vfta_offset) ? vfta_bit_in_reg : 0;
+		E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset, vfta_value);
+		E1000_WRITE_FLUSH(hw);
+	}
+}
+
+/**
+ *  e1000_update_mc_addr_list_82571 - Update Multicast addresses
+ *  @hw: pointer to the HW structure
+ *  @mc_addr_list: array of multicast addresses to program
+ *  @mc_addr_count: number of multicast addresses to program
+ *  @rar_used_count: the first RAR register free to program
+ *  @rar_count: total number of supported Receive Address Registers
+ *
+ *  Updates the Receive Address Registers and Multicast Table Array.
+ *  The caller must have a packed mc_addr_list of multicast addresses.
+ *  The parameter rar_count will usually be hw->mac.rar_entry_count
+ *  unless there are workarounds that change this.
+ **/
+STATIC void e1000_update_mc_addr_list_82571(struct e1000_hw *hw,
+                                            u8 *mc_addr_list, u32 mc_addr_count,
+                                            u32 rar_used_count, u32 rar_count)
+{
+	DEBUGFUNC("e1000_update_mc_addr_list_82571");
+
+	if (e1000_get_laa_state_82571(hw))
+		rar_count--;
+
+	e1000_update_mc_addr_list_generic(hw, mc_addr_list, mc_addr_count,
+	                                  rar_used_count, rar_count);
+}
+
+/**
+ *  e1000_setup_link_82571 - Setup flow control and link settings
+ *  @hw: pointer to the HW structure
+ *
+ *  Determines which flow control settings to use, then configures flow
+ *  control.  Calls the appropriate media-specific link configuration
+ *  function.  Assuming the adapter has a valid link partner, a valid link
+ *  should be established.  Assumes the hardware has previously been reset
+ *  and the transmitter and receiver are not enabled.
+ **/
+STATIC s32 e1000_setup_link_82571(struct e1000_hw *hw)
+{
+	DEBUGFUNC("e1000_setup_link_82571");
+
+	/*
+	 * 82573 does not have a word in the NVM to determine
+	 * the default flow control setting, so we explicitly
+	 * set it to full.
+	 */
+	if (hw->mac.type == e1000_82573)
+		hw->fc.type = e1000_fc_full;
+
+	return e1000_setup_link_generic(hw);
+}
+
+/**
+ *  e1000_setup_copper_link_82571 - Configure copper link settings
+ *  @hw: pointer to the HW structure
+ *
+ *  Configures the link for auto-neg or forced speed and duplex.  Then we check
+ *  for link, once link is established calls to configure collision distance
+ *  and flow control are called.
+ **/
+STATIC s32 e1000_setup_copper_link_82571(struct e1000_hw *hw)
+{
+	u32 ctrl, led_ctrl;
+	s32  ret_val;
+
+	DEBUGFUNC("e1000_setup_copper_link_82571");
+
+	ctrl = E1000_READ_REG(hw, E1000_CTRL);
+	ctrl |= E1000_CTRL_SLU;
+	ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
+	E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
+
+	switch (hw->phy.type) {
+	case e1000_phy_m88:
+		ret_val = e1000_copper_link_setup_m88(hw);
+		break;
+	case e1000_phy_igp_2:
+		ret_val = e1000_copper_link_setup_igp(hw);
+		/* Setup activity LED */
+		led_ctrl = E1000_READ_REG(hw, E1000_LEDCTL);
+		led_ctrl &= IGP_ACTIVITY_LED_MASK;
+		led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE);
+		E1000_WRITE_REG(hw, E1000_LEDCTL, led_ctrl);
+		break;
+	default:
+		ret_val = -E1000_ERR_PHY;
+		break;
+	}
+
+	if (ret_val)
+		goto out;
+
+	ret_val = e1000_setup_copper_link_generic(hw);
+
+out:
+	return ret_val;
+}
+
+/**
+ *  e1000_setup_fiber_serdes_link_82571 - Setup link for fiber/serdes
+ *  @hw: pointer to the HW structure
+ *
+ *  Configures collision distance and flow control for fiber and serdes links.
+ *  Upon successful setup, poll for link.
+ **/
+STATIC s32 e1000_setup_fiber_serdes_link_82571(struct e1000_hw *hw)
+{
+	DEBUGFUNC("e1000_setup_fiber_serdes_link_82571");
+
+	switch (hw->mac.type) {
+	case e1000_82571:
+	case e1000_82572:
+		/*
+		 * If SerDes loopback mode is entered, there is no form
+		 * of reset to take the adapter out of that mode.  So we
+		 * have to explicitly take the adapter out of loopback
+		 * mode.  This prevents drivers from twidling their thumbs
+		 * if another tool failed to take it out of loopback mode.
+		 */
+		E1000_WRITE_REG(hw, E1000_SCTL, E1000_SCTL_DISABLE_SERDES_LOOPBACK);
+		break;
+	default:
+		break;
+	}
+
+	return e1000_setup_fiber_serdes_link_generic(hw);
+}
+
+/**
+ *  e1000_valid_led_default_82571 - Verify a valid default LED config
+ *  @hw: pointer to the HW structure
+ *  @data: pointer to the NVM (EEPROM)
+ *
+ *  Read the EEPROM for the current default LED configuration.  If the
+ *  LED configuration is not valid, set to a valid LED configuration.
+ **/
+STATIC s32 e1000_valid_led_default_82571(struct e1000_hw *hw, u16 *data)
+{
+	s32 ret_val;
+
+	DEBUGFUNC("e1000_valid_led_default_82571");
+
+	ret_val = e1000_read_nvm(hw, NVM_ID_LED_SETTINGS, 1, data);
+	if (ret_val) {
+		DEBUGOUT("NVM Read Error\n");
+		goto out;
+	}
+
+	if (hw->mac.type == e1000_82573 &&
+	    *data == ID_LED_RESERVED_F746)
+		*data = ID_LED_DEFAULT_82573;
+	else if (*data == ID_LED_RESERVED_0000 ||
+	         *data == ID_LED_RESERVED_FFFF)
+		*data = ID_LED_DEFAULT;
+out:
+	return ret_val;
+}
+
+/**
+ *  e1000_get_laa_state_82571 - Get locally administered address state
+ *  @hw: pointer to the HW structure
+ *
+ *  Retrieve and return the current locally administed address state.
+ **/
+bool e1000_get_laa_state_82571(struct e1000_hw *hw)
+{
+	struct e1000_dev_spec_82571 *dev_spec;
+	bool state = FALSE;
+
+	DEBUGFUNC("e1000_get_laa_state_82571");
+
+	if (hw->mac.type != e1000_82571)
+		goto out;
+
+	dev_spec = (struct e1000_dev_spec_82571 *)hw->dev_spec;
+
+	state = dev_spec->laa_is_present;
+
+out:
+	return state;
+}
+
+/**
+ *  e1000_set_laa_state_82571 - Set locally administered address state
+ *  @hw: pointer to the HW structure
+ *  @state: enable/disable locally administered address
+ *
+ *  Enable/Disable the current locally administed address state.
+ **/
+void e1000_set_laa_state_82571(struct e1000_hw *hw, bool state)
+{
+	struct e1000_dev_spec_82571 *dev_spec;
+
+	DEBUGFUNC("e1000_set_laa_state_82571");
+
+	if (hw->mac.type != e1000_82571)
+		goto out;
+
+	dev_spec = (struct e1000_dev_spec_82571 *)hw->dev_spec;
+
+	dev_spec->laa_is_present = state;
+
+	/* If workaround is activated... */
+	if (state) {
+		/*
+		 * Hold a copy of the LAA in RAR[14] This is done so that
+		 * between the time RAR[0] gets clobbered and the time it
+		 * gets fixed, the actual LAA is in one of the RARs and no
+		 * incoming packets directed to this port are dropped.
+		 * Eventually the LAA will be in RAR[0] and RAR[14].
+		 */
+		e1000_rar_set_generic(hw, hw->mac.addr,
+		                      hw->mac.rar_entry_count - 1);
+	}
+
+out:
+	return;
+}
+
+/**
+ *  e1000_fix_nvm_checksum_82571 - Fix EEPROM checksum
+ *  @hw: pointer to the HW structure
+ *
+ *  Verifies that the EEPROM has completed the update.  After updating the
+ *  EEPROM, we need to check bit 15 in work 0x23 for the checksum fix.  If
+ *  the checksum fix is not implemented, we need to set the bit and update
+ *  the checksum.  Otherwise, if bit 15 is set and the checksum is incorrect,
+ *  we need to return bad checksum.
+ **/
+static s32 e1000_fix_nvm_checksum_82571(struct e1000_hw *hw)
+{
+	struct e1000_nvm_info *nvm = &hw->nvm;
+	s32 ret_val = E1000_SUCCESS;
+	u16 data;
+
+	DEBUGFUNC("e1000_fix_nvm_checksum_82571");
+
+	if (nvm->type != e1000_nvm_flash_hw)
+		goto out;
+
+	/*
+	 * Check bit 4 of word 10h.  If it is 0, firmware is done updating
+	 * 10h-12h.  Checksum may need to be fixed.
+	 */
+	ret_val = e1000_read_nvm(hw, 0x10, 1, &data);
+	if (ret_val)
+		goto out;
+
+	if (!(data & 0x10)) {
+		/*
+		 * Read 0x23 and check bit 15.  This bit is a 1
+		 * when the checksum has already been fixed.  If
+		 * the checksum is still wrong and this bit is a
+		 * 1, we need to return bad checksum.  Otherwise,
+		 * we need to set this bit to a 1 and update the
+		 * checksum.
+		 */
+		ret_val = e1000_read_nvm(hw, 0x23, 1, &data);
+		if (ret_val)
+			goto out;
+
+		if (!(data & 0x8000)) {
+			data |= 0x8000;
+			ret_val = e1000_write_nvm(hw, 0x23, 1, &data);
+			if (ret_val)
+				goto out;
+			ret_val = e1000_update_nvm_checksum(hw);
+		}
+	}
+
+out:
+	return ret_val;
+}
+
+/**
+ *  e1000_read_mac_addr_82571 - Read device MAC address
+ *  @hw: pointer to the HW structure
+ **/
+STATIC s32 e1000_read_mac_addr_82571(struct e1000_hw *hw)
+{
+	s32 ret_val = E1000_SUCCESS;
+
+	DEBUGFUNC("e1000_read_mac_addr_82571");
+	if (e1000_check_alt_mac_addr_generic(hw))
+		ret_val = e1000_read_mac_addr_generic(hw);
+
+	return ret_val;
+}
+
+/**
+ * e1000_power_down_phy_copper_82571 - Remove link during PHY power down
+ * @hw: pointer to the HW structure
+ *
+ * In the case of a PHY power down to save power, or to turn off link during a
+ * driver unload, or wake on lan is not enabled, remove the link.
+ **/
+STATIC void e1000_power_down_phy_copper_82571(struct e1000_hw *hw)
+{
+	/* If the management interface is not enabled, then power down */
+	if (!(e1000_check_mng_mode(hw) || e1000_check_reset_block(hw)))
+		e1000_power_down_phy_copper(hw);
+
+	return;
+}
+
+/**
+ *  e1000_clear_hw_cntrs_82571 - Clear device specific hardware counters
+ *  @hw: pointer to the HW structure
+ *
+ *  Clears the hardware counters by reading the counter registers.
+ **/
+STATIC void e1000_clear_hw_cntrs_82571(struct e1000_hw *hw)
+{
+	volatile u32 temp;
+
+	DEBUGFUNC("e1000_clear_hw_cntrs_82571");
+
+	e1000_clear_hw_cntrs_base_generic(hw);
+	temp = E1000_READ_REG(hw, E1000_PRC64);
+	temp = E1000_READ_REG(hw, E1000_PRC127);
+	temp = E1000_READ_REG(hw, E1000_PRC255);
+	temp = E1000_READ_REG(hw, E1000_PRC511);
+	temp = E1000_READ_REG(hw, E1000_PRC1023);
+	temp = E1000_READ_REG(hw, E1000_PRC1522);
+	temp = E1000_READ_REG(hw, E1000_PTC64);
+	temp = E1000_READ_REG(hw, E1000_PTC127);
+	temp = E1000_READ_REG(hw, E1000_PTC255);
+	temp = E1000_READ_REG(hw, E1000_PTC511);
+	temp = E1000_READ_REG(hw, E1000_PTC1023);
+	temp = E1000_READ_REG(hw, E1000_PTC1522);
+
+	temp = E1000_READ_REG(hw, E1000_ALGNERRC);
+	temp = E1000_READ_REG(hw, E1000_RXERRC);
+	temp = E1000_READ_REG(hw, E1000_TNCRS);
+	temp = E1000_READ_REG(hw, E1000_CEXTERR);
+	temp = E1000_READ_REG(hw, E1000_TSCTC);
+	temp = E1000_READ_REG(hw, E1000_TSCTFC);
+
+	temp = E1000_READ_REG(hw, E1000_MGTPRC);
+	temp = E1000_READ_REG(hw, E1000_MGTPDC);
+	temp = E1000_READ_REG(hw, E1000_MGTPTC);
+
+	temp = E1000_READ_REG(hw, E1000_IAC);
+	temp = E1000_READ_REG(hw, E1000_ICRXOC);
+
+	temp = E1000_READ_REG(hw, E1000_ICRXPTC);
+	temp = E1000_READ_REG(hw, E1000_ICRXATC);
+	temp = E1000_READ_REG(hw, E1000_ICTXPTC);
+	temp = E1000_READ_REG(hw, E1000_ICTXATC);
+	temp = E1000_READ_REG(hw, E1000_ICTXQEC);
+	temp = E1000_READ_REG(hw, E1000_ICTXQMTC);
+	temp = E1000_READ_REG(hw, E1000_ICRXDMTC);
+}
--- /dev/null
+++ sys/dev/em/e1000_82543.c
@@ -0,0 +1,1663 @@
+/*******************************************************************************
+
+  Copyright (c) 2001-2007, Intel Corporation 
+  All rights reserved.
+  
+  Redistribution and use in source and binary forms, with or without 
+  modification, are permitted provided that the following conditions are met:
+  
+   1. Redistributions of source code must retain the above copyright notice, 
+      this list of conditions and the following disclaimer.
+  
+   2. Redistributions in binary form must reproduce the above copyright 
+      notice, this list of conditions and the following disclaimer in the 
+      documentation and/or other materials provided with the distribution.
+  
+   3. Neither the name of the Intel Corporation nor the names of its 
+      contributors may be used to endorse or promote products derived from 
+      this software without specific prior written permission.
+  
+  THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
+  AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 
+  IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 
+  ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE 
+  LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 
+  CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 
+  SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 
+  INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 
+  CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 
+  ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
+  POSSIBILITY OF SUCH DAMAGE.
+
+*******************************************************************************/
+/* $FreeBSD: src/sys/dev/em/e1000_82543.c,v 1.3.4.1 2007/11/28 23:24:37 jfv Exp $ */
+
+
+/* e1000_82543
+ * e1000_82544
+ */
+
+#include "e1000_api.h"
+#include "e1000_82543.h"
+
+void e1000_init_function_pointers_82543(struct e1000_hw *hw);
+
+STATIC s32  e1000_init_phy_params_82543(struct e1000_hw *hw);
+STATIC s32  e1000_init_nvm_params_82543(struct e1000_hw *hw);
+STATIC s32  e1000_init_mac_params_82543(struct e1000_hw *hw);
+STATIC s32  e1000_read_phy_reg_82543(struct e1000_hw *hw, u32 offset,
+                                     u16 *data);
+STATIC s32  e1000_write_phy_reg_82543(struct e1000_hw *hw, u32 offset,
+                                      u16 data);
+STATIC s32  e1000_phy_force_speed_duplex_82543(struct e1000_hw *hw);
+STATIC s32  e1000_phy_hw_reset_82543(struct e1000_hw *hw);
+STATIC s32  e1000_reset_hw_82543(struct e1000_hw *hw);
+STATIC s32  e1000_init_hw_82543(struct e1000_hw *hw);
+STATIC s32  e1000_setup_link_82543(struct e1000_hw *hw);
+STATIC s32  e1000_setup_copper_link_82543(struct e1000_hw *hw);
+STATIC s32  e1000_setup_fiber_link_82543(struct e1000_hw *hw);
+STATIC s32  e1000_check_for_copper_link_82543(struct e1000_hw *hw);
+STATIC s32  e1000_check_for_fiber_link_82543(struct e1000_hw *hw);
+STATIC s32  e1000_led_on_82543(struct e1000_hw *hw);
+STATIC s32  e1000_led_off_82543(struct e1000_hw *hw);
+STATIC void e1000_write_vfta_82543(struct e1000_hw *hw, u32 offset,
+                                   u32 value);
+STATIC void e1000_mta_set_82543(struct e1000_hw *hw, u32 hash_value);
+STATIC void e1000_clear_hw_cntrs_82543(struct e1000_hw *hw);
+static s32  e1000_config_mac_to_phy_82543(struct e1000_hw *hw);
+static bool e1000_init_phy_disabled_82543(struct e1000_hw *hw);
+static void e1000_lower_mdi_clk_82543(struct e1000_hw *hw, u32 *ctrl);
+static s32  e1000_polarity_reversal_workaround_82543(struct e1000_hw *hw);
+static void e1000_raise_mdi_clk_82543(struct e1000_hw *hw, u32 *ctrl);
+static u16  e1000_shift_in_mdi_bits_82543(struct e1000_hw *hw);
+static void e1000_shift_out_mdi_bits_82543(struct e1000_hw *hw, u32 data,
+                                           u16 count);
+static bool e1000_tbi_compatibility_enabled_82543(struct e1000_hw *hw);
+static void e1000_set_tbi_sbp_82543(struct e1000_hw *hw, bool state);
+
+struct e1000_dev_spec_82543 {
+	u32  tbi_compatibility;
+	bool dma_fairness;
+	bool init_phy_disabled;
+};
+
+/**
+ *  e1000_init_phy_params_82543 - Init PHY func ptrs.
+ *  @hw: pointer to the HW structure
+ *
+ *  This is a function pointer entry point called by the api module.
+ **/
+STATIC s32 e1000_init_phy_params_82543(struct e1000_hw *hw)
+{
+	struct e1000_phy_info *phy = &hw->phy;
+	struct e1000_functions *func = &hw->func;
+	s32 ret_val = E1000_SUCCESS;
+
+	DEBUGFUNC("e1000_init_phy_params_82543");
+
+	if (hw->phy.media_type != e1000_media_type_copper) {
+		phy->type               = e1000_phy_none;
+		goto out;
+	} else {
+		func->power_up_phy      = e1000_power_up_phy_copper;
+		func->power_down_phy    = e1000_power_down_phy_copper;
+	}
+
+	phy->addr                       = 1;
+	phy->autoneg_mask               = AUTONEG_ADVERTISE_SPEED_DEFAULT;
+	phy->reset_delay_us             = 10000;
+	phy->type                       = e1000_phy_m88;
+
+	/* Function Pointers */
+	func->check_polarity            = e1000_check_polarity_m88;
+	func->commit_phy                = e1000_phy_sw_reset_generic;
+	func->force_speed_duplex        = e1000_phy_force_speed_duplex_82543;
+	func->get_cable_length          = e1000_get_cable_length_m88;
+	func->get_cfg_done              = e1000_get_cfg_done_generic;
+	func->read_phy_reg              = (hw->mac.type == e1000_82543)
+	                                  ? e1000_read_phy_reg_82543
+	                                  : e1000_read_phy_reg_m88;
+	func->reset_phy                 = (hw->mac.type == e1000_82543)
+	                                  ? e1000_phy_hw_reset_82543
+	                                  : e1000_phy_hw_reset_generic;
+	func->write_phy_reg             = (hw->mac.type == e1000_82543)
+	                                  ? e1000_write_phy_reg_82543
+	                                  : e1000_write_phy_reg_m88;
+	func->get_phy_info              = e1000_get_phy_info_m88;
+
+	/*
+	 * The external PHY of the 82543 can be in a funky state.
+	 * Resetting helps us read the PHY registers for acquiring
+	 * the PHY ID.
+	 */
+	if (!e1000_init_phy_disabled_82543(hw)) {
+		ret_val = e1000_phy_hw_reset(hw);
+		if (ret_val) {
+			DEBUGOUT("Resetting PHY during init failed.\n");
+			goto out;
+		}
+		msec_delay(20);
+	}
+
+	ret_val = e1000_get_phy_id(hw);
+	if (ret_val)
+		goto out;
+
+	/* Verify phy id */
+	switch (hw->mac.type) {
+	case e1000_82543:
+		if (phy->id != M88E1000_E_PHY_ID) {
+			ret_val = -E1000_ERR_PHY;
+			goto out;
+		}
+		break;
+	case e1000_82544:
+		if (phy->id != M88E1000_I_PHY_ID) {
+			ret_val = -E1000_ERR_PHY;
+			goto out;
+		}
+		break;
+	default:
+		ret_val = -E1000_ERR_PHY;
+		goto out;
+		break;
+	}
+
+out:
+	return ret_val;
+}
+
+/**
+ *  e1000_init_nvm_params_82543 - Init NVM func ptrs.
+ *  @hw: pointer to the HW structure
+ *
+ *  This is a function pointer entry point called by the api module.
+ **/
+STATIC s32 e1000_init_nvm_params_82543(struct e1000_hw *hw)
+{
+	struct e1000_nvm_info *nvm = &hw->nvm;
+	struct e1000_functions *func = &hw->func;
+
+	DEBUGFUNC("e1000_init_nvm_params_82543");
+
+	nvm->type               = e1000_nvm_eeprom_microwire;
+	nvm->word_size          = 64;
+	nvm->delay_usec         = 50;
+	nvm->address_bits       =  6;
+	nvm->opcode_bits        =  3;
+
+	/* Function Pointers */
+	func->read_nvm          = e1000_read_nvm_microwire;
+	func->update_nvm        = e1000_update_nvm_checksum_generic;
+	func->valid_led_default = e1000_valid_led_default_generic;
+	func->validate_nvm      = e1000_validate_nvm_checksum_generic;
+	func->write_nvm         = e1000_write_nvm_microwire;
+
+	return E1000_SUCCESS;
+}
+
+/**
+ *  e1000_init_mac_params_82543 - Init MAC func ptrs.
+ *  @hw: pointer to the HW structure
+ *
+ *  This is a function pointer entry point called by the api module.
+ **/
+STATIC s32 e1000_init_mac_params_82543(struct e1000_hw *hw)
+{
+	struct e1000_mac_info *mac = &hw->mac;
+	struct e1000_functions *func = &hw->func;
+	s32 ret_val;
+
+	DEBUGFUNC("e1000_init_mac_params_82543");
+
+	/* Set media type */
+	switch (hw->device_id) {
+	case E1000_DEV_ID_82543GC_FIBER:
+	case E1000_DEV_ID_82544EI_FIBER:
+		hw->phy.media_type = e1000_media_type_fiber;
+		break;
+	default:
+		hw->phy.media_type = e1000_media_type_copper;
+		break;
+	}
+
+	/* Set mta register count */
+	mac->mta_reg_count = 128;
+	/* Set rar entry count */
+	mac->rar_entry_count = E1000_RAR_ENTRIES;
+
+	/* Function pointers */
+
+	/* bus type/speed/width */
+	func->get_bus_info = e1000_get_bus_info_pci_generic;
+	/* reset */
+	func->reset_hw = e1000_reset_hw_82543;
+	/* hw initialization */
+	func->init_hw = e1000_init_hw_82543;
+	/* link setup */
+	func->setup_link = e1000_setup_link_82543;
+	/* physical interface setup */
+	func->setup_physical_interface =
+	        (hw->phy.media_type == e1000_media_type_copper)
+	                ? e1000_setup_copper_link_82543
+	                : e1000_setup_fiber_link_82543;
+	/* check for link */
+	func->check_for_link =
+	        (hw->phy.media_type == e1000_media_type_copper)
+	                ? e1000_check_for_copper_link_82543
+	                : e1000_check_for_fiber_link_82543;
+	/* link info */
+	func->get_link_up_info =
+	        (hw->phy.media_type == e1000_media_type_copper)
+	                ? e1000_get_speed_and_duplex_copper_generic
+	                : e1000_get_speed_and_duplex_fiber_serdes_generic;
+	/* multicast address update */
+	func->update_mc_addr_list = e1000_update_mc_addr_list_generic;
+	/* writing VFTA */
+	func->write_vfta = e1000_write_vfta_82543;
+	/* clearing VFTA */
+	func->clear_vfta = e1000_clear_vfta_generic;
+	/* setting MTA */
+	func->mta_set = e1000_mta_set_82543;
+	/* turn on/off LED */
+	func->led_on = e1000_led_on_82543;
+	func->led_off = e1000_led_off_82543;
+	/* remove device */
+	func->remove_device = e1000_remove_device_generic;
+	/* clear hardware counters */
+	func->clear_hw_cntrs = e1000_clear_hw_cntrs_82543;
+
+	hw->dev_spec_size = sizeof(struct e1000_dev_spec_82543);
+
+	/* Device-specific structure allocation */
+	ret_val = e1000_alloc_zeroed_dev_spec_struct(hw, hw->dev_spec_size);
+	if (ret_val)
+		goto out;
+
+	/* Set tbi compatibility */
+	if ((hw->mac.type != e1000_82543) ||
+	    (hw->phy.media_type == e1000_media_type_fiber))
+		e1000_set_tbi_compatibility_82543(hw, FALSE);
+
+out:
+	return ret_val;
+}
+
+/**
+ *  e1000_init_function_pointers_82543 - Init func ptrs.
+ *  @hw: pointer to the HW structure
+ *
+ *  The only function explicitly called by the api module to initialize
+ *  all function pointers and parameters.
+ **/
+void e1000_init_function_pointers_82543(struct e1000_hw *hw)
+{
+	DEBUGFUNC("e1000_init_function_pointers_82543");
+
+	hw->func.init_mac_params = e1000_init_mac_params_82543;
+	hw->func.init_nvm_params = e1000_init_nvm_params_82543;
+	hw->func.init_phy_params = e1000_init_phy_params_82543;
+}
+
+/**
+ *  e1000_tbi_compatibility_enabled_82543 - Returns TBI compat status
+ *  @hw: pointer to the HW structure
+ *
+ *  Returns the curent status of 10-bit Interface (TBI) compatibility
+ *  (enabled/disabled).
+ **/
+static bool e1000_tbi_compatibility_enabled_82543(struct e1000_hw *hw)
+{
+	struct e1000_dev_spec_82543 *dev_spec;
+	bool state = FALSE;
+
+	DEBUGFUNC("e1000_tbi_compatibility_enabled_82543");
+
+	if (hw->mac.type != e1000_82543) {
+		DEBUGOUT("TBI compatibility workaround for 82543 only.\n");
+		goto out;
+	}
+
+	dev_spec = (struct e1000_dev_spec_82543 *)hw->dev_spec;
+
+	if (!dev_spec) {
+		DEBUGOUT("dev_spec pointer is set to NULL.\n");
+		goto out;
+	}
+
+	state = (dev_spec->tbi_compatibility & TBI_COMPAT_ENABLED)
+	        ? TRUE : FALSE;
+
+out:
+	return state;
+}
+
+/**
+ *  e1000_set_tbi_compatibility_82543 - Set TBI compatibility
+ *  @hw: pointer to the HW structure
+ *  @state: enable/disable TBI compatibility
+ *
+ *  Enables or disabled 10-bit Interface (TBI) compatibility.
+ **/
+void e1000_set_tbi_compatibility_82543(struct e1000_hw *hw, bool state)
+{
+	struct e1000_dev_spec_82543 *dev_spec;
+
+	DEBUGFUNC("e1000_set_tbi_compatibility_82543");
+
+	if (hw->mac.type != e1000_82543) {
+		DEBUGOUT("TBI compatibility workaround for 82543 only.\n");
+		goto out;
+	}
+
+	dev_spec = (struct e1000_dev_spec_82543 *)hw->dev_spec;
+
+	if (!dev_spec) {
+		DEBUGOUT("dev_spec pointer is set to NULL.\n");
+		goto out;
+	}
+
+	if (state)
+		dev_spec->tbi_compatibility |= TBI_COMPAT_ENABLED;
+	else
+		dev_spec->tbi_compatibility &= ~TBI_COMPAT_ENABLED;
+
+out:
+	return;
+}
+
+/**
+ *  e1000_tbi_sbp_enabled_82543 - Returns TBI SBP status
+ *  @hw: pointer to the HW structure
+ *
+ *  Returns the curent status of 10-bit Interface (TBI) store bad packet (SBP)
+ *  (enabled/disabled).
+ **/
+bool e1000_tbi_sbp_enabled_82543(struct e1000_hw *hw)
+{
+	struct e1000_dev_spec_82543 *dev_spec;
+	bool state = FALSE;
+
+	DEBUGFUNC("e1000_tbi_sbp_enabled_82543");
+
+	if (hw->mac.type != e1000_82543) {
+		DEBUGOUT("TBI compatibility workaround for 82543 only.\n");
+		goto out;
+	}
+
+	dev_spec = (struct e1000_dev_spec_82543 *)hw->dev_spec;
+
+	if (!dev_spec) {
+		DEBUGOUT("dev_spec pointer is set to NULL.\n");
+		goto out;
+	}
+
+	state = (dev_spec->tbi_compatibility & TBI_SBP_ENABLED)
+	        ? TRUE : FALSE;
+
+out:
+	return state;
+}
+
+/**
+ *  e1000_set_tbi_sbp_82543 - Set TBI SBP
+ *  @hw: pointer to the HW structure
+ *  @state: enable/disable TBI store bad packet
+ *
+ *  Enables or disabled 10-bit Interface (TBI) store bad packet (SBP).
+ **/
+static void e1000_set_tbi_sbp_82543(struct e1000_hw *hw, bool state)
+{
+	struct e1000_dev_spec_82543 *dev_spec;
+
+	DEBUGFUNC("e1000_set_tbi_sbp_82543");
+
+	dev_spec = (struct e1000_dev_spec_82543 *)hw->dev_spec;
+
+	if (state && e1000_tbi_compatibility_enabled_82543(hw))
+		dev_spec->tbi_compatibility |= TBI_SBP_ENABLED;
+	else
+		dev_spec->tbi_compatibility &= ~TBI_SBP_ENABLED;
+
+	return;
+}
+
+/**
+ *  e1000_init_phy_disabled_82543 - Returns init PHY status
+ *  @hw: pointer to the HW structure
+ *
+ *  Returns the current status of whether PHY initialization is disabled.
+ *  True if PHY initialization is disabled else false.
+ **/
+static bool e1000_init_phy_disabled_82543(struct e1000_hw *hw)
+{
+	struct e1000_dev_spec_82543 *dev_spec;
+	bool ret_val;
+
+	DEBUGFUNC("e1000_init_phy_disabled_82543");
+
+	if (hw->mac.type != e1000_82543) {
+		ret_val = FALSE;
+		goto out;
+	}
+
+	dev_spec = (struct e1000_dev_spec_82543 *)hw->dev_spec;
+
+	if (!dev_spec) {
+		DEBUGOUT("dev_spec pointer is set to NULL.\n");
+		ret_val = FALSE;
+		goto out;
+	}
+
+	ret_val = dev_spec->init_phy_disabled;
+
+out:
+	return ret_val;
+}
+
+/**
+ *  e1000_tbi_adjust_stats_82543 - Adjust stats when TBI enabled
+ *  @hw: pointer to the HW structure
+ *  @stats: Struct containing statistic register values
+ *  @frame_len: The length of the frame in question
+ *  @mac_addr: The Ethernet destination address of the frame in question
+ *  @max_frame_size: The maximum frame size
+ *
+ *  Adjusts the statistic counters when a frame is accepted by TBI_ACCEPT
+ **/
+void e1000_tbi_adjust_stats_82543(struct e1000_hw *hw,
+                                  struct e1000_hw_stats *stats, u32 frame_len,
+                                  u8 *mac_addr, u32 max_frame_size)
+{
+	if (!(e1000_tbi_sbp_enabled_82543(hw)))
+		goto out;
+
+	/* First adjust the frame length. */
+	frame_len--;
+	/*
+	 * We need to adjust the statistics counters, since the hardware
+	 * counters overcount this packet as a CRC error and undercount
+	 * the packet as a good packet
+	 */
+	/* This packet should not be counted as a CRC error.    */
+	stats->crcerrs--;
+	/* This packet does count as a Good Packet Received.    */
+	stats->gprc++;
+
+	/* Adjust the Good Octets received counters             */
+	stats->gorc += frame_len;
+
+	/*
+	 * Is this a broadcast or multicast?  Check broadcast first,
+	 * since the test for a multicast frame will test positive on
+	 * a broadcast frame.
+	 */
+	if ((mac_addr[0] == 0xff) && (mac_addr[1] == 0xff))
+		/* Broadcast packet */
+		stats->bprc++;
+	else if (*mac_addr & 0x01)
+		/* Multicast packet */
+		stats->mprc++;
+
+	/*
+	 * In this case, the hardware has overcounted the number of
+	 * oversize frames.
+	 */
+	if ((frame_len == max_frame_size) && (stats->roc > 0))
+		stats->roc--;
+
+	/*
+	 * Adjust the bin counters when the extra byte put the frame in the
+	 * wrong bin. Remember that the frame_len was adjusted above.
+	 */
+	if (frame_len == 64) {
+		stats->prc64++;
+		stats->prc127--;
+	} else if (frame_len == 127) {
+		stats->prc127++;
+		stats->prc255--;
+	} else if (frame_len == 255) {
+		stats->prc255++;
+		stats->prc511--;
+	} else if (frame_len == 511) {
+		stats->prc511++;
+		stats->prc1023--;
+	} else if (frame_len == 1023) {
+		stats->prc1023++;
+		stats->prc1522--;
+	} else if (frame_len == 1522) {
+		stats->prc1522++;
+	}
+
+out:
+	return;
+}
+
+/**
+ *  e1000_read_phy_reg_82543 - Read PHY register
+ *  @hw: pointer to the HW structure
+ *  @offset: register offset to be read
+ *  @data: pointer to the read data
+ *
+ *  Reads the PHY at offset and stores the information read to data.
+ **/
+STATIC s32 e1000_read_phy_reg_82543(struct e1000_hw *hw, u32 offset, u16 *data)
+{
+	u32 mdic;
+	s32 ret_val = E1000_SUCCESS;
+
+	DEBUGFUNC("e1000_read_phy_reg_82543");
+
+	if (offset > MAX_PHY_REG_ADDRESS) {
+		DEBUGOUT1("PHY Address %d is out of range\n", offset);
+		ret_val = -E1000_ERR_PARAM;
+		goto out;
+	}
+
+	/*
+	 * We must first send a preamble through the MDIO pin to signal the
+	 * beginning of an MII instruction.  This is done by sending 32
+	 * consecutive "1" bits.
+	 */
+	e1000_shift_out_mdi_bits_82543(hw, PHY_PREAMBLE, PHY_PREAMBLE_SIZE);
+
+	/*
+	 * Now combine the next few fields that are required for a read
+	 * operation.  We use this method instead of calling the
+	 * e1000_shift_out_mdi_bits routine five different times.  The format
+	 * of an MII read instruction consists of a shift out of 14 bits and
+	 * is defined as follows:
+	 * 	<Preamble><SOF><Op Code><Phy Addr><Offset>
+	 * followed by a shift in of 18 bits.  This first two bits shifted in
+	 * are TurnAround bits used to avoid contention on the MDIO pin when a
+	 * READ operation is performed.  These two bits are thrown away
+	 * followed by a shift in of 16 bits which contains the desired data.
+	 */
+	mdic = (offset | (hw->phy.addr << 5) |
+		(PHY_OP_READ << 10) | (PHY_SOF << 12));
+
+	e1000_shift_out_mdi_bits_82543(hw, mdic, 14);
+
+	/*
+	 * Now that we've shifted out the read command to the MII, we need to
+	 * "shift in" the 16-bit value (18 total bits) of the requested PHY
+	 * register address.
+	 */
+	*data = e1000_shift_in_mdi_bits_82543(hw);
+
+out:
+	return ret_val;
+}
+
+/**
+ *  e1000_write_phy_reg_82543 - Write PHY register
+ *  @hw: pointer to the HW structure
+ *  @offset: register offset to be written
+ *  @data: pointer to the data to be written at offset
+ *
+ *  Writes data to the PHY at offset.
+ **/
+STATIC s32 e1000_write_phy_reg_82543(struct e1000_hw *hw, u32 offset, u16 data)
+{
+	u32 mdic;
+	s32 ret_val = E1000_SUCCESS;
+
+	DEBUGFUNC("e1000_write_phy_reg_82543");
+
+	if (offset > MAX_PHY_REG_ADDRESS) {
+		DEBUGOUT1("PHY Address %d is out of range\n", offset);
+		ret_val = -E1000_ERR_PARAM;
+		goto out;
+	}
+
+	/*
+	 * We'll need to use the SW defined pins to shift the write command
+	 * out to the PHY. We first send a preamble to the PHY to signal the
+	 * beginning of the MII instruction.  This is done by sending 32
+	 * consecutive "1" bits.
+	 */
+	e1000_shift_out_mdi_bits_82543(hw, PHY_PREAMBLE, PHY_PREAMBLE_SIZE);
+
+	/*
+	 * Now combine the remaining required fields that will indicate a
+	 * write operation. We use this method instead of calling the
+	 * e1000_shift_out_mdi_bits routine for each field in the command. The
+	 * format of a MII write instruction is as follows:
+	 * <Preamble><SOF><Op Code><Phy Addr><Reg Addr><Turnaround><Data>.
+	 */
+	mdic = ((PHY_TURNAROUND) | (offset << 2) | (hw->phy.addr << 7) |
+	        (PHY_OP_WRITE << 12) | (PHY_SOF << 14));
+	mdic <<= 16;
+	mdic |= (u32) data;
+
+	e1000_shift_out_mdi_bits_82543(hw, mdic, 32);
+
+out:
+	return ret_val;
+}
+
+/**
+ *  e1000_raise_mdi_clk_82543 - Raise Management Data Input clock
+ *  @hw: pointer to the HW structure
+ *  @ctrl: pointer to the control register
+ *
+ *  Raise the management data input clock by setting the MDC bit in the control
+ *  register.
+ **/
+static void e1000_raise_mdi_clk_82543(struct e1000_hw *hw, u32 *ctrl)
+{
+	/*
+	 * Raise the clock input to the Management Data Clock (by setting the
+	 * MDC bit), and then delay a sufficient amount of time.
+	 */
+	E1000_WRITE_REG(hw, E1000_CTRL, (*ctrl | E1000_CTRL_MDC));
+	E1000_WRITE_FLUSH(hw);
+	usec_delay(10);
+}
+
+/**
+ *  e1000_lower_mdi_clk_82543 - Lower Management Data Input clock
+ *  @hw: pointer to the HW structure
+ *  @ctrl: pointer to the control register
+ *
+ *  Lower the management data input clock by clearing the MDC bit in the control
+ *  register.
+ **/
+static void e1000_lower_mdi_clk_82543(struct e1000_hw *hw, u32 *ctrl)
+{
+	/*
+	 * Lower the clock input to the Management Data Clock (by clearing the
+	 * MDC bit), and then delay a sufficient amount of time.
+	 */
+	E1000_WRITE_REG(hw, E1000_CTRL, (*ctrl & ~E1000_CTRL_MDC));
+	E1000_WRITE_FLUSH(hw);
+	usec_delay(10);
+}
+
+/**
+ *  e1000_shift_out_mdi_bits_82543 - Shift data bits our to the PHY
+ *  @hw: pointer to the HW structure
+ *  @data: data to send to the PHY
+ *  @count: number of bits to shift out
+ *
+ *  We need to shift 'count' bits out to the PHY.  So, the value in the
+ *  "data" parameter will be shifted out to the PHY one bit at a time.
+ *  In order to do this, "data" must be broken down into bits.
+ **/
+static void e1000_shift_out_mdi_bits_82543(struct e1000_hw *hw, u32 data,
+                                           u16 count)
+{
+	u32 ctrl, mask;
+
+	/*
+	 * We need to shift "count" number of bits out to the PHY.  So, the
+	 * value in the "data" parameter will be shifted out to the PHY one
+	 * bit at a time.  In order to do this, "data" must be broken down
+	 * into bits.
+	 */
+	mask = 0x01;
+	mask <<= (count -1);
+
+	ctrl = E1000_READ_REG(hw, E1000_CTRL);
+
+	/* Set MDIO_DIR and MDC_DIR direction bits to be used as output pins. */
+	ctrl |= (E1000_CTRL_MDIO_DIR | E1000_CTRL_MDC_DIR);
+
+	while (mask) {
+		/*
+		 * A "1" is shifted out to the PHY by setting the MDIO bit to
+		 * "1" and then raising and lowering the Management Data Clock.
+		 * A "0" is shifted out to the PHY by setting the MDIO bit to
+		 * "0" and then raising and lowering the clock.
+		 */
+		if (data & mask) ctrl |= E1000_CTRL_MDIO;
+		else ctrl &= ~E1000_CTRL_MDIO;
+
+		E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
+		E1000_WRITE_FLUSH(hw);
+
+		usec_delay(10);
+
+		e1000_raise_mdi_clk_82543(hw, &ctrl);
+		e1000_lower_mdi_clk_82543(hw, &ctrl);
+
+		mask >>= 1;
+	}
+}
+
+/**
+ *  e1000_shift_in_mdi_bits_82543 - Shift data bits in from the PHY
+ *  @hw: pointer to the HW structure
+ *
+ *  In order to read a register from the PHY, we need to shift 18 bits
+ *  in from the PHY.  Bits are "shifted in" by raising the clock input to
+ *  the PHY (setting the MDC bit), and then reading the value of the data out
+ *  MDIO bit.
+ **/
+static u16 e1000_shift_in_mdi_bits_82543(struct e1000_hw *hw)
+{
+	u32 ctrl;
+	u16 data = 0;
+	u8 i;
+
+	/*
+	 * In order to read a register from the PHY, we need to shift in a
+	 * total of 18 bits from the PHY.  The first two bit (turnaround)
+	 * times are used to avoid contention on the MDIO pin when a read
+	 * operation is performed.  These two bits are ignored by us and
+	 * thrown away.  Bits are "shifted in" by raising the input to the
+	 * Management Data Clock (setting the MDC bit) and then reading the
+	 * value of the MDIO bit.
+	 */
+	ctrl = E1000_READ_REG(hw, E1000_CTRL);
+
+	/*
+	 * Clear MDIO_DIR (SWDPIO1) to indicate this bit is to be used as
+	 * input.
+	 */
+	ctrl &= ~E1000_CTRL_MDIO_DIR;
+	ctrl &= ~E1000_CTRL_MDIO;
+
+	E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
+	E1000_WRITE_FLUSH(hw);
+
+	/*
+	 * Raise and lower the clock before reading in the data.  This accounts
+	 * for the turnaround bits.  The first clock occurred when we clocked
+	 * out the last bit of the Register Address.
+	 */
+	e1000_raise_mdi_clk_82543(hw, &ctrl);
+	e1000_lower_mdi_clk_82543(hw, &ctrl);
+
+	for (data = 0, i = 0; i < 16; i++) {
+		data <<= 1;
+		e1000_raise_mdi_clk_82543(hw, &ctrl);
+		ctrl = E1000_READ_REG(hw, E1000_CTRL);
+		/* Check to see if we shifted in a "1". */
+		if (ctrl & E1000_CTRL_MDIO)
+			data |= 1;
+		e1000_lower_mdi_clk_82543(hw, &ctrl);
+	}
+
+	e1000_raise_mdi_clk_82543(hw, &ctrl);
+	e1000_lower_mdi_clk_82543(hw, &ctrl);
+
+	return data;
+}
+
+/**
+ *  e1000_phy_force_speed_duplex_82543 - Force speed/duplex for PHY
+ *  @hw: pointer to the HW structure
+ *
+ *  Calls the function to force speed and duplex for the m88 PHY, and
+ *  if the PHY is not auto-negotiating and the speed is forced to 10Mbit,
+ *  then call the function for polarity reversal workaround.
+ **/
+STATIC s32 e1000_phy_force_speed_duplex_82543(struct e1000_hw *hw)
+{
+	s32 ret_val;
+
+	DEBUGFUNC("e1000_phy_force_speed_duplex_82543");
+
+	ret_val = e1000_phy_force_speed_duplex_m88(hw);
+	if (ret_val)
+		goto out;
+
+	if (!hw->mac.autoneg &&
+	    (hw->mac.forced_speed_duplex & E1000_ALL_10_SPEED))
+		ret_val = e1000_polarity_reversal_workaround_82543(hw);
+
+out:
+	return ret_val;
+}
+
+/**
+ *  e1000_polarity_reversal_workaround_82543 - Workaround polarity reversal
+ *  @hw: pointer to the HW structure
+ *
+ *  When forcing link to 10 Full or 10 Half, the PHY can reverse the polarity
+ *  inadvertantly.  To workaround the issue, we disable the transmitter on
+ *  the PHY until we have established the link partner's link parameters.
+ **/
+static s32 e1000_polarity_reversal_workaround_82543(struct e1000_hw *hw)
+{
+	s32 ret_val;
+	u16 mii_status_reg;
+	u16 i;
+	bool link;
+
+	/* Polarity reversal workaround for forced 10F/10H links. */
+
+	/* Disable the transmitter on the PHY */
+
+	ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0019);
+	if (ret_val)
+		goto out;
+	ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xFFFF);
+	if (ret_val)
+		goto out;
+
+	ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0000);
+	if (ret_val)
+		goto out;
+
+	/*
+	 * This loop will early-out if the NO link condition has been met.
+	 * In other words, DO NOT use e1000_phy_has_link_generic() here.
+	 */
+	for (i = PHY_FORCE_TIME; i > 0; i--) {
+		/*
+		 * Read the MII Status Register and wait for Link Status bit
+		 * to be clear.
+		 */
+
+		ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
+		if (ret_val)
+			goto out;
+
+		ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
+		if (ret_val)
+			goto out;
+
+		if ((mii_status_reg & ~MII_SR_LINK_STATUS) == 0)
+			break;
+		msec_delay_irq(100);
+	}
+
+	/* Recommended delay time after link has been lost */
+	msec_delay_irq(1000);
+
+	/* Now we will re-enable the transmitter on the PHY */
+
+	ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0019);
+	if (ret_val)
+		goto out;
+	msec_delay_irq(50);
+	ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xFFF0);
+	if (ret_val)
+		goto out;
+	msec_delay_irq(50);
+	ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xFF00);
+	if (ret_val)
+		goto out;
+	msec_delay_irq(50);
+	ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0x0000);
+	if (ret_val)
+		goto out;
+
+	ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0000);
+	if (ret_val)
+		goto out;
+
+	/*
+	 * Read the MII Status Register and wait for Link Status bit
+	 * to be set.
+	 */
+	ret_val = e1000_phy_has_link_generic(hw, PHY_FORCE_TIME, 100000, &link);
+	if (ret_val)
+		goto out;
+
+out:
+	return ret_val;
+}
+
+/**
+ *  e1000_phy_hw_reset_82543 - PHY hardware reset
+ *  @hw: pointer to the HW structure
+ *
+ *  Sets the PHY_RESET_DIR bit in the extended device control register
+ *  to put the PHY into a reset and waits for completion.  Once the reset
+ *  has been accomplished, clear the PHY_RESET_DIR bit to take the PHY out
+ *  of reset.  This is a function pointer entry point called by the api module.
+ **/
+STATIC s32 e1000_phy_hw_reset_82543(struct e1000_hw *hw)
+{
+	struct e1000_functions *func = &hw->func;
+	u32 ctrl_ext;
+	s32 ret_val;
+
+	DEBUGFUNC("e1000_phy_hw_reset_82543");
+
+	/*
+	 * Read the Extended Device Control Register, assert the PHY_RESET_DIR
+	 * bit to put the PHY into reset...
+	 */
+	ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
+	ctrl_ext |= E1000_CTRL_EXT_SDP4_DIR;
+	ctrl_ext &= ~E1000_CTRL_EXT_SDP4_DATA;
+	E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
+	E1000_WRITE_FLUSH(hw);
+
+	msec_delay(10);
+
+	/* ...then take it out of reset. */
+	ctrl_ext |= E1000_CTRL_EXT_SDP4_DATA;
+	E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
+	E1000_WRITE_FLUSH(hw);
+
+	usec_delay(150);
+
+	ret_val = func->get_cfg_done(hw);
+
+	return ret_val;
+}
+
+/**
+ *  e1000_reset_hw_82543 - Reset hardware
+ *  @hw: pointer to the HW structure
+ *
+ *  This resets the hardware into a known state.  This is a
+ *  function pointer entry point called by the api module.
+ **/
+STATIC s32 e1000_reset_hw_82543(struct e1000_hw *hw)
+{
+	u32 ctrl, icr;
+	s32 ret_val = E1000_SUCCESS;
+
+	DEBUGFUNC("e1000_reset_hw_82543");
+
+	DEBUGOUT("Masking off all interrupts\n");
+	E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff);
+
+	E1000_WRITE_REG(hw, E1000_RCTL, 0);
+	E1000_WRITE_REG(hw, E1000_TCTL, E1000_TCTL_PSP);
+	E1000_WRITE_FLUSH(hw);
+
+	e1000_set_tbi_sbp_82543(hw, FALSE);
+
+	/*
+	 * Delay to allow any outstanding PCI transactions to complete before
+	 * resetting the device
+	 */
+	msec_delay(10);
+
+	ctrl = E1000_READ_REG(hw, E1000_CTRL);
+
+	DEBUGOUT("Issuing a global reset to 82543/82544 MAC\n");
+	if (hw->mac.type == e1000_82543) {
+		E1000_WRITE_REG(hw, E1000_CTRL, ctrl | E1000_CTRL_RST);
+	} else {
+		/*
+		 * The 82544 can't ACK the 64-bit write when issuing the
+		 * reset, so use IO-mapping as a workaround.
+		 */
+		E1000_WRITE_REG_IO(hw, E1000_CTRL, ctrl | E1000_CTRL_RST);
+	}
+
+	/*
+	 * After MAC reset, force reload of NVM to restore power-on
+	 * settings to device.
+	 */
+	e1000_reload_nvm(hw);
+	msec_delay(2);
+
+	/* Masking off and clearing any pending interrupts */
+	E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff);
+	icr = E1000_READ_REG(hw, E1000_ICR);
+
+	return ret_val;
+}
+
+/**
+ *  e1000_init_hw_82543 - Initialize hardware
+ *  @hw: pointer to the HW structure
+ *
+ *  This inits the hardware readying it for operation.
+ **/
+STATIC s32 e1000_init_hw_82543(struct e1000_hw *hw)
+{
+	struct e1000_mac_info *mac = &hw->mac;
+	struct e1000_dev_spec_82543 *dev_spec;
+	u32 ctrl;
+	s32 ret_val;
+	u16 i;
+
+	DEBUGFUNC("e1000_init_hw_82543");
+
+	dev_spec = (struct e1000_dev_spec_82543 *)hw->dev_spec;
+
+	if (!dev_spec) {
+		DEBUGOUT("dev_spec pointer is set to NULL.\n");
+		ret_val = -E1000_ERR_CONFIG;
+		goto out;
+	}
+
+	/* Disabling VLAN filtering */
+	E1000_WRITE_REG(hw, E1000_VET, 0);
+	e1000_clear_vfta(hw);
+
+	/* Setup the receive address. */
+	e1000_init_rx_addrs_generic(hw, mac->rar_entry_count);
+
+	/* Zero out the Multicast HASH table */
+	DEBUGOUT("Zeroing the MTA\n");
+	for (i = 0; i < mac->mta_reg_count; i++) {
+		E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
+		E1000_WRITE_FLUSH(hw);
+	}
+
+	/*
+	 * Set the PCI priority bit correctly in the CTRL register.  This
+	 * determines if the adapter gives priority to receives, or if it
+	 * gives equal priority to transmits and receives.
+	 */
+	if (hw->mac.type == e1000_82543 && dev_spec->dma_fairness) {
+		ctrl = E1000_READ_REG(hw, E1000_CTRL);
+		E1000_WRITE_REG(hw, E1000_CTRL, ctrl | E1000_CTRL_PRIOR);
+	}
+
+	e1000_pcix_mmrbc_workaround_generic(hw);
+
+	/* Setup link and flow control */
+	ret_val = e1000_setup_link(hw);
+
+	/*
+	 * Clear all of the statistics registers (clear on read).  It is
+	 * important that we do this after we have tried to establish link
+	 * because the symbol error count will increment wildly if there
+	 * is no link.
+	 */
+	e1000_clear_hw_cntrs_82543(hw);
+
+out:
+	return ret_val;
+}
+
+/**
+ *  e1000_setup_link_82543 - Setup flow control and link settings
+ *  @hw: pointer to the HW structure
+ *
+ *  Read the EEPROM to determine the initial polarity value and write the
+ *  extended device control register with the information before calling
+ *  the generic setup link function, which does the following:
+ *  Determines which flow control settings to use, then configures flow
+ *  control.  Calls the appropriate media-specific link configuration
+ *  function.  Assuming the adapter has a valid link partner, a valid link
+ *  should be established.  Assumes the hardware has previously been reset
+ *  and the transmitter and receiver are not enabled.
+ **/
+STATIC s32 e1000_setup_link_82543(struct e1000_hw *hw)
+{
+	u32 ctrl_ext;
+	s32  ret_val;
+	u16 data;
+
+	DEBUGFUNC("e1000_setup_link_82543");
+
+	/*
+	 * Take the 4 bits from NVM word 0xF that determine the initial
+	 * polarity value for the SW controlled pins, and setup the
+	 * Extended Device Control reg with that info.
+	 * This is needed because one of the SW controlled pins is used for
+	 * signal detection.  So this should be done before phy setup.
+	 */
+	if (hw->mac.type == e1000_82543) {
+		ret_val = e1000_read_nvm(hw, NVM_INIT_CONTROL2_REG, 1, &data);
+		if (ret_val) {
+			DEBUGOUT("NVM Read Error\n");
+			ret_val = -E1000_ERR_NVM;
+			goto out;
+		}
+		ctrl_ext = ((data & NVM_WORD0F_SWPDIO_EXT_MASK) <<
+		            NVM_SWDPIO_EXT_SHIFT);
+		E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
+	}
+
+	ret_val = e1000_setup_link_generic(hw);
+
+out:
+	return ret_val;
+}
+
+/**
+ *  e1000_setup_copper_link_82543 - Configure copper link settings
+ *  @hw: pointer to the HW structure
+ *
+ *  Configures the link for auto-neg or forced speed and duplex.  Then we check
+ *  for link, once link is established calls to configure collision distance
+ *  and flow control are called.
+ **/
+STATIC s32 e1000_setup_copper_link_82543(struct e1000_hw *hw)
+{
+	u32 ctrl;
+	s32 ret_val;
+	bool link;
+
+	DEBUGFUNC("e1000_setup_copper_link_82543");
+
+	ctrl = E1000_READ_REG(hw, E1000_CTRL) | E1000_CTRL_SLU;
+	/*
+	 * With 82543, we need to force speed and duplex on the MAC
+	 * equal to what the PHY speed and duplex configuration is.
+	 * In addition, we need to perform a hardware reset on the
+	 * PHY to take it out of reset.
+	 */
+	if (hw->mac.type == e1000_82543) {
+		ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
+		E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
+		ret_val = e1000_phy_hw_reset(hw);
+		if (ret_val)
+			goto out;
+		hw->phy.reset_disable = FALSE;
+	} else {
+		ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
+		E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
+	}
+
+	/* Set MDI/MDI-X, Polarity Reversal, and downshift settings */
+	ret_val = e1000_copper_link_setup_m88(hw);
+	if (ret_val)
+		goto out;
+
+	if (hw->mac.autoneg) {
+		/*
+		 * Setup autoneg and flow control advertisement and perform
+		 * autonegotiation.
+		 */
+		ret_val = e1000_copper_link_autoneg(hw);
+		if (ret_val)
+			goto out;
+	} else {
+		/*
+		 * PHY will be set to 10H, 10F, 100H or 100F
+		 * depending on user settings.
+		 */
+		DEBUGOUT("Forcing Speed and Duplex\n");
+		ret_val = e1000_phy_force_speed_duplex_82543(hw);
+		if (ret_val) {
+			DEBUGOUT("Error Forcing Speed and Duplex\n");
+			goto out;
+		}
+	}
+
+	/*
+	 * Check link status. Wait up to 100 microseconds for link to become
+	 * valid.
+	 */
+	ret_val = e1000_phy_has_link_generic(hw,
+	                                     COPPER_LINK_UP_LIMIT,
+	                                     10,
+	                                     &link);
+	if (ret_val)
+		goto out;
+
+
+	if (link) {
+		DEBUGOUT("Valid link established!!!\n");
+		/* Config the MAC and PHY after link is up */
+		if (hw->mac.type == e1000_82544) {
+			e1000_config_collision_dist_generic(hw);
+		} else {
+			ret_val = e1000_config_mac_to_phy_82543(hw);
+			if (ret_val)
+				goto out;
+		}
+		ret_val = e1000_config_fc_after_link_up_generic(hw);
+	} else {
+		DEBUGOUT("Unable to establish link!!!\n");
+	}
+
+out:
+	return ret_val;
+}
+
+/**
+ *  e1000_setup_fiber_link_82543 - Setup link for fiber
+ *  @hw: pointer to the HW structure
+ *
+ *  Configures collision distance and flow control for fiber links.  Upon
+ *  successful setup, poll for link.
+ **/
+STATIC s32 e1000_setup_fiber_link_82543(struct e1000_hw *hw)
+{
+	u32 ctrl;
+	s32 ret_val;
+
+	DEBUGFUNC("e1000_setup_fiber_link_82543");
+
+	ctrl = E1000_READ_REG(hw, E1000_CTRL);
+
+	/* Take the link out of reset */
+	ctrl &= ~E1000_CTRL_LRST;
+
+	e1000_config_collision_dist_generic(hw);
+
+	ret_val = e1000_commit_fc_settings_generic(hw);
+	if (ret_val)
+		goto out;
+
+	DEBUGOUT("Auto-negotiation enabled\n");
+
+	E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
+	E1000_WRITE_FLUSH(hw);
+	msec_delay(1);
+
+	/*
+	 * For these adapters, the SW defineable pin 1 is cleared when the
+	 * optics detect a signal.  If we have a signal, then poll for a
+	 * "Link-Up" indication.
+	 */
+	if (!(E1000_READ_REG(hw, E1000_CTRL) & E1000_CTRL_SWDPIN1)) {
+		ret_val = e1000_poll_fiber_serdes_link_generic(hw);
+	} else {
+		DEBUGOUT("No signal detected\n");
+	}
+
+out:
+	return ret_val;
+}
+
+/**
+ *  e1000_check_for_copper_link_82543 - Check for link (Copper)
+ *  @hw: pointer to the HW structure
+ *
+ *  Checks the phy for link, if link exists, do the following:
+ *   - check for downshift
+ *   - do polarity workaround (if necessary)
+ *   - configure collision distance
+ *   - configure flow control after link up
+ *   - configure tbi compatibility
+ **/
+STATIC s32 e1000_check_for_copper_link_82543(struct e1000_hw *hw)
+{
+	struct e1000_mac_info *mac = &hw->mac;
+	u32 icr, rctl;
+	s32 ret_val;
+	u16 speed, duplex;
+	bool link;
+
+	DEBUGFUNC("e1000_check_for_copper_link_82543");
+
+	if (!mac->get_link_status) {
+		ret_val = E1000_SUCCESS;
+		goto out;
+	}
+
+	ret_val = e1000_phy_has_link_generic(hw, 1, 0, &link);
+	if (ret_val)
+		goto out;
+
+	if (!link)
+		goto out; /* No link detected */
+
+	mac->get_link_status = FALSE;
+
+	e1000_check_downshift_generic(hw);
+
+	/*
+	 * If we are forcing speed/duplex, then we can return since
+	 * we have already determined whether we have link or not.
+	 */
+	if (!mac->autoneg) {
+		/*
+		 * If speed and duplex are forced to 10H or 10F, then we will
+		 * implement the polarity reversal workaround.  We disable
+		 * interrupts first, and upon returning, place the devices
+		 * interrupt state to its previous value except for the link
+		 * status change interrupt which will happened due to the
+		 * execution of this workaround.
+		 */
+		if (mac->forced_speed_duplex & E1000_ALL_10_SPEED) {
+			E1000_WRITE_REG(hw, E1000_IMC, 0xFFFFFFFF);
+			ret_val = e1000_polarity_reversal_workaround_82543(hw);
+			icr = E1000_READ_REG(hw, E1000_ICR);
+			E1000_WRITE_REG(hw, E1000_ICS, (icr & ~E1000_ICS_LSC));
+			E1000_WRITE_REG(hw, E1000_IMS, IMS_ENABLE_MASK);
+		}
+
+		ret_val = -E1000_ERR_CONFIG;
+		goto out;
+	}
+
+	/*
+	 * We have a M88E1000 PHY and Auto-Neg is enabled.  If we
+	 * have Si on board that is 82544 or newer, Auto
+	 * Speed Detection takes care of MAC speed/duplex
+	 * configuration.  So we only need to configure Collision
+	 * Distance in the MAC.  Otherwise, we need to force
+	 * speed/duplex on the MAC to the current PHY speed/duplex
+	 * settings.
+	 */
+	if (mac->type == e1000_82544)
+		e1000_config_collision_dist_generic(hw);
+	else {
+		ret_val = e1000_config_mac_to_phy_82543(hw);
+		if (ret_val) {
+			DEBUGOUT("Error configuring MAC to PHY settings\n");
+			goto out;
+		}
+	}
+
+	/*
+	 * Configure Flow Control now that Auto-Neg has completed.
+	 * First, we need to restore the desired flow control
+	 * settings because we may have had to re-autoneg with a
+	 * different link partner.
+	 */
+	ret_val = e1000_config_fc_after_link_up_generic(hw);
+	if (ret_val) {
+		DEBUGOUT("Error configuring flow control\n");
+	}
+
+	/*
+	 * At this point we know that we are on copper and we have
+	 * auto-negotiated link.  These are conditions for checking the link
+	 * partner capability register.  We use the link speed to determine if
+	 * TBI compatibility needs to be turned on or off.  If the link is not
+	 * at gigabit speed, then TBI compatibility is not needed.  If we are
+	 * at gigabit speed, we turn on TBI compatibility.
+	 */
+	if (e1000_tbi_compatibility_enabled_82543(hw)) {
+		ret_val = e1000_get_speed_and_duplex(hw, &speed, &duplex);
+		if (ret_val) {
+			DEBUGOUT("Error getting link speed and duplex\n");
+			return ret_val;
+		}
+		if (speed != SPEED_1000) {
+			/*
+			 * If link speed is not set to gigabit speed,
+			 * we do not need to enable TBI compatibility.
+			 */
+			if (e1000_tbi_sbp_enabled_82543(hw)) {
+				/*
+				 * If we previously were in the mode,
+				 * turn it off.
+				 */
+				e1000_set_tbi_sbp_82543(hw, FALSE);
+				rctl = E1000_READ_REG(hw, E1000_RCTL);
+				rctl &= ~E1000_RCTL_SBP;
+				E1000_WRITE_REG(hw, E1000_RCTL, rctl);
+			}
+		} else {
+			/*
+			 * If TBI compatibility is was previously off,
+			 * turn it on. For compatibility with a TBI link
+			 * partner, we will store bad packets. Some
+			 * frames have an additional byte on the end and
+			 * will look like CRC errors to to the hardware.
+			 */
+			if (!e1000_tbi_sbp_enabled_82543(hw)) {
+				e1000_set_tbi_sbp_82543(hw, TRUE);
+				rctl = E1000_READ_REG(hw, E1000_RCTL);
+				rctl |= E1000_RCTL_SBP;
+				E1000_WRITE_REG(hw, E1000_RCTL, rctl);
+			}
+		}
+	}
+out:
+	return ret_val;
+}
+
+/**
+ *  e1000_check_for_fiber_link_82543 - Check for link (Fiber)
+ *  @hw: pointer to the HW structure
+ *
+ *  Checks for link up on the hardware.  If link is not up and we have
+ *  a signal, then we need to force link up.
+ **/
+STATIC s32 e1000_check_for_fiber_link_82543(struct e1000_hw *hw)
+{
+	struct e1000_mac_info *mac = &hw->mac;
+	u32 rxcw, ctrl, status;
+	s32 ret_val = E1000_SUCCESS;
+
+	DEBUGFUNC("e1000_check_for_fiber_link_82543");
+
+	ctrl = E1000_READ_REG(hw, E1000_CTRL);
+	status = E1000_READ_REG(hw, E1000_STATUS);
+	rxcw = E1000_READ_REG(hw, E1000_RXCW);
+
+	/*
+	 * If we don't have link (auto-negotiation failed or link partner
+	 * cannot auto-negotiate), the cable is plugged in (we have signal),
+	 * and our link partner is not trying to auto-negotiate with us (we
+	 * are receiving idles or data), we need to force link up. We also
+	 * need to give auto-negotiation time to complete, in case the cable
+	 * was just plugged in. The autoneg_failed flag does this.
+	 */
+	/* (ctrl & E1000_CTRL_SWDPIN1) == 0 == have signal */
+	if ((!(ctrl & E1000_CTRL_SWDPIN1)) &&
+	    (!(status & E1000_STATUS_LU)) &&
+	    (!(rxcw & E1000_RXCW_C))) {
+		if (mac->autoneg_failed == 0) {
+			mac->autoneg_failed = 1;
+			ret_val = 0;
+			goto out;
+		}
+		DEBUGOUT("NOT RXing /C/, disable AutoNeg and force link.\n");
+
+		/* Disable auto-negotiation in the TXCW register */
+		E1000_WRITE_REG(hw, E1000_TXCW, (mac->txcw & ~E1000_TXCW_ANE));
+
+		/* Force link-up and also force full-duplex. */
+		ctrl = E1000_READ_REG(hw, E1000_CTRL);
+		ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD);
+		E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
+
+		/* Configure Flow Control after forcing link up. */
+		ret_val = e1000_config_fc_after_link_up_generic(hw);
+		if (ret_val) {
+			DEBUGOUT("Error configuring flow control\n");
+			goto out;
+		}
+	} else if ((ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) {
+		/*
+		 * If we are forcing link and we are receiving /C/ ordered
+		 * sets, re-enable auto-negotiation in the TXCW register
+		 * and disable forced link in the Device Control register
+		 * in an attempt to auto-negotiate with our link partner.
+		 */
+		DEBUGOUT("RXing /C/, enable AutoNeg and stop forcing link.\n");
+		E1000_WRITE_REG(hw, E1000_TXCW, mac->txcw);
+		E1000_WRITE_REG(hw, E1000_CTRL, (ctrl & ~E1000_CTRL_SLU));
+
+		mac->serdes_has_link = TRUE;
+	}
+
+out:
+	return ret_val;
+}
+
+/**
+ *  e1000_config_mac_to_phy_82543 - Configure MAC to PHY settings
+ *  @hw: pointer to the HW structure
+ *
+ *  For the 82543 silicon, we need to set the MAC to match the settings
+ *  of the PHY, even if the PHY is auto-negotiating.
+ **/
+static s32 e1000_config_mac_to_phy_82543(struct e1000_hw *hw)
+{
+	u32 ctrl;
+	s32 ret_val;
+	u16 phy_data;
+
+	DEBUGFUNC("e1000_config_mac_to_phy_82543");
+
+	/* Set the bits to force speed and duplex */
+	ctrl = E1000_READ_REG(hw, E1000_CTRL);
+	ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
+	ctrl &= ~(E1000_CTRL_SPD_SEL | E1000_CTRL_ILOS);
+
+	/*
+	 * Set up duplex in the Device Control and Transmit Control
+	 * registers depending on negotiated values.
+	 */
+	ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
+	if (ret_val)
+		goto out;
+
+	ctrl &= ~E1000_CTRL_FD;
+	if (phy_data & M88E1000_PSSR_DPLX)
+		ctrl |= E1000_CTRL_FD;
+
+	e1000_config_collision_dist_generic(hw);
+
+	/*
+	 * Set up speed in the Device Control register depending on
+	 * negotiated values.
+	 */
+	if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS)
+		ctrl |= E1000_CTRL_SPD_1000;
+	else if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_100MBS)
+		ctrl |= E1000_CTRL_SPD_100;
+
+	E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
+
+out:
+	return ret_val;
+}
+
+/**
+ *  e1000_write_vfta_82543 - Write value to VLAN filter table
+ *  @hw: pointer to the HW structure
+ *  @offset: the 32-bit offset in which to write the value to.
+ *  @value: the 32-bit value to write at location offset.
+ *
+ *  This writes a 32-bit value to a 32-bit offset in the VLAN filter
+ *  table.
+ **/
+STATIC void e1000_write_vfta_82543(struct e1000_hw *hw, u32 offset, u32 value)
+{
+	u32 temp;
+
+	DEBUGFUNC("e1000_write_vfta_82543");
+
+	if ((hw->mac.type == e1000_82544) && (offset & 1)) {
+		temp = E1000_READ_REG_ARRAY(hw, E1000_VFTA, offset - 1);
+		E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset, value);
+		E1000_WRITE_FLUSH(hw);
+		E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset - 1, temp);
+		E1000_WRITE_FLUSH(hw);
+	} else {
+		e1000_write_vfta_generic(hw, offset, value);
+	}
+}
+
+/**
+ *  e1000_mta_set_82543 - Set multicast filter table address
+ *  @hw: pointer to the HW structure
+ *  @hash_value: determines the MTA register and bit to set
+ *
+ *  The multicast table address is a register array of 32-bit registers.
+ *  The hash_value is used to determine what register the bit is in, the
+ *  current value is read, the new bit is OR'd in and the new value is
+ *  written back into the register.
+ **/
+STATIC void e1000_mta_set_82543(struct e1000_hw *hw, u32 hash_value)
+{
+	u32 hash_bit, hash_reg, mta, temp;
+
+	DEBUGFUNC("e1000_mta_set_82543");
+
+	hash_reg = (hash_value >> 5);
+
+	/*
+	 * If we are on an 82544 and we are trying to write an odd offset
+	 * in the MTA, save off the previous entry before writing and
+	 * restore the old value after writing.
+	 */
+	if ((hw->mac.type == e1000_82544) && (hash_reg & 1)) {
+		hash_reg &= (hw->mac.mta_reg_count - 1);
+		hash_bit = hash_value & 0x1F;
+		mta = E1000_READ_REG_ARRAY(hw, E1000_MTA, hash_reg);
+		mta |= (1 << hash_bit);
+		temp = E1000_READ_REG_ARRAY(hw, E1000_MTA, hash_reg - 1);
+
+		E1000_WRITE_REG_ARRAY(hw, E1000_MTA, hash_reg, mta);
+		E1000_WRITE_FLUSH(hw);
+		E1000_WRITE_REG_ARRAY(hw, E1000_MTA, hash_reg - 1, temp);
+		E1000_WRITE_FLUSH(hw);
+	} else {
+		e1000_mta_set_generic(hw, hash_value);
+	}
+}
+
+/**
+ *  e1000_led_on_82543 - Turn on SW controllable LED
+ *  @hw: pointer to the HW structure
+ *
+ *  Turns the SW defined LED on.  This is a function pointer entry point
+ *  called by the api module.
+ **/
+STATIC s32 e1000_led_on_82543(struct e1000_hw *hw)
+{
+	u32 ctrl = E1000_READ_REG(hw, E1000_CTRL);
+
+	DEBUGFUNC("e1000_led_on_82543");
+
+	if (hw->mac.type == e1000_82544 &&
+	    hw->phy.media_type == e1000_media_type_copper) {
+		/* Clear SW-defineable Pin 0 to turn on the LED */
+		ctrl &= ~E1000_CTRL_SWDPIN0;
+		ctrl |= E1000_CTRL_SWDPIO0;
+	} else {
+		/* Fiber 82544 and all 82543 use this method */
+		ctrl |= E1000_CTRL_SWDPIN0;
+		ctrl |= E1000_CTRL_SWDPIO0;
+	}
+	E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
+
+	return E1000_SUCCESS;
+}
+
+/**
+ *  e1000_led_off_82543 - Turn off SW controllable LED
+ *  @hw: pointer to the HW structure
+ *
+ *  Turns the SW defined LED off.  This is a function pointer entry point
+ *  called by the api module.
+ **/
+STATIC s32 e1000_led_off_82543(struct e1000_hw *hw)
+{
+	u32 ctrl = E1000_READ_REG(hw, E1000_CTRL);
+
+	DEBUGFUNC("e1000_led_off_82543");
+
+	if (hw->mac.type == e1000_82544 &&
+	    hw->phy.media_type == e1000_media_type_copper) {
+		/* Set SW-defineable Pin 0 to turn off the LED */
+		ctrl |= E1000_CTRL_SWDPIN0;
+		ctrl |= E1000_CTRL_SWDPIO0;
+	} else {
+		ctrl &= ~E1000_CTRL_SWDPIN0;
+		ctrl |= E1000_CTRL_SWDPIO0;
+	}
+	E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
+
+	return E1000_SUCCESS;
+}
+
+/**
+ *  e1000_clear_hw_cntrs_82543 - Clear device specific hardware counters
+ *  @hw: pointer to the HW structure
+ *
+ *  Clears the hardware counters by reading the counter registers.
+ **/
+STATIC void e1000_clear_hw_cntrs_82543(struct e1000_hw *hw)
+{
+	volatile u32 temp;
+
+	DEBUGFUNC("e1000_clear_hw_cntrs_82543");
+
+	e1000_clear_hw_cntrs_base_generic(hw);
+
+	temp = E1000_READ_REG(hw, E1000_PRC64);
+	temp = E1000_READ_REG(hw, E1000_PRC127);
+	temp = E1000_READ_REG(hw, E1000_PRC255);
+	temp = E1000_READ_REG(hw, E1000_PRC511);
+	temp = E1000_READ_REG(hw, E1000_PRC1023);
+	temp = E1000_READ_REG(hw, E1000_PRC1522);
+	temp = E1000_READ_REG(hw, E1000_PTC64);
+	temp = E1000_READ_REG(hw, E1000_PTC127);
+	temp = E1000_READ_REG(hw, E1000_PTC255);
+	temp = E1000_READ_REG(hw, E1000_PTC511);
+	temp = E1000_READ_REG(hw, E1000_PTC1023);
+	temp = E1000_READ_REG(hw, E1000_PTC1522);
+
+	temp = E1000_READ_REG(hw, E1000_ALGNERRC);
+	temp = E1000_READ_REG(hw, E1000_RXERRC);
+	temp = E1000_READ_REG(hw, E1000_TNCRS);
+	temp = E1000_READ_REG(hw, E1000_CEXTERR);
+	temp = E1000_READ_REG(hw, E1000_TSCTC);
+	temp = E1000_READ_REG(hw, E1000_TSCTFC);
+}
--- /dev/null
+++ sys/dev/em/e1000_manage.c
@@ -0,0 +1,391 @@
+/*******************************************************************************
+
+  Copyright (c) 2001-2007, Intel Corporation 
+  All rights reserved.
+  
+  Redistribution and use in source and binary forms, with or without 
+  modification, are permitted provided that the following conditions are met:
+  
+   1. Redistributions of source code must retain the above copyright notice, 
+      this list of conditions and the following disclaimer.
+  
+   2. Redistributions in binary form must reproduce the above copyright 
+      notice, this list of conditions and the following disclaimer in the 
+      documentation and/or other materials provided with the distribution.
+  
+   3. Neither the name of the Intel Corporation nor the names of its 
+      contributors may be used to endorse or promote products derived from 
+      this software without specific prior written permission.
+  
+  THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
+  AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 
+  IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 
+  ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE 
+  LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 
+  CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 
+  SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 
+  INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 
+  CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 
+  ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
+  POSSIBILITY OF SUCH DAMAGE.
+
+*******************************************************************************/
+/* $FreeBSD: src/sys/dev/em/e1000_manage.c,v 1.3.4.1 2007/11/28 23:24:38 jfv Exp $ */
+
+
+#include "e1000_api.h"
+#include "e1000_manage.h"
+
+static u8 e1000_calculate_checksum(u8 *buffer, u32 length);
+
+/**
+ *  e1000_calculate_checksum - Calculate checksum for buffer
+ *  @buffer: pointer to EEPROM
+ *  @length: size of EEPROM to calculate a checksum for
+ *
+ *  Calculates the checksum for some buffer on a specified length.  The
+ *  checksum calculated is returned.
+ **/
+static u8 e1000_calculate_checksum(u8 *buffer, u32 length)
+{
+	u32 i;
+	u8  sum = 0;
+
+	DEBUGFUNC("e1000_calculate_checksum");
+
+	if (!buffer)
+		return 0;
+
+	for (i = 0; i < length; i++)
+		sum += buffer[i];
+
+	return (u8) (0 - sum);
+}
+
+/**
+ *  e1000_mng_enable_host_if_generic - Checks host interface is enabled
+ *  @hw: pointer to the HW structure
+ *
+ *  Returns E1000_success upon success, else E1000_ERR_HOST_INTERFACE_COMMAND
+ *
+ *  This function checks whether the HOST IF is enabled for command operaton
+ *  and also checks whether the previous command is completed.  It busy waits
+ *  in case of previous command is not completed.
+ **/
+s32 e1000_mng_enable_host_if_generic(struct e1000_hw * hw)
+{
+	u32 hicr;
+	s32 ret_val = E1000_SUCCESS;
+	u8  i;
+
+	DEBUGFUNC("e1000_mng_enable_host_if_generic");
+
+	/* Check that the host interface is enabled. */
+	hicr = E1000_READ_REG(hw, E1000_HICR);
+	if ((hicr & E1000_HICR_EN) == 0) {
+		DEBUGOUT("E1000_HOST_EN bit disabled.\n");
+		ret_val = -E1000_ERR_HOST_INTERFACE_COMMAND;
+		goto out;
+	}
+	/* check the previous command is completed */
+	for (i = 0; i < E1000_MNG_DHCP_COMMAND_TIMEOUT; i++) {
+		hicr = E1000_READ_REG(hw, E1000_HICR);
+		if (!(hicr & E1000_HICR_C))
+			break;
+		msec_delay_irq(1);
+	}
+
+	if (i == E1000_MNG_DHCP_COMMAND_TIMEOUT) {
+		DEBUGOUT("Previous command timeout failed .\n");
+		ret_val = -E1000_ERR_HOST_INTERFACE_COMMAND;
+		goto out;
+	}
+
+out:
+	return ret_val;
+}
+
+/**
+ *  e1000_check_mng_mode_generic - Generic check managament mode
+ *  @hw: pointer to the HW structure
+ *
+ *  Reads the firmware semaphore register and returns true (>0) if
+ *  manageability is enabled, else false (0).
+ **/
+bool e1000_check_mng_mode_generic(struct e1000_hw *hw)
+{
+	u32 fwsm;
+
+	DEBUGFUNC("e1000_check_mng_mode_generic");
+
+	fwsm = E1000_READ_REG(hw, E1000_FWSM);
+
+	return ((fwsm & E1000_FWSM_MODE_MASK) ==
+	        (E1000_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT));
+}
+
+/**
+ *  e1000_enable_tx_pkt_filtering_generic - Enable packet filtering on TX
+ *  @hw: pointer to the HW structure
+ *
+ *  Enables packet filtering on transmit packets if manageability is enabled
+ *  and host interface is enabled.
+ **/
+bool e1000_enable_tx_pkt_filtering_generic(struct e1000_hw *hw)
+{
+	struct e1000_host_mng_dhcp_cookie *hdr = &hw->mng_cookie;
+	u32 *buffer = (u32 *)&hw->mng_cookie;
+	u32 offset;
+	s32 ret_val, hdr_csum, csum;
+	u8 i, len;
+	bool tx_filter = TRUE;
+
+	DEBUGFUNC("e1000_enable_tx_pkt_filtering_generic");
+
+	/* No manageability, no filtering */
+	if (!e1000_check_mng_mode(hw)) {
+		tx_filter = FALSE;
+		goto out;
+	}
+
+	/*
+	 * If we can't read from the host interface for whatever
+	 * reason, disable filtering.
+	 */
+	ret_val = e1000_mng_enable_host_if(hw);
+	if (ret_val != E1000_SUCCESS) {
+		tx_filter = FALSE;
+		goto out;
+	}
+
+	/* Read in the header.  Length and offset are in dwords. */
+	len    = E1000_MNG_DHCP_COOKIE_LENGTH >> 2;
+	offset = E1000_MNG_DHCP_COOKIE_OFFSET >> 2;
+	for (i = 0; i < len; i++) {
+		*(buffer + i) = E1000_READ_REG_ARRAY_DWORD(hw,
+							   E1000_HOST_IF,
+							   offset + i);
+	}
+	hdr_csum = hdr->checksum;
+	hdr->checksum = 0;
+	csum = e1000_calculate_checksum((u8 *)hdr,
+	                                E1000_MNG_DHCP_COOKIE_LENGTH);
+	/*
+	 * If either the checksums or signature don't match, then
+	 * the cookie area isn't considered valid, in which case we
+	 * take the safe route of assuming Tx filtering is enabled.
+	 */
+	if (hdr_csum != csum)
+		goto out;
+	if (hdr->signature != E1000_IAMT_SIGNATURE)
+		goto out;
+
+	/* Cookie area is valid, make the final check for filtering. */
+	if (!(hdr->status & E1000_MNG_DHCP_COOKIE_STATUS_PARSING))
+		tx_filter = FALSE;
+
+out:
+	hw->mac.tx_pkt_filtering = tx_filter;
+	return tx_filter;
+}
+
+/**
+ *  e1000_mng_write_dhcp_info_generic - Writes DHCP info to host interface
+ *  @hw: pointer to the HW structure
+ *  @buffer: pointer to the host interface
+ *  @length: size of the buffer
+ *
+ *  Writes the DHCP information to the host interface.
+ **/
+s32 e1000_mng_write_dhcp_info_generic(struct e1000_hw * hw, u8 *buffer,
+                                      u16 length)
+{
+	struct e1000_host_mng_command_header hdr;
+	s32 ret_val;
+	u32 hicr;
+
+	DEBUGFUNC("e1000_mng_write_dhcp_info_generic");
+
+	hdr.command_id = E1000_MNG_DHCP_TX_PAYLOAD_CMD;
+	hdr.command_length = length;
+	hdr.reserved1 = 0;
+	hdr.reserved2 = 0;
+	hdr.checksum = 0;
+
+	/* Enable the host interface */
+	ret_val = e1000_mng_enable_host_if(hw);
+	if (ret_val)
+		goto out;
+
+	/* Populate the host interface with the contents of "buffer". */
+	ret_val = e1000_mng_host_if_write(hw, buffer, length,
+	                                  sizeof(hdr), &(hdr.checksum));
+	if (ret_val)
+		goto out;
+
+	/* Write the manageability command header */
+	ret_val = e1000_mng_write_cmd_header(hw, &hdr);
+	if (ret_val)
+		goto out;
+
+	/* Tell the ARC a new command is pending. */
+	hicr = E1000_READ_REG(hw, E1000_HICR);
+	E1000_WRITE_REG(hw, E1000_HICR, hicr | E1000_HICR_C);
+
+out:
+	return ret_val;
+}
+
+/**
+ *  e1000_mng_write_cmd_header_generic - Writes manageability command header
+ *  @hw: pointer to the HW structure
+ *  @hdr: pointer to the host interface command header
+ *
+ *  Writes the command header after does the checksum calculation.
+ **/
+s32 e1000_mng_write_cmd_header_generic(struct e1000_hw * hw,
+                                       struct e1000_host_mng_command_header * hdr)
+{
+	u16 i, length = sizeof(struct e1000_host_mng_command_header);
+
+	DEBUGFUNC("e1000_mng_write_cmd_header_generic");
+
+	/* Write the whole command header structure with new checksum. */
+
+	hdr->checksum = e1000_calculate_checksum((u8 *)hdr, length);
+
+	length >>= 2;
+	/* Write the relevant command block into the ram area. */
+	for (i = 0; i < length; i++) {
+		E1000_WRITE_REG_ARRAY_DWORD(hw, E1000_HOST_IF, i,
+		                            *((u32 *) hdr + i));
+		E1000_WRITE_FLUSH(hw);
+	}
+
+	return E1000_SUCCESS;
+}
+
+/**
+ *  e1000_mng_host_if_write_generic - Writes to the manageability host interface
+ *  @hw: pointer to the HW structure
+ *  @buffer: pointer to the host interface buffer
+ *  @length: size of the buffer
+ *  @offset: location in the buffer to write to
+ *  @sum: sum of the data (not checksum)
+ *
+ *  This function writes the buffer content at the offset given on the host if.
+ *  It also does alignment considerations to do the writes in most efficient
+ *  way.  Also fills up the sum of the buffer in *buffer parameter.
+ **/
+s32 e1000_mng_host_if_write_generic(struct e1000_hw * hw, u8 *buffer,
+                                    u16 length, u16 offset, u8 *sum)
+{
+	u8 *tmp;
+	u8 *bufptr = buffer;
+	u32 data = 0;
+	s32 ret_val = E1000_SUCCESS;
+	u16 remaining, i, j, prev_bytes;
+
+	DEBUGFUNC("e1000_mng_host_if_write_generic");
+
+	/* sum = only sum of the data and it is not checksum */
+
+	if (length == 0 || offset + length > E1000_HI_MAX_MNG_DATA_LENGTH) {
+		ret_val = -E1000_ERR_PARAM;
+		goto out;
+	}
+
+	tmp = (u8 *)&data;
+	prev_bytes = offset & 0x3;
+	offset >>= 2;
+
+	if (prev_bytes) {
+		data = E1000_READ_REG_ARRAY_DWORD(hw, E1000_HOST_IF, offset);
+		for (j = prev_bytes; j < sizeof(u32); j++) {
+			*(tmp + j) = *bufptr++;
+			*sum += *(tmp + j);
+		}
+		E1000_WRITE_REG_ARRAY_DWORD(hw, E1000_HOST_IF, offset, data);
+		length -= j - prev_bytes;
+		offset++;
+	}
+
+	remaining = length & 0x3;
+	length -= remaining;
+
+	/* Calculate length in DWORDs */
+	length >>= 2;
+
+	/*
+	 * The device driver writes the relevant command block into the
+	 * ram area.
+	 */
+	for (i = 0; i < length; i++) {
+		for (j = 0; j < sizeof(u32); j++) {
+			*(tmp + j) = *bufptr++;
+			*sum += *(tmp + j);
+		}
+
+		E1000_WRITE_REG_ARRAY_DWORD(hw, E1000_HOST_IF, offset + i, data);
+	}
+	if (remaining) {
+		for (j = 0; j < sizeof(u32); j++) {
+			if (j < remaining)
+				*(tmp + j) = *bufptr++;
+			else
+				*(tmp + j) = 0;
+
+			*sum += *(tmp + j);
+		}
+		E1000_WRITE_REG_ARRAY_DWORD(hw, E1000_HOST_IF, offset + i, data);
+	}
+
+out:
+	return ret_val;
+}
+
+/**
+ *  e1000_enable_mng_pass_thru - Enable processing of ARP's
+ *  @hw: pointer to the HW structure
+ *
+ *  Verifies the hardware needs to allow ARPs to be processed by the host.
+ **/
+bool e1000_enable_mng_pass_thru(struct e1000_hw *hw)
+{
+	u32 manc;
+	u32 fwsm, factps;
+	bool ret_val = FALSE;
+
+	DEBUGFUNC("e1000_enable_mng_pass_thru");
+
+	if (!hw->mac.asf_firmware_present)
+		goto out;
+
+	manc = E1000_READ_REG(hw, E1000_MANC);
+
+	if (!(manc & E1000_MANC_RCV_TCO_EN) ||
+	    !(manc & E1000_MANC_EN_MAC_ADDR_FILTER))
+		goto out;
+
+	if (hw->mac.arc_subsystem_valid) {
+		fwsm = E1000_READ_REG(hw, E1000_FWSM);
+		factps = E1000_READ_REG(hw, E1000_FACTPS);
+
+		if (!(factps & E1000_FACTPS_MNGCG) &&
+		    ((fwsm & E1000_FWSM_MODE_MASK) ==
+		     (e1000_mng_mode_pt << E1000_FWSM_MODE_SHIFT))) {
+			ret_val = TRUE;
+			goto out;
+		}
+	} else {
+		if ((manc & E1000_MANC_SMBUS_EN) &&
+		    !(manc & E1000_MANC_ASF_EN)) {
+			ret_val = TRUE;
+			goto out;
+		}
+	}
+
+out:
+	return ret_val;
+}
+
--- /dev/null
+++ sys/dev/em/e1000_regs.h
@@ -0,0 +1,356 @@
+/*******************************************************************************
+
+  Copyright (c) 2001-2007, Intel Corporation 
+  All rights reserved.
+  
+  Redistribution and use in source and binary forms, with or without 
+  modification, are permitted provided that the following conditions are met:
+  
+   1. Redistributions of source code must retain the above copyright notice, 
+      this list of conditions and the following disclaimer.
+  
+   2. Redistributions in binary form must reproduce the above copyright 
+      notice, this list of conditions and the following disclaimer in the 
+      documentation and/or other materials provided with the distribution.
+  
+   3. Neither the name of the Intel Corporation nor the names of its 
+      contributors may be used to endorse or promote products derived from 
+      this software without specific prior written permission.
+  
+  THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
+  AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 
+  IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 
+  ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE 
+  LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 
+  CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 
+  SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 
+  INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 
+  CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 
+  ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
+  POSSIBILITY OF SUCH DAMAGE.
+
+*******************************************************************************/
+/* $FreeBSD: src/sys/dev/em/e1000_regs.h,v 1.3.4.1 2007/11/28 23:24:38 jfv Exp $ */
+
+
+#ifndef _E1000_REGS_H_
+#define _E1000_REGS_H_
+
+#define E1000_CTRL     0x00000  /* Device Control - RW */
+#define E1000_CTRL_DUP 0x00004  /* Device Control Duplicate (Shadow) - RW */
+#define E1000_STATUS   0x00008  /* Device Status - RO */
+#define E1000_EECD     0x00010  /* EEPROM/Flash Control - RW */
+#define E1000_EERD     0x00014  /* EEPROM Read - RW */
+#define E1000_CTRL_EXT 0x00018  /* Extended Device Control - RW */
+#define E1000_FLA      0x0001C  /* Flash Access - RW */
+#define E1000_MDIC     0x00020  /* MDI Control - RW */
+#define E1000_SCTL     0x00024  /* SerDes Control - RW */
+#define E1000_FCAL     0x00028  /* Flow Control Address Low - RW */
+#define E1000_FCAH     0x0002C  /* Flow Control Address High -RW */
+#define E1000_FEXTNVM  0x00028  /* Future Extended NVM - RW */
+#define E1000_FCT      0x00030  /* Flow Control Type - RW */
+#define E1000_CONNSW   0x00034  /* Copper/Fiber switch control - RW */
+#define E1000_VET      0x00038  /* VLAN Ether Type - RW */
+#define E1000_ICR      0x000C0  /* Interrupt Cause Read - R/clr */
+#define E1000_ITR      0x000C4  /* Interrupt Throttling Rate - RW */
+#define E1000_ICS      0x000C8  /* Interrupt Cause Set - WO */
+#define E1000_IMS      0x000D0  /* Interrupt Mask Set - RW */
+#define E1000_IMC      0x000D8  /* Interrupt Mask Clear - WO */
+#define E1000_IAM      0x000E0  /* Interrupt Acknowledge Auto Mask */
+#define E1000_RCTL     0x00100  /* Rx Control - RW */
+#define E1000_FCTTV    0x00170  /* Flow Control Transmit Timer Value - RW */
+#define E1000_TXCW     0x00178  /* Tx Configuration Word - RW */
+#define E1000_RXCW     0x00180  /* Rx Configuration Word - RO */
+#define E1000_EICR     0x01580  /* Ext. Interrupt Cause Read - R/clr */
+#define E1000_EITR(_n) (0x01680 + (0x4 * (_n)))
+#define E1000_EICS     0x01520  /* Ext. Interrupt Cause Set - W0 */
+#define E1000_EIMS     0x01524  /* Ext. Interrupt Mask Set/Read - RW */
+#define E1000_EIMC     0x01528  /* Ext. Interrupt Mask Clear - WO */
+#define E1000_EIAC     0x0152C  /* Ext. Interrupt Auto Clear - RW */
+#define E1000_EIAM     0x01530  /* Ext. Interrupt Ack Auto Clear Mask - RW */
+#define E1000_TCTL     0x00400  /* Tx Control - RW */
+#define E1000_TCTL_EXT 0x00404  /* Extended Tx Control - RW */
+#define E1000_TIPG     0x00410  /* Tx Inter-packet gap -RW */
+#define E1000_TBT      0x00448  /* Tx Burst Timer - RW */
+#define E1000_AIT      0x00458  /* Adaptive Interframe Spacing Throttle - RW */
+#define E1000_LEDCTL   0x00E00  /* LED Control - RW */
+#define E1000_EXTCNF_CTRL  0x00F00  /* Extended Configuration Control */
+#define E1000_EXTCNF_SIZE  0x00F08  /* Extended Configuration Size */
+#define E1000_PHY_CTRL     0x00F10  /* PHY Control Register in CSR */
+#define E1000_PBA      0x01000  /* Packet Buffer Allocation - RW */
+#define E1000_PBS      0x01008  /* Packet Buffer Size */
+#define E1000_EEMNGCTL 0x01010  /* MNG EEprom Control */
+#define E1000_EEARBC   0x01024  /* EEPROM Auto Read Bus Control */
+#define E1000_FLASHT   0x01028  /* FLASH Timer Register */
+#define E1000_EEWR     0x0102C  /* EEPROM Write Register - RW */
+#define E1000_FLSWCTL  0x01030  /* FLASH control register */
+#define E1000_FLSWDATA 0x01034  /* FLASH data register */
+#define E1000_FLSWCNT  0x01038  /* FLASH Access Counter */
+#define E1000_FLOP     0x0103C  /* FLASH Opcode Register */
+#define E1000_I2CCMD   0x01028  /* SFPI2C Command Register - RW */
+#define E1000_I2CPARAMS 0x0102C /* SFPI2C Parameters Register - RW */
+#define E1000_WDSTP    0x01040  /* Watchdog Setup - RW */
+#define E1000_SWDSTS   0x01044  /* SW Device Status - RW */
+#define E1000_FRTIMER  0x01048  /* Free Running Timer - RW */
+#define E1000_TCPTIMER 0x0104C  /* TCP Timer - RW */
+#define E1000_ERT      0x02008  /* Early Rx Threshold - RW */
+#define E1000_FCRTL    0x02160  /* Flow Control Receive Threshold Low - RW */
+#define E1000_FCRTH    0x02168  /* Flow Control Receive Threshold High - RW */
+#define E1000_PSRCTL   0x02170  /* Packet Split Receive Control - RW */
+#define E1000_RDFPCQ(_n)  (0x02430 + (0x4 * (_n)))
+#define E1000_PBRTH    0x02458  /* PB Rx Arbitration Threshold - RW */
+#define E1000_FCRTV    0x02460  /* Flow Control Refresh Timer Value - RW */
+/* Split and Replication Rx Control - RW */
+#define E1000_RDPUMB   0x025CC  /* DMA Rx Descriptor uC Mailbox - RW */
+#define E1000_RDPUAD   0x025D0  /* DMA Rx Descriptor uC Addr Command - RW */
+#define E1000_RDPUWD   0x025D4  /* DMA Rx Descriptor uC Data Write - RW */
+#define E1000_RDPURD   0x025D8  /* DMA Rx Descriptor uC Data Read - RW */
+#define E1000_RDPUCTL  0x025DC  /* DMA Rx Descriptor uC Control - RW */
+#define E1000_RDTR     0x02820  /* Rx Delay Timer - RW */
+#define E1000_RADV     0x0282C  /* Rx Interrupt Absolute Delay Timer - RW */
+/*
+ * Convenience macros
+ *
+ * Note: "_n" is the queue number of the register to be written to.
+ *
+ * Example usage:
+ * E1000_RDBAL_REG(current_rx_queue)
+ */
+#define E1000_RDBAL(_n)   ((_n) < 4 ? (0x02800 + ((_n) * 0x100)) : (0x0C000 + ((_n) * 0x40)))
+#define E1000_RDBAH(_n)   ((_n) < 4 ? (0x02804 + ((_n) * 0x100)) : (0x0C004 + ((_n) * 0x40)))
+#define E1000_RDLEN(_n)   ((_n) < 4 ? (0x02808 + ((_n) * 0x100)) : (0x0C008 + ((_n) * 0x40)))
+#define E1000_SRRCTL(_n)  ((_n) < 4 ? (0x0280C + ((_n) * 0x100)) : (0x0C00C + ((_n) * 0x40)))
+#define E1000_RDH(_n)     ((_n) < 4 ? (0x02810 + ((_n) * 0x100)) : (0x0C010 + ((_n) * 0x40)))
+#define E1000_RDT(_n)     ((_n) < 4 ? (0x02818 + ((_n) * 0x100)) : (0x0C018 + ((_n) * 0x40)))
+#define E1000_RXDCTL(_n)  ((_n) < 4 ? (0x02828 + ((_n) * 0x100)) : (0x0C028 + ((_n) * 0x40)))
+#define E1000_TDBAL(_n)   ((_n) < 4 ? (0x03800 + ((_n) * 0x100)) : (0x0E000 + ((_n) * 0x40)))
+#define E1000_TDBAH(_n)   ((_n) < 4 ? (0x03804 + ((_n) * 0x100)) : (0x0E004 + ((_n) * 0x40)))
+#define E1000_TDLEN(_n)   ((_n) < 4 ? (0x03808 + ((_n) * 0x100)) : (0x0E008 + ((_n) * 0x40)))
+#define E1000_TDH(_n)     ((_n) < 4 ? (0x03810 + ((_n) * 0x100)) : (0x0E010 + ((_n) * 0x40)))
+#define E1000_TDT(_n)     ((_n) < 4 ? (0x03818 + ((_n) * 0x100)) : (0x0E018 + ((_n) * 0x40)))
+#define E1000_TXDCTL(_n)  ((_n) < 4 ? (0x03828 + ((_n) * 0x100)) : (0x0E028 + ((_n) * 0x40)))
+#define E1000_TARC(_n)    (0x03840 + (_n << 8))
+#define E1000_DCA_TXCTRL(_n) (0x03814 + (_n << 8))
+#define E1000_DCA_RXCTRL(_n) (0x02814 + (_n << 8))
+#define E1000_TDWBAL(_n)  ((_n) < 4 ? (0x03838 + ((_n) * 0x100)) : (0x0E038 + ((_n) * 0x40)))
+#define E1000_TDWBAH(_n)  ((_n) < 4 ? (0x0383C + ((_n) * 0x100)) : (0x0E03C + ((_n) * 0x40)))
+#define E1000_RSRPD    0x02C00  /* Rx Small Packet Detect - RW */
+#define E1000_RAID     0x02C08  /* Receive Ack Interrupt Delay - RW */
+#define E1000_TXDMAC   0x03000  /* Tx DMA Control - RW */
+#define E1000_KABGTXD  0x03004  /* AFE Band Gap Transmit Ref Data */
+#define E1000_PSRTYPE_REG(_i)   (0x05480 + ((_i) * 4))
+#define E1000_RAL(_i)           (0x05400 + ((_i) * 8))
+#define E1000_RAH(_i)           (0x05404 + ((_i) * 8))
+#define E1000_IP4AT_REG(_i)     (0x05840 + ((_i) * 8))
+#define E1000_IP6AT_REG(_i)     (0x05880 + ((_i) * 4))
+#define E1000_WUPM_REG(_i)      (0x05A00 + ((_i) * 4))
+#define E1000_FFMT_REG(_i)      (0x09000 + ((_i) * 8))
+#define E1000_FFVT_REG(_i)      (0x09800 + ((_i) * 8))
+#define E1000_FFLT_REG(_i)      (0x05F00 + ((_i) * 8))
+#define E1000_TDFH     0x03410  /* Tx Data FIFO Head - RW */
+#define E1000_TDFT     0x03418  /* Tx Data FIFO Tail - RW */
+#define E1000_TDFHS    0x03420  /* Tx Data FIFO Head Saved - RW */
+#define E1000_TDFTS    0x03428  /* Tx Data FIFO Tail Saved - RW */
+#define E1000_TDFPC    0x03430  /* Tx Data FIFO Packet Count - RW */
+#define E1000_TDPUMB   0x0357C  /* DMA Tx Descriptor uC Mail Box - RW */
+#define E1000_TDPUAD   0x03580  /* DMA Tx Descriptor uC Addr Command - RW */
+#define E1000_TDPUWD   0x03584  /* DMA Tx Descriptor uC Data Write - RW */
+#define E1000_TDPURD   0x03588  /* DMA Tx Descriptor uC Data  Read  - RW */
+#define E1000_TDPUCTL  0x0358C  /* DMA Tx Descriptor uC Control - RW */
+#define E1000_DTXCTL   0x03590  /* DMA Tx Control - RW */
+#define E1000_TIDV     0x03820  /* Tx Interrupt Delay Value - RW */
+#define E1000_TADV     0x0382C  /* Tx Interrupt Absolute Delay Val - RW */
+#define E1000_TSPMT    0x03830  /* TCP Segmentation PAD & Min Threshold - RW */
+#define E1000_CRCERRS  0x04000  /* CRC Error Count - R/clr */
+#define E1000_ALGNERRC 0x04004  /* Alignment Error Count - R/clr */
+#define E1000_SYMERRS  0x04008  /* Symbol Error Count - R/clr */
+#define E1000_RXERRC   0x0400C  /* Receive Error Count - R/clr */
+#define E1000_MPC      0x04010  /* Missed Packet Count - R/clr */
+#define E1000_SCC      0x04014  /* Single Collision Count - R/clr */
+#define E1000_ECOL     0x04018  /* Excessive Collision Count - R/clr */
+#define E1000_MCC      0x0401C  /* Multiple Collision Count - R/clr */
+#define E1000_LATECOL  0x04020  /* Late Collision Count - R/clr */
+#define E1000_COLC     0x04028  /* Collision Count - R/clr */
+#define E1000_DC       0x04030  /* Defer Count - R/clr */
+#define E1000_TNCRS    0x04034  /* Tx-No CRS - R/clr */
+#define E1000_SEC      0x04038  /* Sequence Error Count - R/clr */
+#define E1000_CEXTERR  0x0403C  /* Carrier Extension Error Count - R/clr */
+#define E1000_RLEC     0x04040  /* Receive Length Error Count - R/clr */
+#define E1000_XONRXC   0x04048  /* XON Rx Count - R/clr */
+#define E1000_XONTXC   0x0404C  /* XON Tx Count - R/clr */
+#define E1000_XOFFRXC  0x04050  /* XOFF Rx Count - R/clr */
+#define E1000_XOFFTXC  0x04054  /* XOFF Tx Count - R/clr */
+#define E1000_FCRUC    0x04058  /* Flow Control Rx Unsupported Count- R/clr */
+#define E1000_PRC64    0x0405C  /* Packets Rx (64 bytes) - R/clr */
+#define E1000_PRC127   0x04060  /* Packets Rx (65-127 bytes) - R/clr */
+#define E1000_PRC255   0x04064  /* Packets Rx (128-255 bytes) - R/clr */
+#define E1000_PRC511   0x04068  /* Packets Rx (255-511 bytes) - R/clr */
+#define E1000_PRC1023  0x0406C  /* Packets Rx (512-1023 bytes) - R/clr */
+#define E1000_PRC1522  0x04070  /* Packets Rx (1024-1522 bytes) - R/clr */
+#define E1000_GPRC     0x04074  /* Good Packets Rx Count - R/clr */
+#define E1000_BPRC     0x04078  /* Broadcast Packets Rx Count - R/clr */
+#define E1000_MPRC     0x0407C  /* Multicast Packets Rx Count - R/clr */
+#define E1000_GPTC     0x04080  /* Good Packets Tx Count - R/clr */
+#define E1000_GORCL    0x04088  /* Good Octets Rx Count Low - R/clr */
+#define E1000_GORCH    0x0408C  /* Good Octets Rx Count High - R/clr */
+#define E1000_GOTCL    0x04090  /* Good Octets Tx Count Low - R/clr */
+#define E1000_GOTCH    0x04094  /* Good Octets Tx Count High - R/clr */
+#define E1000_RNBC     0x040A0  /* Rx No Buffers Count - R/clr */
+#define E1000_RUC      0x040A4  /* Rx Undersize Count - R/clr */
+#define E1000_RFC      0x040A8  /* Rx Fragment Count - R/clr */
+#define E1000_ROC      0x040AC  /* Rx Oversize Count - R/clr */
+#define E1000_RJC      0x040B0  /* Rx Jabber Count - R/clr */
+#define E1000_MGTPRC   0x040B4  /* Management Packets Rx Count - R/clr */
+#define E1000_MGTPDC   0x040B8  /* Management Packets Dropped Count - R/clr */
+#define E1000_MGTPTC   0x040BC  /* Management Packets Tx Count - R/clr */
+#define E1000_TORL     0x040C0  /* Total Octets Rx Low - R/clr */
+#define E1000_TORH     0x040C4  /* Total Octets Rx High - R/clr */
+#define E1000_TOTL     0x040C8  /* Total Octets Tx Low - R/clr */
+#define E1000_TOTH     0x040CC  /* Total Octets Tx High - R/clr */
+#define E1000_TPR      0x040D0  /* Total Packets Rx - R/clr */
+#define E1000_TPT      0x040D4  /* Total Packets Tx - R/clr */
+#define E1000_PTC64    0x040D8  /* Packets Tx (64 bytes) - R/clr */
+#define E1000_PTC127   0x040DC  /* Packets Tx (65-127 bytes) - R/clr */
+#define E1000_PTC255   0x040E0  /* Packets Tx (128-255 bytes) - R/clr */
+#define E1000_PTC511   0x040E4  /* Packets Tx (256-511 bytes) - R/clr */
+#define E1000_PTC1023  0x040E8  /* Packets Tx (512-1023 bytes) - R/clr */
+#define E1000_PTC1522  0x040EC  /* Packets Tx (1024-1522 Bytes) - R/clr */
+#define E1000_MPTC     0x040F0  /* Multicast Packets Tx Count - R/clr */
+#define E1000_BPTC     0x040F4  /* Broadcast Packets Tx Count - R/clr */
+#define E1000_TSCTC    0x040F8  /* TCP Segmentation Context Tx - R/clr */
+#define E1000_TSCTFC   0x040FC  /* TCP Segmentation Context Tx Fail - R/clr */
+#define E1000_IAC      0x04100  /* Interrupt Assertion Count */
+#define E1000_ICRXPTC  0x04104  /* Interrupt Cause Rx Packet Timer Expire Count */
+#define E1000_ICRXATC  0x04108  /* Interrupt Cause Rx Absolute Timer Expire Count */
+#define E1000_ICTXPTC  0x0410C  /* Interrupt Cause Tx Packet Timer Expire Count */
+#define E1000_ICTXATC  0x04110  /* Interrupt Cause Tx Absolute Timer Expire Count */
+#define E1000_ICTXQEC  0x04118  /* Interrupt Cause Tx Queue Empty Count */
+#define E1000_ICTXQMTC 0x0411C  /* Interrupt Cause Tx Queue Minimum Threshold Count */
+#define E1000_ICRXDMTC 0x04120  /* Interrupt Cause Rx Descriptor Minimum Threshold Count */
+#define E1000_ICRXOC   0x04124  /* Interrupt Cause Receiver Overrun Count */
+
+#define E1000_LSECTXUT        0x04300  /* LinkSec Tx Untagged Packet Count - OutPktsUntagged */
+#define E1000_LSECTXPKTE      0x04304  /* LinkSec Encrypted Tx Packets Count - OutPktsEncrypted */
+#define E1000_LSECTXPKTP      0x04308  /* LinkSec Protected Tx Packet Count - OutPktsProtected */
+#define E1000_LSECTXOCTE      0x0430C  /* LinkSec Encrypted Tx Octets Count - OutOctetsEncrypted */
+#define E1000_LSECTXOCTP      0x04310  /* LinkSec Protected Tx Octets Count - OutOctetsProtected */
+#define E1000_LSECRXUT        0x04314  /* LinkSec Untagged non-Strict Rx Packet Count - InPktsUntagged/InPktsNoTag */
+#define E1000_LSECRXOCTD      0x0431C  /* LinkSec Rx Octets Decrypted Count - InOctetsDecrypted */
+#define E1000_LSECRXOCTV      0x04320  /* LinkSec Rx Octets Validated - InOctetsValidated */
+#define E1000_LSECRXBAD       0x04324  /* LinkSec Rx Bad Tag - InPktsBadTag */
+#define E1000_LSECRXNOSCI     0x04328  /* LinkSec Rx Packet No SCI Count - InPktsNoSci */ 
+#define E1000_LSECRXUNSCI     0x0432C  /* LinkSec Rx Packet Unknown SCI Count - InPktsUnknownSci */
+#define E1000_LSECRXUNCH      0x04330  /* LinkSec Rx Unchecked Packets Count - InPktsUnchecked */
+#define E1000_LSECRXDELAY     0x04340  /* LinkSec Rx Delayed Packet Count - InPktsDelayed */
+#define E1000_LSECRXLATE      0x04350  /* LinkSec Rx Late Packets Count - InPktsLate */
+#define E1000_LSECRXOK(_n)    (0x04360 + (0x04 * (_n))) /* LinkSec Rx Packet OK Count - InPktsOk */
+#define E1000_LSECRXINV(_n)   (0x04380 + (0x04 * (_n))) /* LinkSec Rx Invalid Count - InPktsInvalid */
+#define E1000_LSECRXNV(_n)    (0x043A0 + (0x04 * (_n))) /* LinkSec Rx Not Valid Count - InPktsNotValid */
+#define E1000_LSECRXUNSA      0x043C0  /* LinkSec Rx Unused SA Count - InPktsUnusedSa */
+#define E1000_LSECRXNUSA      0x043D0  /* LinkSec Rx Not Using SA Count - InPktsNotUsingSa */
+#define E1000_LSECTXCAP       0x0B000  /* LinkSec Tx Capabilities Register - RO */
+#define E1000_LSECRXCAP       0x0B300  /* LinkSec Rx Capabilities Register - RO */
+#define E1000_LSECTXCTRL      0x0B004  /* LinkSec Tx Control - RW */
+#define E1000_LSECRXCTRL      0x0B304  /* LinkSec Rx Control - RW */
+#define E1000_LSECTXSCIL      0x0B008  /* LinkSec Tx SCI Low - RW */
+#define E1000_LSECTXSCIH      0x0B00C  /* LinkSec Tx SCI High - RW */
+#define E1000_LSECTXSA        0x0B010  /* LinkSec Tx SA0 - RW */
+#define E1000_LSECTXPN0       0x0B018  /* LinkSec Tx SA PN 0 - RW */
+#define E1000_LSECTXPN1       0x0B01C  /* LinkSec Tx SA PN 1 - RW */
+#define E1000_LSECRXSCL       0x0B3D0  /* LinkSec Rx SCI Low - RW */
+#define E1000_LSECRXSCH       0x0B3E0  /* LinkSec Rx SCI High - RW */
+#define E1000_LSECTXKEY0(_n)  (0x0B020 + (0x04 * (_n))) /* LinkSec Tx 128-bit Key 0 - WO */
+#define E1000_LSECTXKEY1(_n)  (0x0B030 + (0x04 * (_n))) /* LinkSec Tx 128-bit Key 1 - WO */
+#define E1000_LSECRXSA(_n)    (0x0B310 + (0x04 * (_n))) /* LinkSec Rx SAs - RW */
+#define E1000_LSECRXPN(_n)    (0x0B330 + (0x04 * (_n))) /* LinkSec Rx SAs - RW */
+/*
+ * LinkSec Rx Keys  - where _n is the SA no. and _m the 4 dwords of the 128 bit
+ * key - RW.
+ */
+#define E1000_LSECRXKEY(_n, _m) (0x0B350 + (0x10 * (_n)) + (0x04 * (_m)))
+
+#define E1000_PCS_CFG0    0x04200  /* PCS Configuration 0 - RW */
+#define E1000_PCS_LCTL    0x04208  /* PCS Link Control - RW */
+#define E1000_PCS_LSTAT   0x0420C  /* PCS Link Status - RO */
+#define E1000_CBTMPC      0x0402C  /* Circuit Breaker Tx Packet Count */
+#define E1000_HTDPMC      0x0403C  /* Host Transmit Discarded Packets */
+#define E1000_CBRDPC      0x04044  /* Circuit Breaker Rx Dropped Count */
+#define E1000_CBRMPC      0x040FC  /* Circuit Breaker Rx Packet Count */
+#define E1000_RPTHC       0x04104  /* Rx Packets To Host */
+#define E1000_HGPTC       0x04118  /* Host Good Packets Tx Count */
+#define E1000_HTCBDPC     0x04124  /* Host Tx Circuit Breaker Dropped Count */
+#define E1000_HGORCL      0x04128  /* Host Good Octets Received Count Low */
+#define E1000_HGORCH      0x0412C  /* Host Good Octets Received Count High */
+#define E1000_HGOTCL      0x04130  /* Host Good Octets Transmit Count Low */
+#define E1000_HGOTCH      0x04134  /* Host Good Octets Transmit Count High */
+#define E1000_LENERRS     0x04138  /* Length Errors Count */
+#define E1000_SCVPC       0x04228  /* SerDes/SGMII Code Violation Pkt Count */
+#define E1000_HRMPC       0x0A018  /* Header Redirection Missed Packet Count */
+#define E1000_PCS_ANADV   0x04218  /* AN advertisement - RW */
+#define E1000_PCS_LPAB    0x0421C  /* Link Partner Ability - RW */
+#define E1000_PCS_NPTX    0x04220  /* AN Next Page Transmit - RW */
+#define E1000_PCS_LPABNP  0x04224  /* Link Partner Ability Next Page - RW */
+#define E1000_1GSTAT_RCV  0x04228  /* 1GSTAT Code Violation Packet Count - RW */
+#define E1000_RXCSUM   0x05000  /* Rx Checksum Control - RW */
+#define E1000_RLPML    0x05004  /* Rx Long Packet Max Length */
+#define E1000_RFCTL    0x05008  /* Receive Filter Control*/
+#define E1000_MTA      0x05200  /* Multicast Table Array - RW Array */
+#define E1000_RA       0x05400  /* Receive Address - RW Array */
+#define E1000_PSRTYPE  0x05480  /* Packet Split Receive Type - RW */
+#define E1000_VFTA     0x05600  /* VLAN Filter Table Array - RW Array */
+#define E1000_VMD_CTL  0x0581C  /* VMDq Control - RW */
+#define E1000_VFQA0    0x0B000  /* VLAN Filter Queue Array 0 - RW Array */
+#define E1000_VFQA1    0x0B200  /* VLAN Filter Queue Array 1 - RW Array */
+#define E1000_WUC      0x05800  /* Wakeup Control - RW */
+#define E1000_WUFC     0x05808  /* Wakeup Filter Control - RW */
+#define E1000_WUS      0x05810  /* Wakeup Status - RO */
+#define E1000_MANC     0x05820  /* Management Control - RW */
+#define E1000_IPAV     0x05838  /* IP Address Valid - RW */
+#define E1000_IP4AT    0x05840  /* IPv4 Address Table - RW Array */
+#define E1000_IP6AT    0x05880  /* IPv6 Address Table - RW Array */
+#define E1000_WUPL     0x05900  /* Wakeup Packet Length - RW */
+#define E1000_WUPM     0x05A00  /* Wakeup Packet Memory - RO A */
+#define E1000_PBACL    0x05B68  /* MSIx PBA Clear - Read/Write 1's to clear */
+#define E1000_FFLT     0x05F00  /* Flexible Filter Length Table - RW Array */
+#define E1000_HOST_IF  0x08800  /* Host Interface */
+#define E1000_FFMT     0x09000  /* Flexible Filter Mask Table - RW Array */
+#define E1000_FFVT     0x09800  /* Flexible Filter Value Table - RW Array */
+
+#define E1000_KMRNCTRLSTA 0x00034 /* MAC-PHY interface - RW */
+#define E1000_MDPHYA      0x0003C /* PHY address - RW */
+#define E1000_MANC2H      0x05860 /* Management Control To Host - RW */
+#define E1000_SW_FW_SYNC  0x05B5C /* Software-Firmware Synchronization - RW */
+#define E1000_CCMCTL      0x05B48 /* CCM Control Register */
+#define E1000_GIOCTL      0x05B44 /* GIO Analog Control Register */
+#define E1000_SCCTL       0x05B4C /* PCIc PLL Configuration Register */
+#define E1000_GCR         0x05B00 /* PCI-Ex Control */
+#define E1000_GSCL_1    0x05B10 /* PCI-Ex Statistic Control #1 */
+#define E1000_GSCL_2    0x05B14 /* PCI-Ex Statistic Control #2 */
+#define E1000_GSCL_3    0x05B18 /* PCI-Ex Statistic Control #3 */
+#define E1000_GSCL_4    0x05B1C /* PCI-Ex Statistic Control #4 */
+#define E1000_FACTPS    0x05B30 /* Function Active and Power State to MNG */
+#define E1000_SWSM      0x05B50 /* SW Semaphore */
+#define E1000_FWSM      0x05B54 /* FW Semaphore */
+#define E1000_DCA_ID    0x05B70 /* DCA Requester ID Information - RO */
+#define E1000_DCA_CTRL  0x05B74 /* DCA Control - RW */
+#define E1000_FFLT_DBG  0x05F04 /* Debug Register */
+#define E1000_HICR      0x08F00 /* Host Inteface Control */
+
+/* RSS registers */
+#define E1000_CPUVEC    0x02C10 /* CPU Vector Register - RW */
+#define E1000_MRQC      0x05818 /* Multiple Receive Control - RW */
+#define E1000_IMIR(_i)      (0x05A80 + ((_i) * 4))  /* Immediate Interrupt */
+#define E1000_IMIREXT(_i)   (0x05AA0 + ((_i) * 4))  /* Immediate Interrupt Ext*/
+#define E1000_IMIRVP    0x05AC0 /* Immediate Interrupt Rx VLAN Priority - RW */
+#define E1000_MSIXBM(_i)    (0x01600 + ((_i) * 4)) /* MSI-X Allocation Register (_i) - RW */
+#define E1000_MSIXTADD(_i)  (0x0C000 + ((_i) * 0x10)) /* MSI-X Table entry addr low reg 0 - RW */
+#define E1000_MSIXTUADD(_i) (0x0C004 + ((_i) * 0x10)) /* MSI-X Table entry addr upper reg 0 - RW */
+#define E1000_MSIXTMSG(_i)  (0x0C008 + ((_i) * 0x10)) /* MSI-X Table entry message reg 0 - RW */
+#define E1000_MSIXVCTRL(_i) (0x0C00C + ((_i) * 0x10)) /* MSI-X Table entry vector ctrl reg 0 - RW */
+#define E1000_MSIXPBA    0x0E000 /* MSI-X Pending bit array */
+#define E1000_RETA(_i)  (0x05C00 + ((_i) * 4)) /* Redirection Table - RW Array */
+#define E1000_RSSRK(_i) (0x05C80 + ((_i) * 4)) /* RSS Random Key - RW Array */
+#define E1000_RSSIM     0x05864 /* RSS Interrupt Mask */
+#define E1000_RSSIR     0x05868 /* RSS Interrupt Request */
+
+#endif
--- sys/dev/em/if_em_hw.c
+++ /dev/null
@@ -1,9104 +0,0 @@
-/*******************************************************************************
-Copyright (c) 2001-2005, Intel Corporation 
-All rights reserved.
-
-Redistribution and use in source and binary forms, with or without 
-modification, are permitted provided that the following conditions are met:
-
- 1. Redistributions of source code must retain the above copyright notice, 
-    this list of conditions and the following disclaimer.
-
- 2. Redistributions in binary form must reproduce the above copyright 
-    notice, this list of conditions and the following disclaimer in the 
-    documentation and/or other materials provided with the distribution.
-
- 3. Neither the name of the Intel Corporation nor the names of its 
-    contributors may be used to endorse or promote products derived from 
-    this software without specific prior written permission.
-
-THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
-AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 
-IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 
-ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE 
-LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 
-CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 
-SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 
-INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 
-CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 
-ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
-POSSIBILITY OF SUCH DAMAGE.
-*******************************************************************************/
-
-
-/* if_em_hw.c
- * Shared functions for accessing and configuring the MAC
- */
-
-#include <sys/cdefs.h>
-__FBSDID("$FreeBSD: /repoman/r/ncvs/src/sys/dev/em/if_em_hw.c,v 1.16.2.3 2006/08/25 12:38:27 glebius Exp $");
-
-#ifdef LM
-#include "if_em_hw.h"
-#else
-#include <dev/em/if_em_hw.h>
-#endif
-
-static int32_t em_set_phy_type(struct em_hw *hw);
-static void em_phy_init_script(struct em_hw *hw);
-static int32_t em_setup_copper_link(struct em_hw *hw);
-static int32_t em_setup_fiber_serdes_link(struct em_hw *hw);
-static int32_t em_adjust_serdes_amplitude(struct em_hw *hw);
-static int32_t em_phy_force_speed_duplex(struct em_hw *hw);
-static int32_t em_config_mac_to_phy(struct em_hw *hw);
-static void em_raise_mdi_clk(struct em_hw *hw, uint32_t *ctrl);
-static void em_lower_mdi_clk(struct em_hw *hw, uint32_t *ctrl);
-static void em_shift_out_mdi_bits(struct em_hw *hw, uint32_t data,
-                                     uint16_t count);
-static uint16_t em_shift_in_mdi_bits(struct em_hw *hw);
-static int32_t em_phy_reset_dsp(struct em_hw *hw);
-static int32_t em_write_eeprom_spi(struct em_hw *hw, uint16_t offset,
-                                      uint16_t words, uint16_t *data);
-static int32_t em_write_eeprom_microwire(struct em_hw *hw,
-                                            uint16_t offset, uint16_t words,
-                                            uint16_t *data);
-static int32_t em_spi_eeprom_ready(struct em_hw *hw);
-static void em_raise_ee_clk(struct em_hw *hw, uint32_t *eecd);
-static void em_lower_ee_clk(struct em_hw *hw, uint32_t *eecd);
-static void em_shift_out_ee_bits(struct em_hw *hw, uint16_t data,
-                                    uint16_t count);
-static int32_t em_write_phy_reg_ex(struct em_hw *hw, uint32_t reg_addr,
-                                      uint16_t phy_data);
-static int32_t em_read_phy_reg_ex(struct em_hw *hw,uint32_t reg_addr,
-                                     uint16_t *phy_data);
-static uint16_t em_shift_in_ee_bits(struct em_hw *hw, uint16_t count);
-static int32_t em_acquire_eeprom(struct em_hw *hw);
-static void em_release_eeprom(struct em_hw *hw);
-static void em_standby_eeprom(struct em_hw *hw);
-static int32_t em_set_vco_speed(struct em_hw *hw);
-static int32_t em_polarity_reversal_workaround(struct em_hw *hw);
-static int32_t em_set_phy_mode(struct em_hw *hw);
-static int32_t em_host_if_read_cookie(struct em_hw *hw, uint8_t *buffer);
-static uint8_t em_calculate_mng_checksum(char *buffer, uint32_t length);
-static int32_t em_configure_kmrn_for_10_100(struct em_hw *hw,
-                                               uint16_t duplex);
-static int32_t em_configure_kmrn_for_1000(struct em_hw *hw);
-
-/* IGP cable length table */
-static const
-uint16_t em_igp_cable_length_table[IGP01E1000_AGC_LENGTH_TABLE_SIZE] =
-    { 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
-      5, 10, 10, 10, 10, 10, 10, 10, 20, 20, 20, 20, 20, 25, 25, 25,
-      25, 25, 25, 25, 30, 30, 30, 30, 40, 40, 40, 40, 40, 40, 40, 40,
-      40, 50, 50, 50, 50, 50, 50, 50, 60, 60, 60, 60, 60, 60, 60, 60,
-      60, 70, 70, 70, 70, 70, 70, 80, 80, 80, 80, 80, 80, 90, 90, 90,
-      90, 90, 90, 90, 90, 90, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100,
-      100, 100, 100, 100, 110, 110, 110, 110, 110, 110, 110, 110, 110, 110, 110, 110,
-      110, 110, 110, 110, 110, 110, 120, 120, 120, 120, 120, 120, 120, 120, 120, 120};
-
-static const
-uint16_t em_igp_2_cable_length_table[IGP02E1000_AGC_LENGTH_TABLE_SIZE] =
-    { 0, 0, 0, 0, 0, 0, 0, 0, 3, 5, 8, 11, 13, 16, 18, 21,
-      0, 0, 0, 3, 6, 10, 13, 16, 19, 23, 26, 29, 32, 35, 38, 41,
-      6, 10, 14, 18, 22, 26, 30, 33, 37, 41, 44, 48, 51, 54, 58, 61,
-      21, 26, 31, 35, 40, 44, 49, 53, 57, 61, 65, 68, 72, 75, 79, 82,
-      40, 45, 51, 56, 61, 66, 70, 75, 79, 83, 87, 91, 94, 98, 101, 104,
-      60, 66, 72, 77, 82, 87, 92, 96, 100, 104, 108, 111, 114, 117, 119, 121,
-      83, 89, 95, 100, 105, 109, 113, 116, 119, 122, 124,
-      104, 109, 114, 118, 121, 124};
-
-
-/******************************************************************************
- * Set the phy type member in the hw struct.
- *
- * hw - Struct containing variables accessed by shared code
- *****************************************************************************/
-int32_t
-em_set_phy_type(struct em_hw *hw)
-{
-    DEBUGFUNC("em_set_phy_type");
-
-    if (hw->mac_type == em_undefined)
-        return -E1000_ERR_PHY_TYPE;
-
-    switch (hw->phy_id) {
-    case M88E1000_E_PHY_ID:
-    case M88E1000_I_PHY_ID:
-    case M88E1011_I_PHY_ID:
-    case M88E1111_I_PHY_ID:
-        hw->phy_type = em_phy_m88;
-        break;
-    case IGP01E1000_I_PHY_ID:
-        if (hw->mac_type == em_82541 ||
-            hw->mac_type == em_82541_rev_2 ||
-            hw->mac_type == em_82547 ||
-            hw->mac_type == em_82547_rev_2) {
-            hw->phy_type = em_phy_igp;
-            break;
-        }
-    case IGP03E1000_E_PHY_ID:
-        hw->phy_type = em_phy_igp_3;
-        break;
-    case IFE_E_PHY_ID:
-    case IFE_PLUS_E_PHY_ID:
-    case IFE_C_E_PHY_ID:
-        hw->phy_type = em_phy_ife;
-        break;
-    case GG82563_E_PHY_ID:
-        if (hw->mac_type == em_80003es2lan) {
-            hw->phy_type = em_phy_gg82563;
-            break;
-        }
-        /* Fall Through */
-    default:
-        /* Should never have loaded on this device */
-        hw->phy_type = em_phy_undefined;
-        return -E1000_ERR_PHY_TYPE;
-    }
-
-    return E1000_SUCCESS;
-}
-
-
-/******************************************************************************
- * IGP phy init script - initializes the GbE PHY
- *
- * hw - Struct containing variables accessed by shared code
- *****************************************************************************/
-static void
-em_phy_init_script(struct em_hw *hw)
-{
-    uint32_t ret_val;
-    uint16_t phy_saved_data;
-
-    DEBUGFUNC("em_phy_init_script");
-
-    if (hw->phy_init_script) {
-        msec_delay(20);
-
-        /* Save off the current value of register 0x2F5B to be restored at
-         * the end of this routine. */
-        ret_val = em_read_phy_reg(hw, 0x2F5B, &phy_saved_data);
-
-        /* Disabled the PHY transmitter */
-        em_write_phy_reg(hw, 0x2F5B, 0x0003);
-
-        msec_delay(20);
-
-        em_write_phy_reg(hw,0x0000,0x0140);
-
-        msec_delay(5);
-
-        switch (hw->mac_type) {
-        case em_82541:
-        case em_82547:
-            em_write_phy_reg(hw, 0x1F95, 0x0001);
-
-            em_write_phy_reg(hw, 0x1F71, 0xBD21);
-
-            em_write_phy_reg(hw, 0x1F79, 0x0018);
-
-            em_write_phy_reg(hw, 0x1F30, 0x1600);
-
-            em_write_phy_reg(hw, 0x1F31, 0x0014);
-
-            em_write_phy_reg(hw, 0x1F32, 0x161C);
-
-            em_write_phy_reg(hw, 0x1F94, 0x0003);
-
-            em_write_phy_reg(hw, 0x1F96, 0x003F);
-
-            em_write_phy_reg(hw, 0x2010, 0x0008);
-            break;
-
-        case em_82541_rev_2:
-        case em_82547_rev_2:
-            em_write_phy_reg(hw, 0x1F73, 0x0099);
-            break;
-        default:
-            break;
-        }
-
-        em_write_phy_reg(hw, 0x0000, 0x3300);
-
-        msec_delay(20);
-
-        /* Now enable the transmitter */
-        em_write_phy_reg(hw, 0x2F5B, phy_saved_data);
-
-        if (hw->mac_type == em_82547) {
-            uint16_t fused, fine, coarse;
-
-            /* Move to analog registers page */
-            em_read_phy_reg(hw, IGP01E1000_ANALOG_SPARE_FUSE_STATUS, &fused);
-
-            if (!(fused & IGP01E1000_ANALOG_SPARE_FUSE_ENABLED)) {
-                em_read_phy_reg(hw, IGP01E1000_ANALOG_FUSE_STATUS, &fused);
-
-                fine = fused & IGP01E1000_ANALOG_FUSE_FINE_MASK;
-                coarse = fused & IGP01E1000_ANALOG_FUSE_COARSE_MASK;
-
-                if (coarse > IGP01E1000_ANALOG_FUSE_COARSE_THRESH) {
-                    coarse -= IGP01E1000_ANALOG_FUSE_COARSE_10;
-                    fine -= IGP01E1000_ANALOG_FUSE_FINE_1;
-                } else if (coarse == IGP01E1000_ANALOG_FUSE_COARSE_THRESH)
-                    fine -= IGP01E1000_ANALOG_FUSE_FINE_10;
-
-                fused = (fused & IGP01E1000_ANALOG_FUSE_POLY_MASK) |
-                        (fine & IGP01E1000_ANALOG_FUSE_FINE_MASK) |
-                        (coarse & IGP01E1000_ANALOG_FUSE_COARSE_MASK);
-
-                em_write_phy_reg(hw, IGP01E1000_ANALOG_FUSE_CONTROL, fused);
-                em_write_phy_reg(hw, IGP01E1000_ANALOG_FUSE_BYPASS,
-                                    IGP01E1000_ANALOG_FUSE_ENABLE_SW_CONTROL);
-            }
-        }
-    }
-}
-
-/******************************************************************************
- * Set the mac type member in the hw struct.
- *
- * hw - Struct containing variables accessed by shared code
- *****************************************************************************/
-int32_t
-em_set_mac_type(struct em_hw *hw)
-{
-    DEBUGFUNC("em_set_mac_type");
-
-    switch (hw->device_id) {
-    case E1000_DEV_ID_82542:
-        switch (hw->revision_id) {
-        case E1000_82542_2_0_REV_ID:
-            hw->mac_type = em_82542_rev2_0;
-            break;
-        case E1000_82542_2_1_REV_ID:
-            hw->mac_type = em_82542_rev2_1;
-            break;
-        default:
-            /* Invalid 82542 revision ID */
-            return -E1000_ERR_MAC_TYPE;
-        }
-        break;
-    case E1000_DEV_ID_82543GC_FIBER:
-    case E1000_DEV_ID_82543GC_COPPER:
-        hw->mac_type = em_82543;
-        break;
-    case E1000_DEV_ID_82544EI_COPPER:
-    case E1000_DEV_ID_82544EI_FIBER:
-    case E1000_DEV_ID_82544GC_COPPER:
-    case E1000_DEV_ID_82544GC_LOM:
-        hw->mac_type = em_82544;
-        break;
-    case E1000_DEV_ID_82540EM:
-    case E1000_DEV_ID_82540EM_LOM:
-    case E1000_DEV_ID_82540EP:
-    case E1000_DEV_ID_82540EP_LOM:
-    case E1000_DEV_ID_82540EP_LP:
-        hw->mac_type = em_82540;
-        break;
-    case E1000_DEV_ID_82545EM_COPPER:
-    case E1000_DEV_ID_82545EM_FIBER:
-        hw->mac_type = em_82545;
-        break;
-    case E1000_DEV_ID_82545GM_COPPER:
-    case E1000_DEV_ID_82545GM_FIBER:
-    case E1000_DEV_ID_82545GM_SERDES:
-        hw->mac_type = em_82545_rev_3;
-        break;
-    case E1000_DEV_ID_82546EB_COPPER:
-    case E1000_DEV_ID_82546EB_FIBER:
-    case E1000_DEV_ID_82546EB_QUAD_COPPER:
-        hw->mac_type = em_82546;
-        break;
-    case E1000_DEV_ID_82546GB_COPPER:
-    case E1000_DEV_ID_82546GB_FIBER:
-    case E1000_DEV_ID_82546GB_SERDES:
-    case E1000_DEV_ID_82546GB_PCIE:
-    case E1000_DEV_ID_82546GB_QUAD_COPPER:
-    case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
-        hw->mac_type = em_82546_rev_3;
-        break;
-    case E1000_DEV_ID_82541EI:
-    case E1000_DEV_ID_82541EI_MOBILE:
-    case E1000_DEV_ID_82541ER_LOM:
-        hw->mac_type = em_82541;
-        break;
-    case E1000_DEV_ID_82541ER:
-    case E1000_DEV_ID_82541GI:
-    case E1000_DEV_ID_82541GI_LF:
-    case E1000_DEV_ID_82541GI_MOBILE:
-        hw->mac_type = em_82541_rev_2;
-        break;
-    case E1000_DEV_ID_82547EI:
-    case E1000_DEV_ID_82547EI_MOBILE:
-        hw->mac_type = em_82547;
-        break;
-    case E1000_DEV_ID_82547GI:
-        hw->mac_type = em_82547_rev_2;
-        break;
-    case E1000_DEV_ID_82571EB_COPPER:
-    case E1000_DEV_ID_82571EB_FIBER:
-    case E1000_DEV_ID_82571EB_SERDES:
-    case E1000_DEV_ID_82571EB_QUAD_COPPER:
-            hw->mac_type = em_82571;
-        break;
-    case E1000_DEV_ID_82572EI_COPPER:
-    case E1000_DEV_ID_82572EI_FIBER:
-    case E1000_DEV_ID_82572EI_SERDES:
-    case E1000_DEV_ID_82572EI:
-        hw->mac_type = em_82572;
-        break;
-    case E1000_DEV_ID_82573E:
-    case E1000_DEV_ID_82573E_IAMT:
-    case E1000_DEV_ID_82573L:
-        hw->mac_type = em_82573;
-        break;
-    case E1000_DEV_ID_80003ES2LAN_COPPER_SPT:
-    case E1000_DEV_ID_80003ES2LAN_SERDES_SPT:
-    case E1000_DEV_ID_80003ES2LAN_COPPER_DPT:
-    case E1000_DEV_ID_80003ES2LAN_SERDES_DPT:
-        hw->mac_type = em_80003es2lan;
-        break;
-    case E1000_DEV_ID_ICH8_IGP_M_AMT:
-    case E1000_DEV_ID_ICH8_IGP_AMT:
-    case E1000_DEV_ID_ICH8_IGP_C:
-    case E1000_DEV_ID_ICH8_IFE:
-    case E1000_DEV_ID_ICH8_IGP_M:
-        hw->mac_type = em_ich8lan;
-        break;
-    default:
-        /* Should never have loaded on this device */
-        return -E1000_ERR_MAC_TYPE;
-    }
-
-    switch (hw->mac_type) {
-    case em_ich8lan:
-        hw->swfwhw_semaphore_present = TRUE;
-        hw->asf_firmware_present = TRUE;
-        break;
-    case em_80003es2lan:
-        hw->swfw_sync_present = TRUE;
-        /* fall through */
-    case em_82571:
-    case em_82572:
-    case em_82573:
-        hw->eeprom_semaphore_present = TRUE;
-        /* fall through */
-    case em_82541:
-    case em_82547:
-    case em_82541_rev_2:
-    case em_82547_rev_2:
-        hw->asf_firmware_present = TRUE;
-        break;
-    default:
-        break;
-    }
-
-    return E1000_SUCCESS;
-}
-
-/*****************************************************************************
- * Set media type and TBI compatibility.
- *
- * hw - Struct containing variables accessed by shared code
- * **************************************************************************/
-void
-em_set_media_type(struct em_hw *hw)
-{
-    uint32_t status;
-
-    DEBUGFUNC("em_set_media_type");
-
-    if (hw->mac_type != em_82543) {
-        /* tbi_compatibility is only valid on 82543 */
-        hw->tbi_compatibility_en = FALSE;
-    }
-
-    switch (hw->device_id) {
-    case E1000_DEV_ID_82545GM_SERDES:
-    case E1000_DEV_ID_82546GB_SERDES:
-    case E1000_DEV_ID_82571EB_SERDES:
-    case E1000_DEV_ID_82572EI_SERDES:
-    case E1000_DEV_ID_80003ES2LAN_SERDES_DPT:
-        hw->media_type = em_media_type_internal_serdes;
-        break;
-    default:
-        switch (hw->mac_type) {
-        case em_82542_rev2_0:
-        case em_82542_rev2_1:
-            hw->media_type = em_media_type_fiber;
-            break;
-        case em_ich8lan:
-        case em_82573:
-            /* The STATUS_TBIMODE bit is reserved or reused for the this
-             * device.
-             */
-            hw->media_type = em_media_type_copper;
-            break;
-        default:
-            status = E1000_READ_REG(hw, STATUS);
-            if (status & E1000_STATUS_TBIMODE) {
-                hw->media_type = em_media_type_fiber;
-                /* tbi_compatibility not valid on fiber */
-                hw->tbi_compatibility_en = FALSE;
-            } else {
-                hw->media_type = em_media_type_copper;
-            }
-            break;
-        }
-    }
-}
-
-/******************************************************************************
- * Reset the transmit and receive units; mask and clear all interrupts.
- *
- * hw - Struct containing variables accessed by shared code
- *****************************************************************************/
-int32_t
-em_reset_hw(struct em_hw *hw)
-{
-    uint32_t ctrl;
-    uint32_t ctrl_ext;
-    uint32_t icr;
-    uint32_t manc;
-    uint32_t led_ctrl;
-    uint32_t timeout;
-    uint32_t extcnf_ctrl;
-    int32_t ret_val;
-
-    DEBUGFUNC("em_reset_hw");
-
-    /* For 82542 (rev 2.0), disable MWI before issuing a device reset */
-    if (hw->mac_type == em_82542_rev2_0) {
-        DEBUGOUT("Disabling MWI on 82542 rev 2.0\n");
-        em_pci_clear_mwi(hw);
-    }
-
-    if (hw->bus_type == em_bus_type_pci_express) {
-        /* Prevent the PCI-E bus from sticking if there is no TLP connection
-         * on the last TLP read/write transaction when MAC is reset.
-         */
-        if (em_disable_pciex_master(hw) != E1000_SUCCESS) {
-            DEBUGOUT("PCI-E Master disable polling has failed.\n");
-        }
-    }
-
-    /* Clear interrupt mask to stop board from generating interrupts */
-    DEBUGOUT("Masking off all interrupts\n");
-    E1000_WRITE_REG(hw, IMC, 0xffffffff);
-
-    /* Disable the Transmit and Receive units.  Then delay to allow
-     * any pending transactions to complete before we hit the MAC with
-     * the global reset.
-     */
-    E1000_WRITE_REG(hw, RCTL, 0);
-    E1000_WRITE_REG(hw, TCTL, E1000_TCTL_PSP);
-    E1000_WRITE_FLUSH(hw);
-
-    /* The tbi_compatibility_on Flag must be cleared when Rctl is cleared. */
-    hw->tbi_compatibility_on = FALSE;
-
-    /* Delay to allow any outstanding PCI transactions to complete before
-     * resetting the device
-     */
-    msec_delay(10);
-
-    ctrl = E1000_READ_REG(hw, CTRL);
-
-    /* Must reset the PHY before resetting the MAC */
-    if ((hw->mac_type == em_82541) || (hw->mac_type == em_82547)) {
-        E1000_WRITE_REG(hw, CTRL, (ctrl | E1000_CTRL_PHY_RST));
-        msec_delay(5);
-    }
-
-    /* Must acquire the MDIO ownership before MAC reset.
-     * Ownership defaults to firmware after a reset. */
-    if (hw->mac_type == em_82573) {
-        timeout = 10;
-
-        extcnf_ctrl = E1000_READ_REG(hw, EXTCNF_CTRL);
-        extcnf_ctrl |= E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP;
-
-        do {
-            E1000_WRITE_REG(hw, EXTCNF_CTRL, extcnf_ctrl);
-            extcnf_ctrl = E1000_READ_REG(hw, EXTCNF_CTRL);
-
-            if (extcnf_ctrl & E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP)
-                break;
-            else
-                extcnf_ctrl |= E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP;
-
-            msec_delay(2);
-            timeout--;
-        } while (timeout);
-    }
-
-    /* Workaround for ICH8 bit corruption issue in FIFO memory */
-    if (hw->mac_type == em_ich8lan) {
-        /* Set Tx and Rx buffer allocation to 8k apiece. */
-        E1000_WRITE_REG(hw, PBA, E1000_PBA_8K);
-        /* Set Packet Buffer Size to 16k. */
-        E1000_WRITE_REG(hw, PBS, E1000_PBS_16K);
-    }
-
-    /* Issue a global reset to the MAC.  This will reset the chip's
-     * transmit, receive, DMA, and link units.  It will not effect
-     * the current PCI configuration.  The global reset bit is self-
-     * clearing, and should clear within a microsecond.
-     */
-    DEBUGOUT("Issuing a global reset to MAC\n");
-
-    switch (hw->mac_type) {
-        case em_82544:
-        case em_82540:
-        case em_82545:
-#ifndef __arm__
-        case em_82546:
-#endif
-        case em_82541:
-        case em_82541_rev_2:
-            /* These controllers can't ack the 64-bit write when issuing the
-             * reset, so use IO-mapping as a workaround to issue the reset */
-            E1000_WRITE_REG_IO(hw, CTRL, (ctrl | E1000_CTRL_RST));
-            break;
-        case em_82545_rev_3:
-        case em_82546_rev_3:
-            /* Reset is performed on a shadow of the control register */
-            E1000_WRITE_REG(hw, CTRL_DUP, (ctrl | E1000_CTRL_RST));
-            break;
-        case em_ich8lan:
-            if (!hw->phy_reset_disable &&
-                em_check_phy_reset_block(hw) == E1000_SUCCESS) {
-                /* em_ich8lan PHY HW reset requires MAC CORE reset
-                 * at the same time to make sure the interface between
-                 * MAC and the external PHY is reset.
-                 */
-                ctrl |= E1000_CTRL_PHY_RST;
-            }
-
-            em_get_software_flag(hw);
-            E1000_WRITE_REG(hw, CTRL, (ctrl | E1000_CTRL_RST));
-            msec_delay(5);
-            break;
-        default:
-            E1000_WRITE_REG(hw, CTRL, (ctrl | E1000_CTRL_RST));
-            break;
-    }
-
-    /* After MAC reset, force reload of EEPROM to restore power-on settings to
-     * device.  Later controllers reload the EEPROM automatically, so just wait
-     * for reload to complete.
-     */
-    switch (hw->mac_type) {
-        case em_82542_rev2_0:
-        case em_82542_rev2_1:
-        case em_82543:
-        case em_82544:
-            /* Wait for reset to complete */
-            usec_delay(10);
-            ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
-            ctrl_ext |= E1000_CTRL_EXT_EE_RST;
-            E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
-            E1000_WRITE_FLUSH(hw);
-            /* Wait for EEPROM reload */
-            msec_delay(2);
-            break;
-        case em_82541:
-        case em_82541_rev_2:
-        case em_82547:
-        case em_82547_rev_2:
-            /* Wait for EEPROM reload */
-            msec_delay(20);
-            break;
-        case em_82573:
-            if (em_is_onboard_nvm_eeprom(hw) == FALSE) {
-                usec_delay(10);
-                ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
-                ctrl_ext |= E1000_CTRL_EXT_EE_RST;
-                E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
-                E1000_WRITE_FLUSH(hw);
-            }
-            /* fall through */
-        case em_82571:
-        case em_82572:
-        case em_ich8lan:
-        case em_80003es2lan:
-            ret_val = em_get_auto_rd_done(hw);
-            if (ret_val)
-                /* We don't want to continue accessing MAC registers. */
-                return ret_val;
-            break;
-        default:
-            /* Wait for EEPROM reload (it happens automatically) */
-            msec_delay(5);
-            break;
-    }
-
-    /* Disable HW ARPs on ASF enabled adapters */
-    if (hw->mac_type >= em_82540 && hw->mac_type <= em_82547_rev_2) {
-        manc = E1000_READ_REG(hw, MANC);
-        manc &= ~(E1000_MANC_ARP_EN);
-        E1000_WRITE_REG(hw, MANC, manc);
-    }
-
-    if ((hw->mac_type == em_82541) || (hw->mac_type == em_82547)) {
-        em_phy_init_script(hw);
-
-        /* Configure activity LED after PHY reset */
-        led_ctrl = E1000_READ_REG(hw, LEDCTL);
-        led_ctrl &= IGP_ACTIVITY_LED_MASK;
-        led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE);
-        E1000_WRITE_REG(hw, LEDCTL, led_ctrl);
-    }
-
-    /* Clear interrupt mask to stop board from generating interrupts */
-    DEBUGOUT("Masking off all interrupts\n");
-    E1000_WRITE_REG(hw, IMC, 0xffffffff);
-
-    /* Clear any pending interrupt events. */
-    icr = E1000_READ_REG(hw, ICR);
-
-    /* If MWI was previously enabled, reenable it. */
-    if (hw->mac_type == em_82542_rev2_0) {
-        if (hw->pci_cmd_word & CMD_MEM_WRT_INVALIDATE)
-            em_pci_set_mwi(hw);
-    }
-
-    if (hw->mac_type == em_ich8lan) {
-        uint32_t kab = E1000_READ_REG(hw, KABGTXD);
-        kab |= E1000_KABGTXD_BGSQLBIAS;
-        E1000_WRITE_REG(hw, KABGTXD, kab);
-    }
-
-    return E1000_SUCCESS;
-}
-
-/******************************************************************************
- * Performs basic configuration of the adapter.
- *
- * hw - Struct containing variables accessed by shared code
- *
- * Assumes that the controller has previously been reset and is in a
- * post-reset uninitialized state. Initializes the receive address registers,
- * multicast table, and VLAN filter table. Calls routines to setup link
- * configuration and flow control settings. Clears all on-chip counters. Leaves
- * the transmit and receive units disabled and uninitialized.
- *****************************************************************************/
-int32_t
-em_init_hw(struct em_hw *hw)
-{
-    uint32_t ctrl;
-    uint32_t i;
-    int32_t ret_val;
-    uint16_t pcix_cmd_word;
-    uint16_t pcix_stat_hi_word;
-    uint16_t cmd_mmrbc;
-    uint16_t stat_mmrbc;
-    uint32_t mta_size;
-    uint32_t reg_data;
-    uint32_t ctrl_ext;
-
-    DEBUGFUNC("em_init_hw");
-
-    if (hw->mac_type == em_ich8lan) {
-        reg_data = E1000_READ_REG(hw, TARC0);
-        reg_data |= 0x30000000;
-        E1000_WRITE_REG(hw, TARC0, reg_data);
-
-        reg_data = E1000_READ_REG(hw, STATUS);
-        reg_data &= ~0x80000000;
-        E1000_WRITE_REG(hw, STATUS, reg_data);
-    }
-
-    /* Initialize Identification LED */
-    ret_val = em_id_led_init(hw);
-    if (ret_val) {
-        DEBUGOUT("Error Initializing Identification LED\n");
-        return ret_val;
-    }
-
-    /* Set the media type and TBI compatibility */
-    em_set_media_type(hw);
-
-    /* Disabling VLAN filtering. */
-    DEBUGOUT("Initializing the IEEE VLAN\n");
-    /* VET hardcoded to standard value and VFTA removed in ICH8 LAN */
-    if (hw->mac_type != em_ich8lan) {
-        if (hw->mac_type < em_82545_rev_3)
-            E1000_WRITE_REG(hw, VET, 0);
-        em_clear_vfta(hw);
-    }
-
-    /* For 82542 (rev 2.0), disable MWI and put the receiver into reset */
-    if (hw->mac_type == em_82542_rev2_0) {
-        DEBUGOUT("Disabling MWI on 82542 rev 2.0\n");
-        em_pci_clear_mwi(hw);
-        E1000_WRITE_REG(hw, RCTL, E1000_RCTL_RST);
-        E1000_WRITE_FLUSH(hw);
-        msec_delay(5);
-    }
-
-    /* Setup the receive address. This involves initializing all of the Receive
-     * Address Registers (RARs 0 - 15).
-     */
-    em_init_rx_addrs(hw);
-
-    /* For 82542 (rev 2.0), take the receiver out of reset and enable MWI */
-    if (hw->mac_type == em_82542_rev2_0) {
-        E1000_WRITE_REG(hw, RCTL, 0);
-        E1000_WRITE_FLUSH(hw);
-        msec_delay(1);
-        if (hw->pci_cmd_word & CMD_MEM_WRT_INVALIDATE)
-            em_pci_set_mwi(hw);
-    }
-
-    /* Zero out the Multicast HASH table */
-    DEBUGOUT("Zeroing the MTA\n");
-    mta_size = E1000_MC_TBL_SIZE;
-    if (hw->mac_type == em_ich8lan)
-        mta_size = E1000_MC_TBL_SIZE_ICH8LAN;
-    for (i = 0; i < mta_size; i++) {
-        E1000_WRITE_REG_ARRAY(hw, MTA, i, 0);
-        /* use write flush to prevent Memory Write Block (MWB) from
-         * occuring when accessing our register space */
-        E1000_WRITE_FLUSH(hw);
-    }
-
-    /* Set the PCI priority bit correctly in the CTRL register.  This
-     * determines if the adapter gives priority to receives, or if it
-     * gives equal priority to transmits and receives.  Valid only on
-     * 82542 and 82543 silicon.
-     */
-    if (hw->dma_fairness && hw->mac_type <= em_82543) {
-        ctrl = E1000_READ_REG(hw, CTRL);
-        E1000_WRITE_REG(hw, CTRL, ctrl | E1000_CTRL_PRIOR);
-    }
-
-    switch (hw->mac_type) {
-    case em_82545_rev_3:
-    case em_82546_rev_3:
-        break;
-    default:
-        /* Workaround for PCI-X problem when BIOS sets MMRBC incorrectly. */
-        if (hw->bus_type == em_bus_type_pcix) {
-            em_read_pci_cfg(hw, PCIX_COMMAND_REGISTER, &pcix_cmd_word);
-            em_read_pci_cfg(hw, PCIX_STATUS_REGISTER_HI,
-                &pcix_stat_hi_word);
-            cmd_mmrbc = (pcix_cmd_word & PCIX_COMMAND_MMRBC_MASK) >>
-                PCIX_COMMAND_MMRBC_SHIFT;
-            stat_mmrbc = (pcix_stat_hi_word & PCIX_STATUS_HI_MMRBC_MASK) >>
-                PCIX_STATUS_HI_MMRBC_SHIFT;
-            if (stat_mmrbc == PCIX_STATUS_HI_MMRBC_4K)
-                stat_mmrbc = PCIX_STATUS_HI_MMRBC_2K;
-            if (cmd_mmrbc > stat_mmrbc) {
-                pcix_cmd_word &= ~PCIX_COMMAND_MMRBC_MASK;
-                pcix_cmd_word |= stat_mmrbc << PCIX_COMMAND_MMRBC_SHIFT;
-                em_write_pci_cfg(hw, PCIX_COMMAND_REGISTER,
-                    &pcix_cmd_word);
-            }
-        }
-        break;
-    }
-
-    /* More time needed for PHY to initialize */
-    if (hw->mac_type == em_ich8lan)
-        msec_delay(15);
-
-    /* Call a subroutine to configure the link and setup flow control. */
-    ret_val = em_setup_link(hw);
-
-    /* Set the transmit descriptor write-back policy */
-    if (hw->mac_type > em_82544) {
-        ctrl = E1000_READ_REG(hw, TXDCTL);
-        ctrl = (ctrl & ~E1000_TXDCTL_WTHRESH) | E1000_TXDCTL_FULL_TX_DESC_WB;
-        switch (hw->mac_type) {
-        default:
-            break;
-        case em_82571:
-        case em_82572:
-        case em_82573:
-        case em_ich8lan:
-        case em_80003es2lan:
-            ctrl |= E1000_TXDCTL_COUNT_DESC;
-            break;
-        }
-        E1000_WRITE_REG(hw, TXDCTL, ctrl);
-    }
-
-    if (hw->mac_type == em_82573) {
-        em_enable_tx_pkt_filtering(hw);
-    }
-
-    switch (hw->mac_type) {
-    default:
-        break;
-    case em_80003es2lan:
-        /* Enable retransmit on late collisions */
-        reg_data = E1000_READ_REG(hw, TCTL);
-        reg_data |= E1000_TCTL_RTLC;
-        E1000_WRITE_REG(hw, TCTL, reg_data);
-
-        /* Configure Gigabit Carry Extend Padding */
-        reg_data = E1000_READ_REG(hw, TCTL_EXT);
-        reg_data &= ~E1000_TCTL_EXT_GCEX_MASK;
-        reg_data |= DEFAULT_80003ES2LAN_TCTL_EXT_GCEX;
-        E1000_WRITE_REG(hw, TCTL_EXT, reg_data);
-
-        /* Configure Transmit Inter-Packet Gap */
-        reg_data = E1000_READ_REG(hw, TIPG);
-        reg_data &= ~E1000_TIPG_IPGT_MASK;
-        reg_data |= DEFAULT_80003ES2LAN_TIPG_IPGT_1000;
-        E1000_WRITE_REG(hw, TIPG, reg_data);
-
-        reg_data = E1000_READ_REG_ARRAY(hw, FFLT, 0x0001);
-        reg_data &= ~0x00100000;
-        E1000_WRITE_REG_ARRAY(hw, FFLT, 0x0001, reg_data);
-        /* Fall through */
-    case em_82571:
-    case em_82572:
-    case em_ich8lan:
-        ctrl = E1000_READ_REG(hw, TXDCTL1);
-        ctrl = (ctrl & ~E1000_TXDCTL_WTHRESH) | E1000_TXDCTL_FULL_TX_DESC_WB;
-        if (hw->mac_type >= em_82571)
-            ctrl |= E1000_TXDCTL_COUNT_DESC;
-        E1000_WRITE_REG(hw, TXDCTL1, ctrl);
-        break;
-    }
-
-
-    if (hw->mac_type == em_82573) {
-        uint32_t gcr = E1000_READ_REG(hw, GCR);
-        gcr |= E1000_GCR_L1_ACT_WITHOUT_L0S_RX;
-        E1000_WRITE_REG(hw, GCR, gcr);
-    }
-
-    /* Clear all of the statistics registers (clear on read).  It is
-     * important that we do this after we have tried to establish link
-     * because the symbol error count will increment wildly if there
-     * is no link.
-     */
-    em_clear_hw_cntrs(hw);
-
-    /* ICH8 No-snoop bits are opposite polarity.
-     * Set to snoop by default after reset. */
-    if (hw->mac_type == em_ich8lan)
-        em_set_pci_ex_no_snoop(hw, PCI_EX_82566_SNOOP_ALL);
-
-    if (hw->device_id == E1000_DEV_ID_82546GB_QUAD_COPPER ||
-        hw->device_id == E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3) {
-        ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
-        /* Relaxed ordering must be disabled to avoid a parity
-         * error crash in a PCI slot. */
-        ctrl_ext |= E1000_CTRL_EXT_RO_DIS;
-        E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
-    }
-
-    return ret_val;
-}
-
-/******************************************************************************
- * Adjust SERDES output amplitude based on EEPROM setting.
- *
- * hw - Struct containing variables accessed by shared code.
- *****************************************************************************/
-static int32_t
-em_adjust_serdes_amplitude(struct em_hw *hw)
-{
-    uint16_t eeprom_data;
-    int32_t  ret_val;
-
-    DEBUGFUNC("em_adjust_serdes_amplitude");
-
-    if (hw->media_type != em_media_type_internal_serdes)
-        return E1000_SUCCESS;
-
-    switch (hw->mac_type) {
-    case em_82545_rev_3:
-    case em_82546_rev_3:
-        break;
-    default:
-        return E1000_SUCCESS;
-    }
-
-    ret_val = em_read_eeprom(hw, EEPROM_SERDES_AMPLITUDE, 1, &eeprom_data);
-    if (ret_val) {
-        return ret_val;
-    }
-
-    if (eeprom_data != EEPROM_RESERVED_WORD) {
-        /* Adjust SERDES output amplitude only. */
-        eeprom_data &= EEPROM_SERDES_AMPLITUDE_MASK;
-        ret_val = em_write_phy_reg(hw, M88E1000_PHY_EXT_CTRL, eeprom_data);
-        if (ret_val)
-            return ret_val;
-    }
-
-    return E1000_SUCCESS;
-}
-
-/******************************************************************************
- * Configures flow control and link settings.
- *
- * hw - Struct containing variables accessed by shared code
- *
- * Determines which flow control settings to use. Calls the apropriate media-
- * specific link configuration function. Configures the flow control settings.
- * Assuming the adapter has a valid link partner, a valid link should be
- * established. Assumes the hardware has previously been reset and the
- * transmitter and receiver are not enabled.
- *****************************************************************************/
-int32_t
-em_setup_link(struct em_hw *hw)
-{
-    uint32_t ctrl_ext;
-    int32_t ret_val;
-    uint16_t eeprom_data;
-
-    DEBUGFUNC("em_setup_link");
-
-    /* In the case of the phy reset being blocked, we already have a link.
-     * We do not have to set it up again. */
-    if (em_check_phy_reset_block(hw))
-        return E1000_SUCCESS;
-
-    /* Read and store word 0x0F of the EEPROM. This word contains bits
-     * that determine the hardware's default PAUSE (flow control) mode,
-     * a bit that determines whether the HW defaults to enabling or
-     * disabling auto-negotiation, and the direction of the
-     * SW defined pins. If there is no SW over-ride of the flow
-     * control setting, then the variable hw->fc will
-     * be initialized based on a value in the EEPROM.
-     */
-    if (hw->fc == em_fc_default) {
-        switch (hw->mac_type) {
-        case em_ich8lan:
-        case em_82573:
-            hw->fc = em_fc_full;
-            break;
-        default:
-            ret_val = em_read_eeprom(hw, EEPROM_INIT_CONTROL2_REG,
-                                        1, &eeprom_data);
-            if (ret_val) {
-                DEBUGOUT("EEPROM Read Error\n");
-                return -E1000_ERR_EEPROM;
-            }
-            if ((eeprom_data & EEPROM_WORD0F_PAUSE_MASK) == 0)
-                hw->fc = em_fc_none;
-            else if ((eeprom_data & EEPROM_WORD0F_PAUSE_MASK) ==
-                    EEPROM_WORD0F_ASM_DIR)
-                hw->fc = em_fc_tx_pause;
-            else
-                hw->fc = em_fc_full;
-            break;
-        }
-    }
-
-    /* We want to save off the original Flow Control configuration just
-     * in case we get disconnected and then reconnected into a different
-     * hub or switch with different Flow Control capabilities.
-     */
-    if (hw->mac_type == em_82542_rev2_0)
-        hw->fc &= (~em_fc_tx_pause);
-
-    if ((hw->mac_type < em_82543) && (hw->report_tx_early == 1))
-        hw->fc &= (~em_fc_rx_pause);
-
-    hw->original_fc = hw->fc;
-
-    DEBUGOUT1("After fix-ups FlowControl is now = %x\n", hw->fc);
-
-    /* Take the 4 bits from EEPROM word 0x0F that determine the initial
-     * polarity value for the SW controlled pins, and setup the
-     * Extended Device Control reg with that info.
-     * This is needed because one of the SW controlled pins is used for
-     * signal detection.  So this should be done before em_setup_pcs_link()
-     * or em_phy_setup() is called.
-     */
-    if (hw->mac_type == em_82543) {
-        ret_val = em_read_eeprom(hw, EEPROM_INIT_CONTROL2_REG,
-                                    1, &eeprom_data);
-        if (ret_val) {
-            DEBUGOUT("EEPROM Read Error\n");
-            return -E1000_ERR_EEPROM;
-        }
-        ctrl_ext = ((eeprom_data & EEPROM_WORD0F_SWPDIO_EXT) <<
-                    SWDPIO__EXT_SHIFT);
-        E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
-    }
-
-    /* Call the necessary subroutine to configure the link. */
-    ret_val = (hw->media_type == em_media_type_copper) ?
-              em_setup_copper_link(hw) :
-              em_setup_fiber_serdes_link(hw);
-
-    /* Initialize the flow control address, type, and PAUSE timer
-     * registers to their default values.  This is done even if flow
-     * control is disabled, because it does not hurt anything to
-     * initialize these registers.
-     */
-    DEBUGOUT("Initializing the Flow Control address, type and timer regs\n");
-
-    /* FCAL/H and FCT are hardcoded to standard values in em_ich8lan. */
-    if (hw->mac_type != em_ich8lan) {
-        E1000_WRITE_REG(hw, FCT, FLOW_CONTROL_TYPE);
-        E1000_WRITE_REG(hw, FCAH, FLOW_CONTROL_ADDRESS_HIGH);
-        E1000_WRITE_REG(hw, FCAL, FLOW_CONTROL_ADDRESS_LOW);
-    }
-
-    E1000_WRITE_REG(hw, FCTTV, hw->fc_pause_time);
-
-    /* Set the flow control receive threshold registers.  Normally,
-     * these registers will be set to a default threshold that may be
-     * adjusted later by the driver's runtime code.  However, if the
-     * ability to transmit pause frames in not enabled, then these
-     * registers will be set to 0.
-     */
-    if (!(hw->fc & em_fc_tx_pause)) {
-        E1000_WRITE_REG(hw, FCRTL, 0);
-        E1000_WRITE_REG(hw, FCRTH, 0);
-    } else {
-        /* We need to set up the Receive Threshold high and low water marks
-         * as well as (optionally) enabling the transmission of XON frames.
-         */
-        if (hw->fc_send_xon) {
-            E1000_WRITE_REG(hw, FCRTL, (hw->fc_low_water | E1000_FCRTL_XONE));
-            E1000_WRITE_REG(hw, FCRTH, hw->fc_high_water);
-        } else {
-            E1000_WRITE_REG(hw, FCRTL, hw->fc_low_water);
-            E1000_WRITE_REG(hw, FCRTH, hw->fc_high_water);
-        }
-    }
-    return ret_val;
-}
-
-/******************************************************************************
- * Sets up link for a fiber based or serdes based adapter
- *
- * hw - Struct containing variables accessed by shared code
- *
- * Manipulates Physical Coding Sublayer functions in order to configure
- * link. Assumes the hardware has been previously reset and the transmitter
- * and receiver are not enabled.
- *****************************************************************************/
-static int32_t
-em_setup_fiber_serdes_link(struct em_hw *hw)
-{
-    uint32_t ctrl;
-    uint32_t status;
-    uint32_t txcw = 0;
-    uint32_t i;
-    uint32_t signal = 0;
-    int32_t ret_val;
-
-    DEBUGFUNC("em_setup_fiber_serdes_link");
-
-    /* On 82571 and 82572 Fiber connections, SerDes loopback mode persists
-     * until explicitly turned off or a power cycle is performed.  A read to
-     * the register does not indicate its status.  Therefore, we ensure
-     * loopback mode is disabled during initialization.
-     */
-    if (hw->mac_type == em_82571 || hw->mac_type == em_82572)
-        E1000_WRITE_REG(hw, SCTL, E1000_DISABLE_SERDES_LOOPBACK);
-
-    /* On adapters with a MAC newer than 82544, SW Defineable pin 1 will be
-     * set when the optics detect a signal. On older adapters, it will be
-     * cleared when there is a signal.  This applies to fiber media only.
-     * If we're on serdes media, adjust the output amplitude to value set in
-     * the EEPROM.
-     */
-    ctrl = E1000_READ_REG(hw, CTRL);
-    if (hw->media_type == em_media_type_fiber)
-        signal = (hw->mac_type > em_82544) ? E1000_CTRL_SWDPIN1 : 0;
-
-    ret_val = em_adjust_serdes_amplitude(hw);
-    if (ret_val)
-        return ret_val;
-
-    /* Take the link out of reset */
-    ctrl &= ~(E1000_CTRL_LRST);
-
-    /* Adjust VCO speed to improve BER performance */
-    ret_val = em_set_vco_speed(hw);
-    if (ret_val)
-        return ret_val;
-
-    em_config_collision_dist(hw);
-
-    /* Check for a software override of the flow control settings, and setup
-     * the device accordingly.  If auto-negotiation is enabled, then software
-     * will have to set the "PAUSE" bits to the correct value in the Tranmsit
-     * Config Word Register (TXCW) and re-start auto-negotiation.  However, if
-     * auto-negotiation is disabled, then software will have to manually
-     * configure the two flow control enable bits in the CTRL register.
-     *
-     * The possible values of the "fc" parameter are:
-     *      0:  Flow control is completely disabled
-     *      1:  Rx flow control is enabled (we can receive pause frames, but
-     *          not send pause frames).
-     *      2:  Tx flow control is enabled (we can send pause frames but we do
-     *          not support receiving pause frames).
-     *      3:  Both Rx and TX flow control (symmetric) are enabled.
-     */
-    switch (hw->fc) {
-    case em_fc_none:
-        /* Flow control is completely disabled by a software over-ride. */
-        txcw = (E1000_TXCW_ANE | E1000_TXCW_FD);
-        break;
-    case em_fc_rx_pause:
-        /* RX Flow control is enabled and TX Flow control is disabled by a
-         * software over-ride. Since there really isn't a way to advertise
-         * that we are capable of RX Pause ONLY, we will advertise that we
-         * support both symmetric and asymmetric RX PAUSE. Later, we will
-         *  disable the adapter's ability to send PAUSE frames.
-         */
-        txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
-        break;
-    case em_fc_tx_pause:
-        /* TX Flow control is enabled, and RX Flow control is disabled, by a
-         * software over-ride.
-         */
-        txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_ASM_DIR);
-        break;
-    case em_fc_full:
-        /* Flow control (both RX and TX) is enabled by a software over-ride. */
-        txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
-        break;
-    default:
-        DEBUGOUT("Flow control param set incorrectly\n");
-        return -E1000_ERR_CONFIG;
-        break;
-    }
-
-    /* Since auto-negotiation is enabled, take the link out of reset (the link
-     * will be in reset, because we previously reset the chip). This will
-     * restart auto-negotiation.  If auto-neogtiation is successful then the
-     * link-up status bit will be set and the flow control enable bits (RFCE
-     * and TFCE) will be set according to their negotiated value.
-     */
-    DEBUGOUT("Auto-negotiation enabled\n");
-
-    E1000_WRITE_REG(hw, TXCW, txcw);
-    E1000_WRITE_REG(hw, CTRL, ctrl);
-    E1000_WRITE_FLUSH(hw);
-
-    hw->txcw = txcw;
-    msec_delay(1);
-
-    /* If we have a signal (the cable is plugged in) then poll for a "Link-Up"
-     * indication in the Device Status Register.  Time-out if a link isn't
-     * seen in 500 milliseconds seconds (Auto-negotiation should complete in
-     * less than 500 milliseconds even if the other end is doing it in SW).
-     * For internal serdes, we just assume a signal is present, then poll.
-     */
-    if (hw->media_type == em_media_type_internal_serdes ||
-       (E1000_READ_REG(hw, CTRL) & E1000_CTRL_SWDPIN1) == signal) {
-        DEBUGOUT("Looking for Link\n");
-        for (i = 0; i < (LINK_UP_TIMEOUT / 10); i++) {
-            msec_delay(10);
-            status = E1000_READ_REG(hw, STATUS);
-            if (status & E1000_STATUS_LU) break;
-        }
-        if (i == (LINK_UP_TIMEOUT / 10)) {
-            DEBUGOUT("Never got a valid link from auto-neg!!!\n");
-            hw->autoneg_failed = 1;
-            /* AutoNeg failed to achieve a link, so we'll call
-             * em_check_for_link. This routine will force the link up if
-             * we detect a signal. This will allow us to communicate with
-             * non-autonegotiating link partners.
-             */
-            ret_val = em_check_for_link(hw);
-            if (ret_val) {
-                DEBUGOUT("Error while checking for link\n");
-                return ret_val;
-            }
-            hw->autoneg_failed = 0;
-        } else {
-            hw->autoneg_failed = 0;
-            DEBUGOUT("Valid Link Found\n");
-        }
-    } else {
-        DEBUGOUT("No Signal Detected\n");
-    }
-    return E1000_SUCCESS;
-}
-
-/******************************************************************************
-* Make sure we have a valid PHY and change PHY mode before link setup.
-*
-* hw - Struct containing variables accessed by shared code
-******************************************************************************/
-static int32_t
-em_copper_link_preconfig(struct em_hw *hw)
-{
-    uint32_t ctrl;
-    int32_t ret_val;
-    uint16_t phy_data;
-
-    DEBUGFUNC("em_copper_link_preconfig");
-
-    ctrl = E1000_READ_REG(hw, CTRL);
-    /* With 82543, we need to force speed and duplex on the MAC equal to what
-     * the PHY speed and duplex configuration is. In addition, we need to
-     * perform a hardware reset on the PHY to take it out of reset.
-     */
-    if (hw->mac_type > em_82543) {
-        ctrl |= E1000_CTRL_SLU;
-        ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
-        E1000_WRITE_REG(hw, CTRL, ctrl);
-    } else {
-        ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX | E1000_CTRL_SLU);
-        E1000_WRITE_REG(hw, CTRL, ctrl);
-        ret_val = em_phy_hw_reset(hw);
-        if (ret_val)
-            return ret_val;
-    }
-
-    /* Make sure we have a valid PHY */
-    ret_val = em_detect_gig_phy(hw);
-    if (ret_val) {
-        DEBUGOUT("Error, did not detect valid phy.\n");
-        return ret_val;
-    }
-    DEBUGOUT1("Phy ID = %x \n", hw->phy_id);
-
-    /* Set PHY to class A mode (if necessary) */
-    ret_val = em_set_phy_mode(hw);
-    if (ret_val)
-        return ret_val;
-
-    if ((hw->mac_type == em_82545_rev_3) ||
-       (hw->mac_type == em_82546_rev_3)) {
-        ret_val = em_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
-        phy_data |= 0x00000008;
-        ret_val = em_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
-    }
-
-    if (hw->mac_type <= em_82543 ||
-        hw->mac_type == em_82541 || hw->mac_type == em_82547 ||
-        hw->mac_type == em_82541_rev_2 || hw->mac_type == em_82547_rev_2)
-        hw->phy_reset_disable = FALSE;
-
-   return E1000_SUCCESS;
-}
-
-
-/********************************************************************
-* Copper link setup for em_phy_igp series.
-*
-* hw - Struct containing variables accessed by shared code
-*********************************************************************/
-static int32_t
-em_copper_link_igp_setup(struct em_hw *hw)
-{
-    uint32_t led_ctrl;
-    int32_t ret_val;
-    uint16_t phy_data;
-
-    DEBUGFUNC("em_copper_link_igp_setup");
-
-    if (hw->phy_reset_disable)
-        return E1000_SUCCESS;
-
-    ret_val = em_phy_reset(hw);
-    if (ret_val) {
-        DEBUGOUT("Error Resetting the PHY\n");
-        return ret_val;
-    }
-
-    /* Wait 15ms for MAC to configure PHY from eeprom settings */
-    msec_delay(15);
-    if (hw->mac_type != em_ich8lan) {
-    /* Configure activity LED after PHY reset */
-    led_ctrl = E1000_READ_REG(hw, LEDCTL);
-    led_ctrl &= IGP_ACTIVITY_LED_MASK;
-    led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE);
-    E1000_WRITE_REG(hw, LEDCTL, led_ctrl);
-    }
-
-    /* The NVM settings will configure LPLU in D3 for IGP2 and IGP3 PHYs */
-    if (hw->phy_type == em_phy_igp) {
-        /* disable lplu d3 during driver init */
-        ret_val = em_set_d3_lplu_state(hw, FALSE);
-        if (ret_val) {
-            DEBUGOUT("Error Disabling LPLU D3\n");
-            return ret_val;
-        }
-    }
-
-    /* disable lplu d0 during driver init */
-    ret_val = em_set_d0_lplu_state(hw, FALSE);
-    if (ret_val) {
-        DEBUGOUT("Error Disabling LPLU D0\n");
-        return ret_val;
-    }
-    /* Configure mdi-mdix settings */
-    ret_val = em_read_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data);
-    if (ret_val)
-        return ret_val;
-
-    if ((hw->mac_type == em_82541) || (hw->mac_type == em_82547)) {
-        hw->dsp_config_state = em_dsp_config_disabled;
-        /* Force MDI for earlier revs of the IGP PHY */
-        phy_data &= ~(IGP01E1000_PSCR_AUTO_MDIX | IGP01E1000_PSCR_FORCE_MDI_MDIX);
-        hw->mdix = 1;
-
-    } else {
-        hw->dsp_config_state = em_dsp_config_enabled;
-        phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX;
-
-        switch (hw->mdix) {
-        case 1:
-            phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
-            break;
-        case 2:
-            phy_data |= IGP01E1000_PSCR_FORCE_MDI_MDIX;
-            break;
-        case 0:
-        default:
-            phy_data |= IGP01E1000_PSCR_AUTO_MDIX;
-            break;
-        }
-    }
-    ret_val = em_write_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, phy_data);
-    if (ret_val)
-        return ret_val;
-
-    /* set auto-master slave resolution settings */
-    if (hw->autoneg) {
-        em_ms_type phy_ms_setting = hw->master_slave;
-
-        if (hw->ffe_config_state == em_ffe_config_active)
-            hw->ffe_config_state = em_ffe_config_enabled;
-
-        if (hw->dsp_config_state == em_dsp_config_activated)
-            hw->dsp_config_state = em_dsp_config_enabled;
-
-        /* when autonegotiation advertisment is only 1000Mbps then we
-          * should disable SmartSpeed and enable Auto MasterSlave
-          * resolution as hardware default. */
-        if (hw->autoneg_advertised == ADVERTISE_1000_FULL) {
-            /* Disable SmartSpeed */
-            ret_val = em_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
-                                         &phy_data);
-            if (ret_val)
-                return ret_val;
-            phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
-            ret_val = em_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
-                                          phy_data);
-            if (ret_val)
-                return ret_val;
-            /* Set auto Master/Slave resolution process */
-            ret_val = em_read_phy_reg(hw, PHY_1000T_CTRL, &phy_data);
-            if (ret_val)
-                return ret_val;
-            phy_data &= ~CR_1000T_MS_ENABLE;
-            ret_val = em_write_phy_reg(hw, PHY_1000T_CTRL, phy_data);
-            if (ret_val)
-                return ret_val;
-        }
-
-        ret_val = em_read_phy_reg(hw, PHY_1000T_CTRL, &phy_data);
-        if (ret_val)
-            return ret_val;
-
-        /* load defaults for future use */
-        hw->original_master_slave = (phy_data & CR_1000T_MS_ENABLE) ?
-                                        ((phy_data & CR_1000T_MS_VALUE) ?
-                                         em_ms_force_master :
-                                         em_ms_force_slave) :
-                                         em_ms_auto;
-
-        switch (phy_ms_setting) {
-        case em_ms_force_master:
-            phy_data |= (CR_1000T_MS_ENABLE | CR_1000T_MS_VALUE);
-            break;
-        case em_ms_force_slave:
-            phy_data |= CR_1000T_MS_ENABLE;
-            phy_data &= ~(CR_1000T_MS_VALUE);
-            break;
-        case em_ms_auto:
-            phy_data &= ~CR_1000T_MS_ENABLE;
-            default:
-            break;
-        }
-        ret_val = em_write_phy_reg(hw, PHY_1000T_CTRL, phy_data);
-        if (ret_val)
-            return ret_val;
-    }
-
-    return E1000_SUCCESS;
-}
-
-/********************************************************************
-* Copper link setup for em_phy_gg82563 series.
-*
-* hw - Struct containing variables accessed by shared code
-*********************************************************************/
-static int32_t
-em_copper_link_ggp_setup(struct em_hw *hw)
-{
-    int32_t ret_val;
-    uint16_t phy_data;
-    uint32_t reg_data;
-
-    DEBUGFUNC("em_copper_link_ggp_setup");
-
-    if (!hw->phy_reset_disable) {
-
-        /* Enable CRS on TX for half-duplex operation. */
-        ret_val = em_read_phy_reg(hw, GG82563_PHY_MAC_SPEC_CTRL,
-                                     &phy_data);
-        if (ret_val)
-            return ret_val;
-
-        phy_data |= GG82563_MSCR_ASSERT_CRS_ON_TX;
-        /* Use 25MHz for both link down and 1000BASE-T for Tx clock */
-        phy_data |= GG82563_MSCR_TX_CLK_1000MBPS_25MHZ;
-
-        ret_val = em_write_phy_reg(hw, GG82563_PHY_MAC_SPEC_CTRL,
-                                      phy_data);
-        if (ret_val)
-            return ret_val;
-
-        /* Options:
-         *   MDI/MDI-X = 0 (default)
-         *   0 - Auto for all speeds
-         *   1 - MDI mode
-         *   2 - MDI-X mode
-         *   3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
-         */
-        ret_val = em_read_phy_reg(hw, GG82563_PHY_SPEC_CTRL, &phy_data);
-        if (ret_val)
-            return ret_val;
-
-        phy_data &= ~GG82563_PSCR_CROSSOVER_MODE_MASK;
-
-        switch (hw->mdix) {
-        case 1:
-            phy_data |= GG82563_PSCR_CROSSOVER_MODE_MDI;
-            break;
-        case 2:
-            phy_data |= GG82563_PSCR_CROSSOVER_MODE_MDIX;
-            break;
-        case 0:
-        default:
-            phy_data |= GG82563_PSCR_CROSSOVER_MODE_AUTO;
-            break;
-        }
-
-        /* Options:
-         *   disable_polarity_correction = 0 (default)
-         *       Automatic Correction for Reversed Cable Polarity
-         *   0 - Disabled
-         *   1 - Enabled
-         */
-        phy_data &= ~GG82563_PSCR_POLARITY_REVERSAL_DISABLE;
-        if (hw->disable_polarity_correction == 1)
-            phy_data |= GG82563_PSCR_POLARITY_REVERSAL_DISABLE;
-        ret_val = em_write_phy_reg(hw, GG82563_PHY_SPEC_CTRL, phy_data);
-
-        if (ret_val)
-            return ret_val;
-
-        /* SW Reset the PHY so all changes take effect */
-        ret_val = em_phy_reset(hw);
-        if (ret_val) {
-            DEBUGOUT("Error Resetting the PHY\n");
-            return ret_val;
-        }
-    } /* phy_reset_disable */
-
-    if (hw->mac_type == em_80003es2lan) {
-        /* Bypass RX and TX FIFO's */
-        ret_val = em_write_kmrn_reg(hw, E1000_KUMCTRLSTA_OFFSET_FIFO_CTRL,
-                                       E1000_KUMCTRLSTA_FIFO_CTRL_RX_BYPASS |
-                                       E1000_KUMCTRLSTA_FIFO_CTRL_TX_BYPASS);
-        if (ret_val)
-            return ret_val;
-
-        ret_val = em_read_phy_reg(hw, GG82563_PHY_SPEC_CTRL_2, &phy_data);
-        if (ret_val)
-            return ret_val;
-
-        phy_data &= ~GG82563_PSCR2_REVERSE_AUTO_NEG;
-        ret_val = em_write_phy_reg(hw, GG82563_PHY_SPEC_CTRL_2, phy_data);
-
-        if (ret_val)
-            return ret_val;
-
-        reg_data = E1000_READ_REG(hw, CTRL_EXT);
-        reg_data &= ~(E1000_CTRL_EXT_LINK_MODE_MASK);
-        E1000_WRITE_REG(hw, CTRL_EXT, reg_data);
-
-        ret_val = em_read_phy_reg(hw, GG82563_PHY_PWR_MGMT_CTRL,
-                                          &phy_data);
-        if (ret_val)
-            return ret_val;
-
-        /* Do not init these registers when the HW is in IAMT mode, since the
-         * firmware will have already initialized them.  We only initialize
-         * them if the HW is not in IAMT mode.
-         */
-        if (em_check_mng_mode(hw) == FALSE) {
-            /* Enable Electrical Idle on the PHY */
-            phy_data |= GG82563_PMCR_ENABLE_ELECTRICAL_IDLE;
-            ret_val = em_write_phy_reg(hw, GG82563_PHY_PWR_MGMT_CTRL,
-                                          phy_data);
-            if (ret_val)
-                return ret_val;
-
-            ret_val = em_read_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL,
-                                         &phy_data);
-            if (ret_val)
-                return ret_val;
-
-            phy_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
-            ret_val = em_write_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL,
-                                          phy_data);
-
-            if (ret_val)
-                return ret_val;
-        }
-
-        /* Workaround: Disable padding in Kumeran interface in the MAC
-         * and in the PHY to avoid CRC errors.
-         */
-        ret_val = em_read_phy_reg(hw, GG82563_PHY_INBAND_CTRL,
-                                     &phy_data);
-        if (ret_val)
-            return ret_val;
-        phy_data |= GG82563_ICR_DIS_PADDING;
-        ret_val = em_write_phy_reg(hw, GG82563_PHY_INBAND_CTRL,
-                                      phy_data);
-        if (ret_val)
-            return ret_val;
-    }
-
-    return E1000_SUCCESS;
-}
-
-/********************************************************************
-* Copper link setup for em_phy_m88 series.
-*
-* hw - Struct containing variables accessed by shared code
-*********************************************************************/
-static int32_t
-em_copper_link_mgp_setup(struct em_hw *hw)
-{
-    int32_t ret_val;
-    uint16_t phy_data;
-
-    DEBUGFUNC("em_copper_link_mgp_setup");
-
-    if (hw->phy_reset_disable)
-        return E1000_SUCCESS;
-
-    /* Enable CRS on TX. This must be set for half-duplex operation. */
-    ret_val = em_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
-    if (ret_val)
-        return ret_val;
-
-    phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
-
-    /* Options:
-     *   MDI/MDI-X = 0 (default)
-     *   0 - Auto for all speeds
-     *   1 - MDI mode
-     *   2 - MDI-X mode
-     *   3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
-     */
-    phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
-
-    switch (hw->mdix) {
-    case 1:
-        phy_data |= M88E1000_PSCR_MDI_MANUAL_MODE;
-        break;
-    case 2:
-        phy_data |= M88E1000_PSCR_MDIX_MANUAL_MODE;
-        break;
-    case 3:
-        phy_data |= M88E1000_PSCR_AUTO_X_1000T;
-        break;
-    case 0:
-    default:
-        phy_data |= M88E1000_PSCR_AUTO_X_MODE;
-        break;
-    }
-
-    /* Options:
-     *   disable_polarity_correction = 0 (default)
-     *       Automatic Correction for Reversed Cable Polarity
-     *   0 - Disabled
-     *   1 - Enabled
-     */
-    phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL;
-    if (hw->disable_polarity_correction == 1)
-        phy_data |= M88E1000_PSCR_POLARITY_REVERSAL;
-    ret_val = em_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
-    if (ret_val)
-        return ret_val;
-
-    if (hw->phy_revision < M88E1011_I_REV_4) {
-        /* Force TX_CLK in the Extended PHY Specific Control Register
-         * to 25MHz clock.
-         */
-        ret_val = em_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data);
-        if (ret_val)
-            return ret_val;
-
-        phy_data |= M88E1000_EPSCR_TX_CLK_25;
-
-        if ((hw->phy_revision == E1000_REVISION_2) &&
-            (hw->phy_id == M88E1111_I_PHY_ID)) {
-            /* Vidalia Phy, set the downshift counter to 5x */
-            phy_data &= ~(M88EC018_EPSCR_DOWNSHIFT_COUNTER_MASK);
-            phy_data |= M88EC018_EPSCR_DOWNSHIFT_COUNTER_5X;
-            ret_val = em_write_phy_reg(hw,
-                                        M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
-            if (ret_val)
-                return ret_val;
-        } else {
-            /* Configure Master and Slave downshift values */
-            phy_data &= ~(M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK |
-                              M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK);
-            phy_data |= (M88E1000_EPSCR_MASTER_DOWNSHIFT_1X |
-                             M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X);
-            ret_val = em_write_phy_reg(hw,
-                                        M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
-            if (ret_val)
-               return ret_val;
-        }
-    }
-
-    /* SW Reset the PHY so all changes take effect */
-    ret_val = em_phy_reset(hw);
-    if (ret_val) {
-        DEBUGOUT("Error Resetting the PHY\n");
-        return ret_val;
-    }
-
-   return E1000_SUCCESS;
-}
-
-/********************************************************************
-* Setup auto-negotiation and flow control advertisements,
-* and then perform auto-negotiation.
-*
-* hw - Struct containing variables accessed by shared code
-*********************************************************************/
-static int32_t
-em_copper_link_autoneg(struct em_hw *hw)
-{
-    int32_t ret_val;
-    uint16_t phy_data;
-
-    DEBUGFUNC("em_copper_link_autoneg");
-
-    /* Perform some bounds checking on the hw->autoneg_advertised
-     * parameter.  If this variable is zero, then set it to the default.
-     */
-    hw->autoneg_advertised &= AUTONEG_ADVERTISE_SPEED_DEFAULT;
-
-    /* If autoneg_advertised is zero, we assume it was not defaulted
-     * by the calling code so we set to advertise full capability.
-     */
-    if (hw->autoneg_advertised == 0)
-        hw->autoneg_advertised = AUTONEG_ADVERTISE_SPEED_DEFAULT;
-
-    /* IFE phy only supports 10/100 */
-    if (hw->phy_type == em_phy_ife)
-        hw->autoneg_advertised &= AUTONEG_ADVERTISE_10_100_ALL;
-
-    DEBUGOUT("Reconfiguring auto-neg advertisement params\n");
-    ret_val = em_phy_setup_autoneg(hw);
-    if (ret_val) {
-        DEBUGOUT("Error Setting up Auto-Negotiation\n");
-        return ret_val;
-    }
-    DEBUGOUT("Restarting Auto-Neg\n");
-
-    /* Restart auto-negotiation by setting the Auto Neg Enable bit and
-     * the Auto Neg Restart bit in the PHY control register.
-     */
-    ret_val = em_read_phy_reg(hw, PHY_CTRL, &phy_data);
-    if (ret_val)
-        return ret_val;
-
-    phy_data |= (MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG);
-    ret_val = em_write_phy_reg(hw, PHY_CTRL, phy_data);
-    if (ret_val)
-        return ret_val;
-
-    /* Does the user want to wait for Auto-Neg to complete here, or
-     * check at a later time (for example, callback routine).
-     */
-    if (hw->wait_autoneg_complete) {
-        ret_val = em_wait_autoneg(hw);
-        if (ret_val) {
-            DEBUGOUT("Error while waiting for autoneg to complete\n");
-            return ret_val;
-        }
-    }
-
-    hw->get_link_status = TRUE;
-
-    return E1000_SUCCESS;
-}
-
-/******************************************************************************
-* Config the MAC and the PHY after link is up.
-*   1) Set up the MAC to the current PHY speed/duplex
-*      if we are on 82543.  If we
-*      are on newer silicon, we only need to configure
-*      collision distance in the Transmit Control Register.
-*   2) Set up flow control on the MAC to that established with
-*      the link partner.
-*   3) Config DSP to improve Gigabit link quality for some PHY revisions.
-*
-* hw - Struct containing variables accessed by shared code
-******************************************************************************/
-static int32_t
-em_copper_link_postconfig(struct em_hw *hw)
-{
-    int32_t ret_val;
-    DEBUGFUNC("em_copper_link_postconfig");
-
-    if (hw->mac_type >= em_82544) {
-        em_config_collision_dist(hw);
-    } else {
-        ret_val = em_config_mac_to_phy(hw);
-        if (ret_val) {
-            DEBUGOUT("Error configuring MAC to PHY settings\n");
-            return ret_val;
-        }
-    }
-    ret_val = em_config_fc_after_link_up(hw);
-    if (ret_val) {
-        DEBUGOUT("Error Configuring Flow Control\n");
-        return ret_val;
-    }
-
-    /* Config DSP to improve Giga link quality */
-    if (hw->phy_type == em_phy_igp) {
-        ret_val = em_config_dsp_after_link_change(hw, TRUE);
-        if (ret_val) {
-            DEBUGOUT("Error Configuring DSP after link up\n");
-            return ret_val;
-        }
-    }
-
-    return E1000_SUCCESS;
-}
-
-/******************************************************************************
-* Detects which PHY is present and setup the speed and duplex
-*
-* hw - Struct containing variables accessed by shared code
-******************************************************************************/
-static int32_t
-em_setup_copper_link(struct em_hw *hw)
-{
-    int32_t ret_val;
-    uint16_t i;
-    uint16_t phy_data;
-    uint16_t reg_data;
-
-    DEBUGFUNC("em_setup_copper_link");
-
-    switch (hw->mac_type) {
-    case em_80003es2lan:
-    case em_ich8lan:
-        /* Set the mac to wait the maximum time between each
-         * iteration and increase the max iterations when
-         * polling the phy; this fixes erroneous timeouts at 10Mbps. */
-        ret_val = em_write_kmrn_reg(hw, GG82563_REG(0x34, 4), 0xFFFF);
-        if (ret_val)
-            return ret_val;
-        ret_val = em_read_kmrn_reg(hw, GG82563_REG(0x34, 9), &reg_data);
-        if (ret_val)
-            return ret_val;
-        reg_data |= 0x3F;
-        ret_val = em_write_kmrn_reg(hw, GG82563_REG(0x34, 9), reg_data);
-        if (ret_val)
-            return ret_val;
-    default:
-        break;
-    }
-
-    /* Check if it is a valid PHY and set PHY mode if necessary. */
-    ret_val = em_copper_link_preconfig(hw);
-    if (ret_val)
-        return ret_val;
-
-    switch (hw->mac_type) {
-    case em_80003es2lan:
-        /* Kumeran registers are written-only */
-        reg_data = E1000_KUMCTRLSTA_INB_CTRL_LINK_STATUS_TX_TIMEOUT_DEFAULT;
-        reg_data |= E1000_KUMCTRLSTA_INB_CTRL_DIS_PADDING;
-        ret_val = em_write_kmrn_reg(hw, E1000_KUMCTRLSTA_OFFSET_INB_CTRL,
-                                       reg_data);
-        if (ret_val)
-            return ret_val;
-        break;
-    default:
-        break;
-    }
-
-    if (hw->phy_type == em_phy_igp ||
-        hw->phy_type == em_phy_igp_3 ||
-        hw->phy_type == em_phy_igp_2) {
-        ret_val = em_copper_link_igp_setup(hw);
-        if (ret_val)
-            return ret_val;
-    } else if (hw->phy_type == em_phy_m88) {
-        ret_val = em_copper_link_mgp_setup(hw);
-        if (ret_val)
-            return ret_val;
-    } else if (hw->phy_type == em_phy_gg82563) {
-        ret_val = em_copper_link_ggp_setup(hw);
-        if (ret_val)
-            return ret_val;
-    }
-
-    if (hw->autoneg) {
-        /* Setup autoneg and flow control advertisement
-          * and perform autonegotiation */
-        ret_val = em_copper_link_autoneg(hw);
-        if (ret_val)
-            return ret_val;
-    } else {
-        /* PHY will be set to 10H, 10F, 100H,or 100F
-          * depending on value from forced_speed_duplex. */
-        DEBUGOUT("Forcing speed and duplex\n");
-        ret_val = em_phy_force_speed_duplex(hw);
-        if (ret_val) {
-            DEBUGOUT("Error Forcing Speed and Duplex\n");
-            return ret_val;
-        }
-    }
-
-    /* Check link status. Wait up to 100 microseconds for link to become
-     * valid.
-     */
-    for (i = 0; i < 10; i++) {
-        ret_val = em_read_phy_reg(hw, PHY_STATUS, &phy_data);
-        if (ret_val)
-            return ret_val;
-        ret_val = em_read_phy_reg(hw, PHY_STATUS, &phy_data);
-        if (ret_val)
-            return ret_val;
-
-        if (phy_data & MII_SR_LINK_STATUS) {
-            /* Config the MAC and PHY after link is up */
-            ret_val = em_copper_link_postconfig(hw);
-            if (ret_val)
-                return ret_val;
-
-            DEBUGOUT("Valid link established!!!\n");
-            return E1000_SUCCESS;
-        }
-        usec_delay(10);
-    }
-
-    DEBUGOUT("Unable to establish link!!!\n");
-    return E1000_SUCCESS;
-}
-
-/******************************************************************************
-* Configure the MAC-to-PHY interface for 10/100Mbps
-*
-* hw - Struct containing variables accessed by shared code
-******************************************************************************/
-static int32_t
-em_configure_kmrn_for_10_100(struct em_hw *hw, uint16_t duplex)
-{
-    int32_t ret_val = E1000_SUCCESS;
-    uint32_t tipg;
-    uint16_t reg_data;
-
-    DEBUGFUNC("em_configure_kmrn_for_10_100");
-
-    reg_data = E1000_KUMCTRLSTA_HD_CTRL_10_100_DEFAULT;
-    ret_val = em_write_kmrn_reg(hw, E1000_KUMCTRLSTA_OFFSET_HD_CTRL,
-                                   reg_data);
-    if (ret_val)
-        return ret_val;
-
-    /* Configure Transmit Inter-Packet Gap */
-    tipg = E1000_READ_REG(hw, TIPG);
-    tipg &= ~E1000_TIPG_IPGT_MASK;
-    tipg |= DEFAULT_80003ES2LAN_TIPG_IPGT_10_100;
-    E1000_WRITE_REG(hw, TIPG, tipg);
-
-    ret_val = em_read_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, &reg_data);
-
-    if (ret_val)
-        return ret_val;
-
-    if (duplex == HALF_DUPLEX)
-        reg_data |= GG82563_KMCR_PASS_FALSE_CARRIER;
-    else
-        reg_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
-
-    ret_val = em_write_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, reg_data);
-
-    return ret_val;
-}
-
-static int32_t
-em_configure_kmrn_for_1000(struct em_hw *hw)
-{
-    int32_t ret_val = E1000_SUCCESS;
-    uint16_t reg_data;
-    uint32_t tipg;
-
-    DEBUGFUNC("em_configure_kmrn_for_1000");
-
-    reg_data = E1000_KUMCTRLSTA_HD_CTRL_1000_DEFAULT;
-    ret_val = em_write_kmrn_reg(hw, E1000_KUMCTRLSTA_OFFSET_HD_CTRL,
-                                   reg_data);
-    if (ret_val)
-        return ret_val;
-
-    /* Configure Transmit Inter-Packet Gap */
-    tipg = E1000_READ_REG(hw, TIPG);
-    tipg &= ~E1000_TIPG_IPGT_MASK;
-    tipg |= DEFAULT_80003ES2LAN_TIPG_IPGT_1000;
-    E1000_WRITE_REG(hw, TIPG, tipg);
-
-    ret_val = em_read_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, &reg_data);
-
-    if (ret_val)
-        return ret_val;
-
-    reg_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
-    ret_val = em_write_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, reg_data);
-
-    return ret_val;
-}
-
-/******************************************************************************
-* Configures PHY autoneg and flow control advertisement settings
-*
-* hw - Struct containing variables accessed by shared code
-******************************************************************************/
-int32_t
-em_phy_setup_autoneg(struct em_hw *hw)
-{
-    int32_t ret_val;
-    uint16_t mii_autoneg_adv_reg;
-    uint16_t mii_1000t_ctrl_reg;
-
-    DEBUGFUNC("em_phy_setup_autoneg");
-
-    /* Read the MII Auto-Neg Advertisement Register (Address 4). */
-    ret_val = em_read_phy_reg(hw, PHY_AUTONEG_ADV, &mii_autoneg_adv_reg);
-    if (ret_val)
-        return ret_val;
-
-    if (hw->phy_type != em_phy_ife) {
-        /* Read the MII 1000Base-T Control Register (Address 9). */
-        ret_val = em_read_phy_reg(hw, PHY_1000T_CTRL, &mii_1000t_ctrl_reg);
-        if (ret_val)
-            return ret_val;
-    } else
-        mii_1000t_ctrl_reg=0;
-
-    /* Need to parse both autoneg_advertised and fc and set up
-     * the appropriate PHY registers.  First we will parse for
-     * autoneg_advertised software override.  Since we can advertise
-     * a plethora of combinations, we need to check each bit
-     * individually.
-     */
-
-    /* First we clear all the 10/100 mb speed bits in the Auto-Neg
-     * Advertisement Register (Address 4) and the 1000 mb speed bits in
-     * the  1000Base-T Control Register (Address 9).
-     */
-    mii_autoneg_adv_reg &= ~REG4_SPEED_MASK;
-    mii_1000t_ctrl_reg &= ~REG9_SPEED_MASK;
-
-    DEBUGOUT1("autoneg_advertised %x\n", hw->autoneg_advertised);
-
-    /* Do we want to advertise 10 Mb Half Duplex? */
-    if (hw->autoneg_advertised & ADVERTISE_10_HALF) {
-        DEBUGOUT("Advertise 10mb Half duplex\n");
-        mii_autoneg_adv_reg |= NWAY_AR_10T_HD_CAPS;
-    }
-
-    /* Do we want to advertise 10 Mb Full Duplex? */
-    if (hw->autoneg_advertised & ADVERTISE_10_FULL) {
-        DEBUGOUT("Advertise 10mb Full duplex\n");
-        mii_autoneg_adv_reg |= NWAY_AR_10T_FD_CAPS;
-    }
-
-    /* Do we want to advertise 100 Mb Half Duplex? */
-    if (hw->autoneg_advertised & ADVERTISE_100_HALF) {
-        DEBUGOUT("Advertise 100mb Half duplex\n");
-        mii_autoneg_adv_reg |= NWAY_AR_100TX_HD_CAPS;
-    }
-
-    /* Do we want to advertise 100 Mb Full Duplex? */
-    if (hw->autoneg_advertised & ADVERTISE_100_FULL) {
-        DEBUGOUT("Advertise 100mb Full duplex\n");
-        mii_autoneg_adv_reg |= NWAY_AR_100TX_FD_CAPS;
-    }
-
-    /* We do not allow the Phy to advertise 1000 Mb Half Duplex */
-    if (hw->autoneg_advertised & ADVERTISE_1000_HALF) {
-        DEBUGOUT("Advertise 1000mb Half duplex requested, request denied!\n");
-    }
-
-    /* Do we want to advertise 1000 Mb Full Duplex? */
-    if (hw->autoneg_advertised & ADVERTISE_1000_FULL) {
-        DEBUGOUT("Advertise 1000mb Full duplex\n");
-        mii_1000t_ctrl_reg |= CR_1000T_FD_CAPS;
-        if (hw->phy_type == em_phy_ife) {
-            DEBUGOUT("em_phy_ife is a 10/100 PHY. Gigabit speed is not supported.\n");
-        }
-    }
-
-    /* Check for a software override of the flow control settings, and
-     * setup the PHY advertisement registers accordingly.  If
-     * auto-negotiation is enabled, then software will have to set the
-     * "PAUSE" bits to the correct value in the Auto-Negotiation
-     * Advertisement Register (PHY_AUTONEG_ADV) and re-start auto-negotiation.
-     *
-     * The possible values of the "fc" parameter are:
-     *      0:  Flow control is completely disabled
-     *      1:  Rx flow control is enabled (we can receive pause frames
-     *          but not send pause frames).
-     *      2:  Tx flow control is enabled (we can send pause frames
-     *          but we do not support receiving pause frames).
-     *      3:  Both Rx and TX flow control (symmetric) are enabled.
-     *  other:  No software override.  The flow control configuration
-     *          in the EEPROM is used.
-     */
-    switch (hw->fc) {
-    case em_fc_none: /* 0 */
-        /* Flow control (RX & TX) is completely disabled by a
-         * software over-ride.
-         */
-        mii_autoneg_adv_reg &= ~(NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
-        break;
-    case em_fc_rx_pause: /* 1 */
-        /* RX Flow control is enabled, and TX Flow control is
-         * disabled, by a software over-ride.
-         */
-        /* Since there really isn't a way to advertise that we are
-         * capable of RX Pause ONLY, we will advertise that we
-         * support both symmetric and asymmetric RX PAUSE.  Later
-         * (in em_config_fc_after_link_up) we will disable the
-         *hw's ability to send PAUSE frames.
-         */
-        mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
-        break;
-    case em_fc_tx_pause: /* 2 */
-        /* TX Flow control is enabled, and RX Flow control is
-         * disabled, by a software over-ride.
-         */
-        mii_autoneg_adv_reg |= NWAY_AR_ASM_DIR;
-        mii_autoneg_adv_reg &= ~NWAY_AR_PAUSE;
-        break;
-    case em_fc_full: /* 3 */
-        /* Flow control (both RX and TX) is enabled by a software
-         * over-ride.
-         */
-        mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
-        break;
-    default:
-        DEBUGOUT("Flow control param set incorrectly\n");
-        return -E1000_ERR_CONFIG;
-    }
-
-    ret_val = em_write_phy_reg(hw, PHY_AUTONEG_ADV, mii_autoneg_adv_reg);
-    if (ret_val)
-        return ret_val;
-
-    DEBUGOUT1("Auto-Neg Advertising %x\n", mii_autoneg_adv_reg);
-
-    if (hw->phy_type != em_phy_ife) {
-        ret_val = em_write_phy_reg(hw, PHY_1000T_CTRL, mii_1000t_ctrl_reg);
-        if (ret_val)
-            return ret_val;
-    }
-
-    return E1000_SUCCESS;
-}
-
-/******************************************************************************
-* Force PHY speed and duplex settings to hw->forced_speed_duplex
-*
-* hw - Struct containing variables accessed by shared code
-******************************************************************************/
-static int32_t
-em_phy_force_speed_duplex(struct em_hw *hw)
-{
-    uint32_t ctrl;
-    int32_t ret_val;
-    uint16_t mii_ctrl_reg;
-    uint16_t mii_status_reg;
-    uint16_t phy_data;
-    uint16_t i;
-
-    DEBUGFUNC("em_phy_force_speed_duplex");
-
-    /* Turn off Flow control if we are forcing speed and duplex. */
-    hw->fc = em_fc_none;
-
-    DEBUGOUT1("hw->fc = %d\n", hw->fc);
-
-    /* Read the Device Control Register. */
-    ctrl = E1000_READ_REG(hw, CTRL);
-
-    /* Set the bits to Force Speed and Duplex in the Device Ctrl Reg. */
-    ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
-    ctrl &= ~(DEVICE_SPEED_MASK);
-
-    /* Clear the Auto Speed Detect Enable bit. */
-    ctrl &= ~E1000_CTRL_ASDE;
-
-    /* Read the MII Control Register. */
-    ret_val = em_read_phy_reg(hw, PHY_CTRL, &mii_ctrl_reg);
-    if (ret_val)
-        return ret_val;
-
-    /* We need to disable autoneg in order to force link and duplex. */
-
-    mii_ctrl_reg &= ~MII_CR_AUTO_NEG_EN;
-
-    /* Are we forcing Full or Half Duplex? */
-    if (hw->forced_speed_duplex == em_100_full ||
-        hw->forced_speed_duplex == em_10_full) {
-        /* We want to force full duplex so we SET the full duplex bits in the
-         * Device and MII Control Registers.
-         */
-        ctrl |= E1000_CTRL_FD;
-        mii_ctrl_reg |= MII_CR_FULL_DUPLEX;
-        DEBUGOUT("Full Duplex\n");
-    } else {
-        /* We want to force half duplex so we CLEAR the full duplex bits in
-         * the Device and MII Control Registers.
-         */
-        ctrl &= ~E1000_CTRL_FD;
-        mii_ctrl_reg &= ~MII_CR_FULL_DUPLEX;
-        DEBUGOUT("Half Duplex\n");
-    }
-
-    /* Are we forcing 100Mbps??? */
-    if (hw->forced_speed_duplex == em_100_full ||
-       hw->forced_speed_duplex == em_100_half) {
-        /* Set the 100Mb bit and turn off the 1000Mb and 10Mb bits. */
-        ctrl |= E1000_CTRL_SPD_100;
-        mii_ctrl_reg |= MII_CR_SPEED_100;
-        mii_ctrl_reg &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_10);
-        DEBUGOUT("Forcing 100mb ");
-    } else {
-        /* Set the 10Mb bit and turn off the 1000Mb and 100Mb bits. */
-        ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
-        mii_ctrl_reg |= MII_CR_SPEED_10;
-        mii_ctrl_reg &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_100);
-        DEBUGOUT("Forcing 10mb ");
-    }
-
-    em_config_collision_dist(hw);
-
-    /* Write the configured values back to the Device Control Reg. */
-    E1000_WRITE_REG(hw, CTRL, ctrl);
-
-    if ((hw->phy_type == em_phy_m88) ||
-        (hw->phy_type == em_phy_gg82563)) {
-        ret_val = em_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
-        if (ret_val)
-            return ret_val;
-
-        /* Clear Auto-Crossover to force MDI manually. M88E1000 requires MDI
-         * forced whenever speed are duplex are forced.
-         */
-        phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
-        ret_val = em_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
-        if (ret_val)
-            return ret_val;
-
-        DEBUGOUT1("M88E1000 PSCR: %x \n", phy_data);
-
-        /* Need to reset the PHY or these changes will be ignored */
-        mii_ctrl_reg |= MII_CR_RESET;
-    /* Disable MDI-X support for 10/100 */
-    } else if (hw->phy_type == em_phy_ife) {
-        ret_val = em_read_phy_reg(hw, IFE_PHY_MDIX_CONTROL, &phy_data);
-        if (ret_val)
-            return ret_val;
-
-        phy_data &= ~IFE_PMC_AUTO_MDIX;
-        phy_data &= ~IFE_PMC_FORCE_MDIX;
-
-        ret_val = em_write_phy_reg(hw, IFE_PHY_MDIX_CONTROL, phy_data);
-        if (ret_val)
-            return ret_val;
-    } else {
-        /* Clear Auto-Crossover to force MDI manually.  IGP requires MDI
-         * forced whenever speed or duplex are forced.
-         */
-        ret_val = em_read_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data);
-        if (ret_val)
-            return ret_val;
-
-        phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX;
-        phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
-
-        ret_val = em_write_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, phy_data);
-        if (ret_val)
-            return ret_val;
-    }
-
-    /* Write back the modified PHY MII control register. */
-    ret_val = em_write_phy_reg(hw, PHY_CTRL, mii_ctrl_reg);
-    if (ret_val)
-        return ret_val;
-
-    usec_delay(1);
-
-    /* The wait_autoneg_complete flag may be a little misleading here.
-     * Since we are forcing speed and duplex, Auto-Neg is not enabled.
-     * But we do want to delay for a period while forcing only so we
-     * don't generate false No Link messages.  So we will wait here
-     * only if the user has set wait_autoneg_complete to 1, which is
-     * the default.
-     */
-    if (hw->wait_autoneg_complete) {
-        /* We will wait for autoneg to complete. */
-        DEBUGOUT("Waiting for forced speed/duplex link.\n");
-        mii_status_reg = 0;
-
-        /* We will wait for autoneg to complete or 4.5 seconds to expire. */
-        for (i = PHY_FORCE_TIME; i > 0; i--) {
-            /* Read the MII Status Register and wait for Auto-Neg Complete bit
-             * to be set.
-             */
-            ret_val = em_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
-            if (ret_val)
-                return ret_val;
-
-            ret_val = em_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
-            if (ret_val)
-                return ret_val;
-
-            if (mii_status_reg & MII_SR_LINK_STATUS) break;
-            msec_delay(100);
-        }
-        if ((i == 0) &&
-           ((hw->phy_type == em_phy_m88) ||
-            (hw->phy_type == em_phy_gg82563))) {
-            /* We didn't get link.  Reset the DSP and wait again for link. */
-            ret_val = em_phy_reset_dsp(hw);
-            if (ret_val) {
-                DEBUGOUT("Error Resetting PHY DSP\n");
-                return ret_val;
-            }
-        }
-        /* This loop will early-out if the link condition has been met.  */
-        for (i = PHY_FORCE_TIME; i > 0; i--) {
-            if (mii_status_reg & MII_SR_LINK_STATUS) break;
-            msec_delay(100);
-            /* Read the MII Status Register and wait for Auto-Neg Complete bit
-             * to be set.
-             */
-            ret_val = em_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
-            if (ret_val)
-                return ret_val;
-
-            ret_val = em_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
-            if (ret_val)
-                return ret_val;
-        }
-    }
-
-    if (hw->phy_type == em_phy_m88) {
-        /* Because we reset the PHY above, we need to re-force TX_CLK in the
-         * Extended PHY Specific Control Register to 25MHz clock.  This value
-         * defaults back to a 2.5MHz clock when the PHY is reset.
-         */
-        ret_val = em_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data);
-        if (ret_val)
-            return ret_val;
-
-        phy_data |= M88E1000_EPSCR_TX_CLK_25;
-        ret_val = em_write_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
-        if (ret_val)
-            return ret_val;
-
-        /* In addition, because of the s/w reset above, we need to enable CRS on
-         * TX.  This must be set for both full and half duplex operation.
-         */
-        ret_val = em_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
-        if (ret_val)
-            return ret_val;
-
-        phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
-        ret_val = em_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
-        if (ret_val)
-            return ret_val;
-
-        if ((hw->mac_type == em_82544 || hw->mac_type == em_82543) &&
-            (!hw->autoneg) && (hw->forced_speed_duplex == em_10_full ||
-             hw->forced_speed_duplex == em_10_half)) {
-            ret_val = em_polarity_reversal_workaround(hw);
-            if (ret_val)
-                return ret_val;
-        }
-    } else if (hw->phy_type == em_phy_gg82563) {
-        /* The TX_CLK of the Extended PHY Specific Control Register defaults
-         * to 2.5MHz on a reset.  We need to re-force it back to 25MHz, if
-         * we're not in a forced 10/duplex configuration. */
-        ret_val = em_read_phy_reg(hw, GG82563_PHY_MAC_SPEC_CTRL, &phy_data);
-        if (ret_val)
-            return ret_val;
-
-        phy_data &= ~GG82563_MSCR_TX_CLK_MASK;
-        if ((hw->forced_speed_duplex == em_10_full) ||
-            (hw->forced_speed_duplex == em_10_half))
-            phy_data |= GG82563_MSCR_TX_CLK_10MBPS_2_5MHZ;
-        else
-            phy_data |= GG82563_MSCR_TX_CLK_100MBPS_25MHZ;
-
-        /* Also due to the reset, we need to enable CRS on Tx. */
-        phy_data |= GG82563_MSCR_ASSERT_CRS_ON_TX;
-
-        ret_val = em_write_phy_reg(hw, GG82563_PHY_MAC_SPEC_CTRL, phy_data);
-        if (ret_val)
-            return ret_val;
-    }
-    return E1000_SUCCESS;
-}
-
-/******************************************************************************
-* Sets the collision distance in the Transmit Control register
-*
-* hw - Struct containing variables accessed by shared code
-*
-* Link should have been established previously. Reads the speed and duplex
-* information from the Device Status register.
-******************************************************************************/
-void
-em_config_collision_dist(struct em_hw *hw)
-{
-    uint32_t tctl, coll_dist;
-
-    DEBUGFUNC("em_config_collision_dist");
-
-    if (hw->mac_type < em_82543)
-        coll_dist = E1000_COLLISION_DISTANCE_82542;
-    else
-        coll_dist = E1000_COLLISION_DISTANCE;
-
-    tctl = E1000_READ_REG(hw, TCTL);
-
-    tctl &= ~E1000_TCTL_COLD;
-    tctl |= coll_dist << E1000_COLD_SHIFT;
-
-    E1000_WRITE_REG(hw, TCTL, tctl);
-    E1000_WRITE_FLUSH(hw);
-}
-
-/******************************************************************************
-* Sets MAC speed and duplex settings to reflect the those in the PHY
-*
-* hw - Struct containing variables accessed by shared code
-* mii_reg - data to write to the MII control register
-*
-* The contents of the PHY register containing the needed information need to
-* be passed in.
-******************************************************************************/
-static int32_t
-em_config_mac_to_phy(struct em_hw *hw)
-{
-    uint32_t ctrl;
-    int32_t ret_val;
-    uint16_t phy_data;
-
-    DEBUGFUNC("em_config_mac_to_phy");
-
-    /* 82544 or newer MAC, Auto Speed Detection takes care of
-    * MAC speed/duplex configuration.*/
-    if (hw->mac_type >= em_82544)
-        return E1000_SUCCESS;
-
-    /* Read the Device Control Register and set the bits to Force Speed
-     * and Duplex.
-     */
-    ctrl = E1000_READ_REG(hw, CTRL);
-    ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
-    ctrl &= ~(E1000_CTRL_SPD_SEL | E1000_CTRL_ILOS);
-
-    /* Set up duplex in the Device Control and Transmit Control
-     * registers depending on negotiated values.
-     */
-    ret_val = em_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
-    if (ret_val)
-        return ret_val;
-
-    if (phy_data & M88E1000_PSSR_DPLX)
-        ctrl |= E1000_CTRL_FD;
-    else
-        ctrl &= ~E1000_CTRL_FD;
-
-    em_config_collision_dist(hw);
-
-    /* Set up speed in the Device Control register depending on
-     * negotiated values.
-     */
-    if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS)
-        ctrl |= E1000_CTRL_SPD_1000;
-    else if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_100MBS)
-        ctrl |= E1000_CTRL_SPD_100;
-
-    /* Write the configured values back to the Device Control Reg. */
-    E1000_WRITE_REG(hw, CTRL, ctrl);
-    return E1000_SUCCESS;
-}
-
-/******************************************************************************
- * Forces the MAC's flow control settings.
- *
- * hw - Struct containing variables accessed by shared code
- *
- * Sets the TFCE and RFCE bits in the device control register to reflect
- * the adapter settings. TFCE and RFCE need to be explicitly set by
- * software when a Copper PHY is used because autonegotiation is managed
- * by the PHY rather than the MAC. Software must also configure these
- * bits when link is forced on a fiber connection.
- *****************************************************************************/
-int32_t
-em_force_mac_fc(struct em_hw *hw)
-{
-    uint32_t ctrl;
-
-    DEBUGFUNC("em_force_mac_fc");
-
-    /* Get the current configuration of the Device Control Register */
-    ctrl = E1000_READ_REG(hw, CTRL);
-
-    /* Because we didn't get link via the internal auto-negotiation
-     * mechanism (we either forced link or we got link via PHY
-     * auto-neg), we have to manually enable/disable transmit an
-     * receive flow control.
-     *
-     * The "Case" statement below enables/disable flow control
-     * according to the "hw->fc" parameter.
-     *
-     * The possible values of the "fc" parameter are:
-     *      0:  Flow control is completely disabled
-     *      1:  Rx flow control is enabled (we can receive pause
-     *          frames but not send pause frames).
-     *      2:  Tx flow control is enabled (we can send pause frames
-     *          frames but we do not receive pause frames).
-     *      3:  Both Rx and TX flow control (symmetric) is enabled.
-     *  other:  No other values should be possible at this point.
-     */
-
-    switch (hw->fc) {
-    case em_fc_none:
-        ctrl &= (~(E1000_CTRL_TFCE | E1000_CTRL_RFCE));
-        break;
-    case em_fc_rx_pause:
-        ctrl &= (~E1000_CTRL_TFCE);
-        ctrl |= E1000_CTRL_RFCE;
-        break;
-    case em_fc_tx_pause:
-        ctrl &= (~E1000_CTRL_RFCE);
-        ctrl |= E1000_CTRL_TFCE;
-        break;
-    case em_fc_full:
-        ctrl |= (E1000_CTRL_TFCE | E1000_CTRL_RFCE);
-        break;
-    default:
-        DEBUGOUT("Flow control param set incorrectly\n");
-        return -E1000_ERR_CONFIG;
-    }
-
-    /* Disable TX Flow Control for 82542 (rev 2.0) */
-    if (hw->mac_type == em_82542_rev2_0)
-        ctrl &= (~E1000_CTRL_TFCE);
-
-    E1000_WRITE_REG(hw, CTRL, ctrl);
-    return E1000_SUCCESS;
-}
-
-/******************************************************************************
- * Configures flow control settings after link is established
- *
- * hw - Struct containing variables accessed by shared code
- *
- * Should be called immediately after a valid link has been established.
- * Forces MAC flow control settings if link was forced. When in MII/GMII mode
- * and autonegotiation is enabled, the MAC flow control settings will be set
- * based on the flow control negotiated by the PHY. In TBI mode, the TFCE
- * and RFCE bits will be automaticaly set to the negotiated flow control mode.
- *****************************************************************************/
-int32_t
-em_config_fc_after_link_up(struct em_hw *hw)
-{
-    int32_t ret_val;
-    uint16_t mii_status_reg;
-    uint16_t mii_nway_adv_reg;
-    uint16_t mii_nway_lp_ability_reg;
-    uint16_t speed;
-    uint16_t duplex;
-
-    DEBUGFUNC("em_config_fc_after_link_up");
-
-    /* Check for the case where we have fiber media and auto-neg failed
-     * so we had to force link.  In this case, we need to force the
-     * configuration of the MAC to match the "fc" parameter.
-     */
-    if (((hw->media_type == em_media_type_fiber) && (hw->autoneg_failed)) ||
-        ((hw->media_type == em_media_type_internal_serdes) &&
-         (hw->autoneg_failed)) ||
-        ((hw->media_type == em_media_type_copper) && (!hw->autoneg))) {
-        ret_val = em_force_mac_fc(hw);
-        if (ret_val) {
-            DEBUGOUT("Error forcing flow control settings\n");
-            return ret_val;
-        }
-    }
-
-    /* Check for the case where we have copper media and auto-neg is
-     * enabled.  In this case, we need to check and see if Auto-Neg
-     * has completed, and if so, how the PHY and link partner has
-     * flow control configured.
-     */
-    if ((hw->media_type == em_media_type_copper) && hw->autoneg) {
-        /* Read the MII Status Register and check to see if AutoNeg
-         * has completed.  We read this twice because this reg has
-         * some "sticky" (latched) bits.
-         */
-        ret_val = em_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
-        if (ret_val)
-            return ret_val;
-        ret_val = em_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
-        if (ret_val)
-            return ret_val;
-
-        if (mii_status_reg & MII_SR_AUTONEG_COMPLETE) {
-            /* The AutoNeg process has completed, so we now need to
-             * read both the Auto Negotiation Advertisement Register
-             * (Address 4) and the Auto_Negotiation Base Page Ability
-             * Register (Address 5) to determine how flow control was
-             * negotiated.
-             */
-            ret_val = em_read_phy_reg(hw, PHY_AUTONEG_ADV,
-                                         &mii_nway_adv_reg);
-            if (ret_val)
-                return ret_val;
-            ret_val = em_read_phy_reg(hw, PHY_LP_ABILITY,
-                                         &mii_nway_lp_ability_reg);
-            if (ret_val)
-                return ret_val;
-
-            /* Two bits in the Auto Negotiation Advertisement Register
-             * (Address 4) and two bits in the Auto Negotiation Base
-             * Page Ability Register (Address 5) determine flow control
-             * for both the PHY and the link partner.  The following
-             * table, taken out of the IEEE 802.3ab/D6.0 dated March 25,
-             * 1999, describes these PAUSE resolution bits and how flow
-             * control is determined based upon these settings.
-             * NOTE:  DC = Don't Care
-             *
-             *   LOCAL DEVICE  |   LINK PARTNER
-             * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution
-             *-------|---------|-------|---------|--------------------
-             *   0   |    0    |  DC   |   DC    | em_fc_none
-             *   0   |    1    |   0   |   DC    | em_fc_none
-             *   0   |    1    |   1   |    0    | em_fc_none
-             *   0   |    1    |   1   |    1    | em_fc_tx_pause
-             *   1   |    0    |   0   |   DC    | em_fc_none
-             *   1   |   DC    |   1   |   DC    | em_fc_full
-             *   1   |    1    |   0   |    0    | em_fc_none
-             *   1   |    1    |   0   |    1    | em_fc_rx_pause
-             *
-             */
-            /* Are both PAUSE bits set to 1?  If so, this implies
-             * Symmetric Flow Control is enabled at both ends.  The
-             * ASM_DIR bits are irrelevant per the spec.
-             *
-             * For Symmetric Flow Control:
-             *
-             *   LOCAL DEVICE  |   LINK PARTNER
-             * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
-             *-------|---------|-------|---------|--------------------
-             *   1   |   DC    |   1   |   DC    | em_fc_full
-             *
-             */
-            if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
-                (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE)) {
-                /* Now we need to check if the user selected RX ONLY
-                 * of pause frames.  In this case, we had to advertise
-                 * FULL flow control because we could not advertise RX
-                 * ONLY. Hence, we must now check to see if we need to
-                 * turn OFF  the TRANSMISSION of PAUSE frames.
-                 */
-                if (hw->original_fc == em_fc_full) {
-                    hw->fc = em_fc_full;
-                    DEBUGOUT("Flow Control = FULL.\n");
-                } else {
-                    hw->fc = em_fc_rx_pause;
-                    DEBUGOUT("Flow Control = RX PAUSE frames only.\n");
-                }
-            }
-            /* For receiving PAUSE frames ONLY.
-             *
-             *   LOCAL DEVICE  |   LINK PARTNER
-             * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
-             *-------|---------|-------|---------|--------------------
-             *   0   |    1    |   1   |    1    | em_fc_tx_pause
-             *
-             */
-            else if (!(mii_nway_adv_reg & NWAY_AR_PAUSE) &&
-                     (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
-                     (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
-                     (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) {
-                hw->fc = em_fc_tx_pause;
-                DEBUGOUT("Flow Control = TX PAUSE frames only.\n");
-            }
-            /* For transmitting PAUSE frames ONLY.
-             *
-             *   LOCAL DEVICE  |   LINK PARTNER
-             * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
-             *-------|---------|-------|---------|--------------------
-             *   1   |    1    |   0   |    1    | em_fc_rx_pause
-             *
-             */
-            else if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
-                     (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
-                     !(mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
-                     (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) {
-                hw->fc = em_fc_rx_pause;
-                DEBUGOUT("Flow Control = RX PAUSE frames only.\n");
-            }
-            /* Per the IEEE spec, at this point flow control should be
-             * disabled.  However, we want to consider that we could
-             * be connected to a legacy switch that doesn't advertise
-             * desired flow control, but can be forced on the link
-             * partner.  So if we advertised no flow control, that is
-             * what we will resolve to.  If we advertised some kind of
-             * receive capability (Rx Pause Only or Full Flow Control)
-             * and the link partner advertised none, we will configure
-             * ourselves to enable Rx Flow Control only.  We can do
-             * this safely for two reasons:  If the link partner really
-             * didn't want flow control enabled, and we enable Rx, no
-             * harm done since we won't be receiving any PAUSE frames
-             * anyway.  If the intent on the link partner was to have
-             * flow control enabled, then by us enabling RX only, we
-             * can at least receive pause frames and process them.
-             * This is a good idea because in most cases, since we are
-             * predominantly a server NIC, more times than not we will
-             * be asked to delay transmission of packets than asking
-             * our link partner to pause transmission of frames.
-             */
-            else if ((hw->original_fc == em_fc_none ||
-                      hw->original_fc == em_fc_tx_pause) ||
-                      hw->fc_strict_ieee) {
-                hw->fc = em_fc_none;
-                DEBUGOUT("Flow Control = NONE.\n");
-            } else {
-                hw->fc = em_fc_rx_pause;
-                DEBUGOUT("Flow Control = RX PAUSE frames only.\n");
-            }
-
-            /* Now we need to do one last check...  If we auto-
-             * negotiated to HALF DUPLEX, flow control should not be
-             * enabled per IEEE 802.3 spec.
-             */
-            ret_val = em_get_speed_and_duplex(hw, &speed, &duplex);
-            if (ret_val) {
-                DEBUGOUT("Error getting link speed and duplex\n");
-                return ret_val;
-            }
-
-            if (duplex == HALF_DUPLEX)
-                hw->fc = em_fc_none;
-
-            /* Now we call a subroutine to actually force the MAC
-             * controller to use the correct flow control settings.
-             */
-            ret_val = em_force_mac_fc(hw);
-            if (ret_val) {
-                DEBUGOUT("Error forcing flow control settings\n");
-                return ret_val;
-            }
-        } else {
-            DEBUGOUT("Copper PHY and Auto Neg has not completed.\n");
-        }
-    }
-    return E1000_SUCCESS;
-}
-
-/******************************************************************************
- * Checks to see if the link status of the hardware has changed.
- *
- * hw - Struct containing variables accessed by shared code
- *
- * Called by any function that needs to check the link status of the adapter.
- *****************************************************************************/
-int32_t
-em_check_for_link(struct em_hw *hw)
-{
-    uint32_t rxcw = 0;
-    uint32_t ctrl;
-    uint32_t status;
-    uint32_t rctl;
-    uint32_t icr;
-    uint32_t signal = 0;
-    int32_t ret_val;
-    uint16_t phy_data;
-
-    DEBUGFUNC("em_check_for_link");
-
-    ctrl = E1000_READ_REG(hw, CTRL);
-    status = E1000_READ_REG(hw, STATUS);
-
-    /* On adapters with a MAC newer than 82544, SW Defineable pin 1 will be
-     * set when the optics detect a signal. On older adapters, it will be
-     * cleared when there is a signal.  This applies to fiber media only.
-     */
-    if ((hw->media_type == em_media_type_fiber) ||
-        (hw->media_type == em_media_type_internal_serdes)) {
-        rxcw = E1000_READ_REG(hw, RXCW);
-
-        if (hw->media_type == em_media_type_fiber) {
-            signal = (hw->mac_type > em_82544) ? E1000_CTRL_SWDPIN1 : 0;
-            if (status & E1000_STATUS_LU)
-                hw->get_link_status = FALSE;
-        }
-    }
-
-    /* If we have a copper PHY then we only want to go out to the PHY
-     * registers to see if Auto-Neg has completed and/or if our link
-     * status has changed.  The get_link_status flag will be set if we
-     * receive a Link Status Change interrupt or we have Rx Sequence
-     * Errors.
-     */
-    if ((hw->media_type == em_media_type_copper) && hw->get_link_status) {
-        /* First we want to see if the MII Status Register reports
-         * link.  If so, then we want to get the current speed/duplex
-         * of the PHY.
-         * Read the register twice since the link bit is sticky.
-         */
-        ret_val = em_read_phy_reg(hw, PHY_STATUS, &phy_data);
-        if (ret_val)
-            return ret_val;
-        ret_val = em_read_phy_reg(hw, PHY_STATUS, &phy_data);
-        if (ret_val)
-            return ret_val;
-
-        if (phy_data & MII_SR_LINK_STATUS) {
-            hw->get_link_status = FALSE;
-            /* Check if there was DownShift, must be checked immediately after
-             * link-up */
-            em_check_downshift(hw);
-
-            /* If we are on 82544 or 82543 silicon and speed/duplex
-             * are forced to 10H or 10F, then we will implement the polarity
-             * reversal workaround.  We disable interrupts first, and upon
-             * returning, place the devices interrupt state to its previous
-             * value except for the link status change interrupt which will
-             * happen due to the execution of this workaround.
-             */
-
-            if ((hw->mac_type == em_82544 || hw->mac_type == em_82543) &&
-                (!hw->autoneg) &&
-                (hw->forced_speed_duplex == em_10_full ||
-                 hw->forced_speed_duplex == em_10_half)) {
-                E1000_WRITE_REG(hw, IMC, 0xffffffff);
-                ret_val = em_polarity_reversal_workaround(hw);
-                icr = E1000_READ_REG(hw, ICR);
-                E1000_WRITE_REG(hw, ICS, (icr & ~E1000_ICS_LSC));
-                E1000_WRITE_REG(hw, IMS, IMS_ENABLE_MASK);
-            }
-
-        } else {
-            /* No link detected */
-            em_config_dsp_after_link_change(hw, FALSE);
-            return 0;
-        }
-
-        /* If we are forcing speed/duplex, then we simply return since
-         * we have already determined whether we have link or not.
-         */
-        if (!hw->autoneg) return -E1000_ERR_CONFIG;
-
-        /* optimize the dsp settings for the igp phy */
-        em_config_dsp_after_link_change(hw, TRUE);
-
-        /* We have a M88E1000 PHY and Auto-Neg is enabled.  If we
-         * have Si on board that is 82544 or newer, Auto
-         * Speed Detection takes care of MAC speed/duplex
-         * configuration.  So we only need to configure Collision
-         * Distance in the MAC.  Otherwise, we need to force
-         * speed/duplex on the MAC to the current PHY speed/duplex
-         * settings.
-         */
-        if (hw->mac_type >= em_82544)
-            em_config_collision_dist(hw);
-        else {
-            ret_val = em_config_mac_to_phy(hw);
-            if (ret_val) {
-                DEBUGOUT("Error configuring MAC to PHY settings\n");
-                return ret_val;
-            }
-        }
-
-        /* Configure Flow Control now that Auto-Neg has completed. First, we
-         * need to restore the desired flow control settings because we may
-         * have had to re-autoneg with a different link partner.
-         */
-        ret_val = em_config_fc_after_link_up(hw);
-        if (ret_val) {
-            DEBUGOUT("Error configuring flow control\n");
-            return ret_val;
-        }
-
-        /* At this point we know that we are on copper and we have
-         * auto-negotiated link.  These are conditions for checking the link
-         * partner capability register.  We use the link speed to determine if
-         * TBI compatibility needs to be turned on or off.  If the link is not
-         * at gigabit speed, then TBI compatibility is not needed.  If we are
-         * at gigabit speed, we turn on TBI compatibility.
-         */
-        if (hw->tbi_compatibility_en) {
-            uint16_t speed, duplex;
-            ret_val = em_get_speed_and_duplex(hw, &speed, &duplex);
-            if (ret_val) {
-                DEBUGOUT("Error getting link speed and duplex\n");
-                return ret_val;
-            }
-            if (speed != SPEED_1000) {
-                /* If link speed is not set to gigabit speed, we do not need
-                 * to enable TBI compatibility.
-                 */
-                if (hw->tbi_compatibility_on) {
-                    /* If we previously were in the mode, turn it off. */
-                    rctl = E1000_READ_REG(hw, RCTL);
-                    rctl &= ~E1000_RCTL_SBP;
-                    E1000_WRITE_REG(hw, RCTL, rctl);
-                    hw->tbi_compatibility_on = FALSE;
-                }
-            } else {
-                /* If TBI compatibility is was previously off, turn it on. For
-                 * compatibility with a TBI link partner, we will store bad
-                 * packets. Some frames have an additional byte on the end and
-                 * will look like CRC errors to to the hardware.
-                 */
-                if (!hw->tbi_compatibility_on) {
-                    hw->tbi_compatibility_on = TRUE;
-                    rctl = E1000_READ_REG(hw, RCTL);
-                    rctl |= E1000_RCTL_SBP;
-                    E1000_WRITE_REG(hw, RCTL, rctl);
-                }
-            }
-        }
-    }
-    /* If we don't have link (auto-negotiation failed or link partner cannot
-     * auto-negotiate), the cable is plugged in (we have signal), and our
-     * link partner is not trying to auto-negotiate with us (we are receiving
-     * idles or data), we need to force link up. We also need to give
-     * auto-negotiation time to complete, in case the cable was just plugged
-     * in. The autoneg_failed flag does this.
-     */
-    else if ((((hw->media_type == em_media_type_fiber) &&
-              ((ctrl & E1000_CTRL_SWDPIN1) == signal)) ||
-              (hw->media_type == em_media_type_internal_serdes)) &&
-              (!(status & E1000_STATUS_LU)) &&
-              (!(rxcw & E1000_RXCW_C))) {
-        if (hw->autoneg_failed == 0) {
-            hw->autoneg_failed = 1;
-            return 0;
-        }
-        DEBUGOUT("NOT RXing /C/, disable AutoNeg and force link.\n");
-
-        /* Disable auto-negotiation in the TXCW register */
-        E1000_WRITE_REG(hw, TXCW, (hw->txcw & ~E1000_TXCW_ANE));
-
-        /* Force link-up and also force full-duplex. */
-        ctrl = E1000_READ_REG(hw, CTRL);
-        ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD);
-        E1000_WRITE_REG(hw, CTRL, ctrl);
-
-        /* Configure Flow Control after forcing link up. */
-        ret_val = em_config_fc_after_link_up(hw);
-        if (ret_val) {
-            DEBUGOUT("Error configuring flow control\n");
-            return ret_val;
-        }
-    }
-    /* If we are forcing link and we are receiving /C/ ordered sets, re-enable
-     * auto-negotiation in the TXCW register and disable forced link in the
-     * Device Control register in an attempt to auto-negotiate with our link
-     * partner.
-     */
-    else if (((hw->media_type == em_media_type_fiber) ||
-              (hw->media_type == em_media_type_internal_serdes)) &&
-              (ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) {
-        DEBUGOUT("RXing /C/, enable AutoNeg and stop forcing link.\n");
-        E1000_WRITE_REG(hw, TXCW, hw->txcw);
-        E1000_WRITE_REG(hw, CTRL, (ctrl & ~E1000_CTRL_SLU));
-
-        hw->serdes_link_down = FALSE;
-    }
-    /* If we force link for non-auto-negotiation switch, check link status
-     * based on MAC synchronization for internal serdes media type.
-     */
-    else if ((hw->media_type == em_media_type_internal_serdes) &&
-             !(E1000_TXCW_ANE & E1000_READ_REG(hw, TXCW))) {
-        /* SYNCH bit and IV bit are sticky. */
-        usec_delay(10);
-        if (E1000_RXCW_SYNCH & E1000_READ_REG(hw, RXCW)) {
-            if (!(rxcw & E1000_RXCW_IV)) {
-                hw->serdes_link_down = FALSE;
-                DEBUGOUT("SERDES: Link is up.\n");
-            }
-        } else {
-            hw->serdes_link_down = TRUE;
-            DEBUGOUT("SERDES: Link is down.\n");
-        }
-    }
-    if ((hw->media_type == em_media_type_internal_serdes) &&
-        (E1000_TXCW_ANE & E1000_READ_REG(hw, TXCW))) {
-        hw->serdes_link_down = !(E1000_STATUS_LU & E1000_READ_REG(hw, STATUS));
-    }
-    return E1000_SUCCESS;
-}
-
-/******************************************************************************
- * Detects the current speed and duplex settings of the hardware.
- *
- * hw - Struct containing variables accessed by shared code
- * speed - Speed of the connection
- * duplex - Duplex setting of the connection
- *****************************************************************************/
-int32_t
-em_get_speed_and_duplex(struct em_hw *hw,
-                           uint16_t *speed,
-                           uint16_t *duplex)
-{
-    uint32_t status;
-    int32_t ret_val;
-    uint16_t phy_data;
-
-    DEBUGFUNC("em_get_speed_and_duplex");
-
-    if (hw->mac_type >= em_82543) {
-        status = E1000_READ_REG(hw, STATUS);
-        if (status & E1000_STATUS_SPEED_1000) {
-            *speed = SPEED_1000;
-            DEBUGOUT("1000 Mbs, ");
-        } else if (status & E1000_STATUS_SPEED_100) {
-            *speed = SPEED_100;
-            DEBUGOUT("100 Mbs, ");
-        } else {
-            *speed = SPEED_10;
-            DEBUGOUT("10 Mbs, ");
-        }
-
-        if (status & E1000_STATUS_FD) {
-            *duplex = FULL_DUPLEX;
-            DEBUGOUT("Full Duplex\n");
-        } else {
-            *duplex = HALF_DUPLEX;
-            DEBUGOUT(" Half Duplex\n");
-        }
-    } else {
-        DEBUGOUT("1000 Mbs, Full Duplex\n");
-        *speed = SPEED_1000;
-        *duplex = FULL_DUPLEX;
-    }
-
-    /* IGP01 PHY may advertise full duplex operation after speed downgrade even
-     * if it is operating at half duplex.  Here we set the duplex settings to
-     * match the duplex in the link partner's capabilities.
-     */
-    if (hw->phy_type == em_phy_igp && hw->speed_downgraded) {
-        ret_val = em_read_phy_reg(hw, PHY_AUTONEG_EXP, &phy_data);
-        if (ret_val)
-            return ret_val;
-
-        if (!(phy_data & NWAY_ER_LP_NWAY_CAPS))
-            *duplex = HALF_DUPLEX;
-        else {
-            ret_val = em_read_phy_reg(hw, PHY_LP_ABILITY, &phy_data);
-            if (ret_val)
-                return ret_val;
-            if ((*speed == SPEED_100 && !(phy_data & NWAY_LPAR_100TX_FD_CAPS)) ||
-               (*speed == SPEED_10 && !(phy_data & NWAY_LPAR_10T_FD_CAPS)))
-                *duplex = HALF_DUPLEX;
-        }
-    }
-
-    if ((hw->mac_type == em_80003es2lan) &&
-        (hw->media_type == em_media_type_copper)) {
-        if (*speed == SPEED_1000)
-            ret_val = em_configure_kmrn_for_1000(hw);
-        else
-            ret_val = em_configure_kmrn_for_10_100(hw, *duplex);
-        if (ret_val)
-            return ret_val;
-    }
-
-    if ((hw->phy_type == em_phy_igp_3) && (*speed == SPEED_1000)) {
-        ret_val = em_kumeran_lock_loss_workaround(hw);
-        if (ret_val)
-            return ret_val;
-    }
-
-    return E1000_SUCCESS;
-}
-
-/******************************************************************************
-* Blocks until autoneg completes or times out (~4.5 seconds)
-*
-* hw - Struct containing variables accessed by shared code
-******************************************************************************/
-int32_t
-em_wait_autoneg(struct em_hw *hw)
-{
-    int32_t ret_val;
-    uint16_t i;
-    uint16_t phy_data;
-
-    DEBUGFUNC("em_wait_autoneg");
-    DEBUGOUT("Waiting for Auto-Neg to complete.\n");
-
-    /* We will wait for autoneg to complete or 4.5 seconds to expire. */
-    for (i = PHY_AUTO_NEG_TIME; i > 0; i--) {
-        /* Read the MII Status Register and wait for Auto-Neg
-         * Complete bit to be set.
-         */
-        ret_val = em_read_phy_reg(hw, PHY_STATUS, &phy_data);
-        if (ret_val)
-            return ret_val;
-        ret_val = em_read_phy_reg(hw, PHY_STATUS, &phy_data);
-        if (ret_val)
-            return ret_val;
-        if (phy_data & MII_SR_AUTONEG_COMPLETE) {
-            return E1000_SUCCESS;
-        }
-        msec_delay(100);
-    }
-    return E1000_SUCCESS;
-}
-
-/******************************************************************************
-* Raises the Management Data Clock
-*
-* hw - Struct containing variables accessed by shared code
-* ctrl - Device control register's current value
-******************************************************************************/
-static void
-em_raise_mdi_clk(struct em_hw *hw,
-                    uint32_t *ctrl)
-{
-    /* Raise the clock input to the Management Data Clock (by setting the MDC
-     * bit), and then delay 10 microseconds.
-     */
-    E1000_WRITE_REG(hw, CTRL, (*ctrl | E1000_CTRL_MDC));
-    E1000_WRITE_FLUSH(hw);
-    usec_delay(10);
-}
-
-/******************************************************************************
-* Lowers the Management Data Clock
-*
-* hw - Struct containing variables accessed by shared code
-* ctrl - Device control register's current value
-******************************************************************************/
-static void
-em_lower_mdi_clk(struct em_hw *hw,
-                    uint32_t *ctrl)
-{
-    /* Lower the clock input to the Management Data Clock (by clearing the MDC
-     * bit), and then delay 10 microseconds.
-     */
-    E1000_WRITE_REG(hw, CTRL, (*ctrl & ~E1000_CTRL_MDC));
-    E1000_WRITE_FLUSH(hw);
-    usec_delay(10);
-}
-
-/******************************************************************************
-* Shifts data bits out to the PHY
-*
-* hw - Struct containing variables accessed by shared code
-* data - Data to send out to the PHY
-* count - Number of bits to shift out
-*
-* Bits are shifted out in MSB to LSB order.
-******************************************************************************/
-static void
-em_shift_out_mdi_bits(struct em_hw *hw,
-                         uint32_t data,
-                         uint16_t count)
-{
-    uint32_t ctrl;
-    uint32_t mask;
-
-    /* We need to shift "count" number of bits out to the PHY. So, the value
-     * in the "data" parameter will be shifted out to the PHY one bit at a
-     * time. In order to do this, "data" must be broken down into bits.
-     */
-    mask = 0x01;
-    mask <<= (count - 1);
-
-    ctrl = E1000_READ_REG(hw, CTRL);
-
-    /* Set MDIO_DIR and MDC_DIR direction bits to be used as output pins. */
-    ctrl |= (E1000_CTRL_MDIO_DIR | E1000_CTRL_MDC_DIR);
-
-    while (mask) {
-        /* A "1" is shifted out to the PHY by setting the MDIO bit to "1" and
-         * then raising and lowering the Management Data Clock. A "0" is
-         * shifted out to the PHY by setting the MDIO bit to "0" and then
-         * raising and lowering the clock.
-         */
-        if (data & mask)
-            ctrl |= E1000_CTRL_MDIO;
-        else
-            ctrl &= ~E1000_CTRL_MDIO;
-
-        E1000_WRITE_REG(hw, CTRL, ctrl);
-        E1000_WRITE_FLUSH(hw);
-
-        usec_delay(10);
-
-        em_raise_mdi_clk(hw, &ctrl);
-        em_lower_mdi_clk(hw, &ctrl);
-
-        mask = mask >> 1;
-    }
-}
-
-/******************************************************************************
-* Shifts data bits in from the PHY
-*
-* hw - Struct containing variables accessed by shared code
-*
-* Bits are shifted in in MSB to LSB order.
-******************************************************************************/
-static uint16_t
-em_shift_in_mdi_bits(struct em_hw *hw)
-{
-    uint32_t ctrl;
-    uint16_t data = 0;
-    uint8_t i;
-
-    /* In order to read a register from the PHY, we need to shift in a total
-     * of 18 bits from the PHY. The first two bit (turnaround) times are used
-     * to avoid contention on the MDIO pin when a read operation is performed.
-     * These two bits are ignored by us and thrown away. Bits are "shifted in"
-     * by raising the input to the Management Data Clock (setting the MDC bit),
-     * and then reading the value of the MDIO bit.
-     */
-    ctrl = E1000_READ_REG(hw, CTRL);
-
-    /* Clear MDIO_DIR (SWDPIO1) to indicate this bit is to be used as input. */
-    ctrl &= ~E1000_CTRL_MDIO_DIR;
-    ctrl &= ~E1000_CTRL_MDIO;
-
-    E1000_WRITE_REG(hw, CTRL, ctrl);
-    E1000_WRITE_FLUSH(hw);
-
-    /* Raise and Lower the clock before reading in the data. This accounts for
-     * the turnaround bits. The first clock occurred when we clocked out the
-     * last bit of the Register Address.
-     */
-    em_raise_mdi_clk(hw, &ctrl);
-    em_lower_mdi_clk(hw, &ctrl);
-
-    for (data = 0, i = 0; i < 16; i++) {
-        data = data << 1;
-        em_raise_mdi_clk(hw, &ctrl);
-        ctrl = E1000_READ_REG(hw, CTRL);
-        /* Check to see if we shifted in a "1". */
-        if (ctrl & E1000_CTRL_MDIO)
-            data |= 1;
-        em_lower_mdi_clk(hw, &ctrl);
-    }
-
-    em_raise_mdi_clk(hw, &ctrl);
-    em_lower_mdi_clk(hw, &ctrl);
-
-    return data;
-}
-
-int32_t
-em_swfw_sync_acquire(struct em_hw *hw, uint16_t mask)
-{
-    uint32_t swfw_sync = 0;
-    uint32_t swmask = mask;
-    uint32_t fwmask = mask << 16;
-    int32_t timeout = 200;
-
-    DEBUGFUNC("em_swfw_sync_acquire");
-
-    if (hw->swfwhw_semaphore_present)
-        return em_get_software_flag(hw);
-
-    if (!hw->swfw_sync_present)
-        return em_get_hw_eeprom_semaphore(hw);
-
-    while (timeout) {
-            if (em_get_hw_eeprom_semaphore(hw))
-                return -E1000_ERR_SWFW_SYNC;
-
-            swfw_sync = E1000_READ_REG(hw, SW_FW_SYNC);
-            if (!(swfw_sync & (fwmask | swmask))) {
-                break;
-            }
-
-            /* firmware currently using resource (fwmask) */
-            /* or other software thread currently using resource (swmask) */
-            em_put_hw_eeprom_semaphore(hw);
-            msec_delay_irq(5);
-            timeout--;
-    }
-
-    if (!timeout) {
-        DEBUGOUT("Driver can't access resource, SW_FW_SYNC timeout.\n");
-        return -E1000_ERR_SWFW_SYNC;
-    }
-
-    swfw_sync |= swmask;
-    E1000_WRITE_REG(hw, SW_FW_SYNC, swfw_sync);
-
-    em_put_hw_eeprom_semaphore(hw);
-    return E1000_SUCCESS;
-}
-
-void
-em_swfw_sync_release(struct em_hw *hw, uint16_t mask)
-{
-    uint32_t swfw_sync;
-    uint32_t swmask = mask;
-
-    DEBUGFUNC("em_swfw_sync_release");
-
-    if (hw->swfwhw_semaphore_present) {
-        em_release_software_flag(hw);
-        return;
-    }
-
-    if (!hw->swfw_sync_present) {
-        em_put_hw_eeprom_semaphore(hw);
-        return;
-    }
-
-    /* if (em_get_hw_eeprom_semaphore(hw))
-     *    return -E1000_ERR_SWFW_SYNC; */
-    while (em_get_hw_eeprom_semaphore(hw) != E1000_SUCCESS);
-        /* empty */
-
-    swfw_sync = E1000_READ_REG(hw, SW_FW_SYNC);
-    swfw_sync &= ~swmask;
-    E1000_WRITE_REG(hw, SW_FW_SYNC, swfw_sync);
-
-    em_put_hw_eeprom_semaphore(hw);
-}
-
-/*****************************************************************************
-* Reads the value from a PHY register, if the value is on a specific non zero
-* page, sets the page first.
-* hw - Struct containing variables accessed by shared code
-* reg_addr - address of the PHY register to read
-******************************************************************************/
-int32_t
-em_read_phy_reg(struct em_hw *hw,
-                   uint32_t reg_addr,
-                   uint16_t *phy_data)
-{
-    uint32_t ret_val;
-    uint16_t swfw;
-
-    DEBUGFUNC("em_read_phy_reg");
-
-    if ((hw->mac_type == em_80003es2lan) &&
-        (E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1)) {
-        swfw = E1000_SWFW_PHY1_SM;
-    } else {
-        swfw = E1000_SWFW_PHY0_SM;
-    }
-    if (em_swfw_sync_acquire(hw, swfw))
-        return -E1000_ERR_SWFW_SYNC;
-
-    if ((hw->phy_type == em_phy_igp ||
-        hw->phy_type == em_phy_igp_3 ||
-        hw->phy_type == em_phy_igp_2) &&
-       (reg_addr > MAX_PHY_MULTI_PAGE_REG)) {
-        ret_val = em_write_phy_reg_ex(hw, IGP01E1000_PHY_PAGE_SELECT,
-                                         (uint16_t)reg_addr);
-        if (ret_val) {
-            em_swfw_sync_release(hw, swfw);
-            return ret_val;
-        }
-    } else if (hw->phy_type == em_phy_gg82563) {
-        if (((reg_addr & MAX_PHY_REG_ADDRESS) > MAX_PHY_MULTI_PAGE_REG) ||
-            (hw->mac_type == em_80003es2lan)) {
-            /* Select Configuration Page */
-            if ((reg_addr & MAX_PHY_REG_ADDRESS) < GG82563_MIN_ALT_REG) {
-                ret_val = em_write_phy_reg_ex(hw, GG82563_PHY_PAGE_SELECT,
-                          (uint16_t)((uint16_t)reg_addr >> GG82563_PAGE_SHIFT));
-            } else {
-                /* Use Alternative Page Select register to access
-                 * registers 30 and 31
-                 */
-                ret_val = em_write_phy_reg_ex(hw,
-                                                 GG82563_PHY_PAGE_SELECT_ALT,
-                          (uint16_t)((uint16_t)reg_addr >> GG82563_PAGE_SHIFT));
-            }
-
-            if (ret_val) {
-                em_swfw_sync_release(hw, swfw);
-                return ret_val;
-            }
-        }
-    }
-
-    ret_val = em_read_phy_reg_ex(hw, MAX_PHY_REG_ADDRESS & reg_addr,
-                                    phy_data);
-
-    em_swfw_sync_release(hw, swfw);
-    return ret_val;
-}
-
-int32_t
-em_read_phy_reg_ex(struct em_hw *hw,
-                      uint32_t reg_addr,
-                      uint16_t *phy_data)
-{
-    uint32_t i;
-    uint32_t mdic = 0;
-    const uint32_t phy_addr = 1;
-
-    DEBUGFUNC("em_read_phy_reg_ex");
-
-    if (reg_addr > MAX_PHY_REG_ADDRESS) {
-        DEBUGOUT1("PHY Address %d is out of range\n", reg_addr);
-        return -E1000_ERR_PARAM;
-    }
-
-    if (hw->mac_type > em_82543) {
-        /* Set up Op-code, Phy Address, and register address in the MDI
-         * Control register.  The MAC will take care of interfacing with the
-         * PHY to retrieve the desired data.
-         */
-        mdic = ((reg_addr << E1000_MDIC_REG_SHIFT) |
-                (phy_addr << E1000_MDIC_PHY_SHIFT) |
-                (E1000_MDIC_OP_READ));
-
-        E1000_WRITE_REG(hw, MDIC, mdic);
-
-        /* Poll the ready bit to see if the MDI read completed */
-        for (i = 0; i < 64; i++) {
-            usec_delay(50);
-            mdic = E1000_READ_REG(hw, MDIC);
-            if (mdic & E1000_MDIC_READY) break;
-        }
-        if (!(mdic & E1000_MDIC_READY)) {
-            DEBUGOUT("MDI Read did not complete\n");
-            return -E1000_ERR_PHY;
-        }
-        if (mdic & E1000_MDIC_ERROR) {
-            DEBUGOUT("MDI Error\n");
-            return -E1000_ERR_PHY;
-        }
-        *phy_data = (uint16_t) mdic;
-    } else {
-        /* We must first send a preamble through the MDIO pin to signal the
-         * beginning of an MII instruction.  This is done by sending 32
-         * consecutive "1" bits.
-         */
-        em_shift_out_mdi_bits(hw, PHY_PREAMBLE, PHY_PREAMBLE_SIZE);
-
-        /* Now combine the next few fields that are required for a read
-         * operation.  We use this method instead of calling the
-         * em_shift_out_mdi_bits routine five different times. The format of
-         * a MII read instruction consists of a shift out of 14 bits and is
-         * defined as follows:
-         *    <Preamble><SOF><Op Code><Phy Addr><Reg Addr>
-         * followed by a shift in of 18 bits.  This first two bits shifted in
-         * are TurnAround bits used to avoid contention on the MDIO pin when a
-         * READ operation is performed.  These two bits are thrown away
-         * followed by a shift in of 16 bits which contains the desired data.
-         */
-        mdic = ((reg_addr) | (phy_addr << 5) |
-                (PHY_OP_READ << 10) | (PHY_SOF << 12));
-
-        em_shift_out_mdi_bits(hw, mdic, 14);
-
-        /* Now that we've shifted out the read command to the MII, we need to
-         * "shift in" the 16-bit value (18 total bits) of the requested PHY
-         * register address.
-         */
-        *phy_data = em_shift_in_mdi_bits(hw);
-    }
-    return E1000_SUCCESS;
-}
-
-/******************************************************************************
-* Writes a value to a PHY register
-*
-* hw - Struct containing variables accessed by shared code
-* reg_addr - address of the PHY register to write
-* data - data to write to the PHY
-******************************************************************************/
-int32_t
-em_write_phy_reg(struct em_hw *hw,
-                    uint32_t reg_addr,
-                    uint16_t phy_data)
-{
-    uint32_t ret_val;
-    uint16_t swfw;
-
-    DEBUGFUNC("em_write_phy_reg");
-
-    if ((hw->mac_type == em_80003es2lan) &&
-        (E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1)) {
-        swfw = E1000_SWFW_PHY1_SM;
-    } else {
-        swfw = E1000_SWFW_PHY0_SM;
-    }
-    if (em_swfw_sync_acquire(hw, swfw))
-        return -E1000_ERR_SWFW_SYNC;
-
-    if ((hw->phy_type == em_phy_igp ||
-        hw->phy_type == em_phy_igp_3 ||
-        hw->phy_type == em_phy_igp_2) &&
-       (reg_addr > MAX_PHY_MULTI_PAGE_REG)) {
-        ret_val = em_write_phy_reg_ex(hw, IGP01E1000_PHY_PAGE_SELECT,
-                                         (uint16_t)reg_addr);
-        if (ret_val) {
-            em_swfw_sync_release(hw, swfw);
-            return ret_val;
-        }
-    } else if (hw->phy_type == em_phy_gg82563) {
-        if (((reg_addr & MAX_PHY_REG_ADDRESS) > MAX_PHY_MULTI_PAGE_REG) ||
-            (hw->mac_type == em_80003es2lan)) {
-            /* Select Configuration Page */
-            if ((reg_addr & MAX_PHY_REG_ADDRESS) < GG82563_MIN_ALT_REG) {
-                ret_val = em_write_phy_reg_ex(hw, GG82563_PHY_PAGE_SELECT,
-                          (uint16_t)((uint16_t)reg_addr >> GG82563_PAGE_SHIFT));
-            } else {
-                /* Use Alternative Page Select register to access
-                 * registers 30 and 31
-                 */
-                ret_val = em_write_phy_reg_ex(hw,
-                                                 GG82563_PHY_PAGE_SELECT_ALT,
-                          (uint16_t)((uint16_t)reg_addr >> GG82563_PAGE_SHIFT));
-            }
-
-            if (ret_val) {
-                em_swfw_sync_release(hw, swfw);
-                return ret_val;
-            }
-        }
-    }
-
-    ret_val = em_write_phy_reg_ex(hw, MAX_PHY_REG_ADDRESS & reg_addr,
-                                     phy_data);
-
-    em_swfw_sync_release(hw, swfw);
-    return ret_val;
-}
-
-int32_t
-em_write_phy_reg_ex(struct em_hw *hw,
-                    uint32_t reg_addr,
-                    uint16_t phy_data)
-{
-    uint32_t i;
-    uint32_t mdic = 0;
-    const uint32_t phy_addr = 1;
-
-    DEBUGFUNC("em_write_phy_reg_ex");
-
-    if (reg_addr > MAX_PHY_REG_ADDRESS) {
-        DEBUGOUT1("PHY Address %d is out of range\n", reg_addr);
-        return -E1000_ERR_PARAM;
-    }
-
-    if (hw->mac_type > em_82543) {
-        /* Set up Op-code, Phy Address, register address, and data intended
-         * for the PHY register in the MDI Control register.  The MAC will take
-         * care of interfacing with the PHY to send the desired data.
-         */
-        mdic = (((uint32_t) phy_data) |
-                (reg_addr << E1000_MDIC_REG_SHIFT) |
-                (phy_addr << E1000_MDIC_PHY_SHIFT) |
-                (E1000_MDIC_OP_WRITE));
-
-        E1000_WRITE_REG(hw, MDIC, mdic);
-
-        /* Poll the ready bit to see if the MDI read completed */
-        for (i = 0; i < 641; i++) {
-            usec_delay(5);
-            mdic = E1000_READ_REG(hw, MDIC);
-            if (mdic & E1000_MDIC_READY) break;
-        }
-        if (!(mdic & E1000_MDIC_READY)) {
-            DEBUGOUT("MDI Write did not complete\n");
-            return -E1000_ERR_PHY;
-        }
-    } else {
-        /* We'll need to use the SW defined pins to shift the write command
-         * out to the PHY. We first send a preamble to the PHY to signal the
-         * beginning of the MII instruction.  This is done by sending 32
-         * consecutive "1" bits.
-         */
-        em_shift_out_mdi_bits(hw, PHY_PREAMBLE, PHY_PREAMBLE_SIZE);
-
-        /* Now combine the remaining required fields that will indicate a
-         * write operation. We use this method instead of calling the
-         * em_shift_out_mdi_bits routine for each field in the command. The
-         * format of a MII write instruction is as follows:
-         * <Preamble><SOF><Op Code><Phy Addr><Reg Addr><Turnaround><Data>.
-         */
-        mdic = ((PHY_TURNAROUND) | (reg_addr << 2) | (phy_addr << 7) |
-                (PHY_OP_WRITE << 12) | (PHY_SOF << 14));
-        mdic <<= 16;
-        mdic |= (uint32_t) phy_data;
-
-        em_shift_out_mdi_bits(hw, mdic, 32);
-    }
-
-    return E1000_SUCCESS;
-}
-
-int32_t
-em_read_kmrn_reg(struct em_hw *hw,
-                    uint32_t reg_addr,
-                    uint16_t *data)
-{
-    uint32_t reg_val;
-    uint16_t swfw;
-    DEBUGFUNC("em_read_kmrn_reg");
-
-    if ((hw->mac_type == em_80003es2lan) &&
-        (E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1)) {
-        swfw = E1000_SWFW_PHY1_SM;
-    } else {
-        swfw = E1000_SWFW_PHY0_SM;
-    }
-    if (em_swfw_sync_acquire(hw, swfw))
-        return -E1000_ERR_SWFW_SYNC;
-
-    /* Write register address */
-    reg_val = ((reg_addr << E1000_KUMCTRLSTA_OFFSET_SHIFT) &
-              E1000_KUMCTRLSTA_OFFSET) |
-              E1000_KUMCTRLSTA_REN;
-    E1000_WRITE_REG(hw, KUMCTRLSTA, reg_val);
-    usec_delay(2);
-
-    /* Read the data returned */
-    reg_val = E1000_READ_REG(hw, KUMCTRLSTA);
-    *data = (uint16_t)reg_val;
-
-    em_swfw_sync_release(hw, swfw);
-    return E1000_SUCCESS;
-}
-
-int32_t
-em_write_kmrn_reg(struct em_hw *hw,
-                     uint32_t reg_addr,
-                     uint16_t data)
-{
-    uint32_t reg_val;
-    uint16_t swfw;
-    DEBUGFUNC("em_write_kmrn_reg");
-
-    if ((hw->mac_type == em_80003es2lan) &&
-        (E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1)) {
-        swfw = E1000_SWFW_PHY1_SM;
-    } else {
-        swfw = E1000_SWFW_PHY0_SM;
-    }
-    if (em_swfw_sync_acquire(hw, swfw))
-        return -E1000_ERR_SWFW_SYNC;
-
-    reg_val = ((reg_addr << E1000_KUMCTRLSTA_OFFSET_SHIFT) &
-              E1000_KUMCTRLSTA_OFFSET) | data;
-    E1000_WRITE_REG(hw, KUMCTRLSTA, reg_val);
-    usec_delay(2);
-
-    em_swfw_sync_release(hw, swfw);
-    return E1000_SUCCESS;
-}
-
-/******************************************************************************
-* Returns the PHY to the power-on reset state
-*
-* hw - Struct containing variables accessed by shared code
-******************************************************************************/
-int32_t
-em_phy_hw_reset(struct em_hw *hw)
-{
-    uint32_t ctrl, ctrl_ext;
-    uint32_t led_ctrl;
-    int32_t ret_val;
-    uint16_t swfw;
-
-    DEBUGFUNC("em_phy_hw_reset");
-
-    /* In the case of the phy reset being blocked, it's not an error, we
-     * simply return success without performing the reset. */
-    ret_val = em_check_phy_reset_block(hw);
-    if (ret_val)
-        return E1000_SUCCESS;
-
-    DEBUGOUT("Resetting Phy...\n");
-
-    if (hw->mac_type > em_82543) {
-        if ((hw->mac_type == em_80003es2lan) &&
-            (E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1)) {
-            swfw = E1000_SWFW_PHY1_SM;
-        } else {
-            swfw = E1000_SWFW_PHY0_SM;
-        }
-        if (em_swfw_sync_acquire(hw, swfw)) {
-            em_release_software_semaphore(hw);
-            return -E1000_ERR_SWFW_SYNC;
-        }
-        /* Read the device control register and assert the E1000_CTRL_PHY_RST
-         * bit. Then, take it out of reset.
-         * For pre-em_82571 hardware, we delay for 10ms between the assert
-         * and deassert.  For em_82571 hardware and later, we instead delay
-         * for 50us between and 10ms after the deassertion.
-         */
-        ctrl = E1000_READ_REG(hw, CTRL);
-        E1000_WRITE_REG(hw, CTRL, ctrl | E1000_CTRL_PHY_RST);
-        E1000_WRITE_FLUSH(hw);
-
-        if (hw->mac_type < em_82571)
-            msec_delay(10);
-        else
-            usec_delay(100);
-
-        E1000_WRITE_REG(hw, CTRL, ctrl);
-        E1000_WRITE_FLUSH(hw);
-
-        if (hw->mac_type >= em_82571)
-            msec_delay_irq(10);
-        em_swfw_sync_release(hw, swfw);
-    } else {
-        /* Read the Extended Device Control Register, assert the PHY_RESET_DIR
-         * bit to put the PHY into reset. Then, take it out of reset.
-         */
-        ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
-        ctrl_ext |= E1000_CTRL_EXT_SDP4_DIR;
-        ctrl_ext &= ~E1000_CTRL_EXT_SDP4_DATA;
-        E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
-        E1000_WRITE_FLUSH(hw);
-        msec_delay(10);
-        ctrl_ext |= E1000_CTRL_EXT_SDP4_DATA;
-        E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
-        E1000_WRITE_FLUSH(hw);
-    }
-    usec_delay(150);
-
-    if ((hw->mac_type == em_82541) || (hw->mac_type == em_82547)) {
-        /* Configure activity LED after PHY reset */
-        led_ctrl = E1000_READ_REG(hw, LEDCTL);
-        led_ctrl &= IGP_ACTIVITY_LED_MASK;
-        led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE);
-        E1000_WRITE_REG(hw, LEDCTL, led_ctrl);
-    }
-
-    /* Wait for FW to finish PHY configuration. */
-    ret_val = em_get_phy_cfg_done(hw);
-    if (ret_val != E1000_SUCCESS)
-        return ret_val;
-    em_release_software_semaphore(hw);
-
-    if ((hw->mac_type == em_ich8lan) && (hw->phy_type == em_phy_igp_3))
-        ret_val = em_init_lcd_from_nvm(hw);
-
-    return ret_val;
-}
-
-/******************************************************************************
-* Resets the PHY
-*
-* hw - Struct containing variables accessed by shared code
-*
-* Sets bit 15 of the MII Control regiser
-******************************************************************************/
-int32_t
-em_phy_reset(struct em_hw *hw)
-{
-    int32_t ret_val;
-    uint16_t phy_data;
-
-    DEBUGFUNC("em_phy_reset");
-
-    /* In the case of the phy reset being blocked, it's not an error, we
-     * simply return success without performing the reset. */
-    ret_val = em_check_phy_reset_block(hw);
-    if (ret_val)
-        return E1000_SUCCESS;
-
-    switch (hw->mac_type) {
-    case em_82541_rev_2:
-    case em_82571:
-    case em_82572:
-    case em_ich8lan:
-        ret_val = em_phy_hw_reset(hw);
-        if (ret_val)
-            return ret_val;
-
-        break;
-    default:
-        ret_val = em_read_phy_reg(hw, PHY_CTRL, &phy_data);
-        if (ret_val)
-            return ret_val;
-
-        phy_data |= MII_CR_RESET;
-        ret_val = em_write_phy_reg(hw, PHY_CTRL, phy_data);
-        if (ret_val)
-            return ret_val;
-
-        usec_delay(1);
-        break;
-    }
-
-    if (hw->phy_type == em_phy_igp || hw->phy_type == em_phy_igp_2)
-        em_phy_init_script(hw);
-
-    return E1000_SUCCESS;
-}
-
-/******************************************************************************
-* Work-around for 82566 power-down: on D3 entry-
-* 1) disable gigabit link
-* 2) write VR power-down enable
-* 3) read it back
-* if successful continue, else issue LCD reset and repeat
-*
-* hw - struct containing variables accessed by shared code
-******************************************************************************/
-void
-em_phy_powerdown_workaround(struct em_hw *hw)
-{
-    int32_t reg;
-    uint16_t phy_data;
-    int32_t retry = 0;
-
-    DEBUGFUNC("em_phy_powerdown_workaround");
-
-    if (hw->phy_type != em_phy_igp_3)
-        return;
-
-    do {
-        /* Disable link */
-        reg = E1000_READ_REG(hw, PHY_CTRL);
-        E1000_WRITE_REG(hw, PHY_CTRL, reg | E1000_PHY_CTRL_GBE_DISABLE |
-                        E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
-
-        /* Write VR power-down enable */
-        em_read_phy_reg(hw, IGP3_VR_CTRL, &phy_data);
-        em_write_phy_reg(hw, IGP3_VR_CTRL, phy_data |
-                            IGP3_VR_CTRL_MODE_SHUT);
-
-        /* Read it back and test */
-        em_read_phy_reg(hw, IGP3_VR_CTRL, &phy_data);
-        if ((phy_data & IGP3_VR_CTRL_MODE_SHUT) || retry)
-            break;
-
-        /* Issue PHY reset and repeat at most one more time */
-        reg = E1000_READ_REG(hw, CTRL);
-        E1000_WRITE_REG(hw, CTRL, reg | E1000_CTRL_PHY_RST);
-        retry++;
-    } while (retry);
-
-    return;
-
-}
-
-/******************************************************************************
-* Work-around for 82566 Kumeran PCS lock loss:
-* On link status change (i.e. PCI reset, speed change) and link is up and
-* speed is gigabit-
-* 0) if workaround is optionally disabled do nothing
-* 1) wait 1ms for Kumeran link to come up
-* 2) check Kumeran Diagnostic register PCS lock loss bit
-* 3) if not set the link is locked (all is good), otherwise...
-* 4) reset the PHY
-* 5) repeat up to 10 times
-* Note: this is only called for IGP3 copper when speed is 1gb.
-*
-* hw - struct containing variables accessed by shared code
-******************************************************************************/
-int32_t
-em_kumeran_lock_loss_workaround(struct em_hw *hw)
-{
-    int32_t ret_val;
-    int32_t reg;
-    int32_t cnt;
-    uint16_t phy_data;
-
-    if (hw->kmrn_lock_loss_workaround_disabled)
-        return E1000_SUCCESS;
-
-    /* Make sure link is up before proceeding.  If not just return.
-     * Attempting this while link is negotiating fouled up link
-     * stability */
-    ret_val = em_read_phy_reg(hw, PHY_STATUS, &phy_data);
-    ret_val = em_read_phy_reg(hw, PHY_STATUS, &phy_data);
-
-    if (phy_data & MII_SR_LINK_STATUS) {
-        for (cnt = 0; cnt < 10; cnt++) {
-            /* read once to clear */
-            ret_val = em_read_phy_reg(hw, IGP3_KMRN_DIAG, &phy_data);
-            if (ret_val)
-                return ret_val;
-            /* and again to get new status */
-            ret_val = em_read_phy_reg(hw, IGP3_KMRN_DIAG, &phy_data);
-            if (ret_val)
-                return ret_val;
-
-            /* check for PCS lock */
-            if (!(phy_data & IGP3_KMRN_DIAG_PCS_LOCK_LOSS))
-                return E1000_SUCCESS;
-
-            /* Issue PHY reset */
-            em_phy_hw_reset(hw);
-            msec_delay_irq(5);
-        }
-        /* Disable GigE link negotiation */
-        reg = E1000_READ_REG(hw, PHY_CTRL);
-        E1000_WRITE_REG(hw, PHY_CTRL, reg | E1000_PHY_CTRL_GBE_DISABLE |
-                        E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
-
-        /* unable to acquire PCS lock */
-        return E1000_ERR_PHY;
-    }
-
-    return E1000_SUCCESS;
-}
-
-/******************************************************************************
-* Probes the expected PHY address for known PHY IDs
-*
-* hw - Struct containing variables accessed by shared code
-******************************************************************************/
-int32_t
-em_detect_gig_phy(struct em_hw *hw)
-{
-    int32_t phy_init_status, ret_val;
-    uint16_t phy_id_high, phy_id_low;
-    boolean_t match = FALSE;
-
-    DEBUGFUNC("em_detect_gig_phy");
-
-    /* The 82571 firmware may still be configuring the PHY.  In this
-     * case, we cannot access the PHY until the configuration is done.  So
-     * we explicitly set the PHY values. */
-    if (hw->mac_type == em_82571 ||
-        hw->mac_type == em_82572) {
-        hw->phy_id = IGP01E1000_I_PHY_ID;
-        hw->phy_type = em_phy_igp_2;
-        return E1000_SUCCESS;
-    }
-
-    /* ESB-2 PHY reads require em_phy_gg82563 to be set because of a work-
-     * around that forces PHY page 0 to be set or the reads fail.  The rest of
-     * the code in this routine uses em_read_phy_reg to read the PHY ID.
-     * So for ESB-2 we need to have this set so our reads won't fail.  If the
-     * attached PHY is not a em_phy_gg82563, the routines below will figure
-     * this out as well. */
-    if (hw->mac_type == em_80003es2lan)
-        hw->phy_type = em_phy_gg82563;
-
-    /* Read the PHY ID Registers to identify which PHY is onboard. */
-    ret_val = em_read_phy_reg(hw, PHY_ID1, &phy_id_high);
-    if (ret_val)
-        return ret_val;
-
-    hw->phy_id = (uint32_t) (phy_id_high << 16);
-    usec_delay(20);
-    ret_val = em_read_phy_reg(hw, PHY_ID2, &phy_id_low);
-    if (ret_val)
-        return ret_val;
-
-    hw->phy_id |= (uint32_t) (phy_id_low & PHY_REVISION_MASK);
-    hw->phy_revision = (uint32_t) phy_id_low & ~PHY_REVISION_MASK;
-
-    switch (hw->mac_type) {
-    case em_82543:
-        if (hw->phy_id == M88E1000_E_PHY_ID) match = TRUE;
-        break;
-    case em_82544:
-        if (hw->phy_id == M88E1000_I_PHY_ID) match = TRUE;
-        break;
-    case em_82540:
-    case em_82545:
-    case em_82545_rev_3:
-    case em_82546:
-    case em_82546_rev_3:
-        if (hw->phy_id == M88E1011_I_PHY_ID) match = TRUE;
-        break;
-    case em_82541:
-    case em_82541_rev_2:
-    case em_82547:
-    case em_82547_rev_2:
-        if (hw->phy_id == IGP01E1000_I_PHY_ID) match = TRUE;
-        break;
-    case em_82573:
-        if (hw->phy_id == M88E1111_I_PHY_ID) match = TRUE;
-        break;
-    case em_80003es2lan:
-        if (hw->phy_id == GG82563_E_PHY_ID) match = TRUE;
-        break;
-    case em_ich8lan:
-        if (hw->phy_id == IGP03E1000_E_PHY_ID) match = TRUE;
-        if (hw->phy_id == IFE_E_PHY_ID) match = TRUE;
-        if (hw->phy_id == IFE_PLUS_E_PHY_ID) match = TRUE;
-        if (hw->phy_id == IFE_C_E_PHY_ID) match = TRUE;
-        break;
-    default:
-        DEBUGOUT1("Invalid MAC type %d\n", hw->mac_type);
-        return -E1000_ERR_CONFIG;
-    }
-    phy_init_status = em_set_phy_type(hw);
-
-    if ((match) && (phy_init_status == E1000_SUCCESS)) {
-        DEBUGOUT1("PHY ID 0x%X detected\n", hw->phy_id);
-        return E1000_SUCCESS;
-    }
-    DEBUGOUT1("Invalid PHY ID 0x%X\n", hw->phy_id);
-    return -E1000_ERR_PHY;
-}
-
-/******************************************************************************
-* Resets the PHY's DSP
-*
-* hw - Struct containing variables accessed by shared code
-******************************************************************************/
-static int32_t
-em_phy_reset_dsp(struct em_hw *hw)
-{
-    int32_t ret_val;
-    DEBUGFUNC("em_phy_reset_dsp");
-
-    do {
-        if (hw->phy_type != em_phy_gg82563) {
-            ret_val = em_write_phy_reg(hw, 29, 0x001d);
-            if (ret_val) break;
-        }
-        ret_val = em_write_phy_reg(hw, 30, 0x00c1);
-        if (ret_val) break;
-        ret_val = em_write_phy_reg(hw, 30, 0x0000);
-        if (ret_val) break;
-        ret_val = E1000_SUCCESS;
-    } while (0);
-
-    return ret_val;
-}
-
-/******************************************************************************
-* Get PHY information from various PHY registers for igp PHY only.
-*
-* hw - Struct containing variables accessed by shared code
-* phy_info - PHY information structure
-******************************************************************************/
-int32_t
-em_phy_igp_get_info(struct em_hw *hw,
-                       struct em_phy_info *phy_info)
-{
-    int32_t ret_val;
-    uint16_t phy_data, polarity, min_length, max_length, average;
-
-    DEBUGFUNC("em_phy_igp_get_info");
-
-    /* The downshift status is checked only once, after link is established,
-     * and it stored in the hw->speed_downgraded parameter. */
-    phy_info->downshift = (em_downshift)hw->speed_downgraded;
-
-    /* IGP01E1000 does not need to support it. */
-    phy_info->extended_10bt_distance = em_10bt_ext_dist_enable_normal;
-
-    /* IGP01E1000 always correct polarity reversal */
-    phy_info->polarity_correction = em_polarity_reversal_enabled;
-
-    /* Check polarity status */
-    ret_val = em_check_polarity(hw, &polarity);
-    if (ret_val)
-        return ret_val;
-
-    phy_info->cable_polarity = polarity;
-
-    ret_val = em_read_phy_reg(hw, IGP01E1000_PHY_PORT_STATUS, &phy_data);
-    if (ret_val)
-        return ret_val;
-
-    phy_info->mdix_mode = (phy_data & IGP01E1000_PSSR_MDIX) >>
-                          IGP01E1000_PSSR_MDIX_SHIFT;
-
-    if ((phy_data & IGP01E1000_PSSR_SPEED_MASK) ==
-       IGP01E1000_PSSR_SPEED_1000MBPS) {
-        /* Local/Remote Receiver Information are only valid at 1000 Mbps */
-        ret_val = em_read_phy_reg(hw, PHY_1000T_STATUS, &phy_data);
-        if (ret_val)
-            return ret_val;
-
-        phy_info->local_rx = (phy_data & SR_1000T_LOCAL_RX_STATUS) >>
-                             SR_1000T_LOCAL_RX_STATUS_SHIFT;
-        phy_info->remote_rx = (phy_data & SR_1000T_REMOTE_RX_STATUS) >>
-                              SR_1000T_REMOTE_RX_STATUS_SHIFT;
-
-        /* Get cable length */
-        ret_val = em_get_cable_length(hw, &min_length, &max_length);
-        if (ret_val)
-            return ret_val;
-
-        /* Translate to old method */
-        average = (max_length + min_length) / 2;
-
-        if (average <= em_igp_cable_length_50)
-            phy_info->cable_length = em_cable_length_50;
-        else if (average <= em_igp_cable_length_80)
-            phy_info->cable_length = em_cable_length_50_80;
-        else if (average <= em_igp_cable_length_110)
-            phy_info->cable_length = em_cable_length_80_110;
-        else if (average <= em_igp_cable_length_140)
-            phy_info->cable_length = em_cable_length_110_140;
-        else
-            phy_info->cable_length = em_cable_length_140;
-    }
-
-    return E1000_SUCCESS;
-}
-
-/******************************************************************************
-* Get PHY information from various PHY registers for ife PHY only.
-*
-* hw - Struct containing variables accessed by shared code
-* phy_info - PHY information structure
-******************************************************************************/
-int32_t
-em_phy_ife_get_info(struct em_hw *hw,
-                       struct em_phy_info *phy_info)
-{
-    int32_t ret_val;
-    uint16_t phy_data, polarity;
-
-    DEBUGFUNC("em_phy_ife_get_info");
-
-    phy_info->downshift = (em_downshift)hw->speed_downgraded;
-    phy_info->extended_10bt_distance = em_10bt_ext_dist_enable_normal;
-
-    ret_val = em_read_phy_reg(hw, IFE_PHY_SPECIAL_CONTROL, &phy_data);
-    if (ret_val)
-        return ret_val;
-    phy_info->polarity_correction =
-                        (phy_data & IFE_PSC_AUTO_POLARITY_DISABLE) >>
-                        IFE_PSC_AUTO_POLARITY_DISABLE_SHIFT;
-
-    if (phy_info->polarity_correction == em_polarity_reversal_enabled) {
-        ret_val = em_check_polarity(hw, &polarity);
-        if (ret_val)
-            return ret_val;
-    } else {
-        /* Polarity is forced. */
-        polarity = (phy_data & IFE_PSC_FORCE_POLARITY) >>
-                       IFE_PSC_FORCE_POLARITY_SHIFT;
-    }
-    phy_info->cable_polarity = polarity;
-
-    ret_val = em_read_phy_reg(hw, IFE_PHY_MDIX_CONTROL, &phy_data);
-    if (ret_val)
-        return ret_val;
-
-    phy_info->mdix_mode =
-                     (phy_data & (IFE_PMC_AUTO_MDIX | IFE_PMC_FORCE_MDIX)) >>
-                     IFE_PMC_MDIX_MODE_SHIFT;
-
-    return E1000_SUCCESS;
-}
-
-/******************************************************************************
-* Get PHY information from various PHY registers fot m88 PHY only.
-*
-* hw - Struct containing variables accessed by shared code
-* phy_info - PHY information structure
-******************************************************************************/
-int32_t
-em_phy_m88_get_info(struct em_hw *hw,
-                       struct em_phy_info *phy_info)
-{
-    int32_t ret_val;
-    uint16_t phy_data, polarity;
-
-    DEBUGFUNC("em_phy_m88_get_info");
-
-    /* The downshift status is checked only once, after link is established,
-     * and it stored in the hw->speed_downgraded parameter. */
-    phy_info->downshift = (em_downshift)hw->speed_downgraded;
-
-    ret_val = em_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
-    if (ret_val)
-        return ret_val;
-
-    phy_info->extended_10bt_distance =
-        (phy_data & M88E1000_PSCR_10BT_EXT_DIST_ENABLE) >>
-        M88E1000_PSCR_10BT_EXT_DIST_ENABLE_SHIFT;
-    phy_info->polarity_correction =
-        (phy_data & M88E1000_PSCR_POLARITY_REVERSAL) >>
-        M88E1000_PSCR_POLARITY_REVERSAL_SHIFT;
-
-    /* Check polarity status */
-    ret_val = em_check_polarity(hw, &polarity);
-    if (ret_val)
-        return ret_val;
-    phy_info->cable_polarity = polarity;
-
-    ret_val = em_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
-    if (ret_val)
-        return ret_val;
-
-    phy_info->mdix_mode = (phy_data & M88E1000_PSSR_MDIX) >>
-                          M88E1000_PSSR_MDIX_SHIFT;
-
-    if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS) {
-        /* Cable Length Estimation and Local/Remote Receiver Information
-         * are only valid at 1000 Mbps.
-         */
-        if (hw->phy_type != em_phy_gg82563) {
-            phy_info->cable_length = ((phy_data & M88E1000_PSSR_CABLE_LENGTH) >>
-                                      M88E1000_PSSR_CABLE_LENGTH_SHIFT);
-        } else {
-            ret_val = em_read_phy_reg(hw, GG82563_PHY_DSP_DISTANCE,
-                                         &phy_data);
-            if (ret_val)
-                return ret_val;
-
-            phy_info->cable_length = phy_data & GG82563_DSPD_CABLE_LENGTH;
-        }
-
-        ret_val = em_read_phy_reg(hw, PHY_1000T_STATUS, &phy_data);
-        if (ret_val)
-            return ret_val;
-
-        phy_info->local_rx = (phy_data & SR_1000T_LOCAL_RX_STATUS) >>
-                             SR_1000T_LOCAL_RX_STATUS_SHIFT;
-
-        phy_info->remote_rx = (phy_data & SR_1000T_REMOTE_RX_STATUS) >>
-                              SR_1000T_REMOTE_RX_STATUS_SHIFT;
-    }
-
-    return E1000_SUCCESS;
-}
-
-/******************************************************************************
-* Get PHY information from various PHY registers
-*
-* hw - Struct containing variables accessed by shared code
-* phy_info - PHY information structure
-******************************************************************************/
-int32_t
-em_phy_get_info(struct em_hw *hw,
-                   struct em_phy_info *phy_info)
-{
-    int32_t ret_val;
-    uint16_t phy_data;
-
-    DEBUGFUNC("em_phy_get_info");
-
-    phy_info->cable_length = em_cable_length_undefined;
-    phy_info->extended_10bt_distance = em_10bt_ext_dist_enable_undefined;
-    phy_info->cable_polarity = em_rev_polarity_undefined;
-    phy_info->downshift = em_downshift_undefined;
-    phy_info->polarity_correction = em_polarity_reversal_undefined;
-    phy_info->mdix_mode = em_auto_x_mode_undefined;
-    phy_info->local_rx = em_1000t_rx_status_undefined;
-    phy_info->remote_rx = em_1000t_rx_status_undefined;
-
-    if (hw->media_type != em_media_type_copper) {
-        DEBUGOUT("PHY info is only valid for copper media\n");
-        return -E1000_ERR_CONFIG;
-    }
-
-    ret_val = em_read_phy_reg(hw, PHY_STATUS, &phy_data);
-    if (ret_val)
-        return ret_val;
-
-    ret_val = em_read_phy_reg(hw, PHY_STATUS, &phy_data);
-    if (ret_val)
-        return ret_val;
-
-    if ((phy_data & MII_SR_LINK_STATUS) != MII_SR_LINK_STATUS) {
-        DEBUGOUT("PHY info is only valid if link is up\n");
-        return -E1000_ERR_CONFIG;
-    }
-
-    if (hw->phy_type == em_phy_igp ||
-        hw->phy_type == em_phy_igp_3 ||
-        hw->phy_type == em_phy_igp_2)
-        return em_phy_igp_get_info(hw, phy_info);
-    else if (hw->phy_type == em_phy_ife)
-        return em_phy_ife_get_info(hw, phy_info);
-    else
-        return em_phy_m88_get_info(hw, phy_info);
-}
-
-int32_t
-em_validate_mdi_setting(struct em_hw *hw)
-{
-    DEBUGFUNC("em_validate_mdi_settings");
-
-    if (!hw->autoneg && (hw->mdix == 0 || hw->mdix == 3)) {
-        DEBUGOUT("Invalid MDI setting detected\n");
-        hw->mdix = 1;
-        return -E1000_ERR_CONFIG;
-    }
-    return E1000_SUCCESS;
-}
-
-
-/******************************************************************************
- * Sets up eeprom variables in the hw struct.  Must be called after mac_type
- * is configured.  Additionally, if this is ICH8, the flash controller GbE
- * registers must be mapped, or this will crash.
- *
- * hw - Struct containing variables accessed by shared code
- *****************************************************************************/
-int32_t
-em_init_eeprom_params(struct em_hw *hw)
-{
-    struct em_eeprom_info *eeprom = &hw->eeprom;
-    uint32_t eecd = E1000_READ_REG(hw, EECD);
-    int32_t ret_val = E1000_SUCCESS;
-    uint16_t eeprom_size;
-
-    DEBUGFUNC("em_init_eeprom_params");
-
-    switch (hw->mac_type) {
-    case em_82542_rev2_0:
-    case em_82542_rev2_1:
-    case em_82543:
-    case em_82544:
-        eeprom->type = em_eeprom_microwire;
-        eeprom->word_size = 64;
-        eeprom->opcode_bits = 3;
-        eeprom->address_bits = 6;
-        eeprom->delay_usec = 50;
-        eeprom->use_eerd = FALSE;
-        eeprom->use_eewr = FALSE;
-        break;
-    case em_82540:
-    case em_82545:
-    case em_82545_rev_3:
-    case em_82546:
-    case em_82546_rev_3:
-        eeprom->type = em_eeprom_microwire;
-        eeprom->opcode_bits = 3;
-        eeprom->delay_usec = 50;
-        if (eecd & E1000_EECD_SIZE) {
-            eeprom->word_size = 256;
-            eeprom->address_bits = 8;
-        } else {
-            eeprom->word_size = 64;
-            eeprom->address_bits = 6;
-        }
-        eeprom->use_eerd = FALSE;
-        eeprom->use_eewr = FALSE;
-        break;
-    case em_82541:
-    case em_82541_rev_2:
-    case em_82547:
-    case em_82547_rev_2:
-        if (eecd & E1000_EECD_TYPE) {
-            eeprom->type = em_eeprom_spi;
-            eeprom->opcode_bits = 8;
-            eeprom->delay_usec = 1;
-            if (eecd & E1000_EECD_ADDR_BITS) {
-                eeprom->page_size = 32;
-                eeprom->address_bits = 16;
-            } else {
-                eeprom->page_size = 8;
-                eeprom->address_bits = 8;
-            }
-        } else {
-            eeprom->type = em_eeprom_microwire;
-            eeprom->opcode_bits = 3;
-            eeprom->delay_usec = 50;
-            if (eecd & E1000_EECD_ADDR_BITS) {
-                eeprom->word_size = 256;
-                eeprom->address_bits = 8;
-            } else {
-                eeprom->word_size = 64;
-                eeprom->address_bits = 6;
-            }
-        }
-        eeprom->use_eerd = FALSE;
-        eeprom->use_eewr = FALSE;
-        break;
-    case em_82571:
-    case em_82572:
-        eeprom->type = em_eeprom_spi;
-        eeprom->opcode_bits = 8;
-        eeprom->delay_usec = 1;
-        if (eecd & E1000_EECD_ADDR_BITS) {
-            eeprom->page_size = 32;
-            eeprom->address_bits = 16;
-        } else {
-            eeprom->page_size = 8;
-            eeprom->address_bits = 8;
-        }
-        eeprom->use_eerd = FALSE;
-        eeprom->use_eewr = FALSE;
-        break;
-    case em_82573:
-        eeprom->type = em_eeprom_spi;
-        eeprom->opcode_bits = 8;
-        eeprom->delay_usec = 1;
-        if (eecd & E1000_EECD_ADDR_BITS) {
-            eeprom->page_size = 32;
-            eeprom->address_bits = 16;
-        } else {
-            eeprom->page_size = 8;
-            eeprom->address_bits = 8;
-        }
-        eeprom->use_eerd = TRUE;
-        eeprom->use_eewr = TRUE;
-        if (em_is_onboard_nvm_eeprom(hw) == FALSE) {
-            eeprom->type = em_eeprom_flash;
-            eeprom->word_size = 2048;
-
-            /* Ensure that the Autonomous FLASH update bit is cleared due to
-             * Flash update issue on parts which use a FLASH for NVM. */
-            eecd &= ~E1000_EECD_AUPDEN;
-            E1000_WRITE_REG(hw, EECD, eecd);
-        }
-        break;
-    case em_80003es2lan:
-        eeprom->type = em_eeprom_spi;
-        eeprom->opcode_bits = 8;
-        eeprom->delay_usec = 1;
-        if (eecd & E1000_EECD_ADDR_BITS) {
-            eeprom->page_size = 32;
-            eeprom->address_bits = 16;
-        } else {
-            eeprom->page_size = 8;
-            eeprom->address_bits = 8;
-        }
-        eeprom->use_eerd = TRUE;
-        eeprom->use_eewr = FALSE;
-        break;
-    case em_ich8lan:
-    {
-        int32_t  i = 0;
-        uint32_t flash_size = E1000_READ_ICH8_REG(hw, ICH8_FLASH_GFPREG);
-
-        eeprom->type = em_eeprom_ich8;
-        eeprom->use_eerd = FALSE;
-        eeprom->use_eewr = FALSE;
-        eeprom->word_size = E1000_SHADOW_RAM_WORDS;
-
-        /* Zero the shadow RAM structure. But don't load it from NVM
-         * so as to save time for driver init */
-        if (hw->eeprom_shadow_ram != NULL) {
-            for (i = 0; i < E1000_SHADOW_RAM_WORDS; i++) {
-                hw->eeprom_shadow_ram[i].modified = FALSE;
-                hw->eeprom_shadow_ram[i].eeprom_word = 0xFFFF;
-            }
-        }
-
-        hw->flash_base_addr = (flash_size & ICH8_GFPREG_BASE_MASK) *
-                              ICH8_FLASH_SECTOR_SIZE;
-
-        hw->flash_bank_size = ((flash_size >> 16) & ICH8_GFPREG_BASE_MASK) + 1;
-        hw->flash_bank_size -= (flash_size & ICH8_GFPREG_BASE_MASK);
-        hw->flash_bank_size *= ICH8_FLASH_SECTOR_SIZE;
-        hw->flash_bank_size /= 2 * sizeof(uint16_t);
-
-        break;
-    }
-    default:
-        break;
-    }
-
-    if (eeprom->type == em_eeprom_spi) {
-        /* eeprom_size will be an enum [0..8] that maps to eeprom sizes 128B to
-         * 32KB (incremented by powers of 2).
-         */
-        if (hw->mac_type <= em_82547_rev_2) {
-            /* Set to default value for initial eeprom read. */
-            eeprom->word_size = 64;
-            ret_val = em_read_eeprom(hw, EEPROM_CFG, 1, &eeprom_size);
-            if (ret_val)
-                return ret_val;
-            eeprom_size = (eeprom_size & EEPROM_SIZE_MASK) >> EEPROM_SIZE_SHIFT;
-            /* 256B eeprom size was not supported in earlier hardware, so we
-             * bump eeprom_size up one to ensure that "1" (which maps to 256B)
-             * is never the result used in the shifting logic below. */
-            if (eeprom_size)
-                eeprom_size++;
-        } else {
-            eeprom_size = (uint16_t)((eecd & E1000_EECD_SIZE_EX_MASK) >>
-                          E1000_EECD_SIZE_EX_SHIFT);
-        }
-
-        eeprom->word_size = 1 << (eeprom_size + EEPROM_WORD_SIZE_SHIFT);
-    }
-    return ret_val;
-}
-
-/******************************************************************************
- * Raises the EEPROM's clock input.
- *
- * hw - Struct containing variables accessed by shared code
- * eecd - EECD's current value
- *****************************************************************************/
-static void
-em_raise_ee_clk(struct em_hw *hw,
-                   uint32_t *eecd)
-{
-    /* Raise the clock input to the EEPROM (by setting the SK bit), and then
-     * wait <delay> microseconds.
-     */
-    *eecd = *eecd | E1000_EECD_SK;
-    E1000_WRITE_REG(hw, EECD, *eecd);
-    E1000_WRITE_FLUSH(hw);
-    usec_delay(hw->eeprom.delay_usec);
-}
-
-/******************************************************************************
- * Lowers the EEPROM's clock input.
- *
- * hw - Struct containing variables accessed by shared code
- * eecd - EECD's current value
- *****************************************************************************/
-static void
-em_lower_ee_clk(struct em_hw *hw,
-                   uint32_t *eecd)
-{
-    /* Lower the clock input to the EEPROM (by clearing the SK bit), and then
-     * wait 50 microseconds.
-     */
-    *eecd = *eecd & ~E1000_EECD_SK;
-    E1000_WRITE_REG(hw, EECD, *eecd);
-    E1000_WRITE_FLUSH(hw);
-    usec_delay(hw->eeprom.delay_usec);
-}
-
-/******************************************************************************
- * Shift data bits out to the EEPROM.
- *
- * hw - Struct containing variables accessed by shared code
- * data - data to send to the EEPROM
- * count - number of bits to shift out
- *****************************************************************************/
-static void
-em_shift_out_ee_bits(struct em_hw *hw,
-                        uint16_t data,
-                        uint16_t count)
-{
-    struct em_eeprom_info *eeprom = &hw->eeprom;
-    uint32_t eecd;
-    uint32_t mask;
-
-    /* We need to shift "count" bits out to the EEPROM. So, value in the
-     * "data" parameter will be shifted out to the EEPROM one bit at a time.
-     * In order to do this, "data" must be broken down into bits.
-     */
-    mask = 0x01 << (count - 1);
-    eecd = E1000_READ_REG(hw, EECD);
-    if (eeprom->type == em_eeprom_microwire) {
-        eecd &= ~E1000_EECD_DO;
-    } else if (eeprom->type == em_eeprom_spi) {
-        eecd |= E1000_EECD_DO;
-    }
-    do {
-        /* A "1" is shifted out to the EEPROM by setting bit "DI" to a "1",
-         * and then raising and then lowering the clock (the SK bit controls
-         * the clock input to the EEPROM).  A "0" is shifted out to the EEPROM
-         * by setting "DI" to "0" and then raising and then lowering the clock.
-         */
-        eecd &= ~E1000_EECD_DI;
-
-        if (data & mask)
-            eecd |= E1000_EECD_DI;
-
-        E1000_WRITE_REG(hw, EECD, eecd);
-        E1000_WRITE_FLUSH(hw);
-
-        usec_delay(eeprom->delay_usec);
-
-        em_raise_ee_clk(hw, &eecd);
-        em_lower_ee_clk(hw, &eecd);
-
-        mask = mask >> 1;
-
-    } while (mask);
-
-    /* We leave the "DI" bit set to "0" when we leave this routine. */
-    eecd &= ~E1000_EECD_DI;
-    E1000_WRITE_REG(hw, EECD, eecd);
-}
-
-/******************************************************************************
- * Shift data bits in from the EEPROM
- *
- * hw - Struct containing variables accessed by shared code
- *****************************************************************************/
-static uint16_t
-em_shift_in_ee_bits(struct em_hw *hw,
-                       uint16_t count)
-{
-    uint32_t eecd;
-    uint32_t i;
-    uint16_t data;
-
-    /* In order to read a register from the EEPROM, we need to shift 'count'
-     * bits in from the EEPROM. Bits are "shifted in" by raising the clock
-     * input to the EEPROM (setting the SK bit), and then reading the value of
-     * the "DO" bit.  During this "shifting in" process the "DI" bit should
-     * always be clear.
-     */
-
-    eecd = E1000_READ_REG(hw, EECD);
-
-    eecd &= ~(E1000_EECD_DO | E1000_EECD_DI);
-    data = 0;
-
-    for (i = 0; i < count; i++) {
-        data = data << 1;
-        em_raise_ee_clk(hw, &eecd);
-
-        eecd = E1000_READ_REG(hw, EECD);
-
-        eecd &= ~(E1000_EECD_DI);
-        if (eecd & E1000_EECD_DO)
-            data |= 1;
-
-        em_lower_ee_clk(hw, &eecd);
-    }
-
-    return data;
-}
-
-/******************************************************************************
- * Prepares EEPROM for access
- *
- * hw - Struct containing variables accessed by shared code
- *
- * Lowers EEPROM clock. Clears input pin. Sets the chip select pin. This
- * function should be called before issuing a command to the EEPROM.
- *****************************************************************************/
-static int32_t
-em_acquire_eeprom(struct em_hw *hw)
-{
-    struct em_eeprom_info *eeprom = &hw->eeprom;
-    uint32_t eecd, i=0;
-
-    DEBUGFUNC("em_acquire_eeprom");
-
-    if (em_swfw_sync_acquire(hw, E1000_SWFW_EEP_SM))
-        return -E1000_ERR_SWFW_SYNC;
-    eecd = E1000_READ_REG(hw, EECD);
-
-    if (hw->mac_type != em_82573) {
-        /* Request EEPROM Access */
-        if (hw->mac_type > em_82544) {
-            eecd |= E1000_EECD_REQ;
-            E1000_WRITE_REG(hw, EECD, eecd);
-            eecd = E1000_READ_REG(hw, EECD);
-            while ((!(eecd & E1000_EECD_GNT)) &&
-                  (i < E1000_EEPROM_GRANT_ATTEMPTS)) {
-                i++;
-                usec_delay(5);
-                eecd = E1000_READ_REG(hw, EECD);
-            }
-            if (!(eecd & E1000_EECD_GNT)) {
-                eecd &= ~E1000_EECD_REQ;
-                E1000_WRITE_REG(hw, EECD, eecd);
-                DEBUGOUT("Could not acquire EEPROM grant\n");
-                em_swfw_sync_release(hw, E1000_SWFW_EEP_SM);
-                return -E1000_ERR_EEPROM;
-            }
-        }
-    }
-
-    /* Setup EEPROM for Read/Write */
-
-    if (eeprom->type == em_eeprom_microwire) {
-        /* Clear SK and DI */
-        eecd &= ~(E1000_EECD_DI | E1000_EECD_SK);
-        E1000_WRITE_REG(hw, EECD, eecd);
-
-        /* Set CS */
-        eecd |= E1000_EECD_CS;
-        E1000_WRITE_REG(hw, EECD, eecd);
-    } else if (eeprom->type == em_eeprom_spi) {
-        /* Clear SK and CS */
-        eecd &= ~(E1000_EECD_CS | E1000_EECD_SK);
-        E1000_WRITE_REG(hw, EECD, eecd);
-        usec_delay(1);
-    }
-
-    return E1000_SUCCESS;
-}
-
-/******************************************************************************
- * Returns EEPROM to a "standby" state
- *
- * hw - Struct containing variables accessed by shared code
- *****************************************************************************/
-static void
-em_standby_eeprom(struct em_hw *hw)
-{
-    struct em_eeprom_info *eeprom = &hw->eeprom;
-    uint32_t eecd;
-
-    eecd = E1000_READ_REG(hw, EECD);
-
-    if (eeprom->type == em_eeprom_microwire) {
-        eecd &= ~(E1000_EECD_CS | E1000_EECD_SK);
-        E1000_WRITE_REG(hw, EECD, eecd);
-        E1000_WRITE_FLUSH(hw);
-        usec_delay(eeprom->delay_usec);
-
-        /* Clock high */
-        eecd |= E1000_EECD_SK;
-        E1000_WRITE_REG(hw, EECD, eecd);
-        E1000_WRITE_FLUSH(hw);
-        usec_delay(eeprom->delay_usec);
-
-        /* Select EEPROM */
-        eecd |= E1000_EECD_CS;
-        E1000_WRITE_REG(hw, EECD, eecd);
-        E1000_WRITE_FLUSH(hw);
-        usec_delay(eeprom->delay_usec);
-
-        /* Clock low */
-        eecd &= ~E1000_EECD_SK;
-        E1000_WRITE_REG(hw, EECD, eecd);
-        E1000_WRITE_FLUSH(hw);
-        usec_delay(eeprom->delay_usec);
-    } else if (eeprom->type == em_eeprom_spi) {
-        /* Toggle CS to flush commands */
-        eecd |= E1000_EECD_CS;
-        E1000_WRITE_REG(hw, EECD, eecd);
-        E1000_WRITE_FLUSH(hw);
-        usec_delay(eeprom->delay_usec);
-        eecd &= ~E1000_EECD_CS;
-        E1000_WRITE_REG(hw, EECD, eecd);
-        E1000_WRITE_FLUSH(hw);
-        usec_delay(eeprom->delay_usec);
-    }
-}
-
-/******************************************************************************
- * Terminates a command by inverting the EEPROM's chip select pin
- *
- * hw - Struct containing variables accessed by shared code
- *****************************************************************************/
-static void
-em_release_eeprom(struct em_hw *hw)
-{
-    uint32_t eecd;
-
-    DEBUGFUNC("em_release_eeprom");
-
-    eecd = E1000_READ_REG(hw, EECD);
-
-    if (hw->eeprom.type == em_eeprom_spi) {
-        eecd |= E1000_EECD_CS;  /* Pull CS high */
-        eecd &= ~E1000_EECD_SK; /* Lower SCK */
-
-        E1000_WRITE_REG(hw, EECD, eecd);
-
-        usec_delay(hw->eeprom.delay_usec);
-    } else if (hw->eeprom.type == em_eeprom_microwire) {
-        /* cleanup eeprom */
-
-        /* CS on Microwire is active-high */
-        eecd &= ~(E1000_EECD_CS | E1000_EECD_DI);
-
-        E1000_WRITE_REG(hw, EECD, eecd);
-
-        /* Rising edge of clock */
-        eecd |= E1000_EECD_SK;
-        E1000_WRITE_REG(hw, EECD, eecd);
-        E1000_WRITE_FLUSH(hw);
-        usec_delay(hw->eeprom.delay_usec);
-
-        /* Falling edge of clock */
-        eecd &= ~E1000_EECD_SK;
-        E1000_WRITE_REG(hw, EECD, eecd);
-        E1000_WRITE_FLUSH(hw);
-        usec_delay(hw->eeprom.delay_usec);
-    }
-
-    /* Stop requesting EEPROM access */
-    if (hw->mac_type > em_82544) {
-        eecd &= ~E1000_EECD_REQ;
-        E1000_WRITE_REG(hw, EECD, eecd);
-    }
-
-    em_swfw_sync_release(hw, E1000_SWFW_EEP_SM);
-}
-
-/******************************************************************************
- * Reads a 16 bit word from the EEPROM.
- *
- * hw - Struct containing variables accessed by shared code
- *****************************************************************************/
-int32_t
-em_spi_eeprom_ready(struct em_hw *hw)
-{
-    uint16_t retry_count = 0;
-    uint8_t spi_stat_reg;
-
-    DEBUGFUNC("em_spi_eeprom_ready");
-
-    /* Read "Status Register" repeatedly until the LSB is cleared.  The
-     * EEPROM will signal that the command has been completed by clearing
-     * bit 0 of the internal status register.  If it's not cleared within
-     * 5 milliseconds, then error out.
-     */
-    retry_count = 0;
-    do {
-        em_shift_out_ee_bits(hw, EEPROM_RDSR_OPCODE_SPI,
-                                hw->eeprom.opcode_bits);
-        spi_stat_reg = (uint8_t)em_shift_in_ee_bits(hw, 8);
-        if (!(spi_stat_reg & EEPROM_STATUS_RDY_SPI))
-            break;
-
-        usec_delay(5);
-        retry_count += 5;
-
-        em_standby_eeprom(hw);
-    } while (retry_count < EEPROM_MAX_RETRY_SPI);
-
-    /* ATMEL SPI write time could vary from 0-20mSec on 3.3V devices (and
-     * only 0-5mSec on 5V devices)
-     */
-    if (retry_count >= EEPROM_MAX_RETRY_SPI) {
-        DEBUGOUT("SPI EEPROM Status error\n");
-        return -E1000_ERR_EEPROM;
-    }
-
-    return E1000_SUCCESS;
-}
-
-/******************************************************************************
- * Reads a 16 bit word from the EEPROM.
- *
- * hw - Struct containing variables accessed by shared code
- * offset - offset of  word in the EEPROM to read
- * data - word read from the EEPROM
- * words - number of words to read
- *****************************************************************************/
-int32_t
-em_read_eeprom(struct em_hw *hw,
-                  uint16_t offset,
-                  uint16_t words,
-                  uint16_t *data)
-{
-    struct em_eeprom_info *eeprom = &hw->eeprom;
-    uint32_t i = 0;
-    int32_t ret_val;
-
-    DEBUGFUNC("em_read_eeprom");
-
-    /* A check for invalid values:  offset too large, too many words, and not
-     * enough words.
-     */
-    if ((offset >= eeprom->word_size) || (words > eeprom->word_size - offset) ||
-       (words == 0)) {
-        DEBUGOUT("\"words\" parameter out of bounds\n");
-        return -E1000_ERR_EEPROM;
-    }
-
-    /* FLASH reads without acquiring the semaphore are safe */
-    if (em_is_onboard_nvm_eeprom(hw) == TRUE &&
-        hw->eeprom.use_eerd == FALSE) {
-        switch (hw->mac_type) {
-        case em_80003es2lan:
-            break;
-        default:
-            /* Prepare the EEPROM for reading  */
-            if (em_acquire_eeprom(hw) != E1000_SUCCESS)
-                return -E1000_ERR_EEPROM;
-            break;
-        }
-    }
-
-    if (eeprom->use_eerd == TRUE) {
-        ret_val = em_read_eeprom_eerd(hw, offset, words, data);
-        if ((em_is_onboard_nvm_eeprom(hw) == TRUE) ||
-            (hw->mac_type != em_82573))
-            em_release_eeprom(hw);
-        return ret_val;
-    }
-
-    if (eeprom->type == em_eeprom_ich8)
-        return em_read_eeprom_ich8(hw, offset, words, data);
-
-    if (eeprom->type == em_eeprom_spi) {
-        uint16_t word_in;
-        uint8_t read_opcode = EEPROM_READ_OPCODE_SPI;
-
-        if (em_spi_eeprom_ready(hw)) {
-            em_release_eeprom(hw);
-            return -E1000_ERR_EEPROM;
-        }
-
-        em_standby_eeprom(hw);
-
-        /* Some SPI eeproms use the 8th address bit embedded in the opcode */
-        if ((eeprom->address_bits == 8) && (offset >= 128))
-            read_opcode |= EEPROM_A8_OPCODE_SPI;
-
-        /* Send the READ command (opcode + addr)  */
-        em_shift_out_ee_bits(hw, read_opcode, eeprom->opcode_bits);
-        em_shift_out_ee_bits(hw, (uint16_t)(offset*2), eeprom->address_bits);
-
-        /* Read the data.  The address of the eeprom internally increments with
-         * each byte (spi) being read, saving on the overhead of eeprom setup
-         * and tear-down.  The address counter will roll over if reading beyond
-         * the size of the eeprom, thus allowing the entire memory to be read
-         * starting from any offset. */
-        for (i = 0; i < words; i++) {
-            word_in = em_shift_in_ee_bits(hw, 16);
-            data[i] = (word_in >> 8) | (word_in << 8);
-        }
-    } else if (eeprom->type == em_eeprom_microwire) {
-        for (i = 0; i < words; i++) {
-            /* Send the READ command (opcode + addr)  */
-            em_shift_out_ee_bits(hw, EEPROM_READ_OPCODE_MICROWIRE,
-                                    eeprom->opcode_bits);
-            em_shift_out_ee_bits(hw, (uint16_t)(offset + i),
-                                    eeprom->address_bits);
-
-            /* Read the data.  For microwire, each word requires the overhead
-             * of eeprom setup and tear-down. */
-            data[i] = em_shift_in_ee_bits(hw, 16);
-            em_standby_eeprom(hw);
-        }
-    }
-
-    /* End this read operation */
-    em_release_eeprom(hw);
-
-    return E1000_SUCCESS;
-}
-
-/******************************************************************************
- * Reads a 16 bit word from the EEPROM using the EERD register.
- *
- * hw - Struct containing variables accessed by shared code
- * offset - offset of  word in the EEPROM to read
- * data - word read from the EEPROM
- * words - number of words to read
- *****************************************************************************/
-int32_t
-em_read_eeprom_eerd(struct em_hw *hw,
-                  uint16_t offset,
-                  uint16_t words,
-                  uint16_t *data)
-{
-    uint32_t i, eerd = 0;
-    int32_t error = 0;
-
-    for (i = 0; i < words; i++) {
-        eerd = ((offset+i) << E1000_EEPROM_RW_ADDR_SHIFT) +
-                         E1000_EEPROM_RW_REG_START;
-
-        E1000_WRITE_REG(hw, EERD, eerd);
-        error = em_poll_eerd_eewr_done(hw, E1000_EEPROM_POLL_READ);
-
-        if (error) {
-            break;
-        }
-        data[i] = (E1000_READ_REG(hw, EERD) >> E1000_EEPROM_RW_REG_DATA);
-
-    }
-
-    return error;
-}
-
-/******************************************************************************
- * Writes a 16 bit word from the EEPROM using the EEWR register.
- *
- * hw - Struct containing variables accessed by shared code
- * offset - offset of  word in the EEPROM to read
- * data - word read from the EEPROM
- * words - number of words to read
- *****************************************************************************/
-int32_t
-em_write_eeprom_eewr(struct em_hw *hw,
-                   uint16_t offset,
-                   uint16_t words,
-                   uint16_t *data)
-{
-    uint32_t    register_value = 0;
-    uint32_t    i              = 0;
-    int32_t     error          = 0;
-
-    if (em_swfw_sync_acquire(hw, E1000_SWFW_EEP_SM))
-        return -E1000_ERR_SWFW_SYNC;
-
-    for (i = 0; i < words; i++) {
-        register_value = (data[i] << E1000_EEPROM_RW_REG_DATA) |
-                         ((offset+i) << E1000_EEPROM_RW_ADDR_SHIFT) |
-                         E1000_EEPROM_RW_REG_START;
-
-        error = em_poll_eerd_eewr_done(hw, E1000_EEPROM_POLL_WRITE);
-        if (error) {
-            break;
-        }
-
-        E1000_WRITE_REG(hw, EEWR, register_value);
-
-        error = em_poll_eerd_eewr_done(hw, E1000_EEPROM_POLL_WRITE);
-
-        if (error) {
-            break;
-        }
-    }
-
-    em_swfw_sync_release(hw, E1000_SWFW_EEP_SM);
-    return error;
-}
-
-/******************************************************************************
- * Polls the status bit (bit 1) of the EERD to determine when the read is done.
- *
- * hw - Struct containing variables accessed by shared code
- *****************************************************************************/
-int32_t
-em_poll_eerd_eewr_done(struct em_hw *hw, int eerd)
-{
-    uint32_t attempts = 100000;
-    uint32_t i, reg = 0;
-    int32_t done = E1000_ERR_EEPROM;
-
-    for (i = 0; i < attempts; i++) {
-        if (eerd == E1000_EEPROM_POLL_READ)
-            reg = E1000_READ_REG(hw, EERD);
-        else
-            reg = E1000_READ_REG(hw, EEWR);
-
-        if (reg & E1000_EEPROM_RW_REG_DONE) {
-            done = E1000_SUCCESS;
-            break;
-        }
-        usec_delay(5);
-    }
-
-    return done;
-}
-
-/***************************************************************************
-* Description:     Determines if the onboard NVM is FLASH or EEPROM.
-*
-* hw - Struct containing variables accessed by shared code
-****************************************************************************/
-boolean_t
-em_is_onboard_nvm_eeprom(struct em_hw *hw)
-{
-    uint32_t eecd = 0;
-
-    DEBUGFUNC("em_is_onboard_nvm_eeprom");
-
-    if (hw->mac_type == em_ich8lan)
-        return FALSE;
-
-    if (hw->mac_type == em_82573) {
-        eecd = E1000_READ_REG(hw, EECD);
-
-        /* Isolate bits 15 & 16 */
-        eecd = ((eecd >> 15) & 0x03);
-
-        /* If both bits are set, device is Flash type */
-        if (eecd == 0x03) {
-            return FALSE;
-        }
-    }
-    return TRUE;
-}
-
-/******************************************************************************
- * Verifies that the EEPROM has a valid checksum
- *
- * hw - Struct containing variables accessed by shared code
- *
- * Reads the first 64 16 bit words of the EEPROM and sums the values read.
- * If the the sum of the 64 16 bit words is 0xBABA, the EEPROM's checksum is
- * valid.
- *****************************************************************************/
-int32_t
-em_validate_eeprom_checksum(struct em_hw *hw)
-{
-    uint16_t checksum = 0;
-    uint16_t i, eeprom_data;
-
-    DEBUGFUNC("em_validate_eeprom_checksum");
-
-    if ((hw->mac_type == em_82573) &&
-        (em_is_onboard_nvm_eeprom(hw) == FALSE)) {
-        /* Check bit 4 of word 10h.  If it is 0, firmware is done updating
-         * 10h-12h.  Checksum may need to be fixed. */
-        em_read_eeprom(hw, 0x10, 1, &eeprom_data);
-        if ((eeprom_data & 0x10) == 0) {
-            /* Read 0x23 and check bit 15.  This bit is a 1 when the checksum
-             * has already been fixed.  If the checksum is still wrong and this
-             * bit is a 1, we need to return bad checksum.  Otherwise, we need
-             * to set this bit to a 1 and update the checksum. */
-            em_read_eeprom(hw, 0x23, 1, &eeprom_data);
-            if ((eeprom_data & 0x8000) == 0) {
-                eeprom_data |= 0x8000;
-                em_write_eeprom(hw, 0x23, 1, &eeprom_data);
-                em_update_eeprom_checksum(hw);
-            }
-        }
-    }
-
-    if (hw->mac_type == em_ich8lan) {
-        /* Drivers must allocate the shadow ram structure for the
-         * EEPROM checksum to be updated.  Otherwise, this bit as well
-         * as the checksum must both be set correctly for this
-         * validation to pass.
-         */
-        em_read_eeprom(hw, 0x19, 1, &eeprom_data);
-        if ((eeprom_data & 0x40) == 0) {
-            eeprom_data |= 0x40;
-            em_write_eeprom(hw, 0x19, 1, &eeprom_data);
-            em_update_eeprom_checksum(hw);
-        }
-    }
-
-    for (i = 0; i < (EEPROM_CHECKSUM_REG + 1); i++) {
-        if (em_read_eeprom(hw, i, 1, &eeprom_data) < 0) {
-            DEBUGOUT("EEPROM Read Error\n");
-            return -E1000_ERR_EEPROM;
-        }
-        checksum += eeprom_data;
-    }
-
-    if (checksum == (uint16_t) EEPROM_SUM)
-        return E1000_SUCCESS;
-    else {
-        DEBUGOUT("EEPROM Checksum Invalid\n");
-        return -E1000_ERR_EEPROM;
-    }
-}
-
-/******************************************************************************
- * Calculates the EEPROM checksum and writes it to the EEPROM
- *
- * hw - Struct containing variables accessed by shared code
- *
- * Sums the first 63 16 bit words of the EEPROM. Subtracts the sum from 0xBABA.
- * Writes the difference to word offset 63 of the EEPROM.
- *****************************************************************************/
-int32_t
-em_update_eeprom_checksum(struct em_hw *hw)
-{
-    uint32_t ctrl_ext;
-    uint16_t checksum = 0;
-    uint16_t i, eeprom_data;
-
-    DEBUGFUNC("em_update_eeprom_checksum");
-
-    for (i = 0; i < EEPROM_CHECKSUM_REG; i++) {
-        if (em_read_eeprom(hw, i, 1, &eeprom_data) < 0) {
-            DEBUGOUT("EEPROM Read Error\n");
-            return -E1000_ERR_EEPROM;
-        }
-        checksum += eeprom_data;
-    }
-    checksum = (uint16_t) EEPROM_SUM - checksum;
-    if (em_write_eeprom(hw, EEPROM_CHECKSUM_REG, 1, &checksum) < 0) {
-        DEBUGOUT("EEPROM Write Error\n");
-        return -E1000_ERR_EEPROM;
-    } else if (hw->eeprom.type == em_eeprom_flash) {
-        em_commit_shadow_ram(hw);
-    } else if (hw->eeprom.type == em_eeprom_ich8) {
-        em_commit_shadow_ram(hw);
-        /* Reload the EEPROM, or else modifications will not appear
-         * until after next adapter reset. */
-        ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
-        ctrl_ext |= E1000_CTRL_EXT_EE_RST;
-        E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
-        msec_delay(10);
-    }
-    return E1000_SUCCESS;
-}
-
-/******************************************************************************
- * Parent function for writing words to the different EEPROM types.
- *
- * hw - Struct containing variables accessed by shared code
- * offset - offset within the EEPROM to be written to
- * words - number of words to write
- * data - 16 bit word to be written to the EEPROM
- *
- * If em_update_eeprom_checksum is not called after this function, the
- * EEPROM will most likely contain an invalid checksum.
- *****************************************************************************/
-int32_t
-em_write_eeprom(struct em_hw *hw,
-                   uint16_t offset,
-                   uint16_t words,
-                   uint16_t *data)
-{
-    struct em_eeprom_info *eeprom = &hw->eeprom;
-    int32_t status = 0;
-
-    DEBUGFUNC("em_write_eeprom");
-
-    /* A check for invalid values:  offset too large, too many words, and not
-     * enough words.
-     */
-    if ((offset >= eeprom->word_size) || (words > eeprom->word_size - offset) ||
-       (words == 0)) {
-        DEBUGOUT("\"words\" parameter out of bounds\n");
-        return -E1000_ERR_EEPROM;
-    }
-
-    /* 82573 writes only through eewr */
-    if (eeprom->use_eewr == TRUE)
-        return em_write_eeprom_eewr(hw, offset, words, data);
-
-    if (eeprom->type == em_eeprom_ich8)
-        return em_write_eeprom_ich8(hw, offset, words, data);
-
-    /* Prepare the EEPROM for writing  */
-    if (em_acquire_eeprom(hw) != E1000_SUCCESS)
-        return -E1000_ERR_EEPROM;
-
-    if (eeprom->type == em_eeprom_microwire) {
-        status = em_write_eeprom_microwire(hw, offset, words, data);
-    } else {
-        status = em_write_eeprom_spi(hw, offset, words, data);
-        msec_delay(10);
-    }
-
-    /* Done with writing */
-    em_release_eeprom(hw);
-
-    return status;
-}
-
-/******************************************************************************
- * Writes a 16 bit word to a given offset in an SPI EEPROM.
- *
- * hw - Struct containing variables accessed by shared code
- * offset - offset within the EEPROM to be written to
- * words - number of words to write
- * data - pointer to array of 8 bit words to be written to the EEPROM
- *
- *****************************************************************************/
-int32_t
-em_write_eeprom_spi(struct em_hw *hw,
-                       uint16_t offset,
-                       uint16_t words,
-                       uint16_t *data)
-{
-    struct em_eeprom_info *eeprom = &hw->eeprom;
-    uint16_t widx = 0;
-
-    DEBUGFUNC("em_write_eeprom_spi");
-
-    while (widx < words) {
-        uint8_t write_opcode = EEPROM_WRITE_OPCODE_SPI;
-
-        if (em_spi_eeprom_ready(hw)) return -E1000_ERR_EEPROM;
-
-        em_standby_eeprom(hw);
-
-        /*  Send the WRITE ENABLE command (8 bit opcode )  */
-        em_shift_out_ee_bits(hw, EEPROM_WREN_OPCODE_SPI,
-                                    eeprom->opcode_bits);
-
-        em_standby_eeprom(hw);
-
-        /* Some SPI eeproms use the 8th address bit embedded in the opcode */
-        if ((eeprom->address_bits == 8) && (offset >= 128))
-            write_opcode |= EEPROM_A8_OPCODE_SPI;
-
-        /* Send the Write command (8-bit opcode + addr) */
-        em_shift_out_ee_bits(hw, write_opcode, eeprom->opcode_bits);
-
-        em_shift_out_ee_bits(hw, (uint16_t)((offset + widx)*2),
-                                eeprom->address_bits);
-
-        /* Send the data */
-
-        /* Loop to allow for up to whole page write (32 bytes) of eeprom */
-        while (widx < words) {
-            uint16_t word_out = data[widx];
-            word_out = (word_out >> 8) | (word_out << 8);
-            em_shift_out_ee_bits(hw, word_out, 16);
-            widx++;
-
-            /* Some larger eeprom sizes are capable of a 32-byte PAGE WRITE
-             * operation, while the smaller eeproms are capable of an 8-byte
-             * PAGE WRITE operation.  Break the inner loop to pass new address
-             */
-            if ((((offset + widx)*2) % eeprom->page_size) == 0) {
-                em_standby_eeprom(hw);
-                break;
-            }
-        }
-    }
-
-    return E1000_SUCCESS;
-}
-
-/******************************************************************************
- * Writes a 16 bit word to a given offset in a Microwire EEPROM.
- *
- * hw - Struct containing variables accessed by shared code
- * offset - offset within the EEPROM to be written to
- * words - number of words to write
- * data - pointer to array of 16 bit words to be written to the EEPROM
- *
- *****************************************************************************/
-int32_t
-em_write_eeprom_microwire(struct em_hw *hw,
-                             uint16_t offset,
-                             uint16_t words,
-                             uint16_t *data)
-{
-    struct em_eeprom_info *eeprom = &hw->eeprom;
-    uint32_t eecd;
-    uint16_t words_written = 0;
-    uint16_t i = 0;
-
-    DEBUGFUNC("em_write_eeprom_microwire");
-
-    /* Send the write enable command to the EEPROM (3-bit opcode plus
-     * 6/8-bit dummy address beginning with 11).  It's less work to include
-     * the 11 of the dummy address as part of the opcode than it is to shift
-     * it over the correct number of bits for the address.  This puts the
-     * EEPROM into write/erase mode.
-     */
-    em_shift_out_ee_bits(hw, EEPROM_EWEN_OPCODE_MICROWIRE,
-                            (uint16_t)(eeprom->opcode_bits + 2));
-
-    em_shift_out_ee_bits(hw, 0, (uint16_t)(eeprom->address_bits - 2));
-
-    /* Prepare the EEPROM */
-    em_standby_eeprom(hw);
-
-    while (words_written < words) {
-        /* Send the Write command (3-bit opcode + addr) */
-        em_shift_out_ee_bits(hw, EEPROM_WRITE_OPCODE_MICROWIRE,
-                                eeprom->opcode_bits);
-
-        em_shift_out_ee_bits(hw, (uint16_t)(offset + words_written),
-                                eeprom->address_bits);
-
-        /* Send the data */
-        em_shift_out_ee_bits(hw, data[words_written], 16);
-
-        /* Toggle the CS line.  This in effect tells the EEPROM to execute
-         * the previous command.
-         */
-        em_standby_eeprom(hw);
-
-        /* Read DO repeatedly until it is high (equal to '1').  The EEPROM will
-         * signal that the command has been completed by raising the DO signal.
-         * If DO does not go high in 10 milliseconds, then error out.
-         */
-        for (i = 0; i < 200; i++) {
-            eecd = E1000_READ_REG(hw, EECD);
-            if (eecd & E1000_EECD_DO) break;
-            usec_delay(50);
-        }
-        if (i == 200) {
-            DEBUGOUT("EEPROM Write did not complete\n");
-            return -E1000_ERR_EEPROM;
-        }
-
-        /* Recover from write */
-        em_standby_eeprom(hw);
-
-        words_written++;
-    }
-
-    /* Send the write disable command to the EEPROM (3-bit opcode plus
-     * 6/8-bit dummy address beginning with 10).  It's less work to include
-     * the 10 of the dummy address as part of the opcode than it is to shift
-     * it over the correct number of bits for the address.  This takes the
-     * EEPROM out of write/erase mode.
-     */
-    em_shift_out_ee_bits(hw, EEPROM_EWDS_OPCODE_MICROWIRE,
-                            (uint16_t)(eeprom->opcode_bits + 2));
-
-    em_shift_out_ee_bits(hw, 0, (uint16_t)(eeprom->address_bits - 2));
-
-    return E1000_SUCCESS;
-}
-
-/******************************************************************************
- * Flushes the cached eeprom to NVM. This is done by saving the modified values
- * in the eeprom cache and the non modified values in the currently active bank
- * to the new bank.
- *
- * hw - Struct containing variables accessed by shared code
- * offset - offset of  word in the EEPROM to read
- * data - word read from the EEPROM
- * words - number of words to read
- *****************************************************************************/
-int32_t
-em_commit_shadow_ram(struct em_hw *hw)
-{
-    uint32_t attempts = 100000;
-    uint32_t eecd = 0;
-    uint32_t flop = 0;
-    uint32_t i = 0;
-    int32_t error = E1000_SUCCESS;
-    uint32_t old_bank_offset = 0;
-    uint32_t new_bank_offset = 0;
-    uint32_t sector_retries = 0;
-    uint8_t low_byte = 0;
-    uint8_t high_byte = 0;
-    uint8_t temp_byte = 0;
-    boolean_t sector_write_failed = FALSE;
-
-    if (hw->mac_type == em_82573) {
-        /* The flop register will be used to determine if flash type is STM */
-        flop = E1000_READ_REG(hw, FLOP);
-        for (i=0; i < attempts; i++) {
-            eecd = E1000_READ_REG(hw, EECD);
-            if ((eecd & E1000_EECD_FLUPD) == 0) {
-                break;
-            }
-            usec_delay(5);
-        }
-
-        if (i == attempts) {
-            return -E1000_ERR_EEPROM;
-        }
-
-        /* If STM opcode located in bits 15:8 of flop, reset firmware */
-        if ((flop & 0xFF00) == E1000_STM_OPCODE) {
-            E1000_WRITE_REG(hw, HICR, E1000_HICR_FW_RESET);
-        }
-
-        /* Perform the flash update */
-        E1000_WRITE_REG(hw, EECD, eecd | E1000_EECD_FLUPD);
-
-        for (i=0; i < attempts; i++) {
-            eecd = E1000_READ_REG(hw, EECD);
-            if ((eecd & E1000_EECD_FLUPD) == 0) {
-                break;
-            }
-            usec_delay(5);
-        }
-
-        if (i == attempts) {
-            return -E1000_ERR_EEPROM;
-        }
-    }
-
-    if (hw->mac_type == em_ich8lan && hw->eeprom_shadow_ram != NULL) {
-        /* We're writing to the opposite bank so if we're on bank 1,
-         * write to bank 0 etc.  We also need to erase the segment that
-         * is going to be written */
-        if (!(E1000_READ_REG(hw, EECD) & E1000_EECD_SEC1VAL)) {
-            new_bank_offset = hw->flash_bank_size * 2;
-            old_bank_offset = 0;
-            em_erase_ich8_4k_segment(hw, 1);
-        } else {
-            old_bank_offset = hw->flash_bank_size * 2;
-            new_bank_offset = 0;
-            em_erase_ich8_4k_segment(hw, 0);
-        }
-
-        do {
-            sector_write_failed = FALSE;
-            /* Loop for every byte in the shadow RAM,
-             * which is in units of words. */
-            for (i = 0; i < E1000_SHADOW_RAM_WORDS; i++) {
-                /* Determine whether to write the value stored
-                 * in the other NVM bank or a modified value stored
-                 * in the shadow RAM */
-                if (hw->eeprom_shadow_ram[i].modified == TRUE) {
-                    low_byte = (uint8_t)hw->eeprom_shadow_ram[i].eeprom_word;
-                    em_read_ich8_byte(hw, (i << 1) + old_bank_offset,
-                                         &temp_byte);
-                    usec_delay(100);
-                    error = em_verify_write_ich8_byte(hw,
-                                                 (i << 1) + new_bank_offset,
-                                                 low_byte);
-                    if (error != E1000_SUCCESS)
-                        sector_write_failed = TRUE;
-                    high_byte =
-                        (uint8_t)(hw->eeprom_shadow_ram[i].eeprom_word >> 8);
-                    em_read_ich8_byte(hw, (i << 1) + old_bank_offset + 1,
-                                         &temp_byte);
-                    usec_delay(100);
-                } else {
-                    em_read_ich8_byte(hw, (i << 1) + old_bank_offset,
-                                         &low_byte);
-                    usec_delay(100);
-                    error = em_verify_write_ich8_byte(hw,
-                                 (i << 1) + new_bank_offset, low_byte);
-                    if (error != E1000_SUCCESS)
-                        sector_write_failed = TRUE;
-                    em_read_ich8_byte(hw, (i << 1) + old_bank_offset + 1,
-                                         &high_byte);
-                }
-
-                /* If the word is 0x13, then make sure the signature bits
-                 * (15:14) are 11b until the commit has completed.
-                 * This will allow us to write 10b which indicates the
-                 * signature is valid.  We want to do this after the write
-                 * has completed so that we don't mark the segment valid
-                 * while the write is still in progress */
-                if (i == E1000_ICH8_NVM_SIG_WORD)
-                    high_byte = E1000_ICH8_NVM_SIG_MASK | high_byte;
-
-                error = em_verify_write_ich8_byte(hw,
-                             (i << 1) + new_bank_offset + 1, high_byte);
-                if (error != E1000_SUCCESS)
-                    sector_write_failed = TRUE;
-
-                if (sector_write_failed == FALSE) {
-                    /* Clear the now not used entry in the cache */
-                    hw->eeprom_shadow_ram[i].modified = FALSE;
-                    hw->eeprom_shadow_ram[i].eeprom_word = 0xFFFF;
-                }
-            }
-
-            /* Don't bother writing the segment valid bits if sector
-             * programming failed. */
-            if (sector_write_failed == FALSE) {
-                /* Finally validate the new segment by setting bit 15:14
-                 * to 10b in word 0x13 , this can be done without an
-                 * erase as well since these bits are 11 to start with
-                 * and we need to change bit 14 to 0b */
-                em_read_ich8_byte(hw,
-                    E1000_ICH8_NVM_SIG_WORD * 2 + 1 + new_bank_offset,
-                    &high_byte);
-                high_byte &= 0xBF;
-                error = em_verify_write_ich8_byte(hw,
-                            E1000_ICH8_NVM_SIG_WORD * 2 + 1 + new_bank_offset,
-                            high_byte);
-                if (error != E1000_SUCCESS)
-                    sector_write_failed = TRUE;
-
-                /* And invalidate the previously valid segment by setting
-                 * its signature word (0x13) high_byte to 0b. This can be
-                 * done without an erase because flash erase sets all bits
-                 * to 1's. We can write 1's to 0's without an erase */
-                error = em_verify_write_ich8_byte(hw,
-                            E1000_ICH8_NVM_SIG_WORD * 2 + 1 + old_bank_offset,
-                            0);
-                if (error != E1000_SUCCESS)
-                    sector_write_failed = TRUE;
-            }
-        } while (++sector_retries < 10 && sector_write_failed == TRUE);
-    }
-
-    return error;
-}
-
-/******************************************************************************
- * Reads the adapter's part number from the EEPROM
- *
- * hw - Struct containing variables accessed by shared code
- * part_num - Adapter's part number
- *****************************************************************************/
-int32_t
-em_read_part_num(struct em_hw *hw,
-                    uint32_t *part_num)
-{
-    uint16_t offset = EEPROM_PBA_BYTE_1;
-    uint16_t eeprom_data;
-
-    DEBUGFUNC("em_read_part_num");
-
-    /* Get word 0 from EEPROM */
-    if (em_read_eeprom(hw, offset, 1, &eeprom_data) < 0) {
-        DEBUGOUT("EEPROM Read Error\n");
-        return -E1000_ERR_EEPROM;
-    }
-    /* Save word 0 in upper half of part_num */
-    *part_num = (uint32_t) (eeprom_data << 16);
-
-    /* Get word 1 from EEPROM */
-    if (em_read_eeprom(hw, ++offset, 1, &eeprom_data) < 0) {
-        DEBUGOUT("EEPROM Read Error\n");
-        return -E1000_ERR_EEPROM;
-    }
-    /* Save word 1 in lower half of part_num */
-    *part_num |= eeprom_data;
-
-    return E1000_SUCCESS;
-}
-
-/******************************************************************************
- * Reads the adapter's MAC address from the EEPROM and inverts the LSB for the
- * second function of dual function devices
- *
- * hw - Struct containing variables accessed by shared code
- *****************************************************************************/
-int32_t
-em_read_mac_addr(struct em_hw * hw)
-{
-    uint16_t offset;
-    uint16_t eeprom_data, i;
-
-    DEBUGFUNC("em_read_mac_addr");
-
-    for (i = 0; i < NODE_ADDRESS_SIZE; i += 2) {
-        offset = i >> 1;
-        if (em_read_eeprom(hw, offset, 1, &eeprom_data) < 0) {
-            DEBUGOUT("EEPROM Read Error\n");
-            return -E1000_ERR_EEPROM;
-        }
-        hw->perm_mac_addr[i] = (uint8_t) (eeprom_data & 0x00FF);
-        hw->perm_mac_addr[i+1] = (uint8_t) (eeprom_data >> 8);
-    }
-
-    switch (hw->mac_type) {
-    default:
-        break;
-    case em_82546:
-    case em_82546_rev_3:
-    case em_82571:
-    case em_80003es2lan:
-        if (E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1)
-            hw->perm_mac_addr[5] ^= 0x01;
-        break;
-    }
-
-    for (i = 0; i < NODE_ADDRESS_SIZE; i++)
-        hw->mac_addr[i] = hw->perm_mac_addr[i];
-    return E1000_SUCCESS;
-}
-
-/******************************************************************************
- * Initializes receive address filters.
- *
- * hw - Struct containing variables accessed by shared code
- *
- * Places the MAC address in receive address register 0 and clears the rest
- * of the receive addresss registers. Clears the multicast table. Assumes
- * the receiver is in reset when the routine is called.
- *****************************************************************************/
-void
-em_init_rx_addrs(struct em_hw *hw)
-{
-    uint32_t i;
-    uint32_t rar_num;
-
-    DEBUGFUNC("em_init_rx_addrs");
-
-    /* Setup the receive address. */
-    DEBUGOUT("Programming MAC Address into RAR[0]\n");
-
-    em_rar_set(hw, hw->mac_addr, 0);
-
-    rar_num = E1000_RAR_ENTRIES;
-
-    /* Reserve a spot for the Locally Administered Address to work around
-     * an 82571 issue in which a reset on one port will reload the MAC on
-     * the other port. */
-    if ((hw->mac_type == em_82571) && (hw->laa_is_present == TRUE))
-        rar_num -= 1;
-    if (hw->mac_type == em_ich8lan)
-        rar_num = E1000_RAR_ENTRIES_ICH8LAN;
-
-    /* Zero out the other 15 receive addresses. */
-    DEBUGOUT("Clearing RAR[1-15]\n");
-    for (i = 1; i < rar_num; i++) {
-        E1000_WRITE_REG_ARRAY(hw, RA, (i << 1), 0);
-        E1000_WRITE_FLUSH(hw);
-        E1000_WRITE_REG_ARRAY(hw, RA, ((i << 1) + 1), 0);
-        E1000_WRITE_FLUSH(hw);
-    }
-}
-
-/******************************************************************************
- * Updates the MAC's list of multicast addresses.
- *
- * hw - Struct containing variables accessed by shared code
- * mc_addr_list - the list of new multicast addresses
- * mc_addr_count - number of addresses
- * pad - number of bytes between addresses in the list
- * rar_used_count - offset where to start adding mc addresses into the RAR's
- *
- * The given list replaces any existing list. Clears the last 15 receive
- * address registers and the multicast table. Uses receive address registers
- * for the first 15 multicast addresses, and hashes the rest into the
- * multicast table.
- *****************************************************************************/
-void
-em_mc_addr_list_update(struct em_hw *hw,
-                          uint8_t *mc_addr_list,
-                          uint32_t mc_addr_count,
-                          uint32_t pad,
-                          uint32_t rar_used_count)
-{
-    uint32_t hash_value;
-    uint32_t i;
-    uint32_t num_rar_entry;
-    uint32_t num_mta_entry;
-
-    DEBUGFUNC("em_mc_addr_list_update");
-
-    /* Set the new number of MC addresses that we are being requested to use. */
-    hw->num_mc_addrs = mc_addr_count;
-
-    /* Clear RAR[1-15] */
-    DEBUGOUT(" Clearing RAR[1-15]\n");
-    num_rar_entry = E1000_RAR_ENTRIES;
-    if (hw->mac_type == em_ich8lan)
-        num_rar_entry = E1000_RAR_ENTRIES_ICH8LAN;
-    /* Reserve a spot for the Locally Administered Address to work around
-     * an 82571 issue in which a reset on one port will reload the MAC on
-     * the other port. */
-    if ((hw->mac_type == em_82571) && (hw->laa_is_present == TRUE))
-        num_rar_entry -= 1;
-
-    for (i = rar_used_count; i < num_rar_entry; i++) {
-        E1000_WRITE_REG_ARRAY(hw, RA, (i << 1), 0);
-        E1000_WRITE_FLUSH(hw);
-        E1000_WRITE_REG_ARRAY(hw, RA, ((i << 1) + 1), 0);
-        E1000_WRITE_FLUSH(hw);
-    }
-
-    /* Clear the MTA */
-    DEBUGOUT(" Clearing MTA\n");
-    num_mta_entry = E1000_NUM_MTA_REGISTERS;
-    if (hw->mac_type == em_ich8lan)
-        num_mta_entry = E1000_NUM_MTA_REGISTERS_ICH8LAN;
-    for (i = 0; i < num_mta_entry; i++) {
-        E1000_WRITE_REG_ARRAY(hw, MTA, i, 0);
-        E1000_WRITE_FLUSH(hw);
-    }
-
-    /* Add the new addresses */
-    for (i = 0; i < mc_addr_count; i++) {
-        DEBUGOUT(" Adding the multicast addresses:\n");
-        DEBUGOUT7(" MC Addr #%d =%.2X %.2X %.2X %.2X %.2X %.2X\n", i,
-                  mc_addr_list[i * (ETH_LENGTH_OF_ADDRESS + pad)],
-                  mc_addr_list[i * (ETH_LENGTH_OF_ADDRESS + pad) + 1],
-                  mc_addr_list[i * (ETH_LENGTH_OF_ADDRESS + pad) + 2],
-                  mc_addr_list[i * (ETH_LENGTH_OF_ADDRESS + pad) + 3],
-                  mc_addr_list[i * (ETH_LENGTH_OF_ADDRESS + pad) + 4],
-                  mc_addr_list[i * (ETH_LENGTH_OF_ADDRESS + pad) + 5]);
-
-        hash_value = em_hash_mc_addr(hw,
-                                        mc_addr_list +
-                                        (i * (ETH_LENGTH_OF_ADDRESS + pad)));
-
-        DEBUGOUT1(" Hash value = 0x%03X\n", hash_value);
-
-        /* Place this multicast address in the RAR if there is room, *
-         * else put it in the MTA
-         */
-        if (rar_used_count < num_rar_entry) {
-            em_rar_set(hw,
-                          mc_addr_list + (i * (ETH_LENGTH_OF_ADDRESS + pad)),
-                          rar_used_count);
-            rar_used_count++;
-        } else {
-            em_mta_set(hw, hash_value);
-        }
-    }
-    DEBUGOUT("MC Update Complete\n");
-}
-
-/******************************************************************************
- * Hashes an address to determine its location in the multicast table
- *
- * hw - Struct containing variables accessed by shared code
- * mc_addr - the multicast address to hash
- *****************************************************************************/
-uint32_t
-em_hash_mc_addr(struct em_hw *hw,
-                   uint8_t *mc_addr)
-{
-    uint32_t hash_value = 0;
-
-    /* The portion of the address that is used for the hash table is
-     * determined by the mc_filter_type setting.
-     */
-    switch (hw->mc_filter_type) {
-    /* [0] [1] [2] [3] [4] [5]
-     * 01  AA  00  12  34  56
-     * LSB                 MSB
-     */
-    case 0:
-        if (hw->mac_type == em_ich8lan) {
-            /* [47:38] i.e. 0x158 for above example address */
-            hash_value = ((mc_addr[4] >> 6) | (((uint16_t) mc_addr[5]) << 2));
-        } else {
-            /* [47:36] i.e. 0x563 for above example address */
-            hash_value = ((mc_addr[4] >> 4) | (((uint16_t) mc_addr[5]) << 4));
-        }
-        break;
-    case 1:
-        if (hw->mac_type == em_ich8lan) {
-            /* [46:37] i.e. 0x2B1 for above example address */
-            hash_value = ((mc_addr[4] >> 5) | (((uint16_t) mc_addr[5]) << 3));
-        } else {
-            /* [46:35] i.e. 0xAC6 for above example address */
-            hash_value = ((mc_addr[4] >> 3) | (((uint16_t) mc_addr[5]) << 5));
-        }
-        break;
-    case 2:
-        if (hw->mac_type == em_ich8lan) {
-            /*[45:36] i.e. 0x163 for above example address */
-            hash_value = ((mc_addr[4] >> 4) | (((uint16_t) mc_addr[5]) << 4));
-        } else {
-            /* [45:34] i.e. 0x5D8 for above example address */
-            hash_value = ((mc_addr[4] >> 2) | (((uint16_t) mc_addr[5]) << 6));
-        }
-        break;
-    case 3:
-        if (hw->mac_type == em_ich8lan) {
-            /* [43:34] i.e. 0x18D for above example address */
-            hash_value = ((mc_addr[4] >> 2) | (((uint16_t) mc_addr[5]) << 6));
-        } else {
-            /* [43:32] i.e. 0x634 for above example address */
-            hash_value = ((mc_addr[4]) | (((uint16_t) mc_addr[5]) << 8));
-        }
-        break;
-    }
-
-    hash_value &= 0xFFF;
-    if (hw->mac_type == em_ich8lan)
-        hash_value &= 0x3FF;
-
-    return hash_value;
-}
-
-/******************************************************************************
- * Sets the bit in the multicast table corresponding to the hash value.
- *
- * hw - Struct containing variables accessed by shared code
- * hash_value - Multicast address hash value
- *****************************************************************************/
-void
-em_mta_set(struct em_hw *hw,
-              uint32_t hash_value)
-{
-    uint32_t hash_bit, hash_reg;
-    uint32_t mta;
-    uint32_t temp;
-
-    /* The MTA is a register array of 128 32-bit registers.
-     * It is treated like an array of 4096 bits.  We want to set
-     * bit BitArray[hash_value]. So we figure out what register
-     * the bit is in, read it, OR in the new bit, then write
-     * back the new value.  The register is determined by the
-     * upper 7 bits of the hash value and the bit within that
-     * register are determined by the lower 5 bits of the value.
-     */
-    hash_reg = (hash_value >> 5) & 0x7F;
-    if (hw->mac_type == em_ich8lan)
-        hash_reg &= 0x1F;
-    hash_bit = hash_value & 0x1F;
-
-    mta = E1000_READ_REG_ARRAY(hw, MTA, hash_reg);
-
-    mta |= (1 << hash_bit);
-
-    /* If we are on an 82544 and we are trying to write an odd offset
-     * in the MTA, save off the previous entry before writing and
-     * restore the old value after writing.
-     */
-    if ((hw->mac_type == em_82544) && ((hash_reg & 0x1) == 1)) {
-        temp = E1000_READ_REG_ARRAY(hw, MTA, (hash_reg - 1));
-        E1000_WRITE_REG_ARRAY(hw, MTA, hash_reg, mta);
-        E1000_WRITE_FLUSH(hw);
-        E1000_WRITE_REG_ARRAY(hw, MTA, (hash_reg - 1), temp);
-        E1000_WRITE_FLUSH(hw);
-    } else {
-        E1000_WRITE_REG_ARRAY(hw, MTA, hash_reg, mta);
-        E1000_WRITE_FLUSH(hw);
-    }
-}
-
-/******************************************************************************
- * Puts an ethernet address into a receive address register.
- *
- * hw - Struct containing variables accessed by shared code
- * addr - Address to put into receive address register
- * index - Receive address register to write
- *****************************************************************************/
-void
-em_rar_set(struct em_hw *hw,
-              uint8_t *addr,
-              uint32_t index)
-{
-    uint32_t rar_low, rar_high;
-
-    /* HW expects these in little endian so we reverse the byte order
-     * from network order (big endian) to little endian
-     */
-    rar_low = ((uint32_t) addr[0] |
-               ((uint32_t) addr[1] << 8) |
-               ((uint32_t) addr[2] << 16) | ((uint32_t) addr[3] << 24));
-    rar_high = ((uint32_t) addr[4] | ((uint32_t) addr[5] << 8));
-
-    /* Disable Rx and flush all Rx frames before enabling RSS to avoid Rx
-     * unit hang.
-     *
-     * Description:
-     * If there are any Rx frames queued up or otherwise present in the HW
-     * before RSS is enabled, and then we enable RSS, the HW Rx unit will
-     * hang.  To work around this issue, we have to disable receives and
-     * flush out all Rx frames before we enable RSS. To do so, we modify we
-     * redirect all Rx traffic to manageability and then reset the HW.
-     * This flushes away Rx frames, and (since the redirections to
-     * manageability persists across resets) keeps new ones from coming in
-     * while we work.  Then, we clear the Address Valid AV bit for all MAC
-     * addresses and undo the re-direction to manageability.
-     * Now, frames are coming in again, but the MAC won't accept them, so
-     * far so good.  We now proceed to initialize RSS (if necessary) and
-     * configure the Rx unit.  Last, we re-enable the AV bits and continue
-     * on our merry way.
-     */
-    switch (hw->mac_type) {
-    case em_82571:
-    case em_82572:
-    case em_80003es2lan:
-        if (hw->leave_av_bit_off == TRUE)
-            break;
-    default:
-        /* Indicate to hardware the Address is Valid. */
-        rar_high |= E1000_RAH_AV;
-        break;
-    }
-
-    E1000_WRITE_REG_ARRAY(hw, RA, (index << 1), rar_low);
-    E1000_WRITE_FLUSH(hw);
-    E1000_WRITE_REG_ARRAY(hw, RA, ((index << 1) + 1), rar_high);
-    E1000_WRITE_FLUSH(hw);
-}
-
-/******************************************************************************
- * Writes a value to the specified offset in the VLAN filter table.
- *
- * hw - Struct containing variables accessed by shared code
- * offset - Offset in VLAN filer table to write
- * value - Value to write into VLAN filter table
- *****************************************************************************/
-void
-em_write_vfta(struct em_hw *hw,
-                 uint32_t offset,
-                 uint32_t value)
-{
-    uint32_t temp;
-
-    if (hw->mac_type == em_ich8lan)
-        return;
-
-    if ((hw->mac_type == em_82544) && ((offset & 0x1) == 1)) {
-        temp = E1000_READ_REG_ARRAY(hw, VFTA, (offset - 1));
-        E1000_WRITE_REG_ARRAY(hw, VFTA, offset, value);
-        E1000_WRITE_FLUSH(hw);
-        E1000_WRITE_REG_ARRAY(hw, VFTA, (offset - 1), temp);
-        E1000_WRITE_FLUSH(hw);
-    } else {
-        E1000_WRITE_REG_ARRAY(hw, VFTA, offset, value);
-        E1000_WRITE_FLUSH(hw);
-    }
-}
-
-/******************************************************************************
- * Clears the VLAN filer table
- *
- * hw - Struct containing variables accessed by shared code
- *****************************************************************************/
-void
-em_clear_vfta(struct em_hw *hw)
-{
-    uint32_t offset;
-    uint32_t vfta_value = 0;
-    uint32_t vfta_offset = 0;
-    uint32_t vfta_bit_in_reg = 0;
-
-    if (hw->mac_type == em_ich8lan)
-        return;
-
-    if (hw->mac_type == em_82573) {
-        if (hw->mng_cookie.vlan_id != 0) {
-            /* The VFTA is a 4096b bit-field, each identifying a single VLAN
-             * ID.  The following operations determine which 32b entry
-             * (i.e. offset) into the array we want to set the VLAN ID
-             * (i.e. bit) of the manageability unit. */
-            vfta_offset = (hw->mng_cookie.vlan_id >>
-                           E1000_VFTA_ENTRY_SHIFT) &
-                          E1000_VFTA_ENTRY_MASK;
-            vfta_bit_in_reg = 1 << (hw->mng_cookie.vlan_id &
-                                    E1000_VFTA_ENTRY_BIT_SHIFT_MASK);
-        }
-    }
-    for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) {
-        /* If the offset we want to clear is the same offset of the
-         * manageability VLAN ID, then clear all bits except that of the
-         * manageability unit */
-        vfta_value = (offset == vfta_offset) ? vfta_bit_in_reg : 0;
-        E1000_WRITE_REG_ARRAY(hw, VFTA, offset, vfta_value);
-        E1000_WRITE_FLUSH(hw);
-    }
-}
-
-int32_t
-em_id_led_init(struct em_hw * hw)
-{
-    uint32_t ledctl;
-    const uint32_t ledctl_mask = 0x000000FF;
-    const uint32_t ledctl_on = E1000_LEDCTL_MODE_LED_ON;
-    const uint32_t ledctl_off = E1000_LEDCTL_MODE_LED_OFF;
-    uint16_t eeprom_data, i, temp;
-    const uint16_t led_mask = 0x0F;
-
-    DEBUGFUNC("em_id_led_init");
-
-    if (hw->mac_type < em_82540) {
-        /* Nothing to do */
-        return E1000_SUCCESS;
-    }
-
-    ledctl = E1000_READ_REG(hw, LEDCTL);
-    hw->ledctl_default = ledctl;
-    hw->ledctl_mode1 = hw->ledctl_default;
-    hw->ledctl_mode2 = hw->ledctl_default;
-
-    if (em_read_eeprom(hw, EEPROM_ID_LED_SETTINGS, 1, &eeprom_data) < 0) {
-        DEBUGOUT("EEPROM Read Error\n");
-        return -E1000_ERR_EEPROM;
-    }
-
-    if ((hw->mac_type == em_82573) &&
-        (eeprom_data == ID_LED_RESERVED_82573))
-        eeprom_data = ID_LED_DEFAULT_82573;
-    else if ((eeprom_data == ID_LED_RESERVED_0000) ||
-            (eeprom_data == ID_LED_RESERVED_FFFF)) {
-        if (hw->mac_type == em_ich8lan)
-            eeprom_data = ID_LED_DEFAULT_ICH8LAN;
-        else
-            eeprom_data = ID_LED_DEFAULT;
-    }
-    for (i = 0; i < 4; i++) {
-        temp = (eeprom_data >> (i << 2)) & led_mask;
-        switch (temp) {
-        case ID_LED_ON1_DEF2:
-        case ID_LED_ON1_ON2:
-        case ID_LED_ON1_OFF2:
-            hw->ledctl_mode1 &= ~(ledctl_mask << (i << 3));
-            hw->ledctl_mode1 |= ledctl_on << (i << 3);
-            break;
-        case ID_LED_OFF1_DEF2:
-        case ID_LED_OFF1_ON2:
-        case ID_LED_OFF1_OFF2:
-            hw->ledctl_mode1 &= ~(ledctl_mask << (i << 3));
-            hw->ledctl_mode1 |= ledctl_off << (i << 3);
-            break;
-        default:
-            /* Do nothing */
-            break;
-        }
-        switch (temp) {
-        case ID_LED_DEF1_ON2:
-        case ID_LED_ON1_ON2:
-        case ID_LED_OFF1_ON2:
-            hw->ledctl_mode2 &= ~(ledctl_mask << (i << 3));
-            hw->ledctl_mode2 |= ledctl_on << (i << 3);
-            break;
-        case ID_LED_DEF1_OFF2:
-        case ID_LED_ON1_OFF2:
-        case ID_LED_OFF1_OFF2:
-            hw->ledctl_mode2 &= ~(ledctl_mask << (i << 3));
-            hw->ledctl_mode2 |= ledctl_off << (i << 3);
-            break;
-        default:
-            /* Do nothing */
-            break;
-        }
-    }
-    return E1000_SUCCESS;
-}
-
-/******************************************************************************
- * Prepares SW controlable LED for use and saves the current state of the LED.
- *
- * hw - Struct containing variables accessed by shared code
- *****************************************************************************/
-int32_t
-em_setup_led(struct em_hw *hw)
-{
-    uint32_t ledctl;
-    int32_t ret_val = E1000_SUCCESS;
-
-    DEBUGFUNC("em_setup_led");
-
-    switch (hw->mac_type) {
-    case em_82542_rev2_0:
-    case em_82542_rev2_1:
-    case em_82543:
-    case em_82544:
-        /* No setup necessary */
-        break;
-    case em_82541:
-    case em_82547:
-    case em_82541_rev_2:
-    case em_82547_rev_2:
-        /* Turn off PHY Smart Power Down (if enabled) */
-        ret_val = em_read_phy_reg(hw, IGP01E1000_GMII_FIFO,
-                                     &hw->phy_spd_default);
-        if (ret_val)
-            return ret_val;
-        ret_val = em_write_phy_reg(hw, IGP01E1000_GMII_FIFO,
-                                      (uint16_t)(hw->phy_spd_default &
-                                      ~IGP01E1000_GMII_SPD));
-        if (ret_val)
-            return ret_val;
-        /* Fall Through */
-    default:
-        if (hw->media_type == em_media_type_fiber) {
-            ledctl = E1000_READ_REG(hw, LEDCTL);
-            /* Save current LEDCTL settings */
-            hw->ledctl_default = ledctl;
-            /* Turn off LED0 */
-            ledctl &= ~(E1000_LEDCTL_LED0_IVRT |
-                        E1000_LEDCTL_LED0_BLINK |
-                        E1000_LEDCTL_LED0_MODE_MASK);
-            ledctl |= (E1000_LEDCTL_MODE_LED_OFF <<
-                       E1000_LEDCTL_LED0_MODE_SHIFT);
-            E1000_WRITE_REG(hw, LEDCTL, ledctl);
-        } else if (hw->media_type == em_media_type_copper)
-            E1000_WRITE_REG(hw, LEDCTL, hw->ledctl_mode1);
-        break;
-    }
-
-    return E1000_SUCCESS;
-}
-
-
-/******************************************************************************
- * Used on 82571 and later Si that has LED blink bits.
- * Callers must use their own timer and should have already called
- * em_id_led_init()
- * Call em_cleanup led() to stop blinking
- *
- * hw - Struct containing variables accessed by shared code
- *****************************************************************************/
-int32_t
-em_blink_led_start(struct em_hw *hw)
-{
-    int16_t  i;
-    uint32_t ledctl_blink = 0;
-
-    DEBUGFUNC("em_id_led_blink_on");
-
-    if (hw->mac_type < em_82571) {
-        /* Nothing to do */
-        return E1000_SUCCESS;
-    }
-    if (hw->media_type == em_media_type_fiber) {
-        /* always blink LED0 for PCI-E fiber */
-        ledctl_blink = E1000_LEDCTL_LED0_BLINK |
-                     (E1000_LEDCTL_MODE_LED_ON << E1000_LEDCTL_LED0_MODE_SHIFT);
-    } else {
-        /* set the blink bit for each LED that's "on" (0x0E) in ledctl_mode2 */
-        ledctl_blink = hw->ledctl_mode2;
-        for (i=0; i < 4; i++)
-            if (((hw->ledctl_mode2 >> (i * 8)) & 0xFF) ==
-                E1000_LEDCTL_MODE_LED_ON)
-                ledctl_blink |= (E1000_LEDCTL_LED0_BLINK << (i * 8));
-    }
-
-    E1000_WRITE_REG(hw, LEDCTL, ledctl_blink);
-
-    return E1000_SUCCESS;
-}
-
-/******************************************************************************
- * Restores the saved state of the SW controlable LED.
- *
- * hw - Struct containing variables accessed by shared code
- *****************************************************************************/
-int32_t
-em_cleanup_led(struct em_hw *hw)
-{
-    int32_t ret_val = E1000_SUCCESS;
-
-    DEBUGFUNC("em_cleanup_led");
-
-    switch (hw->mac_type) {
-    case em_82542_rev2_0:
-    case em_82542_rev2_1:
-    case em_82543:
-    case em_82544:
-        /* No cleanup necessary */
-        break;
-    case em_82541:
-    case em_82547:
-    case em_82541_rev_2:
-    case em_82547_rev_2:
-        /* Turn on PHY Smart Power Down (if previously enabled) */
-        ret_val = em_write_phy_reg(hw, IGP01E1000_GMII_FIFO,
-                                      hw->phy_spd_default);
-        if (ret_val)
-            return ret_val;
-        /* Fall Through */
-    default:
-        if (hw->phy_type == em_phy_ife) {
-            em_write_phy_reg(hw, IFE_PHY_SPECIAL_CONTROL_LED, 0);
-            break;
-        }
-        /* Restore LEDCTL settings */
-        E1000_WRITE_REG(hw, LEDCTL, hw->ledctl_default);
-        break;
-    }
-
-    return E1000_SUCCESS;
-}
-
-/******************************************************************************
- * Turns on the software controllable LED
- *
- * hw - Struct containing variables accessed by shared code
- *****************************************************************************/
-int32_t
-em_led_on(struct em_hw *hw)
-{
-    uint32_t ctrl = E1000_READ_REG(hw, CTRL);
-
-    DEBUGFUNC("em_led_on");
-
-    switch (hw->mac_type) {
-    case em_82542_rev2_0:
-    case em_82542_rev2_1:
-    case em_82543:
-        /* Set SW Defineable Pin 0 to turn on the LED */
-        ctrl |= E1000_CTRL_SWDPIN0;
-        ctrl |= E1000_CTRL_SWDPIO0;
-        break;
-    case em_82544:
-        if (hw->media_type == em_media_type_fiber) {
-            /* Set SW Defineable Pin 0 to turn on the LED */
-            ctrl |= E1000_CTRL_SWDPIN0;
-            ctrl |= E1000_CTRL_SWDPIO0;
-        } else {
-            /* Clear SW Defineable Pin 0 to turn on the LED */
-            ctrl &= ~E1000_CTRL_SWDPIN0;
-            ctrl |= E1000_CTRL_SWDPIO0;
-        }
-        break;
-    default:
-        if (hw->media_type == em_media_type_fiber) {
-            /* Clear SW Defineable Pin 0 to turn on the LED */
-            ctrl &= ~E1000_CTRL_SWDPIN0;
-            ctrl |= E1000_CTRL_SWDPIO0;
-        } else if (hw->phy_type == em_phy_ife) {
-            em_write_phy_reg(hw, IFE_PHY_SPECIAL_CONTROL_LED,
-                 (IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_ON));
-        } else if (hw->media_type == em_media_type_copper) {
-            E1000_WRITE_REG(hw, LEDCTL, hw->ledctl_mode2);
-            return E1000_SUCCESS;
-        }
-        break;
-    }
-
-    E1000_WRITE_REG(hw, CTRL, ctrl);
-
-    return E1000_SUCCESS;
-}
-
-/******************************************************************************
- * Turns off the software controllable LED
- *
- * hw - Struct containing variables accessed by shared code
- *****************************************************************************/
-int32_t
-em_led_off(struct em_hw *hw)
-{
-    uint32_t ctrl = E1000_READ_REG(hw, CTRL);
-
-    DEBUGFUNC("em_led_off");
-
-    switch (hw->mac_type) {
-    case em_82542_rev2_0:
-    case em_82542_rev2_1:
-    case em_82543:
-        /* Clear SW Defineable Pin 0 to turn off the LED */
-        ctrl &= ~E1000_CTRL_SWDPIN0;
-        ctrl |= E1000_CTRL_SWDPIO0;
-        break;
-    case em_82544:
-        if (hw->media_type == em_media_type_fiber) {
-            /* Clear SW Defineable Pin 0 to turn off the LED */
-            ctrl &= ~E1000_CTRL_SWDPIN0;
-            ctrl |= E1000_CTRL_SWDPIO0;
-        } else {
-            /* Set SW Defineable Pin 0 to turn off the LED */
-            ctrl |= E1000_CTRL_SWDPIN0;
-            ctrl |= E1000_CTRL_SWDPIO0;
-        }
-        break;
-    default:
-        if (hw->media_type == em_media_type_fiber) {
-            /* Set SW Defineable Pin 0 to turn off the LED */
-            ctrl |= E1000_CTRL_SWDPIN0;
-            ctrl |= E1000_CTRL_SWDPIO0;
-        } else if (hw->phy_type == em_phy_ife) {
-            em_write_phy_reg(hw, IFE_PHY_SPECIAL_CONTROL_LED,
-                 (IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_OFF));
-        } else if (hw->media_type == em_media_type_copper) {
-            E1000_WRITE_REG(hw, LEDCTL, hw->ledctl_mode1);
-            return E1000_SUCCESS;
-        }
-        break;
-    }
-
-    E1000_WRITE_REG(hw, CTRL, ctrl);
-
-    return E1000_SUCCESS;
-}
-
-/******************************************************************************
- * Clears all hardware statistics counters.
- *
- * hw - Struct containing variables accessed by shared code
- *****************************************************************************/
-void
-em_clear_hw_cntrs(struct em_hw *hw)
-{
-    volatile uint32_t temp;
-
-    temp = E1000_READ_REG(hw, CRCERRS);
-    temp = E1000_READ_REG(hw, SYMERRS);
-    temp = E1000_READ_REG(hw, MPC);
-    temp = E1000_READ_REG(hw, SCC);
-    temp = E1000_READ_REG(hw, ECOL);
-    temp = E1000_READ_REG(hw, MCC);
-    temp = E1000_READ_REG(hw, LATECOL);
-    temp = E1000_READ_REG(hw, COLC);
-    temp = E1000_READ_REG(hw, DC);
-    temp = E1000_READ_REG(hw, SEC);
-    temp = E1000_READ_REG(hw, RLEC);
-    temp = E1000_READ_REG(hw, XONRXC);
-    temp = E1000_READ_REG(hw, XONTXC);
-    temp = E1000_READ_REG(hw, XOFFRXC);
-    temp = E1000_READ_REG(hw, XOFFTXC);
-    temp = E1000_READ_REG(hw, FCRUC);
-
-    if (hw->mac_type != em_ich8lan) {
-    temp = E1000_READ_REG(hw, PRC64);
-    temp = E1000_READ_REG(hw, PRC127);
-    temp = E1000_READ_REG(hw, PRC255);
-    temp = E1000_READ_REG(hw, PRC511);
-    temp = E1000_READ_REG(hw, PRC1023);
-    temp = E1000_READ_REG(hw, PRC1522);
-    }
-
-    temp = E1000_READ_REG(hw, GPRC);
-    temp = E1000_READ_REG(hw, BPRC);
-    temp = E1000_READ_REG(hw, MPRC);
-    temp = E1000_READ_REG(hw, GPTC);
-    temp = E1000_READ_REG(hw, GORCL);
-    temp = E1000_READ_REG(hw, GORCH);
-    temp = E1000_READ_REG(hw, GOTCL);
-    temp = E1000_READ_REG(hw, GOTCH);
-    temp = E1000_READ_REG(hw, RNBC);
-    temp = E1000_READ_REG(hw, RUC);
-    temp = E1000_READ_REG(hw, RFC);
-    temp = E1000_READ_REG(hw, ROC);
-    temp = E1000_READ_REG(hw, RJC);
-    temp = E1000_READ_REG(hw, TORL);
-    temp = E1000_READ_REG(hw, TORH);
-    temp = E1000_READ_REG(hw, TOTL);
-    temp = E1000_READ_REG(hw, TOTH);
-    temp = E1000_READ_REG(hw, TPR);
-    temp = E1000_READ_REG(hw, TPT);
-
-    if (hw->mac_type != em_ich8lan) {
-    temp = E1000_READ_REG(hw, PTC64);
-    temp = E1000_READ_REG(hw, PTC127);
-    temp = E1000_READ_REG(hw, PTC255);
-    temp = E1000_READ_REG(hw, PTC511);
-    temp = E1000_READ_REG(hw, PTC1023);
-    temp = E1000_READ_REG(hw, PTC1522);
-    }
-
-    temp = E1000_READ_REG(hw, MPTC);
-    temp = E1000_READ_REG(hw, BPTC);
-
-    if (hw->mac_type < em_82543) return;
-
-    temp = E1000_READ_REG(hw, ALGNERRC);
-    temp = E1000_READ_REG(hw, RXERRC);
-    temp = E1000_READ_REG(hw, TNCRS);
-    temp = E1000_READ_REG(hw, CEXTERR);
-    temp = E1000_READ_REG(hw, TSCTC);
-    temp = E1000_READ_REG(hw, TSCTFC);
-
-    if (hw->mac_type <= em_82544) return;
-
-    temp = E1000_READ_REG(hw, MGTPRC);
-    temp = E1000_READ_REG(hw, MGTPDC);
-    temp = E1000_READ_REG(hw, MGTPTC);
-
-    if (hw->mac_type <= em_82547_rev_2) return;
-
-    temp = E1000_READ_REG(hw, IAC);
-    temp = E1000_READ_REG(hw, ICRXOC);
-
-    if (hw->mac_type == em_ich8lan) return;
-
-    temp = E1000_READ_REG(hw, ICRXPTC);
-    temp = E1000_READ_REG(hw, ICRXATC);
-    temp = E1000_READ_REG(hw, ICTXPTC);
-    temp = E1000_READ_REG(hw, ICTXATC);
-    temp = E1000_READ_REG(hw, ICTXQEC);
-    temp = E1000_READ_REG(hw, ICTXQMTC);
-    temp = E1000_READ_REG(hw, ICRXDMTC);
-}
-
-/******************************************************************************
- * Resets Adaptive IFS to its default state.
- *
- * hw - Struct containing variables accessed by shared code
- *
- * Call this after em_init_hw. You may override the IFS defaults by setting
- * hw->ifs_params_forced to TRUE. However, you must initialize hw->
- * current_ifs_val, ifs_min_val, ifs_max_val, ifs_step_size, and ifs_ratio
- * before calling this function.
- *****************************************************************************/
-void
-em_reset_adaptive(struct em_hw *hw)
-{
-    DEBUGFUNC("em_reset_adaptive");
-
-    if (hw->adaptive_ifs) {
-        if (!hw->ifs_params_forced) {
-            hw->current_ifs_val = 0;
-            hw->ifs_min_val = IFS_MIN;
-            hw->ifs_max_val = IFS_MAX;
-            hw->ifs_step_size = IFS_STEP;
-            hw->ifs_ratio = IFS_RATIO;
-        }
-        hw->in_ifs_mode = FALSE;
-        E1000_WRITE_REG(hw, AIT, 0);
-    } else {
-        DEBUGOUT("Not in Adaptive IFS mode!\n");
-    }
-}
-
-/******************************************************************************
- * Called during the callback/watchdog routine to update IFS value based on
- * the ratio of transmits to collisions.
- *
- * hw - Struct containing variables accessed by shared code
- * tx_packets - Number of transmits since last callback
- * total_collisions - Number of collisions since last callback
- *****************************************************************************/
-void
-em_update_adaptive(struct em_hw *hw)
-{
-    DEBUGFUNC("em_update_adaptive");
-
-    if (hw->adaptive_ifs) {
-        if ((hw->collision_delta * hw->ifs_ratio) > hw->tx_packet_delta) {
-            if (hw->tx_packet_delta > MIN_NUM_XMITS) {
-                hw->in_ifs_mode = TRUE;
-                if (hw->current_ifs_val < hw->ifs_max_val) {
-                    if (hw->current_ifs_val == 0)
-                        hw->current_ifs_val = hw->ifs_min_val;
-                    else
-                        hw->current_ifs_val += hw->ifs_step_size;
-                    E1000_WRITE_REG(hw, AIT, hw->current_ifs_val);
-                }
-            }
-        } else {
-            if (hw->in_ifs_mode && (hw->tx_packet_delta <= MIN_NUM_XMITS)) {
-                hw->current_ifs_val = 0;
-                hw->in_ifs_mode = FALSE;
-                E1000_WRITE_REG(hw, AIT, 0);
-            }
-        }
-    } else {
-        DEBUGOUT("Not in Adaptive IFS mode!\n");
-    }
-}
-
-/******************************************************************************
- * Adjusts the statistic counters when a frame is accepted by TBI_ACCEPT
- *
- * hw - Struct containing variables accessed by shared code
- * frame_len - The length of the frame in question
- * mac_addr - The Ethernet destination address of the frame in question
- *****************************************************************************/
-void
-em_tbi_adjust_stats(struct em_hw *hw,
-                       struct em_hw_stats *stats,
-                       uint32_t frame_len,
-                       uint8_t *mac_addr)
-{
-    uint64_t carry_bit;
-
-    /* First adjust the frame length. */
-    frame_len--;
-    /* We need to adjust the statistics counters, since the hardware
-     * counters overcount this packet as a CRC error and undercount
-     * the packet as a good packet
-     */
-    /* This packet should not be counted as a CRC error.    */
-    stats->crcerrs--;
-    /* This packet does count as a Good Packet Received.    */
-    stats->gprc++;
-
-    /* Adjust the Good Octets received counters             */
-    carry_bit = 0x80000000 & stats->gorcl;
-    stats->gorcl += frame_len;
-    /* If the high bit of Gorcl (the low 32 bits of the Good Octets
-     * Received Count) was one before the addition,
-     * AND it is zero after, then we lost the carry out,
-     * need to add one to Gorch (Good Octets Received Count High).
-     * This could be simplified if all environments supported
-     * 64-bit integers.
-     */
-    if (carry_bit && ((stats->gorcl & 0x80000000) == 0))
-        stats->gorch++;
-    /* Is this a broadcast or multicast?  Check broadcast first,
-     * since the test for a multicast frame will test positive on
-     * a broadcast frame.
-     */
-    if ((mac_addr[0] == (uint8_t) 0xff) && (mac_addr[1] == (uint8_t) 0xff))
-        /* Broadcast packet */
-        stats->bprc++;
-    else if (*mac_addr & 0x01)
-        /* Multicast packet */
-        stats->mprc++;
-
-    if (frame_len == hw->max_frame_size) {
-        /* In this case, the hardware has overcounted the number of
-         * oversize frames.
-         */
-        if (stats->roc > 0)
-            stats->roc--;
-    }
-
-    /* Adjust the bin counters when the extra byte put the frame in the
-     * wrong bin. Remember that the frame_len was adjusted above.
-     */
-    if (frame_len == 64) {
-        stats->prc64++;
-        stats->prc127--;
-    } else if (frame_len == 127) {
-        stats->prc127++;
-        stats->prc255--;
-    } else if (frame_len == 255) {
-        stats->prc255++;
-        stats->prc511--;
-    } else if (frame_len == 511) {
-        stats->prc511++;
-        stats->prc1023--;
-    } else if (frame_len == 1023) {
-        stats->prc1023++;
-        stats->prc1522--;
-    } else if (frame_len == 1522) {
-        stats->prc1522++;
-    }
-}
-
-/******************************************************************************
- * Gets the current PCI bus type, speed, and width of the hardware
- *
- * hw - Struct containing variables accessed by shared code
- *****************************************************************************/
-void
-em_get_bus_info(struct em_hw *hw)
-{
-    uint32_t status;
-
-    switch (hw->mac_type) {
-    case em_82542_rev2_0:
-    case em_82542_rev2_1:
-        hw->bus_type = em_bus_type_unknown;
-        hw->bus_speed = em_bus_speed_unknown;
-        hw->bus_width = em_bus_width_unknown;
-        break;
-    case em_82572:
-    case em_82573:
-        hw->bus_type = em_bus_type_pci_express;
-        hw->bus_speed = em_bus_speed_2500;
-        hw->bus_width = em_bus_width_pciex_1;
-        break;
-    case em_82571:
-    case em_ich8lan:
-    case em_80003es2lan:
-        hw->bus_type = em_bus_type_pci_express;
-        hw->bus_speed = em_bus_speed_2500;
-        hw->bus_width = em_bus_width_pciex_4;
-        break;
-    default:
-        status = E1000_READ_REG(hw, STATUS);
-        hw->bus_type = (status & E1000_STATUS_PCIX_MODE) ?
-                       em_bus_type_pcix : em_bus_type_pci;
-
-        if (hw->device_id == E1000_DEV_ID_82546EB_QUAD_COPPER) {
-            hw->bus_speed = (hw->bus_type == em_bus_type_pci) ?
-                            em_bus_speed_66 : em_bus_speed_120;
-        } else if (hw->bus_type == em_bus_type_pci) {
-            hw->bus_speed = (status & E1000_STATUS_PCI66) ?
-                            em_bus_speed_66 : em_bus_speed_33;
-        } else {
-            switch (status & E1000_STATUS_PCIX_SPEED) {
-            case E1000_STATUS_PCIX_SPEED_66:
-                hw->bus_speed = em_bus_speed_66;
-                break;
-            case E1000_STATUS_PCIX_SPEED_100:
-                hw->bus_speed = em_bus_speed_100;
-                break;
-            case E1000_STATUS_PCIX_SPEED_133:
-                hw->bus_speed = em_bus_speed_133;
-                break;
-            default:
-                hw->bus_speed = em_bus_speed_reserved;
-                break;
-            }
-        }
-        hw->bus_width = (status & E1000_STATUS_BUS64) ?
-                        em_bus_width_64 : em_bus_width_32;
-        break;
-    }
-}
-/******************************************************************************
- * Reads a value from one of the devices registers using port I/O (as opposed
- * memory mapped I/O). Only 82544 and newer devices support port I/O.
- *
- * hw - Struct containing variables accessed by shared code
- * offset - offset to read from
- *****************************************************************************/
-uint32_t
-em_read_reg_io(struct em_hw *hw,
-                  uint32_t offset)
-{
-    unsigned long io_addr = hw->io_base;
-    unsigned long io_data = hw->io_base + 4;
-
-    em_io_write(hw, io_addr, offset);
-    return em_io_read(hw, io_data);
-}
-
-/******************************************************************************
- * Writes a value to one of the devices registers using port I/O (as opposed to
- * memory mapped I/O). Only 82544 and newer devices support port I/O.
- *
- * hw - Struct containing variables accessed by shared code
- * offset - offset to write to
- * value - value to write
- *****************************************************************************/
-void
-em_write_reg_io(struct em_hw *hw,
-                   uint32_t offset,
-                   uint32_t value)
-{
-    unsigned long io_addr = hw->io_base;
-    unsigned long io_data = hw->io_base + 4;
-
-    em_io_write(hw, io_addr, offset);
-    em_io_write(hw, io_data, value);
-}
-
-
-/******************************************************************************
- * Estimates the cable length.
- *
- * hw - Struct containing variables accessed by shared code
- * min_length - The estimated minimum length
- * max_length - The estimated maximum length
- *
- * returns: - E1000_ERR_XXX
- *            E1000_SUCCESS
- *
- * This function always returns a ranged length (minimum & maximum).
- * So for M88 phy's, this function interprets the one value returned from the
- * register to the minimum and maximum range.
- * For IGP phy's, the function calculates the range by the AGC registers.
- *****************************************************************************/
-int32_t
-em_get_cable_length(struct em_hw *hw,
-                       uint16_t *min_length,
-                       uint16_t *max_length)
-{
-    int32_t ret_val;
-    uint16_t agc_value = 0;
-    uint16_t i, phy_data;
-    uint16_t cable_length;
-
-    DEBUGFUNC("em_get_cable_length");
-
-    *min_length = *max_length = 0;
-
-    /* Use old method for Phy older than IGP */
-    if (hw->phy_type == em_phy_m88) {
-
-        ret_val = em_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS,
-                                     &phy_data);
-        if (ret_val)
-            return ret_val;
-        cable_length = (phy_data & M88E1000_PSSR_CABLE_LENGTH) >>
-                       M88E1000_PSSR_CABLE_LENGTH_SHIFT;
-
-        /* Convert the enum value to ranged values */
-        switch (cable_length) {
-        case em_cable_length_50:
-            *min_length = 0;
-            *max_length = em_igp_cable_length_50;
-            break;
-        case em_cable_length_50_80:
-            *min_length = em_igp_cable_length_50;
-            *max_length = em_igp_cable_length_80;
-            break;
-        case em_cable_length_80_110:
-            *min_length = em_igp_cable_length_80;
-            *max_length = em_igp_cable_length_110;
-            break;
-        case em_cable_length_110_140:
-            *min_length = em_igp_cable_length_110;
-            *max_length = em_igp_cable_length_140;
-            break;
-        case em_cable_length_140:
-            *min_length = em_igp_cable_length_140;
-            *max_length = em_igp_cable_length_170;
-            break;
-        default:
-            return -E1000_ERR_PHY;
-            break;
-        }
-    } else if (hw->phy_type == em_phy_gg82563) {
-        ret_val = em_read_phy_reg(hw, GG82563_PHY_DSP_DISTANCE,
-                                     &phy_data);
-        if (ret_val)
-            return ret_val;
-        cable_length = phy_data & GG82563_DSPD_CABLE_LENGTH;
-
-        switch (cable_length) {
-        case em_gg_cable_length_60:
-            *min_length = 0;
-            *max_length = em_igp_cable_length_60;
-            break;
-        case em_gg_cable_length_60_115:
-            *min_length = em_igp_cable_length_60;
-            *max_length = em_igp_cable_length_115;
-            break;
-        case em_gg_cable_length_115_150:
-            *min_length = em_igp_cable_length_115;
-            *max_length = em_igp_cable_length_150;
-            break;
-        case em_gg_cable_length_150:
-            *min_length = em_igp_cable_length_150;
-            *max_length = em_igp_cable_length_180;
-            break;
-        default:
-            return -E1000_ERR_PHY;
-            break;
-        }
-    } else if (hw->phy_type == em_phy_igp) { /* For IGP PHY */
-        uint16_t cur_agc_value;
-        uint16_t min_agc_value = IGP01E1000_AGC_LENGTH_TABLE_SIZE;
-        uint16_t agc_reg_array[IGP01E1000_PHY_CHANNEL_NUM] =
-                                                         {IGP01E1000_PHY_AGC_A,
-                                                          IGP01E1000_PHY_AGC_B,
-                                                          IGP01E1000_PHY_AGC_C,
-                                                          IGP01E1000_PHY_AGC_D};
-        /* Read the AGC registers for all channels */
-        for (i = 0; i < IGP01E1000_PHY_CHANNEL_NUM; i++) {
-
-            ret_val = em_read_phy_reg(hw, agc_reg_array[i], &phy_data);
-            if (ret_val)
-                return ret_val;
-
-            cur_agc_value = phy_data >> IGP01E1000_AGC_LENGTH_SHIFT;
-
-            /* Value bound check. */
-            if ((cur_agc_value >= IGP01E1000_AGC_LENGTH_TABLE_SIZE - 1) ||
-                (cur_agc_value == 0))
-                return -E1000_ERR_PHY;
-
-            agc_value += cur_agc_value;
-
-            /* Update minimal AGC value. */
-            if (min_agc_value > cur_agc_value)
-                min_agc_value = cur_agc_value;
-        }
-
-        /* Remove the minimal AGC result for length < 50m */
-        if (agc_value < IGP01E1000_PHY_CHANNEL_NUM * em_igp_cable_length_50) {
-            agc_value -= min_agc_value;
-
-            /* Get the average length of the remaining 3 channels */
-            agc_value /= (IGP01E1000_PHY_CHANNEL_NUM - 1);
-        } else {
-            /* Get the average length of all the 4 channels. */
-            agc_value /= IGP01E1000_PHY_CHANNEL_NUM;
-        }
-
-        /* Set the range of the calculated length. */
-        *min_length = ((em_igp_cable_length_table[agc_value] -
-                       IGP01E1000_AGC_RANGE) > 0) ?
-                       (em_igp_cable_length_table[agc_value] -
-                       IGP01E1000_AGC_RANGE) : 0;
-        *max_length = em_igp_cable_length_table[agc_value] +
-                      IGP01E1000_AGC_RANGE;
-    } else if (hw->phy_type == em_phy_igp_2 ||
-               hw->phy_type == em_phy_igp_3) {
-        uint16_t cur_agc_index, max_agc_index = 0;
-        uint16_t min_agc_index = IGP02E1000_AGC_LENGTH_TABLE_SIZE - 1;
-        uint16_t agc_reg_array[IGP02E1000_PHY_CHANNEL_NUM] =
-                                                         {IGP02E1000_PHY_AGC_A,
-                                                          IGP02E1000_PHY_AGC_B,
-                                                          IGP02E1000_PHY_AGC_C,
-                                                          IGP02E1000_PHY_AGC_D};
-        /* Read the AGC registers for all channels */
-        for (i = 0; i < IGP02E1000_PHY_CHANNEL_NUM; i++) {
-            ret_val = em_read_phy_reg(hw, agc_reg_array[i], &phy_data);
-            if (ret_val)
-                return ret_val;
-
-            /* Getting bits 15:9, which represent the combination of course and
-             * fine gain values.  The result is a number that can be put into
-             * the lookup table to obtain the approximate cable length. */
-            cur_agc_index = (phy_data >> IGP02E1000_AGC_LENGTH_SHIFT) &
-                            IGP02E1000_AGC_LENGTH_MASK;
-
-            /* Array index bound check. */
-            if ((cur_agc_index >= IGP02E1000_AGC_LENGTH_TABLE_SIZE) ||
-                (cur_agc_index == 0))
-                return -E1000_ERR_PHY;
-
-            /* Remove min & max AGC values from calculation. */
-            if (em_igp_2_cable_length_table[min_agc_index] >
-                em_igp_2_cable_length_table[cur_agc_index])
-                min_agc_index = cur_agc_index;
-            if (em_igp_2_cable_length_table[max_agc_index] <
-                em_igp_2_cable_length_table[cur_agc_index])
-                max_agc_index = cur_agc_index;
-
-            agc_value += em_igp_2_cable_length_table[cur_agc_index];
-        }
-
-        agc_value -= (em_igp_2_cable_length_table[min_agc_index] +
-                      em_igp_2_cable_length_table[max_agc_index]);
-        agc_value /= (IGP02E1000_PHY_CHANNEL_NUM - 2);
-
-        /* Calculate cable length with the error range of +/- 10 meters. */
-        *min_length = ((agc_value - IGP02E1000_AGC_RANGE) > 0) ?
-                       (agc_value - IGP02E1000_AGC_RANGE) : 0;
-        *max_length = agc_value + IGP02E1000_AGC_RANGE;
-    }
-
-    return E1000_SUCCESS;
-}
-
-/******************************************************************************
- * Check the cable polarity
- *
- * hw - Struct containing variables accessed by shared code
- * polarity - output parameter : 0 - Polarity is not reversed
- *                               1 - Polarity is reversed.
- *
- * returns: - E1000_ERR_XXX
- *            E1000_SUCCESS
- *
- * For phy's older then IGP, this function simply reads the polarity bit in the
- * Phy Status register.  For IGP phy's, this bit is valid only if link speed is
- * 10 Mbps.  If the link speed is 100 Mbps there is no polarity so this bit will
- * return 0.  If the link speed is 1000 Mbps the polarity status is in the
- * IGP01E1000_PHY_PCS_INIT_REG.
- *****************************************************************************/
-int32_t
-em_check_polarity(struct em_hw *hw,
-                     uint16_t *polarity)
-{
-    int32_t ret_val;
-    uint16_t phy_data;
-
-    DEBUGFUNC("em_check_polarity");
-
-    if ((hw->phy_type == em_phy_m88) ||
-        (hw->phy_type == em_phy_gg82563)) {
-        /* return the Polarity bit in the Status register. */
-        ret_val = em_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS,
-                                     &phy_data);
-        if (ret_val)
-            return ret_val;
-        *polarity = (phy_data & M88E1000_PSSR_REV_POLARITY) >>
-                    M88E1000_PSSR_REV_POLARITY_SHIFT;
-    } else if (hw->phy_type == em_phy_igp ||
-              hw->phy_type == em_phy_igp_3 ||
-              hw->phy_type == em_phy_igp_2) {
-        /* Read the Status register to check the speed */
-        ret_val = em_read_phy_reg(hw, IGP01E1000_PHY_PORT_STATUS,
-                                     &phy_data);
-        if (ret_val)
-            return ret_val;
-
-        /* If speed is 1000 Mbps, must read the IGP01E1000_PHY_PCS_INIT_REG to
-         * find the polarity status */
-        if ((phy_data & IGP01E1000_PSSR_SPEED_MASK) ==
-           IGP01E1000_PSSR_SPEED_1000MBPS) {
-
-            /* Read the GIG initialization PCS register (0x00B4) */
-            ret_val = em_read_phy_reg(hw, IGP01E1000_PHY_PCS_INIT_REG,
-                                         &phy_data);
-            if (ret_val)
-                return ret_val;
-
-            /* Check the polarity bits */
-            *polarity = (phy_data & IGP01E1000_PHY_POLARITY_MASK) ? 1 : 0;
-        } else {
-            /* For 10 Mbps, read the polarity bit in the status register. (for
-             * 100 Mbps this bit is always 0) */
-            *polarity = phy_data & IGP01E1000_PSSR_POLARITY_REVERSED;
-        }
-    } else if (hw->phy_type == em_phy_ife) {
-        ret_val = em_read_phy_reg(hw, IFE_PHY_EXTENDED_STATUS_CONTROL,
-                                     &phy_data);
-        if (ret_val)
-            return ret_val;
-        *polarity = (phy_data & IFE_PESC_POLARITY_REVERSED) >>
-                           IFE_PESC_POLARITY_REVERSED_SHIFT;
-    }
-    return E1000_SUCCESS;
-}
-
-/******************************************************************************
- * Check if Downshift occured
- *
- * hw - Struct containing variables accessed by shared code
- * downshift - output parameter : 0 - No Downshift ocured.
- *                                1 - Downshift ocured.
- *
- * returns: - E1000_ERR_XXX
- *            E1000_SUCCESS
- *
- * For phy's older then IGP, this function reads the Downshift bit in the Phy
- * Specific Status register.  For IGP phy's, it reads the Downgrade bit in the
- * Link Health register.  In IGP this bit is latched high, so the driver must
- * read it immediately after link is established.
- *****************************************************************************/
-int32_t
-em_check_downshift(struct em_hw *hw)
-{
-    int32_t ret_val;
-    uint16_t phy_data;
-
-    DEBUGFUNC("em_check_downshift");
-
-    if (hw->phy_type == em_phy_igp ||
-        hw->phy_type == em_phy_igp_3 ||
-        hw->phy_type == em_phy_igp_2) {
-        ret_val = em_read_phy_reg(hw, IGP01E1000_PHY_LINK_HEALTH,
-                                     &phy_data);
-        if (ret_val)
-            return ret_val;
-
-        hw->speed_downgraded = (phy_data & IGP01E1000_PLHR_SS_DOWNGRADE) ? 1 : 0;
-    } else if ((hw->phy_type == em_phy_m88) ||
-               (hw->phy_type == em_phy_gg82563)) {
-        ret_val = em_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS,
-                                     &phy_data);
-        if (ret_val)
-            return ret_val;
-
-        hw->speed_downgraded = (phy_data & M88E1000_PSSR_DOWNSHIFT) >>
-                               M88E1000_PSSR_DOWNSHIFT_SHIFT;
-    } else if (hw->phy_type == em_phy_ife) {
-        /* em_phy_ife supports 10/100 speed only */
-        hw->speed_downgraded = FALSE;
-    }
-
-    return E1000_SUCCESS;
-}
-
-/*****************************************************************************
- *
- * 82541_rev_2 & 82547_rev_2 have the capability to configure the DSP when a
- * gigabit link is achieved to improve link quality.
- *
- * hw: Struct containing variables accessed by shared code
- *
- * returns: - E1000_ERR_PHY if fail to read/write the PHY
- *            E1000_SUCCESS at any other case.
- *
- ****************************************************************************/
-
-int32_t
-em_config_dsp_after_link_change(struct em_hw *hw,
-                                   boolean_t link_up)
-{
-    int32_t ret_val;
-    uint16_t phy_data, phy_saved_data, speed, duplex, i;
-    uint16_t dsp_reg_array[IGP01E1000_PHY_CHANNEL_NUM] =
-                                        {IGP01E1000_PHY_AGC_PARAM_A,
-                                        IGP01E1000_PHY_AGC_PARAM_B,
-                                        IGP01E1000_PHY_AGC_PARAM_C,
-                                        IGP01E1000_PHY_AGC_PARAM_D};
-    uint16_t min_length, max_length;
-
-    DEBUGFUNC("em_config_dsp_after_link_change");
-
-    if (hw->phy_type != em_phy_igp)
-        return E1000_SUCCESS;
-
-    if (link_up) {
-        ret_val = em_get_speed_and_duplex(hw, &speed, &duplex);
-        if (ret_val) {
-            DEBUGOUT("Error getting link speed and duplex\n");
-            return ret_val;
-        }
-
-        if (speed == SPEED_1000) {
-
-            ret_val = em_get_cable_length(hw, &min_length, &max_length);
-            if (ret_val)
-                return ret_val;
-
-            if ((hw->dsp_config_state == em_dsp_config_enabled) &&
-                min_length >= em_igp_cable_length_50) {
-
-                for (i = 0; i < IGP01E1000_PHY_CHANNEL_NUM; i++) {
-                    ret_val = em_read_phy_reg(hw, dsp_reg_array[i],
-                                                 &phy_data);
-                    if (ret_val)
-                        return ret_val;
-
-                    phy_data &= ~IGP01E1000_PHY_EDAC_MU_INDEX;
-
-                    ret_val = em_write_phy_reg(hw, dsp_reg_array[i],
-                                                  phy_data);
-                    if (ret_val)
-                        return ret_val;
-                }
-                hw->dsp_config_state = em_dsp_config_activated;
-            }
-
-            if ((hw->ffe_config_state == em_ffe_config_enabled) &&
-               (min_length < em_igp_cable_length_50)) {
-
-                uint16_t ffe_idle_err_timeout = FFE_IDLE_ERR_COUNT_TIMEOUT_20;
-                uint32_t idle_errs = 0;
-
-                /* clear previous idle error counts */
-                ret_val = em_read_phy_reg(hw, PHY_1000T_STATUS,
-                                             &phy_data);
-                if (ret_val)
-                    return ret_val;
-
-                for (i = 0; i < ffe_idle_err_timeout; i++) {
-                    usec_delay(1000);
-                    ret_val = em_read_phy_reg(hw, PHY_1000T_STATUS,
-                                                 &phy_data);
-                    if (ret_val)
-                        return ret_val;
-
-                    idle_errs += (phy_data & SR_1000T_IDLE_ERROR_CNT);
-                    if (idle_errs > SR_1000T_PHY_EXCESSIVE_IDLE_ERR_COUNT) {
-                        hw->ffe_config_state = em_ffe_config_active;
-
-                        ret_val = em_write_phy_reg(hw,
-                                    IGP01E1000_PHY_DSP_FFE,
-                                    IGP01E1000_PHY_DSP_FFE_CM_CP);
-                        if (ret_val)
-                            return ret_val;
-                        break;
-                    }
-
-                    if (idle_errs)
-                        ffe_idle_err_timeout = FFE_IDLE_ERR_COUNT_TIMEOUT_100;
-                }
-            }
-        }
-    } else {
-        if (hw->dsp_config_state == em_dsp_config_activated) {
-            /* Save off the current value of register 0x2F5B to be restored at
-             * the end of the routines. */
-            ret_val = em_read_phy_reg(hw, 0x2F5B, &phy_saved_data);
-
-            if (ret_val)
-                return ret_val;
-
-            /* Disable the PHY transmitter */
-            ret_val = em_write_phy_reg(hw, 0x2F5B, 0x0003);
-
-            if (ret_val)
-                return ret_val;
-
-            msec_delay_irq(20);
-
-            ret_val = em_write_phy_reg(hw, 0x0000,
-                                          IGP01E1000_IEEE_FORCE_GIGA);
-            if (ret_val)
-                return ret_val;
-            for (i = 0; i < IGP01E1000_PHY_CHANNEL_NUM; i++) {
-                ret_val = em_read_phy_reg(hw, dsp_reg_array[i], &phy_data);
-                if (ret_val)
-                    return ret_val;
-
-                phy_data &= ~IGP01E1000_PHY_EDAC_MU_INDEX;
-                phy_data |=  IGP01E1000_PHY_EDAC_SIGN_EXT_9_BITS;
-
-                ret_val = em_write_phy_reg(hw,dsp_reg_array[i], phy_data);
-                if (ret_val)
-                    return ret_val;
-            }
-
-            ret_val = em_write_phy_reg(hw, 0x0000,
-                                          IGP01E1000_IEEE_RESTART_AUTONEG);
-            if (ret_val)
-                return ret_val;
-
-            msec_delay_irq(20);
-
-            /* Now enable the transmitter */
-            ret_val = em_write_phy_reg(hw, 0x2F5B, phy_saved_data);
-
-            if (ret_val)
-                return ret_val;
-
-            hw->dsp_config_state = em_dsp_config_enabled;
-        }
-
-        if (hw->ffe_config_state == em_ffe_config_active) {
-            /* Save off the current value of register 0x2F5B to be restored at
-             * the end of the routines. */
-            ret_val = em_read_phy_reg(hw, 0x2F5B, &phy_saved_data);
-
-            if (ret_val)
-                return ret_val;
-
-            /* Disable the PHY transmitter */
-            ret_val = em_write_phy_reg(hw, 0x2F5B, 0x0003);
-
-            if (ret_val)
-                return ret_val;
-
-            msec_delay_irq(20);
-
-            ret_val = em_write_phy_reg(hw, 0x0000,
-                                          IGP01E1000_IEEE_FORCE_GIGA);
-            if (ret_val)
-                return ret_val;
-            ret_val = em_write_phy_reg(hw, IGP01E1000_PHY_DSP_FFE,
-                                          IGP01E1000_PHY_DSP_FFE_DEFAULT);
-            if (ret_val)
-                return ret_val;
-
-            ret_val = em_write_phy_reg(hw, 0x0000,
-                                          IGP01E1000_IEEE_RESTART_AUTONEG);
-            if (ret_val)
-                return ret_val;
-
-            msec_delay_irq(20);
-
-            /* Now enable the transmitter */
-            ret_val = em_write_phy_reg(hw, 0x2F5B, phy_saved_data);
-
-            if (ret_val)
-                return ret_val;
-
-            hw->ffe_config_state = em_ffe_config_enabled;
-        }
-    }
-    return E1000_SUCCESS;
-}
-
-/*****************************************************************************
- * Set PHY to class A mode
- * Assumes the following operations will follow to enable the new class mode.
- *  1. Do a PHY soft reset
- *  2. Restart auto-negotiation or force link.
- *
- * hw - Struct containing variables accessed by shared code
- ****************************************************************************/
-static int32_t
-em_set_phy_mode(struct em_hw *hw)
-{
-    int32_t ret_val;
-    uint16_t eeprom_data;
-
-    DEBUGFUNC("em_set_phy_mode");
-
-    if ((hw->mac_type == em_82545_rev_3) &&
-        (hw->media_type == em_media_type_copper)) {
-        ret_val = em_read_eeprom(hw, EEPROM_PHY_CLASS_WORD, 1, &eeprom_data);
-        if (ret_val) {
-            return ret_val;
-        }
-
-        if ((eeprom_data != EEPROM_RESERVED_WORD) &&
-            (eeprom_data & EEPROM_PHY_CLASS_A)) {
-            ret_val = em_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x000B);
-            if (ret_val)
-                return ret_val;
-            ret_val = em_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0x8104);
-            if (ret_val)
-                return ret_val;
-
-            hw->phy_reset_disable = FALSE;
-        }
-    }
-
-    return E1000_SUCCESS;
-}
-
-/*****************************************************************************
- *
- * This function sets the lplu state according to the active flag.  When
- * activating lplu this function also disables smart speed and vise versa.
- * lplu will not be activated unless the device autonegotiation advertisment
- * meets standards of either 10 or 10/100 or 10/100/1000 at all duplexes.
- * hw: Struct containing variables accessed by shared code
- * active - true to enable lplu false to disable lplu.
- *
- * returns: - E1000_ERR_PHY if fail to read/write the PHY
- *            E1000_SUCCESS at any other case.
- *
- ****************************************************************************/
-
-int32_t
-em_set_d3_lplu_state(struct em_hw *hw,
-                        boolean_t active)
-{
-    uint32_t phy_ctrl = 0;
-    int32_t ret_val;
-    uint16_t phy_data;
-    DEBUGFUNC("em_set_d3_lplu_state");
-
-    if (hw->phy_type != em_phy_igp && hw->phy_type != em_phy_igp_2
-        && hw->phy_type != em_phy_igp_3)
-        return E1000_SUCCESS;
-
-    /* During driver activity LPLU should not be used or it will attain link
-     * from the lowest speeds starting from 10Mbps. The capability is used for
-     * Dx transitions and states */
-    if (hw->mac_type == em_82541_rev_2 || hw->mac_type == em_82547_rev_2) {
-        ret_val = em_read_phy_reg(hw, IGP01E1000_GMII_FIFO, &phy_data);
-        if (ret_val)
-            return ret_val;
-    } else if (hw->mac_type == em_ich8lan) {
-        /* MAC writes into PHY register based on the state transition
-         * and start auto-negotiation. SW driver can overwrite the settings
-         * in CSR PHY power control E1000_PHY_CTRL register. */
-        phy_ctrl = E1000_READ_REG(hw, PHY_CTRL);
-    } else {
-        ret_val = em_read_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, &phy_data);
-        if (ret_val)
-            return ret_val;
-    }
-
-    if (!active) {
-        if (hw->mac_type == em_82541_rev_2 ||
-            hw->mac_type == em_82547_rev_2) {
-            phy_data &= ~IGP01E1000_GMII_FLEX_SPD;
-            ret_val = em_write_phy_reg(hw, IGP01E1000_GMII_FIFO, phy_data);
-            if (ret_val)
-                return ret_val;
-        } else {
-            if (hw->mac_type == em_ich8lan) {
-                phy_ctrl &= ~E1000_PHY_CTRL_NOND0A_LPLU;
-                E1000_WRITE_REG(hw, PHY_CTRL, phy_ctrl);
-            } else {
-                phy_data &= ~IGP02E1000_PM_D3_LPLU;
-                ret_val = em_write_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT,
-                                              phy_data);
-                if (ret_val)
-                    return ret_val;
-            }
-        }
-
-        /* LPLU and SmartSpeed are mutually exclusive.  LPLU is used during
-         * Dx states where the power conservation is most important.  During
-         * driver activity we should enable SmartSpeed, so performance is
-         * maintained. */
-        if (hw->smart_speed == em_smart_speed_on) {
-            ret_val = em_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
-                                         &phy_data);
-            if (ret_val)
-                return ret_val;
-
-            phy_data |= IGP01E1000_PSCFR_SMART_SPEED;
-            ret_val = em_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
-                                          phy_data);
-            if (ret_val)
-                return ret_val;
-        } else if (hw->smart_speed == em_smart_speed_off) {
-            ret_val = em_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
-                                         &phy_data);
-	    if (ret_val)
-                return ret_val;
-
-            phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
-            ret_val = em_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
-                                          phy_data);
-            if (ret_val)
-                return ret_val;
-        }
-
-    } else if ((hw->autoneg_advertised == AUTONEG_ADVERTISE_SPEED_DEFAULT) ||
-               (hw->autoneg_advertised == AUTONEG_ADVERTISE_10_ALL ) ||
-               (hw->autoneg_advertised == AUTONEG_ADVERTISE_10_100_ALL)) {
-
-        if (hw->mac_type == em_82541_rev_2 ||
-            hw->mac_type == em_82547_rev_2) {
-            phy_data |= IGP01E1000_GMII_FLEX_SPD;
-            ret_val = em_write_phy_reg(hw, IGP01E1000_GMII_FIFO, phy_data);
-            if (ret_val)
-                return ret_val;
-        } else {
-            if (hw->mac_type == em_ich8lan) {
-                phy_ctrl |= E1000_PHY_CTRL_NOND0A_LPLU;
-                E1000_WRITE_REG(hw, PHY_CTRL, phy_ctrl);
-            } else {
-                phy_data |= IGP02E1000_PM_D3_LPLU;
-                ret_val = em_write_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT,
-                                              phy_data);
-                if (ret_val)
-                    return ret_val;
-            }
-        }
-
-        /* When LPLU is enabled we should disable SmartSpeed */
-        ret_val = em_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, &phy_data);
-        if (ret_val)
-            return ret_val;
-
-        phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
-        ret_val = em_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, phy_data);
-        if (ret_val)
-            return ret_val;
-
-    }
-    return E1000_SUCCESS;
-}
-
-/*****************************************************************************
- *
- * This function sets the lplu d0 state according to the active flag.  When
- * activating lplu this function also disables smart speed and vise versa.
- * lplu will not be activated unless the device autonegotiation advertisment
- * meets standards of either 10 or 10/100 or 10/100/1000 at all duplexes.
- * hw: Struct containing variables accessed by shared code
- * active - true to enable lplu false to disable lplu.
- *
- * returns: - E1000_ERR_PHY if fail to read/write the PHY
- *            E1000_SUCCESS at any other case.
- *
- ****************************************************************************/
-
-int32_t
-em_set_d0_lplu_state(struct em_hw *hw,
-                        boolean_t active)
-{
-    uint32_t phy_ctrl = 0;
-    int32_t ret_val;
-    uint16_t phy_data;
-    DEBUGFUNC("em_set_d0_lplu_state");
-
-    if (hw->mac_type <= em_82547_rev_2)
-        return E1000_SUCCESS;
-
-    if (hw->mac_type == em_ich8lan) {
-        phy_ctrl = E1000_READ_REG(hw, PHY_CTRL);
-    } else {
-        ret_val = em_read_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, &phy_data);
-        if (ret_val)
-            return ret_val;
-    }
-
-    if (!active) {
-        if (hw->mac_type == em_ich8lan) {
-            phy_ctrl &= ~E1000_PHY_CTRL_D0A_LPLU;
-            E1000_WRITE_REG(hw, PHY_CTRL, phy_ctrl);
-        } else {
-            phy_data &= ~IGP02E1000_PM_D0_LPLU;
-            ret_val = em_write_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, phy_data);
-            if (ret_val)
-                return ret_val;
-        }
-
-        /* LPLU and SmartSpeed are mutually exclusive.  LPLU is used during
-         * Dx states where the power conservation is most important.  During
-         * driver activity we should enable SmartSpeed, so performance is
-         * maintained. */
-        if (hw->smart_speed == em_smart_speed_on) {
-            ret_val = em_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
-                                         &phy_data);
-            if (ret_val)
-                return ret_val;
-
-            phy_data |= IGP01E1000_PSCFR_SMART_SPEED;
-            ret_val = em_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
-                                          phy_data);
-            if (ret_val)
-                return ret_val;
-        } else if (hw->smart_speed == em_smart_speed_off) {
-            ret_val = em_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
-                                         &phy_data);
-	    if (ret_val)
-                return ret_val;
-
-            phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
-            ret_val = em_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
-                                          phy_data);
-            if (ret_val)
-                return ret_val;
-        }
-
-
-    } else {
-
-        if (hw->mac_type == em_ich8lan) {
-            phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU;
-            E1000_WRITE_REG(hw, PHY_CTRL, phy_ctrl);
-        } else {
-            phy_data |= IGP02E1000_PM_D0_LPLU;
-            ret_val = em_write_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, phy_data);
-            if (ret_val)
-                return ret_val;
-        }
-
-        /* When LPLU is enabled we should disable SmartSpeed */
-        ret_val = em_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, &phy_data);
-        if (ret_val)
-            return ret_val;
-
-        phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
-        ret_val = em_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, phy_data);
-        if (ret_val)
-            return ret_val;
-
-    }
-    return E1000_SUCCESS;
-}
-
-/******************************************************************************
- * Change VCO speed register to improve Bit Error Rate performance of SERDES.
- *
- * hw - Struct containing variables accessed by shared code
- *****************************************************************************/
-static int32_t
-em_set_vco_speed(struct em_hw *hw)
-{
-    int32_t  ret_val;
-    uint16_t default_page = 0;
-    uint16_t phy_data;
-
-    DEBUGFUNC("em_set_vco_speed");
-
-    switch (hw->mac_type) {
-    case em_82545_rev_3:
-    case em_82546_rev_3:
-       break;
-    default:
-        return E1000_SUCCESS;
-    }
-
-    /* Set PHY register 30, page 5, bit 8 to 0 */
-
-    ret_val = em_read_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, &default_page);
-    if (ret_val)
-        return ret_val;
-
-    ret_val = em_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0005);
-    if (ret_val)
-        return ret_val;
-
-    ret_val = em_read_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, &phy_data);
-    if (ret_val)
-        return ret_val;
-
-    phy_data &= ~M88E1000_PHY_VCO_REG_BIT8;
-    ret_val = em_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, phy_data);
-    if (ret_val)
-        return ret_val;
-
-    /* Set PHY register 30, page 4, bit 11 to 1 */
-
-    ret_val = em_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0004);
-    if (ret_val)
-        return ret_val;
-
-    ret_val = em_read_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, &phy_data);
-    if (ret_val)
-        return ret_val;
-
-    phy_data |= M88E1000_PHY_VCO_REG_BIT11;
-    ret_val = em_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, phy_data);
-    if (ret_val)
-        return ret_val;
-
-    ret_val = em_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, default_page);
-    if (ret_val)
-        return ret_val;
-
-    return E1000_SUCCESS;
-}
-
-
-/*****************************************************************************
- * This function reads the cookie from ARC ram.
- *
- * returns: - E1000_SUCCESS .
- ****************************************************************************/
-int32_t
-em_host_if_read_cookie(struct em_hw * hw, uint8_t *buffer)
-{
-    uint8_t i;
-    uint32_t offset = E1000_MNG_DHCP_COOKIE_OFFSET;
-    uint8_t length = E1000_MNG_DHCP_COOKIE_LENGTH;
-
-    length = (length >> 2);
-    offset = (offset >> 2);
-
-    for (i = 0; i < length; i++) {
-        *((uint32_t *) buffer + i) =
-            E1000_READ_REG_ARRAY_DWORD(hw, HOST_IF, offset + i);
-    }
-    return E1000_SUCCESS;
-}
-
-
-/*****************************************************************************
- * This function checks whether the HOST IF is enabled for command operaton
- * and also checks whether the previous command is completed.
- * It busy waits in case of previous command is not completed.
- *
- * returns: - E1000_ERR_HOST_INTERFACE_COMMAND in case if is not ready or
- *            timeout
- *          - E1000_SUCCESS for success.
- ****************************************************************************/
-int32_t
-em_mng_enable_host_if(struct em_hw * hw)
-{
-    uint32_t hicr;
-    uint8_t i;
-
-    /* Check that the host interface is enabled. */
-    hicr = E1000_READ_REG(hw, HICR);
-    if ((hicr & E1000_HICR_EN) == 0) {
-        DEBUGOUT("E1000_HOST_EN bit disabled.\n");
-        return -E1000_ERR_HOST_INTERFACE_COMMAND;
-    }
-    /* check the previous command is completed */
-    for (i = 0; i < E1000_MNG_DHCP_COMMAND_TIMEOUT; i++) {
-        hicr = E1000_READ_REG(hw, HICR);
-        if (!(hicr & E1000_HICR_C))
-            break;
-        msec_delay_irq(1);
-    }
-
-    if (i == E1000_MNG_DHCP_COMMAND_TIMEOUT) {
-        DEBUGOUT("Previous command timeout failed .\n");
-        return -E1000_ERR_HOST_INTERFACE_COMMAND;
-    }
-    return E1000_SUCCESS;
-}
-
-/*****************************************************************************
- * This function writes the buffer content at the offset given on the host if.
- * It also does alignment considerations to do the writes in most efficient way.
- * Also fills up the sum of the buffer in *buffer parameter.
- *
- * returns  - E1000_SUCCESS for success.
- ****************************************************************************/
-int32_t
-em_mng_host_if_write(struct em_hw * hw, uint8_t *buffer,
-                        uint16_t length, uint16_t offset, uint8_t *sum)
-{
-    uint8_t *tmp;
-    uint8_t *bufptr = buffer;
-    uint32_t data = 0;
-    uint16_t remaining, i, j, prev_bytes;
-
-    /* sum = only sum of the data and it is not checksum */
-
-    if (length == 0 || offset + length > E1000_HI_MAX_MNG_DATA_LENGTH) {
-        return -E1000_ERR_PARAM;
-    }
-
-    tmp = (uint8_t *)&data;
-    prev_bytes = offset & 0x3;
-    offset &= 0xFFFC;
-    offset >>= 2;
-
-    if (prev_bytes) {
-        data = E1000_READ_REG_ARRAY_DWORD(hw, HOST_IF, offset);
-        for (j = prev_bytes; j < sizeof(uint32_t); j++) {
-            *(tmp + j) = *bufptr++;
-            *sum += *(tmp + j);
-        }
-        E1000_WRITE_REG_ARRAY_DWORD(hw, HOST_IF, offset, data);
-        length -= j - prev_bytes;
-        offset++;
-    }
-
-    remaining = length & 0x3;
-    length -= remaining;
-
-    /* Calculate length in DWORDs */
-    length >>= 2;
-
-    /* The device driver writes the relevant command block into the
-     * ram area. */
-    for (i = 0; i < length; i++) {
-        for (j = 0; j < sizeof(uint32_t); j++) {
-            *(tmp + j) = *bufptr++;
-            *sum += *(tmp + j);
-        }
-
-        E1000_WRITE_REG_ARRAY_DWORD(hw, HOST_IF, offset + i, data);
-    }
-    if (remaining) {
-        for (j = 0; j < sizeof(uint32_t); j++) {
-            if (j < remaining)
-                *(tmp + j) = *bufptr++;
-            else
-                *(tmp + j) = 0;
-
-            *sum += *(tmp + j);
-        }
-        E1000_WRITE_REG_ARRAY_DWORD(hw, HOST_IF, offset + i, data);
-    }
-
-    return E1000_SUCCESS;
-}
-
-
-/*****************************************************************************
- * This function writes the command header after does the checksum calculation.
- *
- * returns  - E1000_SUCCESS for success.
- ****************************************************************************/
-int32_t
-em_mng_write_cmd_header(struct em_hw * hw,
-                           struct em_host_mng_command_header * hdr)
-{
-    uint16_t i;
-    uint8_t sum;
-    uint8_t *buffer;
-
-    /* Write the whole command header structure which includes sum of
-     * the buffer */
-
-    uint16_t length = sizeof(struct em_host_mng_command_header);
-
-    sum = hdr->checksum;
-    hdr->checksum = 0;
-
-    buffer = (uint8_t *) hdr;
-    i = length;
-    while (i--)
-        sum += buffer[i];
-
-    hdr->checksum = 0 - sum;
-
-    length >>= 2;
-    /* The device driver writes the relevant command block into the ram area. */
-    for (i = 0; i < length; i++) {
-        E1000_WRITE_REG_ARRAY_DWORD(hw, HOST_IF, i, *((uint32_t *) hdr + i));
-        E1000_WRITE_FLUSH(hw);
-    }
-
-    return E1000_SUCCESS;
-}
-
-
-/*****************************************************************************
- * This function indicates to ARC that a new command is pending which completes
- * one write operation by the driver.
- *
- * returns  - E1000_SUCCESS for success.
- ****************************************************************************/
-int32_t
-em_mng_write_commit(struct em_hw * hw)
-{
-    uint32_t hicr;
-
-    hicr = E1000_READ_REG(hw, HICR);
-    /* Setting this bit tells the ARC that a new command is pending. */
-    E1000_WRITE_REG(hw, HICR, hicr | E1000_HICR_C);
-
-    return E1000_SUCCESS;
-}
-
-
-/*****************************************************************************
- * This function checks the mode of the firmware.
- *
- * returns  - TRUE when the mode is IAMT or FALSE.
- ****************************************************************************/
-boolean_t
-em_check_mng_mode(struct em_hw *hw)
-{
-    uint32_t fwsm;
-
-    fwsm = E1000_READ_REG(hw, FWSM);
-
-    if (hw->mac_type == em_ich8lan) {
-        if ((fwsm & E1000_FWSM_MODE_MASK) ==
-            (E1000_MNG_ICH_IAMT_MODE << E1000_FWSM_MODE_SHIFT))
-            return TRUE;
-    } else if ((fwsm & E1000_FWSM_MODE_MASK) ==
-               (E1000_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT))
-        return TRUE;
-
-    return FALSE;
-}
-
-
-/*****************************************************************************
- * This function writes the dhcp info .
- ****************************************************************************/
-int32_t
-em_mng_write_dhcp_info(struct em_hw * hw, uint8_t *buffer,
-			  uint16_t length)
-{
-    int32_t ret_val;
-    struct em_host_mng_command_header hdr;
-
-    hdr.command_id = E1000_MNG_DHCP_TX_PAYLOAD_CMD;
-    hdr.command_length = length;
-    hdr.reserved1 = 0;
-    hdr.reserved2 = 0;
-    hdr.checksum = 0;
-
-    ret_val = em_mng_enable_host_if(hw);
-    if (ret_val == E1000_SUCCESS) {
-        ret_val = em_mng_host_if_write(hw, buffer, length, sizeof(hdr),
-                                          &(hdr.checksum));
-        if (ret_val == E1000_SUCCESS) {
-            ret_val = em_mng_write_cmd_header(hw, &hdr);
-            if (ret_val == E1000_SUCCESS)
-                ret_val = em_mng_write_commit(hw);
-        }
-    }
-    return ret_val;
-}
-
-
-/*****************************************************************************
- * This function calculates the checksum.
- *
- * returns  - checksum of buffer contents.
- ****************************************************************************/
-uint8_t
-em_calculate_mng_checksum(char *buffer, uint32_t length)
-{
-    uint8_t sum = 0;
-    uint32_t i;
-
-    if (!buffer)
-        return 0;
-
-    for (i=0; i < length; i++)
-        sum += buffer[i];
-
-    return (uint8_t) (0 - sum);
-}
-
-/*****************************************************************************
- * This function checks whether tx pkt filtering needs to be enabled or not.
- *
- * returns  - TRUE for packet filtering or FALSE.
- ****************************************************************************/
-boolean_t
-em_enable_tx_pkt_filtering(struct em_hw *hw)
-{
-    /* called in init as well as watchdog timer functions */
-
-    int32_t ret_val, checksum;
-    boolean_t tx_filter = FALSE;
-    struct em_host_mng_dhcp_cookie *hdr = &(hw->mng_cookie);
-    uint8_t *buffer = (uint8_t *) &(hw->mng_cookie);
-
-    if (em_check_mng_mode(hw)) {
-        ret_val = em_mng_enable_host_if(hw);
-        if (ret_val == E1000_SUCCESS) {
-            ret_val = em_host_if_read_cookie(hw, buffer);
-            if (ret_val == E1000_SUCCESS) {
-                checksum = hdr->checksum;
-                hdr->checksum = 0;
-                if ((hdr->signature == E1000_IAMT_SIGNATURE) &&
-                    checksum == em_calculate_mng_checksum((char *)buffer,
-                                               E1000_MNG_DHCP_COOKIE_LENGTH)) {
-                    if (hdr->status &
-                        E1000_MNG_DHCP_COOKIE_STATUS_PARSING_SUPPORT)
-                        tx_filter = TRUE;
-                } else
-                    tx_filter = TRUE;
-            } else
-                tx_filter = TRUE;
-        }
-    }
-
-    hw->tx_pkt_filtering = tx_filter;
-    return tx_filter;
-}
-
-/******************************************************************************
- * Verifies the hardware needs to allow ARPs to be processed by the host
- *
- * hw - Struct containing variables accessed by shared code
- *
- * returns: - TRUE/FALSE
- *
- *****************************************************************************/
-uint32_t
-em_enable_mng_pass_thru(struct em_hw *hw)
-{
-    uint32_t manc;
-    uint32_t fwsm, factps;
-
-    if (hw->asf_firmware_present) {
-        manc = E1000_READ_REG(hw, MANC);
-
-        if (!(manc & E1000_MANC_RCV_TCO_EN) ||
-            !(manc & E1000_MANC_EN_MAC_ADDR_FILTER))
-            return FALSE;
-        if (em_arc_subsystem_valid(hw) == TRUE) {
-            fwsm = E1000_READ_REG(hw, FWSM);
-            factps = E1000_READ_REG(hw, FACTPS);
-
-            if (((fwsm & E1000_FWSM_MODE_MASK) ==
-                (em_mng_mode_pt << E1000_FWSM_MODE_SHIFT)) &&
-                (factps & E1000_FACTPS_MNGCG))
-                return TRUE;
-        } else
-            if ((manc & E1000_MANC_SMBUS_EN) && !(manc & E1000_MANC_ASF_EN))
-                return TRUE;
-    }
-    return FALSE;
-}
-
-static int32_t
-em_polarity_reversal_workaround(struct em_hw *hw)
-{
-    int32_t ret_val;
-    uint16_t mii_status_reg;
-    uint16_t i;
-
-    /* Polarity reversal workaround for forced 10F/10H links. */
-
-    /* Disable the transmitter on the PHY */
-
-    ret_val = em_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0019);
-    if (ret_val)
-        return ret_val;
-    ret_val = em_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xFFFF);
-    if (ret_val)
-        return ret_val;
-
-    ret_val = em_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0000);
-    if (ret_val)
-        return ret_val;
-
-    /* This loop will early-out if the NO link condition has been met. */
-    for (i = PHY_FORCE_TIME; i > 0; i--) {
-        /* Read the MII Status Register and wait for Link Status bit
-         * to be clear.
-         */
-
-        ret_val = em_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
-        if (ret_val)
-            return ret_val;
-
-        ret_val = em_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
-        if (ret_val)
-            return ret_val;
-
-        if ((mii_status_reg & ~MII_SR_LINK_STATUS) == 0) break;
-        msec_delay_irq(100);
-    }
-
-    /* Recommended delay time after link has been lost */
-    msec_delay_irq(1000);
-
-    /* Now we will re-enable th transmitter on the PHY */
-
-    ret_val = em_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0019);
-    if (ret_val)
-        return ret_val;
-    msec_delay_irq(50);
-    ret_val = em_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xFFF0);
-    if (ret_val)
-        return ret_val;
-    msec_delay_irq(50);
-    ret_val = em_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xFF00);
-    if (ret_val)
-        return ret_val;
-    msec_delay_irq(50);
-    ret_val = em_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0x0000);
-    if (ret_val)
-        return ret_val;
-
-    ret_val = em_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0000);
-    if (ret_val)
-        return ret_val;
-
-    /* This loop will early-out if the link condition has been met. */
-    for (i = PHY_FORCE_TIME; i > 0; i--) {
-        /* Read the MII Status Register and wait for Link Status bit
-         * to be set.
-         */
-
-        ret_val = em_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
-        if (ret_val)
-            return ret_val;
-
-        ret_val = em_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
-        if (ret_val)
-            return ret_val;
-
-        if (mii_status_reg & MII_SR_LINK_STATUS) break;
-        msec_delay_irq(100);
-    }
-    return E1000_SUCCESS;
-}
-
-/***************************************************************************
- *
- * Disables PCI-Express master access.
- *
- * hw: Struct containing variables accessed by shared code
- *
- * returns: - none.
- *
- ***************************************************************************/
-void
-em_set_pci_express_master_disable(struct em_hw *hw)
-{
-    uint32_t ctrl;
-
-    DEBUGFUNC("em_set_pci_express_master_disable");
-
-    if (hw->bus_type != em_bus_type_pci_express)
-        return;
-
-    ctrl = E1000_READ_REG(hw, CTRL);
-    ctrl |= E1000_CTRL_GIO_MASTER_DISABLE;
-    E1000_WRITE_REG(hw, CTRL, ctrl);
-}
-
-/***************************************************************************
- *
- * Enables PCI-Express master access.
- *
- * hw: Struct containing variables accessed by shared code
- *
- * returns: - none.
- *
- ***************************************************************************/
-void
-em_enable_pciex_master(struct em_hw *hw)
-{
-    uint32_t ctrl;
-
-    DEBUGFUNC("em_enable_pciex_master");
-
-    if (hw->bus_type != em_bus_type_pci_express)
-        return;
-
-    ctrl = E1000_READ_REG(hw, CTRL);
-    ctrl &= ~E1000_CTRL_GIO_MASTER_DISABLE;
-    E1000_WRITE_REG(hw, CTRL, ctrl);
-}
-
-/*******************************************************************************
- *
- * Disables PCI-Express master access and verifies there are no pending requests
- *
- * hw: Struct containing variables accessed by shared code
- *
- * returns: - E1000_ERR_MASTER_REQUESTS_PENDING if master disable bit hasn't
- *            caused the master requests to be disabled.
- *            E1000_SUCCESS master requests disabled.
- *
- ******************************************************************************/
-int32_t
-em_disable_pciex_master(struct em_hw *hw)
-{
-    int32_t timeout = MASTER_DISABLE_TIMEOUT;   /* 80ms */
-
-    DEBUGFUNC("em_disable_pciex_master");
-
-    if (hw->bus_type != em_bus_type_pci_express)
-        return E1000_SUCCESS;
-
-    em_set_pci_express_master_disable(hw);
-
-    while (timeout) {
-        if (!(E1000_READ_REG(hw, STATUS) & E1000_STATUS_GIO_MASTER_ENABLE))
-            break;
-        else
-            usec_delay(100);
-        timeout--;
-    }
-
-    if (!timeout) {
-        DEBUGOUT("Master requests are pending.\n");
-        return -E1000_ERR_MASTER_REQUESTS_PENDING;
-    }
-
-    return E1000_SUCCESS;
-}
-
-/*******************************************************************************
- *
- * Check for EEPROM Auto Read bit done.
- *
- * hw: Struct containing variables accessed by shared code
- *
- * returns: - E1000_ERR_RESET if fail to reset MAC
- *            E1000_SUCCESS at any other case.
- *
- ******************************************************************************/
-int32_t
-em_get_auto_rd_done(struct em_hw *hw)
-{
-    int32_t timeout = AUTO_READ_DONE_TIMEOUT;
-
-    DEBUGFUNC("em_get_auto_rd_done");
-
-    switch (hw->mac_type) {
-    default:
-        msec_delay(5);
-        break;
-    case em_82571:
-    case em_82572:
-    case em_82573:
-    case em_80003es2lan:
-    case em_ich8lan:
-        while (timeout) {
-            if (E1000_READ_REG(hw, EECD) & E1000_EECD_AUTO_RD)
-                break;
-            else msec_delay(1);
-            timeout--;
-        }
-
-        if (!timeout) {
-            DEBUGOUT("Auto read by HW from EEPROM has not completed.\n");
-            return -E1000_ERR_RESET;
-        }
-        break;
-    }
-
-    /* PHY configuration from NVM just starts after EECD_AUTO_RD sets to high.
-     * Need to wait for PHY configuration completion before accessing NVM
-     * and PHY. */
-    if (hw->mac_type == em_82573)
-        msec_delay(25);
-
-    return E1000_SUCCESS;
-}
-
-/***************************************************************************
- * Checks if the PHY configuration is done
- *
- * hw: Struct containing variables accessed by shared code
- *
- * returns: - E1000_ERR_RESET if fail to reset MAC
- *            E1000_SUCCESS at any other case.
- *
- ***************************************************************************/
-int32_t
-em_get_phy_cfg_done(struct em_hw *hw)
-{
-    int32_t timeout = PHY_CFG_TIMEOUT;
-    uint32_t cfg_mask = E1000_EEPROM_CFG_DONE;
-
-    DEBUGFUNC("em_get_phy_cfg_done");
-
-    switch (hw->mac_type) {
-    default:
-        msec_delay_irq(10);
-        break;
-    case em_80003es2lan:
-        /* Separate *_CFG_DONE_* bit for each port */
-        if (E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1)
-            cfg_mask = E1000_EEPROM_CFG_DONE_PORT_1;
-        /* Fall Through */
-    case em_82571:
-    case em_82572:
-        while (timeout) {
-            if (E1000_READ_REG(hw, EEMNGCTL) & cfg_mask)
-                break;
-            else
-                msec_delay(1);
-            timeout--;
-        }
-
-        if (!timeout) {
-            DEBUGOUT("MNG configuration cycle has not completed.\n");
-            return -E1000_ERR_RESET;
-        }
-        break;
-    }
-
-    return E1000_SUCCESS;
-}
-
-/***************************************************************************
- *
- * Using the combination of SMBI and SWESMBI semaphore bits when resetting
- * adapter or Eeprom access.
- *
- * hw: Struct containing variables accessed by shared code
- *
- * returns: - E1000_ERR_EEPROM if fail to access EEPROM.
- *            E1000_SUCCESS at any other case.
- *
- ***************************************************************************/
-int32_t
-em_get_hw_eeprom_semaphore(struct em_hw *hw)
-{
-    int32_t timeout;
-    uint32_t swsm;
-
-    DEBUGFUNC("em_get_hw_eeprom_semaphore");
-
-    if (!hw->eeprom_semaphore_present)
-        return E1000_SUCCESS;
-
-    if (hw->mac_type == em_80003es2lan) {
-        /* Get the SW semaphore. */
-        if (em_get_software_semaphore(hw) != E1000_SUCCESS)
-            return -E1000_ERR_EEPROM;
-    }
-
-    /* Get the FW semaphore. */
-    timeout = hw->eeprom.word_size + 1;
-    while (timeout) {
-        swsm = E1000_READ_REG(hw, SWSM);
-        swsm |= E1000_SWSM_SWESMBI;
-        E1000_WRITE_REG(hw, SWSM, swsm);
-        /* if we managed to set the bit we got the semaphore. */
-        swsm = E1000_READ_REG(hw, SWSM);
-        if (swsm & E1000_SWSM_SWESMBI)
-            break;
-
-        usec_delay(50);
-        timeout--;
-    }
-
-    if (!timeout) {
-        /* Release semaphores */
-        em_put_hw_eeprom_semaphore(hw);
-        DEBUGOUT("Driver can't access the Eeprom - SWESMBI bit is set.\n");
-        return -E1000_ERR_EEPROM;
-    }
-
-    return E1000_SUCCESS;
-}
-
-/***************************************************************************
- * This function clears HW semaphore bits.
- *
- * hw: Struct containing variables accessed by shared code
- *
- * returns: - None.
- *
- ***************************************************************************/
-void
-em_put_hw_eeprom_semaphore(struct em_hw *hw)
-{
-    uint32_t swsm;
-
-    DEBUGFUNC("em_put_hw_eeprom_semaphore");
-
-    if (!hw->eeprom_semaphore_present)
-        return;
-
-    swsm = E1000_READ_REG(hw, SWSM);
-    if (hw->mac_type == em_80003es2lan) {
-        /* Release both semaphores. */
-        swsm &= ~(E1000_SWSM_SMBI | E1000_SWSM_SWESMBI);
-    } else
-        swsm &= ~(E1000_SWSM_SWESMBI);
-    E1000_WRITE_REG(hw, SWSM, swsm);
-}
-
-/***************************************************************************
- *
- * Obtaining software semaphore bit (SMBI) before resetting PHY.
- *
- * hw: Struct containing variables accessed by shared code
- *
- * returns: - E1000_ERR_RESET if fail to obtain semaphore.
- *            E1000_SUCCESS at any other case.
- *
- ***************************************************************************/
-int32_t
-em_get_software_semaphore(struct em_hw *hw)
-{
-    int32_t timeout = hw->eeprom.word_size + 1;
-    uint32_t swsm;
-
-    DEBUGFUNC("em_get_software_semaphore");
-
-    if (hw->mac_type != em_80003es2lan)
-        return E1000_SUCCESS;
-
-    while (timeout) {
-        swsm = E1000_READ_REG(hw, SWSM);
-        /* If SMBI bit cleared, it is now set and we hold the semaphore */
-        if (!(swsm & E1000_SWSM_SMBI))
-            break;
-        msec_delay_irq(1);
-        timeout--;
-    }
-
-    if (!timeout) {
-        DEBUGOUT("Driver can't access device - SMBI bit is set.\n");
-        return -E1000_ERR_RESET;
-    }
-
-    return E1000_SUCCESS;
-}
-
-/***************************************************************************
- *
- * Release semaphore bit (SMBI).
- *
- * hw: Struct containing variables accessed by shared code
- *
- ***************************************************************************/
-void
-em_release_software_semaphore(struct em_hw *hw)
-{
-    uint32_t swsm;
-
-    DEBUGFUNC("em_release_software_semaphore");
-
-    if (hw->mac_type != em_80003es2lan)
-        return;
-
-    swsm = E1000_READ_REG(hw, SWSM);
-    /* Release the SW semaphores.*/
-    swsm &= ~E1000_SWSM_SMBI;
-    E1000_WRITE_REG(hw, SWSM, swsm);
-}
-
-/******************************************************************************
- * Checks if PHY reset is blocked due to SOL/IDER session, for example.
- * Returning E1000_BLK_PHY_RESET isn't necessarily an error.  But it's up to
- * the caller to figure out how to deal with it.
- *
- * hw - Struct containing variables accessed by shared code
- *
- * returns: - E1000_BLK_PHY_RESET
- *            E1000_SUCCESS
- *
- *****************************************************************************/
-int32_t
-em_check_phy_reset_block(struct em_hw *hw)
-{
-    uint32_t manc = 0;
-    uint32_t fwsm = 0;
-
-    if (hw->mac_type == em_ich8lan) {
-        fwsm = E1000_READ_REG(hw, FWSM);
-        return (fwsm & E1000_FWSM_RSPCIPHY) ? E1000_SUCCESS
-                                            : E1000_BLK_PHY_RESET;
-    }
-
-    if (hw->mac_type > em_82547_rev_2)
-        manc = E1000_READ_REG(hw, MANC);
-    return (manc & E1000_MANC_BLK_PHY_RST_ON_IDE) ?
-	    E1000_BLK_PHY_RESET : E1000_SUCCESS;
-}
-
-uint8_t
-em_arc_subsystem_valid(struct em_hw *hw)
-{
-    uint32_t fwsm;
-
-    /* On 8257x silicon, registers in the range of 0x8800 - 0x8FFC
-     * may not be provided a DMA clock when no manageability features are
-     * enabled.  We do not want to perform any reads/writes to these registers
-     * if this is the case.  We read FWSM to determine the manageability mode.
-     */
-    switch (hw->mac_type) {
-    case em_82571:
-    case em_82572:
-    case em_82573:
-    case em_80003es2lan:
-        fwsm = E1000_READ_REG(hw, FWSM);
-        if ((fwsm & E1000_FWSM_MODE_MASK) != 0)
-            return TRUE;
-        break;
-    case em_ich8lan:
-        return TRUE;
-    default:
-        break;
-    }
-    return FALSE;
-}
-
-
-/******************************************************************************
- * Configure PCI-Ex no-snoop
- *
- * hw - Struct containing variables accessed by shared code.
- * no_snoop - Bitmap of no-snoop events.
- *
- * returns: E1000_SUCCESS
- *
- *****************************************************************************/
-int32_t
-em_set_pci_ex_no_snoop(struct em_hw *hw, uint32_t no_snoop)
-{
-    uint32_t gcr_reg = 0;
-
-    DEBUGFUNC("em_set_pci_ex_no_snoop");
-
-    if (hw->bus_type == em_bus_type_unknown)
-        em_get_bus_info(hw);
-
-    if (hw->bus_type != em_bus_type_pci_express)
-        return E1000_SUCCESS;
-
-    if (no_snoop) {
-        gcr_reg = E1000_READ_REG(hw, GCR);
-        gcr_reg &= ~(PCI_EX_NO_SNOOP_ALL);
-        gcr_reg |= no_snoop;
-        E1000_WRITE_REG(hw, GCR, gcr_reg);
-    }
-    if (hw->mac_type == em_ich8lan) {
-        uint32_t ctrl_ext;
-
-        E1000_WRITE_REG(hw, GCR, PCI_EX_82566_SNOOP_ALL);
-
-        ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
-        ctrl_ext |= E1000_CTRL_EXT_RO_DIS;
-        E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
-    }
-
-    return E1000_SUCCESS;
-}
-
-/***************************************************************************
- *
- * Get software semaphore FLAG bit (SWFLAG).
- * SWFLAG is used to synchronize the access to all shared resource between
- * SW, FW and HW.
- *
- * hw: Struct containing variables accessed by shared code
- *
- ***************************************************************************/
-int32_t
-em_get_software_flag(struct em_hw *hw)
-{
-    int32_t timeout = PHY_CFG_TIMEOUT;
-    uint32_t extcnf_ctrl;
-
-    DEBUGFUNC("em_get_software_flag");
-
-    if (hw->mac_type == em_ich8lan) {
-        while (timeout) {
-            extcnf_ctrl = E1000_READ_REG(hw, EXTCNF_CTRL);
-            extcnf_ctrl |= E1000_EXTCNF_CTRL_SWFLAG;
-            E1000_WRITE_REG(hw, EXTCNF_CTRL, extcnf_ctrl);
-
-            extcnf_ctrl = E1000_READ_REG(hw, EXTCNF_CTRL);
-            if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG)
-                break;
-            msec_delay_irq(1);
-            timeout--;
-        }
-
-        if (!timeout) {
-            DEBUGOUT("FW or HW locks the resource too long.\n");
-            return -E1000_ERR_CONFIG;
-        }
-    }
-
-    return E1000_SUCCESS;
-}
-
-/***************************************************************************
- *
- * Release software semaphore FLAG bit (SWFLAG).
- * SWFLAG is used to synchronize the access to all shared resource between
- * SW, FW and HW.
- *
- * hw: Struct containing variables accessed by shared code
- *
- ***************************************************************************/
-void
-em_release_software_flag(struct em_hw *hw)
-{
-    uint32_t extcnf_ctrl;
-
-    DEBUGFUNC("em_release_software_flag");
-
-    if (hw->mac_type == em_ich8lan) {
-        extcnf_ctrl= E1000_READ_REG(hw, EXTCNF_CTRL);
-        extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
-        E1000_WRITE_REG(hw, EXTCNF_CTRL, extcnf_ctrl);
-    }
-
-    return;
-}
-
-/***************************************************************************
- *
- * Disable dynamic power down mode in ife PHY.
- * It can be used to workaround band-gap problem.
- *
- * hw: Struct containing variables accessed by shared code
- *
- ***************************************************************************/
-int32_t
-em_ife_disable_dynamic_power_down(struct em_hw *hw)
-{
-    uint16_t phy_data;
-    int32_t ret_val = E1000_SUCCESS;
-
-    DEBUGFUNC("em_ife_disable_dynamic_power_down");
-
-    if (hw->phy_type == em_phy_ife) {
-        ret_val = em_read_phy_reg(hw, IFE_PHY_SPECIAL_CONTROL, &phy_data);
-        if (ret_val)
-            return ret_val;
-
-        phy_data |=  IFE_PSC_DISABLE_DYNAMIC_POWER_DOWN;
-        ret_val = em_write_phy_reg(hw, IFE_PHY_SPECIAL_CONTROL, phy_data);
-    }
-
-    return ret_val;
-}
-
-/***************************************************************************
- *
- * Enable dynamic power down mode in ife PHY.
- * It can be used to workaround band-gap problem.
- *
- * hw: Struct containing variables accessed by shared code
- *
- ***************************************************************************/
-int32_t
-em_ife_enable_dynamic_power_down(struct em_hw *hw)
-{
-    uint16_t phy_data;
-    int32_t ret_val = E1000_SUCCESS;
-
-    DEBUGFUNC("em_ife_enable_dynamic_power_down");
-
-    if (hw->phy_type == em_phy_ife) {
-        ret_val = em_read_phy_reg(hw, IFE_PHY_SPECIAL_CONTROL, &phy_data);
-        if (ret_val)
-            return ret_val;
-
-        phy_data &=  ~IFE_PSC_DISABLE_DYNAMIC_POWER_DOWN;
-        ret_val = em_write_phy_reg(hw, IFE_PHY_SPECIAL_CONTROL, phy_data);
-    }
-
-    return ret_val;
-}
-
-/******************************************************************************
- * Reads a 16 bit word or words from the EEPROM using the ICH8's flash access
- * register.
- *
- * hw - Struct containing variables accessed by shared code
- * offset - offset of word in the EEPROM to read
- * data - word read from the EEPROM
- * words - number of words to read
- *****************************************************************************/
-int32_t
-em_read_eeprom_ich8(struct em_hw *hw, uint16_t offset, uint16_t words,
-                       uint16_t *data)
-{
-    int32_t  error = E1000_SUCCESS;
-    uint32_t flash_bank = 0;
-    uint32_t act_offset = 0;
-    uint32_t bank_offset = 0;
-    uint16_t word = 0;
-    uint16_t i = 0;
-
-    /* We need to know which is the valid flash bank.  In the event
-     * that we didn't allocate eeprom_shadow_ram, we may not be
-     * managing flash_bank.  So it cannot be trusted and needs
-     * to be updated with each read.
-     */
-    /* Value of bit 22 corresponds to the flash bank we're on. */
-    flash_bank = (E1000_READ_REG(hw, EECD) & E1000_EECD_SEC1VAL) ? 1 : 0;
-
-    /* Adjust offset appropriately if we're on bank 1 - adjust for word size */
-    bank_offset = flash_bank * (hw->flash_bank_size * 2);
-
-    error = em_get_software_flag(hw);
-    if (error != E1000_SUCCESS)
-        return error;
-
-    for (i = 0; i < words; i++) {
-        if (hw->eeprom_shadow_ram != NULL &&
-            hw->eeprom_shadow_ram[offset+i].modified == TRUE) {
-            data[i] = hw->eeprom_shadow_ram[offset+i].eeprom_word;
-        } else {
-            /* The NVM part needs a byte offset, hence * 2 */
-            act_offset = bank_offset + ((offset + i) * 2);
-            error = em_read_ich8_word(hw, act_offset, &word);
-            if (error != E1000_SUCCESS)
-                break;
-            data[i] = word;
-        }
-    }
-
-    em_release_software_flag(hw);
-
-    return error;
-}
-
-/******************************************************************************
- * Writes a 16 bit word or words to the EEPROM using the ICH8's flash access
- * register.  Actually, writes are written to the shadow ram cache in the hw
- * structure hw->em_shadow_ram.  em_commit_shadow_ram flushes this to
- * the NVM, which occurs when the NVM checksum is updated.
- *
- * hw - Struct containing variables accessed by shared code
- * offset - offset of word in the EEPROM to write
- * words - number of words to write
- * data - words to write to the EEPROM
- *****************************************************************************/
-int32_t
-em_write_eeprom_ich8(struct em_hw *hw, uint16_t offset, uint16_t words,
-                        uint16_t *data)
-{
-    uint32_t i = 0;
-    int32_t error = E1000_SUCCESS;
-
-    error = em_get_software_flag(hw);
-    if (error != E1000_SUCCESS)
-        return error;
-
-    /* A driver can write to the NVM only if it has eeprom_shadow_ram
-     * allocated.  Subsequent reads to the modified words are read from
-     * this cached structure as well.  Writes will only go into this
-     * cached structure unless it's followed by a call to
-     * em_update_eeprom_checksum() where it will commit the changes
-     * and clear the "modified" field.
-     */
-    if (hw->eeprom_shadow_ram != NULL) {
-        for (i = 0; i < words; i++) {
-            if ((offset + i) < E1000_SHADOW_RAM_WORDS) {
-                hw->eeprom_shadow_ram[offset+i].modified = TRUE;
-                hw->eeprom_shadow_ram[offset+i].eeprom_word = data[i];
-            } else {
-                error = -E1000_ERR_EEPROM;
-                break;
-            }
-        }
-    } else {
-        /* Drivers have the option to not allocate eeprom_shadow_ram as long
-         * as they don't perform any NVM writes.  An attempt in doing so
-         * will result in this error.
-         */
-        error = -E1000_ERR_EEPROM;
-    }
-
-    em_release_software_flag(hw);
-
-    return error;
-}
-
-/******************************************************************************
- * This function does initial flash setup so that a new read/write/erase cycle
- * can be started.
- *
- * hw - The pointer to the hw structure
- ****************************************************************************/
-int32_t
-em_ich8_cycle_init(struct em_hw *hw)
-{
-    union ich8_hws_flash_status hsfsts;
-    int32_t error = E1000_ERR_EEPROM;
-    int32_t i     = 0;
-
-    DEBUGFUNC("em_ich8_cycle_init");
-
-    hsfsts.regval = E1000_READ_ICH8_REG16(hw, ICH8_FLASH_HSFSTS);
-
-    /* May be check the Flash Des Valid bit in Hw status */
-    if (hsfsts.hsf_status.fldesvalid == 0) {
-        DEBUGOUT("Flash descriptor invalid.  SW Sequencing must be used.");
-        return error;
-    }
-
-    /* Clear FCERR in Hw status by writing 1 */
-    /* Clear DAEL in Hw status by writing a 1 */
-    hsfsts.hsf_status.flcerr = 1;
-    hsfsts.hsf_status.dael = 1;
-
-    E1000_WRITE_ICH8_REG16(hw, ICH8_FLASH_HSFSTS, hsfsts.regval);
-
-    /* Either we should have a hardware SPI cycle in progress bit to check
-     * against, in order to start a new cycle or FDONE bit should be changed
-     * in the hardware so that it is 1 after harware reset, which can then be
-     * used as an indication whether a cycle is in progress or has been
-     * completed .. we should also have some software semaphore mechanism to
-     * guard FDONE or the cycle in progress bit so that two threads access to
-     * those bits can be sequentiallized or a way so that 2 threads dont
-     * start the cycle at the same time */
-
-    if (hsfsts.hsf_status.flcinprog == 0) {
-        /* There is no cycle running at present, so we can start a cycle */
-        /* Begin by setting Flash Cycle Done. */
-        hsfsts.hsf_status.flcdone = 1;
-        E1000_WRITE_ICH8_REG16(hw, ICH8_FLASH_HSFSTS, hsfsts.regval);
-        error = E1000_SUCCESS;
-    } else {
-        /* otherwise poll for sometime so the current cycle has a chance
-         * to end before giving up. */
-        for (i = 0; i < ICH8_FLASH_COMMAND_TIMEOUT; i++) {
-            hsfsts.regval = E1000_READ_ICH8_REG16(hw, ICH8_FLASH_HSFSTS);
-            if (hsfsts.hsf_status.flcinprog == 0) {
-                error = E1000_SUCCESS;
-                break;
-            }
-            usec_delay(1);
-        }
-        if (error == E1000_SUCCESS) {
-            /* Successful in waiting for previous cycle to timeout,
-             * now set the Flash Cycle Done. */
-            hsfsts.hsf_status.flcdone = 1;
-            E1000_WRITE_ICH8_REG16(hw, ICH8_FLASH_HSFSTS, hsfsts.regval);
-        } else {
-            DEBUGOUT("Flash controller busy, cannot get access");
-        }
-    }
-    return error;
-}
-
-/******************************************************************************
- * This function starts a flash cycle and waits for its completion
- *
- * hw - The pointer to the hw structure
- ****************************************************************************/
-int32_t
-em_ich8_flash_cycle(struct em_hw *hw, uint32_t timeout)
-{
-    union ich8_hws_flash_ctrl hsflctl;
-    union ich8_hws_flash_status hsfsts;
-    int32_t error = E1000_ERR_EEPROM;
-    uint32_t i = 0;
-
-    /* Start a cycle by writing 1 in Flash Cycle Go in Hw Flash Control */
-    hsflctl.regval = E1000_READ_ICH8_REG16(hw, ICH8_FLASH_HSFCTL);
-    hsflctl.hsf_ctrl.flcgo = 1;
-    E1000_WRITE_ICH8_REG16(hw, ICH8_FLASH_HSFCTL, hsflctl.regval);
-
-    /* wait till FDONE bit is set to 1 */
-    do {
-        hsfsts.regval = E1000_READ_ICH8_REG16(hw, ICH8_FLASH_HSFSTS);
-        if (hsfsts.hsf_status.flcdone == 1)
-            break;
-        usec_delay(1);
-        i++;
-    } while (i < timeout);
-    if (hsfsts.hsf_status.flcdone == 1 && hsfsts.hsf_status.flcerr == 0) {
-        error = E1000_SUCCESS;
-    }
-    return error;
-}
-
-/******************************************************************************
- * Reads a byte or word from the NVM using the ICH8 flash access registers.
- *
- * hw - The pointer to the hw structure
- * index - The index of the byte or word to read.
- * size - Size of data to read, 1=byte 2=word
- * data - Pointer to the word to store the value read.
- *****************************************************************************/
-int32_t
-em_read_ich8_data(struct em_hw *hw, uint32_t index,
-                     uint32_t size, uint16_t* data)
-{
-    union ich8_hws_flash_status hsfsts;
-    union ich8_hws_flash_ctrl hsflctl;
-    uint32_t flash_linear_address;
-    uint32_t flash_data = 0;
-    int32_t error = -E1000_ERR_EEPROM;
-    int32_t count = 0;
-
-    DEBUGFUNC("em_read_ich8_data");
-
-    if (size < 1  || size > 2 || data == 0x0 ||
-        index > ICH8_FLASH_LINEAR_ADDR_MASK)
-        return error;
-
-    flash_linear_address = (ICH8_FLASH_LINEAR_ADDR_MASK & index) +
-                           hw->flash_base_addr;
-
-    do {
-        usec_delay(1);
-        /* Steps */
-        error = em_ich8_cycle_init(hw);
-        if (error != E1000_SUCCESS)
-            break;
-
-        hsflctl.regval = E1000_READ_ICH8_REG16(hw, ICH8_FLASH_HSFCTL);
-        /* 0b/1b corresponds to 1 or 2 byte size, respectively. */
-        hsflctl.hsf_ctrl.fldbcount = size - 1;
-        hsflctl.hsf_ctrl.flcycle = ICH8_CYCLE_READ;
-        E1000_WRITE_ICH8_REG16(hw, ICH8_FLASH_HSFCTL, hsflctl.regval);
-
-        /* Write the last 24 bits of index into Flash Linear address field in
-         * Flash Address */
-        /* TODO: TBD maybe check the index against the size of flash */
-
-        E1000_WRITE_ICH8_REG(hw, ICH8_FLASH_FADDR, flash_linear_address);
-
-        error = em_ich8_flash_cycle(hw, ICH8_FLASH_COMMAND_TIMEOUT);
-
-        /* Check if FCERR is set to 1, if set to 1, clear it and try the whole
-         * sequence a few more times, else read in (shift in) the Flash Data0,
-         * the order is least significant byte first msb to lsb */
-        if (error == E1000_SUCCESS) {
-            flash_data = E1000_READ_ICH8_REG(hw, ICH8_FLASH_FDATA0);
-            if (size == 1) {
-                *data = (uint8_t)(flash_data & 0x000000FF);
-            } else if (size == 2) {
-                *data = (uint16_t)(flash_data & 0x0000FFFF);
-            }
-            break;
-        } else {
-            /* If we've gotten here, then things are probably completely hosed,
-             * but if the error condition is detected, it won't hurt to give
-             * it another try...ICH8_FLASH_CYCLE_REPEAT_COUNT times.
-             */
-            hsfsts.regval = E1000_READ_ICH8_REG16(hw, ICH8_FLASH_HSFSTS);
-            if (hsfsts.hsf_status.flcerr == 1) {
-                /* Repeat for some time before giving up. */
-                continue;
-            } else if (hsfsts.hsf_status.flcdone == 0) {
-                DEBUGOUT("Timeout error - flash cycle did not complete.");
-                break;
-            }
-        }
-    } while (count++ < ICH8_FLASH_CYCLE_REPEAT_COUNT);
-
-    return error;
-}
-
-/******************************************************************************
- * Writes One /two bytes to the NVM using the ICH8 flash access registers.
- *
- * hw - The pointer to the hw structure
- * index - The index of the byte/word to read.
- * size - Size of data to read, 1=byte 2=word
- * data - The byte(s) to write to the NVM.
- *****************************************************************************/
-int32_t
-em_write_ich8_data(struct em_hw *hw, uint32_t index, uint32_t size,
-                      uint16_t data)
-{
-    union ich8_hws_flash_status hsfsts;
-    union ich8_hws_flash_ctrl hsflctl;
-    uint32_t flash_linear_address;
-    uint32_t flash_data = 0;
-    int32_t error = -E1000_ERR_EEPROM;
-    int32_t count = 0;
-
-    DEBUGFUNC("em_write_ich8_data");
-
-    if (size < 1  || size > 2 || data > size * 0xff ||
-        index > ICH8_FLASH_LINEAR_ADDR_MASK)
-        return error;
-
-    flash_linear_address = (ICH8_FLASH_LINEAR_ADDR_MASK & index) +
-                           hw->flash_base_addr;
-
-    do {
-        usec_delay(1);
-        /* Steps */
-        error = em_ich8_cycle_init(hw);
-        if (error != E1000_SUCCESS)
-            break;
-
-        hsflctl.regval = E1000_READ_ICH8_REG16(hw, ICH8_FLASH_HSFCTL);
-        /* 0b/1b corresponds to 1 or 2 byte size, respectively. */
-        hsflctl.hsf_ctrl.fldbcount = size -1;
-        hsflctl.hsf_ctrl.flcycle = ICH8_CYCLE_WRITE;
-        E1000_WRITE_ICH8_REG16(hw, ICH8_FLASH_HSFCTL, hsflctl.regval);
-
-        /* Write the last 24 bits of index into Flash Linear address field in
-         * Flash Address */
-        E1000_WRITE_ICH8_REG(hw, ICH8_FLASH_FADDR, flash_linear_address);
-
-        if (size == 1)
-            flash_data = (uint32_t)data & 0x00FF;
-        else
-            flash_data = (uint32_t)data;
-
-        E1000_WRITE_ICH8_REG(hw, ICH8_FLASH_FDATA0, flash_data);
-
-        /* check if FCERR is set to 1 , if set to 1, clear it and try the whole
-         * sequence a few more times else done */
-        error = em_ich8_flash_cycle(hw, ICH8_FLASH_COMMAND_TIMEOUT);
-        if (error == E1000_SUCCESS) {
-            break;
-        } else {
-            /* If we're here, then things are most likely completely hosed,
-             * but if the error condition is detected, it won't hurt to give
-             * it another try...ICH8_FLASH_CYCLE_REPEAT_COUNT times.
-             */
-            hsfsts.regval = E1000_READ_ICH8_REG16(hw, ICH8_FLASH_HSFSTS);
-            if (hsfsts.hsf_status.flcerr == 1) {
-                /* Repeat for some time before giving up. */
-                continue;
-            } else if (hsfsts.hsf_status.flcdone == 0) {
-                DEBUGOUT("Timeout error - flash cycle did not complete.");
-                break;
-            }
-        }
-    } while (count++ < ICH8_FLASH_CYCLE_REPEAT_COUNT);
-
-    return error;
-}
-
-/******************************************************************************
- * Reads a single byte from the NVM using the ICH8 flash access registers.
- *
- * hw - pointer to em_hw structure
- * index - The index of the byte to read.
- * data - Pointer to a byte to store the value read.
- *****************************************************************************/
-int32_t
-em_read_ich8_byte(struct em_hw *hw, uint32_t index, uint8_t* data)
-{
-    int32_t status = E1000_SUCCESS;
-    uint16_t word = 0;
-
-    status = em_read_ich8_data(hw, index, 1, &word);
-    if (status == E1000_SUCCESS) {
-        *data = (uint8_t)word;
-    }
-
-    return status;
-}
-
-/******************************************************************************
- * Writes a single byte to the NVM using the ICH8 flash access registers.
- * Performs verification by reading back the value and then going through
- * a retry algorithm before giving up.
- *
- * hw - pointer to em_hw structure
- * index - The index of the byte to write.
- * byte - The byte to write to the NVM.
- *****************************************************************************/
-int32_t
-em_verify_write_ich8_byte(struct em_hw *hw, uint32_t index, uint8_t byte)
-{
-    int32_t error = E1000_SUCCESS;
-    int32_t program_retries;
-    uint8_t temp_byte;
-
-    em_write_ich8_byte(hw, index, byte);
-    usec_delay(100);
-
-    for (program_retries = 0; program_retries < 100; program_retries++) {
-        em_read_ich8_byte(hw, index, &temp_byte);
-        if (temp_byte == byte)
-            break;
-        usec_delay(10);
-        em_write_ich8_byte(hw, index, byte);
-        usec_delay(100);
-    }
-    if (program_retries == 100)
-        error = E1000_ERR_EEPROM;
-
-    return error;
-}
-
-/******************************************************************************
- * Writes a single byte to the NVM using the ICH8 flash access registers.
- *
- * hw - pointer to em_hw structure
- * index - The index of the byte to read.
- * data - The byte to write to the NVM.
- *****************************************************************************/
-int32_t
-em_write_ich8_byte(struct em_hw *hw, uint32_t index, uint8_t data)
-{
-    int32_t status = E1000_SUCCESS;
-    uint16_t word = (uint16_t)data;
-
-    status = em_write_ich8_data(hw, index, 1, word);
-
-    return status;
-}
-
-/******************************************************************************
- * Reads a word from the NVM using the ICH8 flash access registers.
- *
- * hw - pointer to em_hw structure
- * index - The starting byte index of the word to read.
- * data - Pointer to a word to store the value read.
- *****************************************************************************/
-int32_t
-em_read_ich8_word(struct em_hw *hw, uint32_t index, uint16_t *data)
-{
-    int32_t status = E1000_SUCCESS;
-    status = em_read_ich8_data(hw, index, 2, data);
-    return status;
-}
-
-/******************************************************************************
- * Writes a word to the NVM using the ICH8 flash access registers.
- *
- * hw - pointer to em_hw structure
- * index - The starting byte index of the word to read.
- * data - The word to write to the NVM.
- *****************************************************************************/
-int32_t
-em_write_ich8_word(struct em_hw *hw, uint32_t index, uint16_t data)
-{
-    int32_t status = E1000_SUCCESS;
-    status = em_write_ich8_data(hw, index, 2, data);
-    return status;
-}
-
-/******************************************************************************
- * Erases the bank specified. Each bank is a 4k block. Segments are 0 based.
- * segment N is 4096 * N + flash_reg_addr.
- *
- * hw - pointer to em_hw structure
- * segment - 0 for first segment, 1 for second segment, etc.
- *****************************************************************************/
-int32_t
-em_erase_ich8_4k_segment(struct em_hw *hw, uint32_t segment)
-{
-    union ich8_hws_flash_status hsfsts;
-    union ich8_hws_flash_ctrl hsflctl;
-    uint32_t flash_linear_address;
-    int32_t  count = 0;
-    int32_t  error = E1000_ERR_EEPROM;
-    int32_t  iteration, seg_size;
-    int32_t  sector_size;
-    int32_t  j = 0;
-    int32_t  error_flag = 0;
-
-    hsfsts.regval = E1000_READ_ICH8_REG16(hw, ICH8_FLASH_HSFSTS);
-
-    /* Determine HW Sector size: Read BERASE bits of Hw flash Status register */
-    /* 00: The Hw sector is 256 bytes, hence we need to erase 16
-     *     consecutive sectors.  The start index for the nth Hw sector can be
-     *     calculated as = segment * 4096 + n * 256
-     * 01: The Hw sector is 4K bytes, hence we need to erase 1 sector.
-     *     The start index for the nth Hw sector can be calculated
-     *     as = segment * 4096
-     * 10: Error condition
-     * 11: The Hw sector size is much bigger than the size asked to
-     *     erase...error condition */
-    if (hsfsts.hsf_status.berasesz == 0x0) {
-        /* Hw sector size 256 */
-        sector_size = seg_size = ICH8_FLASH_SEG_SIZE_256;
-        iteration = ICH8_FLASH_SECTOR_SIZE / ICH8_FLASH_SEG_SIZE_256;
-    } else if (hsfsts.hsf_status.berasesz == 0x1) {
-        sector_size = seg_size = ICH8_FLASH_SEG_SIZE_4K;
-        iteration = 1;
-    } else if (hsfsts.hsf_status.berasesz == 0x3) {
-        sector_size = seg_size = ICH8_FLASH_SEG_SIZE_64K;
-        iteration = 1;
-    } else {
-        return error;
-    }
-
-    for (j = 0; j < iteration ; j++) {
-        do {
-            count++;
-            /* Steps */
-            error = em_ich8_cycle_init(hw);
-            if (error != E1000_SUCCESS) {
-                error_flag = 1;
-                break;
-            }
-
-            /* Write a value 11 (block Erase) in Flash Cycle field in Hw flash
-             * Control */
-            hsflctl.regval = E1000_READ_ICH8_REG16(hw, ICH8_FLASH_HSFCTL);
-            hsflctl.hsf_ctrl.flcycle = ICH8_CYCLE_ERASE;
-            E1000_WRITE_ICH8_REG16(hw, ICH8_FLASH_HSFCTL, hsflctl.regval);
-
-            /* Write the last 24 bits of an index within the block into Flash
-             * Linear address field in Flash Address.  This probably needs to
-             * be calculated here based off the on-chip segment size and the
-             * software segment size assumed (4K) */
-            /* TBD */
-            flash_linear_address = segment * sector_size + j * seg_size;
-            flash_linear_address &= ICH8_FLASH_LINEAR_ADDR_MASK;
-            flash_linear_address += hw->flash_base_addr;
-
-            E1000_WRITE_ICH8_REG(hw, ICH8_FLASH_FADDR, flash_linear_address);
-
-            error = em_ich8_flash_cycle(hw, 1000000);
-            /* Check if FCERR is set to 1.  If 1, clear it and try the whole
-             * sequence a few more times else Done */
-            if (error == E1000_SUCCESS) {
-                break;
-            } else {
-                hsfsts.regval = E1000_READ_ICH8_REG16(hw, ICH8_FLASH_HSFSTS);
-                if (hsfsts.hsf_status.flcerr == 1) {
-                    /* repeat for some time before giving up */
-                    continue;
-                } else if (hsfsts.hsf_status.flcdone == 0) {
-                    error_flag = 1;
-                    break;
-                }
-            }
-        } while ((count < ICH8_FLASH_CYCLE_REPEAT_COUNT) && !error_flag);
-        if (error_flag == 1)
-            break;
-    }
-    if (error_flag != 1)
-        error = E1000_SUCCESS;
-    return error;
-}
-
-/******************************************************************************
- *
- * Reverse duplex setting without breaking the link.
- *
- * hw: Struct containing variables accessed by shared code
- *
- *****************************************************************************/
-int32_t
-em_duplex_reversal(struct em_hw *hw)
-{
-    int32_t ret_val;
-    uint16_t phy_data;
-
-    if (hw->phy_type != em_phy_igp_3)
-        return E1000_SUCCESS;
-
-    ret_val = em_read_phy_reg(hw, PHY_CTRL, &phy_data);
-    if (ret_val)
-        return ret_val;
-
-    phy_data ^= MII_CR_FULL_DUPLEX;
-
-    ret_val = em_write_phy_reg(hw, PHY_CTRL, phy_data);
-    if (ret_val)
-        return ret_val;
-
-    ret_val = em_read_phy_reg(hw, IGP3E1000_PHY_MISC_CTRL, &phy_data);
-    if (ret_val)
-        return ret_val;
-
-    phy_data |= IGP3_PHY_MISC_DUPLEX_MANUAL_SET;
-    ret_val = em_write_phy_reg(hw, IGP3E1000_PHY_MISC_CTRL, phy_data);
-
-    return ret_val;
-}
-
-int32_t
-em_init_lcd_from_nvm_config_region(struct em_hw *hw,
-                                      uint32_t cnf_base_addr, uint32_t cnf_size)
-{
-    uint32_t ret_val = E1000_SUCCESS;
-    uint16_t word_addr, reg_data, reg_addr;
-    uint16_t i;
-
-    /* cnf_base_addr is in DWORD */
-    word_addr = (uint16_t)(cnf_base_addr << 1);
-
-    /* cnf_size is returned in size of dwords */
-    for (i = 0; i < cnf_size; i++) {
-        ret_val = em_read_eeprom(hw, (word_addr + i*2), 1, &reg_data);
-        if (ret_val)
-            return ret_val;
-
-        ret_val = em_read_eeprom(hw, (word_addr + i*2 + 1), 1, &reg_addr);
-        if (ret_val)
-            return ret_val;
-
-        ret_val = em_get_software_flag(hw);
-        if (ret_val != E1000_SUCCESS)
-            return ret_val;
-
-        ret_val = em_write_phy_reg_ex(hw, (uint32_t)reg_addr, reg_data);
-
-        em_release_software_flag(hw);
-    }
-
-    return ret_val;
-}
-
-
-/******************************************************************************
- * This function initializes the PHY from the NVM on ICH8 platforms. This
- * is needed due to an issue where the NVM configuration is not properly
- * autoloaded after power transitions. Therefore, after each PHY reset, we
- * will load the configuration data out of the NVM manually.
- *
- * hw: Struct containing variables accessed by shared code
- *****************************************************************************/
-int32_t
-em_init_lcd_from_nvm(struct em_hw *hw)
-{
-    uint32_t reg_data, cnf_base_addr, cnf_size, ret_val, loop;
-
-    if (hw->phy_type != em_phy_igp_3)
-          return E1000_SUCCESS;
-
-    /* Check if SW needs configure the PHY */
-    reg_data = E1000_READ_REG(hw, FEXTNVM);
-    if (!(reg_data & FEXTNVM_SW_CONFIG))
-        return E1000_SUCCESS;
-
-    /* Wait for basic configuration completes before proceeding*/
-    loop = 0;
-    do {
-        reg_data = E1000_READ_REG(hw, STATUS) & E1000_STATUS_LAN_INIT_DONE;
-        usec_delay(100);
-        loop++;
-    } while ((!reg_data) && (loop < 50));
-
-    /* Clear the Init Done bit for the next init event */
-    reg_data = E1000_READ_REG(hw, STATUS);
-    reg_data &= ~E1000_STATUS_LAN_INIT_DONE;
-    E1000_WRITE_REG(hw, STATUS, reg_data);
-
-    /* Make sure HW does not configure LCD from PHY extended configuration
-       before SW configuration */
-    reg_data = E1000_READ_REG(hw, EXTCNF_CTRL);
-    if ((reg_data & E1000_EXTCNF_CTRL_LCD_WRITE_ENABLE) == 0x0000) {
-        reg_data = E1000_READ_REG(hw, EXTCNF_SIZE);
-        cnf_size = reg_data & E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH;
-        cnf_size >>= 16;
-        if (cnf_size) {
-            reg_data = E1000_READ_REG(hw, EXTCNF_CTRL);
-            cnf_base_addr = reg_data & E1000_EXTCNF_CTRL_EXT_CNF_POINTER;
-            /* cnf_base_addr is in DWORD */
-            cnf_base_addr >>= 16;
-
-            /* Configure LCD from extended configuration region. */
-            ret_val = em_init_lcd_from_nvm_config_region(hw, cnf_base_addr,
-                                                            cnf_size);
-            if (ret_val)
-                return ret_val;
-        }
-    }
-
-    return E1000_SUCCESS;
-}
-
-
-
--- /dev/null
+++ sys/dev/em/e1000_82575.h
@@ -0,0 +1,316 @@
+/*******************************************************************************
+
+  Copyright (c) 2001-2007, Intel Corporation 
+  All rights reserved.
+  
+  Redistribution and use in source and binary forms, with or without 
+  modification, are permitted provided that the following conditions are met:
+  
+   1. Redistributions of source code must retain the above copyright notice, 
+      this list of conditions and the following disclaimer.
+  
+   2. Redistributions in binary form must reproduce the above copyright 
+      notice, this list of conditions and the following disclaimer in the 
+      documentation and/or other materials provided with the distribution.
+  
+   3. Neither the name of the Intel Corporation nor the names of its 
+      contributors may be used to endorse or promote products derived from 
+      this software without specific prior written permission.
+  
+  THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
+  AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 
+  IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 
+  ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE 
+  LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 
+  CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 
+  SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 
+  INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 
+  CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 
+  ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
+  POSSIBILITY OF SUCH DAMAGE.
+
+*******************************************************************************/
+/* $FreeBSD: src/sys/dev/em/e1000_82575.h,v 1.3.4.1 2007/11/28 23:24:37 jfv Exp $ */
+
+
+#ifndef _E1000_82575_H_
+#define _E1000_82575_H_
+
+/*
+ * Receive Address Register Count
+ * Number of high/low register pairs in the RAR.  The RAR (Receive Address
+ * Registers) holds the directed and multicast addresses that we monitor.
+ * These entries are also used for MAC-based filtering.
+ */
+#define E1000_RAR_ENTRIES_82575   16
+
+#ifdef E1000_BIT_FIELDS
+struct e1000_adv_data_desc {
+	u64 buffer_addr;    /* Address of the descriptor's data buffer */
+	union {
+		u32 data;
+		struct {
+			u32 datalen :16; /* Data buffer length */
+			u32 rsvd    :4;
+			u32 dtyp    :4;  /* Descriptor type */
+			u32 dcmd    :8;  /* Descriptor command */
+		} config;
+	} lower;
+	union {
+		u32 data;
+		struct {
+			u32 status  :4;  /* Descriptor status */
+			u32 idx     :4;
+			u32 popts   :6;  /* Packet Options */
+			u32 paylen  :18; /* Payload length */
+		} options;
+	} upper;
+};
+
+#define E1000_TXD_DTYP_ADV_C    0x2  /* Advanced Context Descriptor */
+#define E1000_TXD_DTYP_ADV_D    0x3  /* Advanced Data Descriptor */
+#define E1000_ADV_TXD_CMD_DEXT  0x20 /* Descriptor extension (0 = legacy) */
+#define E1000_ADV_TUCMD_IPV4    0x2  /* IP Packet Type: 1=IPv4 */
+#define E1000_ADV_TUCMD_IPV6    0x0  /* IP Packet Type: 0=IPv6 */
+#define E1000_ADV_TUCMD_L4T_UDP 0x0  /* L4 Packet TYPE of UDP */
+#define E1000_ADV_TUCMD_L4T_TCP 0x4  /* L4 Packet TYPE of TCP */
+#define E1000_ADV_TUCMD_MKRREQ  0x10 /* Indicates markers are required */
+#define E1000_ADV_DCMD_EOP      0x1  /* End of Packet */
+#define E1000_ADV_DCMD_IFCS     0x2  /* Insert FCS (Ethernet CRC) */
+#define E1000_ADV_DCMD_RS       0x8  /* Report Status */
+#define E1000_ADV_DCMD_VLE      0x40 /* Add VLAN tag */
+#define E1000_ADV_DCMD_TSE      0x80 /* TCP Seg enable */
+
+struct e1000_adv_context_desc {
+	union {
+		u32 ip_config;
+		struct {
+			u32 iplen    :9;
+			u32 maclen   :7;
+			u32 vlan_tag :16;
+		} fields;
+	} ip_setup;
+	u32 seq_num;
+	union {
+		u64 l4_config;
+		struct {
+			u32 mkrloc :9;
+			u32 tucmd  :11;
+			u32 dtyp   :4;
+			u32 adv    :8;
+			u32 rsvd   :4;
+			u32 idx    :4;
+			u32 l4len  :8;
+			u32 mss    :16;
+		} fields;
+	} l4_setup;
+};
+#endif
+
+/* SRRCTL bit definitions */
+#define E1000_SRRCTL_BSIZEPKT_SHIFT                     10 /* Shift _right_ */
+#define E1000_SRRCTL_BSIZEHDRSIZE_MASK                  0x00000F00
+#define E1000_SRRCTL_BSIZEHDRSIZE_SHIFT                 2  /* Shift _left_ */
+#define E1000_SRRCTL_DESCTYPE_LEGACY                    0x00000000
+#define E1000_SRRCTL_DESCTYPE_ADV_ONEBUF                0x02000000
+#define E1000_SRRCTL_DESCTYPE_HDR_SPLIT                 0x04000000
+#define E1000_SRRCTL_DESCTYPE_HDR_SPLIT_ALWAYS          0x0A000000
+#define E1000_SRRCTL_DESCTYPE_HDR_REPLICATION           0x06000000
+#define E1000_SRRCTL_DESCTYPE_HDR_REPLICATION_LARGE_PKT 0x08000000
+#define E1000_SRRCTL_DESCTYPE_MASK                      0x0E000000
+
+#define E1000_SRRCTL_BSIZEPKT_MASK      0x0000007F
+#define E1000_SRRCTL_BSIZEHDR_MASK      0x00003F00
+
+#define E1000_TX_HEAD_WB_ENABLE   0x1
+#define E1000_TX_SEQNUM_WB_ENABLE 0x2
+
+#define E1000_MRQC_ENABLE_RSS_4Q            0x00000002
+#define E1000_MRQC_RSS_FIELD_IPV4_UDP       0x00400000
+#define E1000_MRQC_RSS_FIELD_IPV6_UDP       0x00800000
+#define E1000_MRQC_RSS_FIELD_IPV6_UDP_EX    0x01000000
+
+#define E1000_EICR_TX_QUEUE ( \
+    E1000_EICR_TX_QUEUE0 |    \
+    E1000_EICR_TX_QUEUE1 |    \
+    E1000_EICR_TX_QUEUE2 |    \
+    E1000_EICR_TX_QUEUE3)
+
+#define E1000_EICR_RX_QUEUE ( \
+    E1000_EICR_RX_QUEUE0 |    \
+    E1000_EICR_RX_QUEUE1 |    \
+    E1000_EICR_RX_QUEUE2 |    \
+    E1000_EICR_RX_QUEUE3)
+
+#define E1000_EIMS_RX_QUEUE E1000_EICR_RX_QUEUE
+#define E1000_EIMS_TX_QUEUE E1000_EICR_TX_QUEUE
+
+#define EIMS_ENABLE_MASK ( \
+    E1000_EIMS_RX_QUEUE  | \
+    E1000_EIMS_TX_QUEUE  | \
+    E1000_EIMS_TCP_TIMER | \
+    E1000_EIMS_OTHER)
+
+/* Immediate Interrupt Rx (A.K.A. Low Latency Interrupt) */
+#define E1000_IMIR_PORT_IM_EN     0x00010000  /* TCP port enable */
+#define E1000_IMIR_PORT_BP        0x00020000  /* TCP port check bypass */
+#define E1000_IMIREXT_SIZE_BP     0x00001000  /* Packet size bypass */
+#define E1000_IMIREXT_CTRL_URG    0x00002000  /* Check URG bit in header */
+#define E1000_IMIREXT_CTRL_ACK    0x00004000  /* Check ACK bit in header */
+#define E1000_IMIREXT_CTRL_PSH    0x00008000  /* Check PSH bit in header */
+#define E1000_IMIREXT_CTRL_RST    0x00010000  /* Check RST bit in header */
+#define E1000_IMIREXT_CTRL_SYN    0x00020000  /* Check SYN bit in header */
+#define E1000_IMIREXT_CTRL_FIN    0x00040000  /* Check FIN bit in header */
+#define E1000_IMIREXT_CTRL_BP     0x00080000  /* Bypass check of control bits */
+
+/* Receive Descriptor - Advanced */
+union e1000_adv_rx_desc {
+	struct {
+		u64 pkt_addr;             /* Packet buffer address */
+		u64 hdr_addr;             /* Header buffer address */
+	} read;
+	struct {
+		struct {
+			struct {
+				u16 pkt_info;   /* RSS type, Packet type */
+				u16 hdr_info;   /* Split Header,
+				                 * header buffer length */
+			} lo_dword;
+			union {
+				u32 rss;          /* RSS Hash */
+				struct {
+					u16 ip_id;    /* IP id */
+					u16 csum;     /* Packet Checksum */
+				} csum_ip;
+			} hi_dword;
+		} lower;
+		struct {
+			u32 status_error;     /* ext status/error */
+			u16 length;           /* Packet length */
+			u16 vlan;             /* VLAN tag */
+		} upper;
+	} wb;  /* writeback */
+};
+
+#define E1000_RXDADV_RSSTYPE_MASK        0x0000F000
+#define E1000_RXDADV_RSSTYPE_SHIFT       12
+#define E1000_RXDADV_HDRBUFLEN_MASK      0x7FE0
+#define E1000_RXDADV_HDRBUFLEN_SHIFT     5
+#define E1000_RXDADV_SPLITHEADER_EN      0x00001000
+#define E1000_RXDADV_SPH                 0x8000
+#define E1000_RXDADV_HBO                 0x00800000
+
+/* RSS Hash results */
+#define E1000_RXDADV_RSSTYPE_NONE        0x00000000
+#define E1000_RXDADV_RSSTYPE_IPV4_TCP    0x00000001
+#define E1000_RXDADV_RSSTYPE_IPV4        0x00000002
+#define E1000_RXDADV_RSSTYPE_IPV6_TCP    0x00000003
+#define E1000_RXDADV_RSSTYPE_IPV6_EX     0x00000004
+#define E1000_RXDADV_RSSTYPE_IPV6        0x00000005
+#define E1000_RXDADV_RSSTYPE_IPV6_TCP_EX 0x00000006
+#define E1000_RXDADV_RSSTYPE_IPV4_UDP    0x00000007
+#define E1000_RXDADV_RSSTYPE_IPV6_UDP    0x00000008
+#define E1000_RXDADV_RSSTYPE_IPV6_UDP_EX 0x00000009
+
+/* RSS Packet Types as indicated in the receive descriptor */
+#define E1000_RXDADV_PKTTYPE_NONE        0x00000000
+#define E1000_RXDADV_PKTTYPE_IPV4        0x00000010 /* IPV4 hdr present */
+#define E1000_RXDADV_PKTTYPE_IPV4_EX     0x00000020 /* IPV4 hdr + extensions */
+#define E1000_RXDADV_PKTTYPE_IPV6        0x00000040 /* IPV6 hdr present */
+#define E1000_RXDADV_PKTTYPE_IPV6_EX     0x00000080 /* IPV6 hdr + extensions */
+#define E1000_RXDADV_PKTTYPE_TCP         0x00000100 /* TCP hdr present */
+#define E1000_RXDADV_PKTTYPE_UDP         0x00000200 /* UDP hdr present */
+#define E1000_RXDADV_PKTTYPE_SCTP        0x00000400 /* SCTP hdr present */
+#define E1000_RXDADV_PKTTYPE_NFS         0x00000800 /* NFS hdr present */
+
+/* Transmit Descriptor - Advanced */
+union e1000_adv_tx_desc {
+	struct {
+		u64 buffer_addr;    /* Address of descriptor's data buf */
+		u32 cmd_type_len;
+		u32 olinfo_status;
+	} read;
+	struct {
+		u64 rsvd;       /* Reserved */
+		u32 nxtseq_seed;
+		u32 status;
+	} wb;
+};
+
+/* Adv Transmit Descriptor Config Masks */
+#define E1000_ADVTXD_DTYP_CTXT    0x00200000 /* Advanced Context Descriptor */
+#define E1000_ADVTXD_DTYP_DATA    0x00300000 /* Advanced Data Descriptor */
+#define E1000_ADVTXD_DCMD_EOP     0x01000000 /* End of Packet */
+#define E1000_ADVTXD_DCMD_IFCS    0x02000000 /* Insert FCS (Ethernet CRC) */
+#define E1000_ADVTXD_DCMD_RDMA    0x04000000 /* RDMA */
+#define E1000_ADVTXD_DCMD_RS      0x08000000 /* Report Status */
+#define E1000_ADVTXD_DCMD_DDTYP_ISCSI  0x10000000 /* DDP hdr type or iSCSI */
+#define E1000_ADVTXD_DCMD_DEXT    0x20000000 /* Descriptor extension (1=Adv) */
+#define E1000_ADVTXD_DCMD_VLE     0x40000000 /* VLAN pkt enable */
+#define E1000_ADVTXD_DCMD_TSE     0x80000000 /* TCP Seg enable */
+#define E1000_ADVTXD_MAC_LINKSEC  0x00040000 /* Apply LinkSec on packet */
+#define E1000_ADVTXD_MAC_TSTAMP   0x00080000 /* IEEE1588 Timestamp packet */
+#define E1000_ADVTXD_STAT_SN_CRC  0x00000002 /* NXTSEQ/SEED present in WB */
+#define E1000_ADVTXD_IDX_SHIFT    4  /* Adv desc Index shift */
+#define E1000_ADVTXD_POPTS_EOM    0x00000400 /* Enable L bit in RDMA DDP hdr */
+#define E1000_ADVTXD_POPTS_ISCO_1ST  0x00000000 /* 1st TSO of iSCSI PDU */
+#define E1000_ADVTXD_POPTS_ISCO_MDL  0x00000800 /* Middle TSO of iSCSI PDU */
+#define E1000_ADVTXD_POPTS_ISCO_LAST 0x00001000 /* Last TSO of iSCSI PDU */
+#define E1000_ADVTXD_POPTS_ISCO_FULL 0x00001800 /* 1st&Last TSO-full iSCSI PDU*/
+#define E1000_ADVTXD_POPTS_IPSEC     0x00000400 /* IPSec offload request */
+#define E1000_ADVTXD_PAYLEN_SHIFT    14 /* Adv desc PAYLEN shift */
+
+/* Context descriptors */
+struct e1000_adv_tx_context_desc {
+	u32 vlan_macip_lens;
+	u32 seqnum_seed;
+	u32 type_tucmd_mlhl;
+	u32 mss_l4len_idx;
+};
+
+#define E1000_ADVTXD_MACLEN_SHIFT    9  /* Adv ctxt desc mac len shift */
+#define E1000_ADVTXD_VLAN_SHIFT     16  /* Adv ctxt vlan tag shift */
+#define E1000_ADVTXD_TUCMD_IPV4    0x00000400  /* IP Packet Type: 1=IPv4 */
+#define E1000_ADVTXD_TUCMD_IPV6    0x00000000  /* IP Packet Type: 0=IPv6 */
+#define E1000_ADVTXD_TUCMD_L4T_UDP 0x00000000  /* L4 Packet TYPE of UDP */
+#define E1000_ADVTXD_TUCMD_L4T_TCP 0x00000800  /* L4 Packet TYPE of TCP */
+#define E1000_ADVTXD_TUCMD_IPSEC_TYPE_ESP    0x00002000 /* IPSec Type ESP */
+/* IPSec Encrypt Enable for ESP */
+#define E1000_ADVTXD_TUCMD_IPSEC_ENCRYPT_EN  0x00004000
+#define E1000_ADVTXD_TUCMD_MKRREQ  0x00002000 /* Req requires Markers and CRC */
+#define E1000_ADVTXD_L4LEN_SHIFT     8  /* Adv ctxt L4LEN shift */
+#define E1000_ADVTXD_MSS_SHIFT      16  /* Adv ctxt MSS shift */
+/* Adv ctxt IPSec SA IDX mask */
+#define E1000_ADVTXD_IPSEC_SA_INDEX_MASK     0x000000FF
+/* Adv ctxt IPSec ESP len mask */
+#define E1000_ADVTXD_IPSEC_ESP_LEN_MASK      0x000000FF
+
+/* Additional Transmit Descriptor Control definitions */
+#define E1000_TXDCTL_QUEUE_ENABLE  0x02000000 /* Enable specific Tx Queue */
+#define E1000_TXDCTL_SWFLSH        0x04000000 /* Tx Desc. write-back flushing */
+/* Tx Queue Arbitration Priority 0=low, 1=high */
+#define E1000_TXDCTL_PRIORITY      0x08000000
+
+/* Additional Receive Descriptor Control definitions */
+#define E1000_RXDCTL_QUEUE_ENABLE  0x02000000 /* Enable specific Rx Queue */
+#define E1000_RXDCTL_SWFLSH        0x04000000 /* Rx Desc. write-back flushing */
+
+/* Direct Cache Access (DCA) definitions */
+#define E1000_DCA_CTRL_DCA_ENABLE  0x00000000 /* DCA Enable */
+#define E1000_DCA_CTRL_DCA_DISABLE 0x00000001 /* DCA Disable */
+
+#define E1000_DCA_CTRL_DCA_MODE_CB1 0x00 /* DCA Mode CB1 */
+#define E1000_DCA_CTRL_DCA_MODE_CB2 0x02 /* DCA Mode CB2 */
+
+#define E1000_DCA_RXCTRL_CPUID_MASK 0x0000001F /* Rx CPUID Mask */
+#define E1000_DCA_RXCTRL_DESC_DCA_EN (1 << 5) /* DCA Rx Desc enable */
+#define E1000_DCA_RXCTRL_HEAD_DCA_EN (1 << 6) /* DCA Rx Desc header enable */
+#define E1000_DCA_RXCTRL_DATA_DCA_EN (1 << 7) /* DCA Rx Desc payload enable */
+
+#define E1000_DCA_TXCTRL_CPUID_MASK 0x0000001F /* Tx CPUID Mask */
+#define E1000_DCA_TXCTRL_DESC_DCA_EN (1 << 5) /* DCA Tx Desc enable */
+#define E1000_DCA_TXCTRL_TX_WB_RO_EN (1 << 11) /* Tx Desc writeback RO bit */
+
+
+
+#endif
--- /dev/null
+++ sys/dev/em/e1000_82540.c
@@ -0,0 +1,688 @@
+/*******************************************************************************
+
+  Copyright (c) 2001-2007, Intel Corporation 
+  All rights reserved.
+  
+  Redistribution and use in source and binary forms, with or without 
+  modification, are permitted provided that the following conditions are met:
+  
+   1. Redistributions of source code must retain the above copyright notice, 
+      this list of conditions and the following disclaimer.
+  
+   2. Redistributions in binary form must reproduce the above copyright 
+      notice, this list of conditions and the following disclaimer in the 
+      documentation and/or other materials provided with the distribution.
+  
+   3. Neither the name of the Intel Corporation nor the names of its 
+      contributors may be used to endorse or promote products derived from 
+      this software without specific prior written permission.
+  
+  THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
+  AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 
+  IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 
+  ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE 
+  LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 
+  CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 
+  SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 
+  INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 
+  CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 
+  ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
+  POSSIBILITY OF SUCH DAMAGE.
+
+*******************************************************************************/
+/* $FreeBSD: src/sys/dev/em/e1000_82540.c,v 1.3.4.1 2007/11/28 23:24:37 jfv Exp $ */
+
+/* e1000_82540
+ * e1000_82545
+ * e1000_82546
+ * e1000_82545_rev_3
+ * e1000_82546_rev_3
+ */
+
+#include "e1000_api.h"
+
+void e1000_init_function_pointers_82540(struct e1000_hw *hw);
+
+STATIC s32  e1000_init_phy_params_82540(struct e1000_hw *hw);
+STATIC s32  e1000_init_nvm_params_82540(struct e1000_hw *hw);
+STATIC s32  e1000_init_mac_params_82540(struct e1000_hw *hw);
+static s32  e1000_adjust_serdes_amplitude_82540(struct e1000_hw *hw);
+STATIC void e1000_clear_hw_cntrs_82540(struct e1000_hw *hw);
+STATIC s32  e1000_init_hw_82540(struct e1000_hw *hw);
+STATIC s32  e1000_reset_hw_82540(struct e1000_hw *hw);
+static s32  e1000_set_phy_mode_82540(struct e1000_hw *hw);
+static s32  e1000_set_vco_speed_82540(struct e1000_hw *hw);
+STATIC s32  e1000_setup_copper_link_82540(struct e1000_hw *hw);
+STATIC s32  e1000_setup_fiber_serdes_link_82540(struct e1000_hw *hw);
+STATIC void e1000_power_down_phy_copper_82540(struct e1000_hw *hw);
+
+/**
+ * e1000_init_phy_params_82540 - Init PHY func ptrs.
+ * @hw: pointer to the HW structure
+ *
+ * This is a function pointer entry point called by the api module.
+ **/
+STATIC s32 e1000_init_phy_params_82540(struct e1000_hw *hw)
+{
+	struct e1000_phy_info *phy = &hw->phy;
+	struct e1000_functions *func = &hw->func;
+	s32 ret_val = E1000_SUCCESS;
+
+	phy->addr                       = 1;
+	phy->autoneg_mask               = AUTONEG_ADVERTISE_SPEED_DEFAULT;
+	phy->reset_delay_us             = 10000;
+	phy->type                       = e1000_phy_m88;
+
+	/* Function Pointers */
+	func->check_polarity            = e1000_check_polarity_m88;
+	func->commit_phy                = e1000_phy_sw_reset_generic;
+	func->force_speed_duplex        = e1000_phy_force_speed_duplex_m88;
+	func->get_cable_length          = e1000_get_cable_length_m88;
+	func->get_cfg_done              = e1000_get_cfg_done_generic;
+	func->read_phy_reg              = e1000_read_phy_reg_m88;
+	func->reset_phy                 = e1000_phy_hw_reset_generic;
+	func->write_phy_reg             = e1000_write_phy_reg_m88;
+	func->get_phy_info              = e1000_get_phy_info_m88;
+	func->power_up_phy              = e1000_power_up_phy_copper;
+	func->power_down_phy            = e1000_power_down_phy_copper_82540;
+
+	ret_val = e1000_get_phy_id(hw);
+	if (ret_val)
+		goto out;
+
+	/* Verify phy id */
+	switch (hw->mac.type) {
+	case e1000_82540:
+	case e1000_82545:
+	case e1000_82545_rev_3:
+	case e1000_82546:
+	case e1000_82546_rev_3:
+		if (phy->id == M88E1011_I_PHY_ID)
+			break;
+		/* Fall Through */
+	default:
+		ret_val = -E1000_ERR_PHY;
+		goto out;
+		break;
+	}
+
+out:
+	return ret_val;
+}
+
+/**
+ * e1000_init_nvm_params_82540 - Init NVM func ptrs.
+ * @hw: pointer to the HW structure
+ *
+ * This is a function pointer entry point called by the api module.
+ **/
+STATIC s32 e1000_init_nvm_params_82540(struct e1000_hw *hw)
+{
+	struct e1000_nvm_info *nvm = &hw->nvm;
+	struct e1000_functions *func = &hw->func;
+	u32 eecd = E1000_READ_REG(hw, E1000_EECD);
+
+	DEBUGFUNC("e1000_init_nvm_params_82540");
+
+	nvm->type               = e1000_nvm_eeprom_microwire;
+	nvm->delay_usec         = 50;
+	nvm->opcode_bits        = 3;
+	switch (nvm->override) {
+	case e1000_nvm_override_microwire_large:
+		nvm->address_bits       = 8;
+		nvm->word_size          = 256;
+		break;
+	case e1000_nvm_override_microwire_small:
+		nvm->address_bits       = 6;
+		nvm->word_size          = 64;
+		break;
+	default:
+		nvm->address_bits       = eecd & E1000_EECD_SIZE ? 8 : 6;
+		nvm->word_size          = eecd & E1000_EECD_SIZE ? 256 : 64;
+		break;
+	}
+
+	/* Function Pointers */
+	func->acquire_nvm        = e1000_acquire_nvm_generic;
+	func->read_nvm           = e1000_read_nvm_microwire;
+	func->release_nvm        = e1000_release_nvm_generic;
+	func->update_nvm         = e1000_update_nvm_checksum_generic;
+	func->valid_led_default  = e1000_valid_led_default_generic;
+	func->validate_nvm       = e1000_validate_nvm_checksum_generic;
+	func->write_nvm          = e1000_write_nvm_microwire;
+
+	return E1000_SUCCESS;
+}
+
+/**
+ * e1000_init_mac_params_82540 - Init MAC func ptrs.
+ * @hw: pointer to the HW structure
+ *
+ * This is a function pointer entry point called by the api module.
+ **/
+STATIC s32 e1000_init_mac_params_82540(struct e1000_hw *hw)
+{
+	struct e1000_mac_info *mac = &hw->mac;
+	struct e1000_functions *func = &hw->func;
+	s32 ret_val = E1000_SUCCESS;
+
+	DEBUGFUNC("e1000_init_mac_params_82540");
+
+	/* Set media type */
+	switch (hw->device_id) {
+	case E1000_DEV_ID_82545EM_FIBER:
+	case E1000_DEV_ID_82545GM_FIBER:
+	case E1000_DEV_ID_82546EB_FIBER:
+	case E1000_DEV_ID_82546GB_FIBER:
+		hw->phy.media_type = e1000_media_type_fiber;
+		break;
+	case E1000_DEV_ID_82545GM_SERDES:
+	case E1000_DEV_ID_82546GB_SERDES:
+		hw->phy.media_type = e1000_media_type_internal_serdes;
+		break;
+	default:
+		hw->phy.media_type = e1000_media_type_copper;
+		break;
+	}
+
+	/* Set mta register count */
+	mac->mta_reg_count = 128;
+	/* Set rar entry count */
+	mac->rar_entry_count = E1000_RAR_ENTRIES;
+
+	/* Function pointers */
+
+	/* bus type/speed/width */
+	func->get_bus_info = e1000_get_bus_info_pci_generic;
+	/* reset */
+	func->reset_hw = e1000_reset_hw_82540;
+	/* hw initialization */
+	func->init_hw = e1000_init_hw_82540;
+	/* link setup */
+	func->setup_link = e1000_setup_link_generic;
+	/* physical interface setup */
+	func->setup_physical_interface =
+	        (hw->phy.media_type == e1000_media_type_copper)
+	                ? e1000_setup_copper_link_82540
+	                : e1000_setup_fiber_serdes_link_82540;
+	/* check for link */
+	switch (hw->phy.media_type) {
+	case e1000_media_type_copper:
+		func->check_for_link = e1000_check_for_copper_link_generic;
+		break;
+	case e1000_media_type_fiber:
+		func->check_for_link = e1000_check_for_fiber_link_generic;
+		break;
+	case e1000_media_type_internal_serdes:
+		func->check_for_link = e1000_check_for_serdes_link_generic;
+		break;
+	default:
+		ret_val = -E1000_ERR_CONFIG;
+		goto out;
+		break;
+	}
+	/* link info */
+	func->get_link_up_info =
+	        (hw->phy.media_type == e1000_media_type_copper)
+	                ? e1000_get_speed_and_duplex_copper_generic
+	                : e1000_get_speed_and_duplex_fiber_serdes_generic;
+	/* multicast address update */
+	func->update_mc_addr_list = e1000_update_mc_addr_list_generic;
+	/* writing VFTA */
+	func->write_vfta = e1000_write_vfta_generic;
+	/* clearing VFTA */
+	func->clear_vfta = e1000_clear_vfta_generic;
+	/* setting MTA */
+	func->mta_set = e1000_mta_set_generic;
+	/* setup LED */
+	func->setup_led = e1000_setup_led_generic;
+	/* cleanup LED */
+	func->cleanup_led = e1000_cleanup_led_generic;
+	/* turn on/off LED */
+	func->led_on = e1000_led_on_generic;
+	func->led_off = e1000_led_off_generic;
+	/* clear hardware counters */
+	func->clear_hw_cntrs = e1000_clear_hw_cntrs_82540;
+
+out:
+	return ret_val;
+}
+
+/**
+ * e1000_init_function_pointers_82540 - Init func ptrs.
+ * @hw: pointer to the HW structure
+ *
+ * The only function explicitly called by the api module to initialize
+ * all function pointers and parameters.
+ **/
+void e1000_init_function_pointers_82540(struct e1000_hw *hw)
+{
+	DEBUGFUNC("e1000_init_function_pointers_82540");
+
+	hw->func.init_mac_params = e1000_init_mac_params_82540;
+	hw->func.init_nvm_params = e1000_init_nvm_params_82540;
+	hw->func.init_phy_params = e1000_init_phy_params_82540;
+}
+
+/**
+ *  e1000_reset_hw_82540 - Reset hardware
+ *  @hw: pointer to the HW structure
+ *
+ *  This resets the hardware into a known state.  This is a
+ *  function pointer entry point called by the api module.
+ **/
+STATIC s32 e1000_reset_hw_82540(struct e1000_hw *hw)
+{
+	u32 ctrl, icr, manc;
+	s32 ret_val = E1000_SUCCESS;
+
+	DEBUGFUNC("e1000_reset_hw_82540");
+
+	DEBUGOUT("Masking off all interrupts\n");
+	E1000_WRITE_REG(hw, E1000_IMC, 0xFFFFFFFF);
+
+	E1000_WRITE_REG(hw, E1000_RCTL, 0);
+	E1000_WRITE_REG(hw, E1000_TCTL, E1000_TCTL_PSP);
+	E1000_WRITE_FLUSH(hw);
+
+	/*
+	 * Delay to allow any outstanding PCI transactions to complete
+	 * before resetting the device.
+	 */
+	msec_delay(10);
+
+	ctrl = E1000_READ_REG(hw, E1000_CTRL);
+
+	DEBUGOUT("Issuing a global reset to 82540/82545/82546 MAC\n");
+	switch (hw->mac.type) {
+	case e1000_82545_rev_3:
+	case e1000_82546_rev_3:
+		E1000_WRITE_REG(hw, E1000_CTRL_DUP, ctrl | E1000_CTRL_RST);
+		break;
+	default:
+		/*
+		 * These controllers can't ack the 64-bit write when
+		 * issuing the reset, so we use IO-mapping as a
+		 * workaround to issue the reset.
+		 */
+		E1000_WRITE_REG_IO(hw, E1000_CTRL, ctrl | E1000_CTRL_RST);
+		break;
+	}
+
+	/* Wait for EEPROM reload */
+	msec_delay(5);
+
+	/* Disable HW ARPs on ASF enabled adapters */
+	manc = E1000_READ_REG(hw, E1000_MANC);
+	manc &= ~E1000_MANC_ARP_EN;
+	E1000_WRITE_REG(hw, E1000_MANC, manc);
+
+	E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff);
+	icr = E1000_READ_REG(hw, E1000_ICR);
+
+	return ret_val;
+}
+
+/**
+ *  e1000_init_hw_82540 - Initialize hardware
+ *  @hw: pointer to the HW structure
+ *
+ *  This inits the hardware readying it for operation.  This is a
+ *  function pointer entry point called by the api module.
+ **/
+STATIC s32 e1000_init_hw_82540(struct e1000_hw *hw)
+{
+	struct e1000_mac_info *mac = &hw->mac;
+	u32 txdctl, ctrl_ext;
+	s32 ret_val = E1000_SUCCESS;
+	u16 i;
+
+	DEBUGFUNC("e1000_init_hw_82540");
+
+	/* Initialize identification LED */
+	ret_val = e1000_id_led_init_generic(hw);
+	if (ret_val) {
+		DEBUGOUT("Error initializing identification LED\n");
+		/* This is not fatal and we should not stop init due to this */
+	}
+
+	/* Disabling VLAN filtering */
+	DEBUGOUT("Initializing the IEEE VLAN\n");
+	if (mac->type < e1000_82545_rev_3)
+		E1000_WRITE_REG(hw, E1000_VET, 0);
+
+	e1000_clear_vfta(hw);
+
+	/* Setup the receive address. */
+	e1000_init_rx_addrs_generic(hw, mac->rar_entry_count);
+
+	/* Zero out the Multicast HASH table */
+	DEBUGOUT("Zeroing the MTA\n");
+	for (i = 0; i < mac->mta_reg_count; i++) {
+		E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
+		/*
+		 * Avoid back to back register writes by adding the register
+		 * read (flush).  This is to protect against some strange
+		 * bridge configurations that may issue Memory Write Block
+		 * (MWB) to our register space.  The *_rev_3 hardware at
+		 * least doesn't respond correctly to every other dword in an
+		 * MWB to our register space.
+		 */
+		E1000_WRITE_FLUSH(hw);
+	}
+
+	if (mac->type < e1000_82545_rev_3)
+		e1000_pcix_mmrbc_workaround_generic(hw);
+
+	/* Setup link and flow control */
+	ret_val = e1000_setup_link(hw);
+
+	txdctl = E1000_READ_REG(hw, E1000_TXDCTL(0));
+	txdctl = (txdctl & ~E1000_TXDCTL_WTHRESH) |
+	         E1000_TXDCTL_FULL_TX_DESC_WB;
+	E1000_WRITE_REG(hw, E1000_TXDCTL(0), txdctl);
+
+	/*
+	 * Clear all of the statistics registers (clear on read).  It is
+	 * important that we do this after we have tried to establish link
+	 * because the symbol error count will increment wildly if there
+	 * is no link.
+	 */
+	e1000_clear_hw_cntrs_82540(hw);
+
+	if ((hw->device_id == E1000_DEV_ID_82546GB_QUAD_COPPER) ||
+	    (hw->device_id == E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3)) {
+		ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
+		/*
+		 * Relaxed ordering must be disabled to avoid a parity
+		 * error crash in a PCI slot.
+		 */
+		ctrl_ext |= E1000_CTRL_EXT_RO_DIS;
+		E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
+	}
+
+	return ret_val;
+}
+
+/**
+ *  e1000_setup_copper_link_82540 - Configure copper link settings
+ *  @hw: pointer to the HW structure
+ *
+ *  Calls the appropriate function to configure the link for auto-neg or forced
+ *  speed and duplex.  Then we check for link, once link is established calls
+ *  to configure collision distance and flow control are called.  If link is
+ *  not established, we return -E1000_ERR_PHY (-2).  This is a function
+ *  pointer entry point called by the api module.
+ **/
+STATIC s32 e1000_setup_copper_link_82540(struct e1000_hw *hw)
+{
+	u32 ctrl;
+	s32 ret_val = E1000_SUCCESS;
+	u16 data;
+
+	DEBUGFUNC("e1000_setup_copper_link_82540");
+
+	ctrl = E1000_READ_REG(hw, E1000_CTRL);
+	ctrl |= E1000_CTRL_SLU;
+	ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
+	E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
+
+	ret_val = e1000_set_phy_mode_82540(hw);
+	if (ret_val)
+		goto out;
+
+	if (hw->mac.type == e1000_82545_rev_3 ||
+	    hw->mac.type == e1000_82546_rev_3) {
+		ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &data);
+		if (ret_val)
+			goto out;
+		data |= 0x00000008;
+		ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, data);
+		if (ret_val)
+			goto out;
+	}
+
+	ret_val = e1000_copper_link_setup_m88(hw);
+	if (ret_val)
+		goto out;
+
+	ret_val = e1000_setup_copper_link_generic(hw);
+
+out:
+	return ret_val;
+}
+
+/**
+ *  e1000_setup_fiber_serdes_link_82540 - Setup link for fiber/serdes
+ *  @hw: pointer to the HW structure
+ *
+ *  Set the output amplitude to the value in the EEPROM and adjust the VCO
+ *  speed to improve Bit Error Rate (BER) performance.  Configures collision
+ *  distance and flow control for fiber and serdes links.  Upon successful
+ *  setup, poll for link.  This is a function pointer entry point called by
+ *  the api module.
+ **/
+STATIC s32 e1000_setup_fiber_serdes_link_82540(struct e1000_hw *hw)
+{
+	struct e1000_mac_info *mac = &hw->mac;
+	s32 ret_val = E1000_SUCCESS;
+
+	DEBUGFUNC("e1000_setup_fiber_serdes_link_82540");
+
+	switch (mac->type) {
+	case e1000_82545_rev_3:
+	case e1000_82546_rev_3:
+		if (hw->phy.media_type == e1000_media_type_internal_serdes) {
+			/*
+			 * If we're on serdes media, adjust the output
+			 * amplitude to value set in the EEPROM.
+			 */
+			ret_val = e1000_adjust_serdes_amplitude_82540(hw);
+			if (ret_val)
+				goto out;
+		}
+		/* Adjust VCO speed to improve BER performance */
+		ret_val = e1000_set_vco_speed_82540(hw);
+		if (ret_val)
+			goto out;
+	default:
+		break;
+	}
+
+	ret_val = e1000_setup_fiber_serdes_link_generic(hw);
+
+out:
+	return ret_val;
+}
+
+/**
+ *  e1000_adjust_serdes_amplitude_82540 - Adjust amplitude based on EEPROM
+ *  @hw: pointer to the HW structure
+ *
+ *  Adjust the SERDES ouput amplitude based on the EEPROM settings.
+ **/
+static s32 e1000_adjust_serdes_amplitude_82540(struct e1000_hw *hw)
+{
+	s32 ret_val = E1000_SUCCESS;
+	u16 nvm_data;
+
+	DEBUGFUNC("e1000_adjust_serdes_amplitude_82540");
+
+	ret_val = e1000_read_nvm(hw, NVM_SERDES_AMPLITUDE, 1, &nvm_data);
+	if (ret_val)
+		goto out;
+
+	if (nvm_data != NVM_RESERVED_WORD) {
+		/* Adjust serdes output amplitude only. */
+		nvm_data &= NVM_SERDES_AMPLITUDE_MASK;
+		ret_val = e1000_write_phy_reg(hw,
+		                             M88E1000_PHY_EXT_CTRL,
+		                             nvm_data);
+		if (ret_val)
+			goto out;
+	}
+
+out:
+	return ret_val;
+}
+
+/**
+ *  e1000_set_vco_speed_82540 - Set VCO speed for better performance
+ *  @hw: pointer to the HW structure
+ *
+ *  Set the VCO speed to improve Bit Error Rate (BER) performance.
+ **/
+static s32 e1000_set_vco_speed_82540(struct e1000_hw *hw)
+{
+	s32  ret_val = E1000_SUCCESS;
+	u16 default_page = 0;
+	u16 phy_data;
+
+	DEBUGFUNC("e1000_set_vco_speed_82540");
+
+	/* Set PHY register 30, page 5, bit 8 to 0 */
+
+	ret_val = e1000_read_phy_reg(hw,
+	                            M88E1000_PHY_PAGE_SELECT,
+	                            &default_page);
+	if (ret_val)
+		goto out;
+
+	ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0005);
+	if (ret_val)
+		goto out;
+
+	ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, &phy_data);
+	if (ret_val)
+		goto out;
+
+	phy_data &= ~M88E1000_PHY_VCO_REG_BIT8;
+	ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, phy_data);
+	if (ret_val)
+		goto out;
+
+	/* Set PHY register 30, page 4, bit 11 to 1 */
+
+	ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0004);
+	if (ret_val)
+		goto out;
+
+	ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, &phy_data);
+	if (ret_val)
+		goto out;
+
+	phy_data |= M88E1000_PHY_VCO_REG_BIT11;
+	ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, phy_data);
+	if (ret_val)
+		goto out;
+
+	ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT,
+	                              default_page);
+
+out:
+	return ret_val;
+}
+
+/**
+ *  e1000_set_phy_mode_82540 - Set PHY to class A mode
+ *  @hw: pointer to the HW structure
+ *
+ *  Sets the PHY to class A mode and assumes the following operations will
+ *  follow to enable the new class mode:
+ *    1.  Do a PHY soft reset.
+ *    2.  Restart auto-negotiation or force link.
+ **/
+static s32 e1000_set_phy_mode_82540(struct e1000_hw *hw)
+{
+	struct e1000_phy_info *phy = &hw->phy;
+	s32 ret_val = E1000_SUCCESS;
+	u16 nvm_data;
+
+	DEBUGFUNC("e1000_set_phy_mode_82540");
+
+	if (hw->mac.type != e1000_82545_rev_3)
+		goto out;
+
+	ret_val = e1000_read_nvm(hw, NVM_PHY_CLASS_WORD, 1, &nvm_data);
+	if (ret_val) {
+		ret_val = -E1000_ERR_PHY;
+		goto out;
+	}
+
+	if ((nvm_data != NVM_RESERVED_WORD) && (nvm_data & NVM_PHY_CLASS_A)) {
+		ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT,
+					      0x000B);
+		if (ret_val) {
+			ret_val = -E1000_ERR_PHY;
+			goto out;
+		}
+		ret_val = e1000_write_phy_reg(hw,
+					     M88E1000_PHY_GEN_CONTROL,
+					     0x8104);
+		if (ret_val) {
+			ret_val = -E1000_ERR_PHY;
+			goto out;
+		}
+
+		phy->reset_disable = FALSE;
+	}
+
+out:
+	return ret_val;
+}
+
+/**
+ * e1000_power_down_phy_copper_82540 - Remove link in case of PHY power down
+ * @hw: pointer to the HW structure
+ *
+ * In the case of a PHY power down to save power, or to turn off link during a
+ * driver unload, or wake on lan is not enabled, remove the link.
+ **/
+STATIC void e1000_power_down_phy_copper_82540(struct e1000_hw *hw)
+{
+	/* If the management interface is not enabled, then power down */
+	if (!(E1000_READ_REG(hw, E1000_MANC) & E1000_MANC_SMBUS_EN))
+		e1000_power_down_phy_copper(hw);
+
+	return;
+}
+
+/**
+ *  e1000_clear_hw_cntrs_82540 - Clear device specific hardware counters
+ *  @hw: pointer to the HW structure
+ *
+ *  Clears the hardware counters by reading the counter registers.
+ **/
+STATIC void e1000_clear_hw_cntrs_82540(struct e1000_hw *hw)
+{
+	volatile u32 temp;
+
+	DEBUGFUNC("e1000_clear_hw_cntrs_82540");
+
+	e1000_clear_hw_cntrs_base_generic(hw);
+
+	temp = E1000_READ_REG(hw, E1000_PRC64);
+	temp = E1000_READ_REG(hw, E1000_PRC127);
+	temp = E1000_READ_REG(hw, E1000_PRC255);
+	temp = E1000_READ_REG(hw, E1000_PRC511);
+	temp = E1000_READ_REG(hw, E1000_PRC1023);
+	temp = E1000_READ_REG(hw, E1000_PRC1522);
+	temp = E1000_READ_REG(hw, E1000_PTC64);
+	temp = E1000_READ_REG(hw, E1000_PTC127);
+	temp = E1000_READ_REG(hw, E1000_PTC255);
+	temp = E1000_READ_REG(hw, E1000_PTC511);
+	temp = E1000_READ_REG(hw, E1000_PTC1023);
+	temp = E1000_READ_REG(hw, E1000_PTC1522);
+
+	temp = E1000_READ_REG(hw, E1000_ALGNERRC);
+	temp = E1000_READ_REG(hw, E1000_RXERRC);
+	temp = E1000_READ_REG(hw, E1000_TNCRS);
+	temp = E1000_READ_REG(hw, E1000_CEXTERR);
+	temp = E1000_READ_REG(hw, E1000_TSCTC);
+	temp = E1000_READ_REG(hw, E1000_TSCTFC);
+
+	temp = E1000_READ_REG(hw, E1000_MGTPRC);
+	temp = E1000_READ_REG(hw, E1000_MGTPDC);
+	temp = E1000_READ_REG(hw, E1000_MGTPTC);
+}
+
Index: LICENSE
===================================================================
RCS file: /home/cvs/src/sys/dev/em/LICENSE,v
retrieving revision 1.2
retrieving revision 1.3
diff -L sys/dev/em/LICENSE -L sys/dev/em/LICENSE -u -r1.2 -r1.3
--- sys/dev/em/LICENSE
+++ sys/dev/em/LICENSE
@@ -1,31 +1,31 @@
-$FreeBSD: src/sys/dev/em/LICENSE,v 1.3 2005/01/06 01:42:38 imp Exp $
-/*-
-Copyright (c) 2001-2005, Intel Corporation 
-All rights reserved.
+$FreeBSD: src/sys/dev/em/LICENSE,v 1.6 2007/05/04 00:00:11 jfv Exp $
 
-Redistribution and use in source and binary forms, with or without 
-modification, are permitted provided that the following conditions are met:
+  Copyright (c) 2001-2007, Intel Corporation 
+  All rights reserved.
+  
+  Redistribution and use in source and binary forms, with or without 
+  modification, are permitted provided that the following conditions are met:
+  
+   1. Redistributions of source code must retain the above copyright notice, 
+      this list of conditions and the following disclaimer.
+  
+   2. Redistributions in binary form must reproduce the above copyright 
+      notice, this list of conditions and the following disclaimer in the 
+      documentation and/or other materials provided with the distribution.
+  
+   3. Neither the name of the Intel Corporation nor the names of its 
+      contributors may be used to endorse or promote products derived from 
+      this software without specific prior written permission.
+  
+  THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
+  AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 
+  IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 
+  ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE 
+  LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 
+  CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 
+  SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 
+  INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 
+  CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 
+  ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
+  POSSIBILITY OF SUCH DAMAGE.
 
- 1. Redistributions of source code must retain the above copyright notice, 
-    this list of conditions and the following disclaimer.
-
- 2. Redistributions in binary form must reproduce the above copyright 
-    notice, this list of conditions and the following disclaimer in the 
-    documentation and/or other materials provided with the distribution.
-
- 3. Neither the name of the Intel Corporation nor the names of its 
-    contributors may be used to endorse or promote products derived from 
-    this software without specific prior written permission.
-
-THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
-AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 
-IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 
-ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE 
-LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 
-CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 
-SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 
-INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 
-CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 
-ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
-POSSIBILITY OF SUCH DAMAGE.
-*/
Index: README
===================================================================
RCS file: /home/cvs/src/sys/dev/em/README,v
retrieving revision 1.2
retrieving revision 1.3
diff -L sys/dev/em/README -L sys/dev/em/README -u -r1.2 -r1.3
--- sys/dev/em/README
+++ sys/dev/em/README
@@ -1,8 +1,8 @@
-$FreeBSD: /repoman/r/ncvs/src/sys/dev/em/README,v 1.10.2.1 2006/08/08 09:20:26 glebius Exp $
-FreeBSD* Driver for the Intel(R) PRO/1000 Family of Adapters
-============================================================
+$FreeBSD: src/sys/dev/em/README,v 1.15 2007/05/30 23:32:21 jfv Exp $
+FreeBSD* Driver for Intel Network Connection
+=============================================
 
-May 2, 2006
+May 30, 2007
 
 
 Contents
@@ -21,11 +21,11 @@
 Overview
 ========
 
-This file describes the FreeBSD* driver for the Intel(R) PRO/1000 Family of
-Adapters. This driver has been developed for use with FreeBSD, Release 6.x.
+This file describes the FreeBSD* driver for Intel Network Connection.
+This driver has been developed for use with FreeBSD, Release 7.x.
 
 For questions related to hardware requirements, refer to the documentation
-supplied with your Intel PRO/1000 adapter. All hardware requirements listed
+supplied with your Gigabit adapter. All hardware requirements listed
 apply to use with FreeBSD.
 
 
@@ -62,7 +62,7 @@
 
 2. Untar/unzip the archive:
 
-        tar xvfz em-x.x.x.tar.gz
+        tar xzvf em-x.x.x.tar.gz
 
    This will create an em-x.x.x directory.
 
@@ -74,7 +74,7 @@
                   cd em-x.x.x
                   make
 
-        b. To install the compiled module in system directory:
+        b. To install the compiled module to the system directory:
 
                   make install
 
@@ -84,35 +84,19 @@
 
                   if_em_load="YES"
 
-4. To compile the driver into the kernel:
+4. To compile the driver into the kernel, enter:
 
         cd em-x.x.x/src
+        cp *.[ch] /usr/src/sys/dev/em
 
-        cp if_em* /usr/src/sys/dev/em
-
-        cp Makefile.kernel /usr/src/sys/modules/em/Makefile
-
-   Edit the /usr/src/sys/conf/files file, and add the following lines only if
-   they don't already exist:
-
-        dev/em/if_em.c optional em
-
-        dev/em/if_em_hw.c optional em
-
-   Remove the following lines from the /usr/src/sys/conf/files file,
-   if they exist:
-
-        dev/em/if_em_fxhw.c optional em
-        dev/em/if_em_phy.c optional em
-
-   Edit the kernel configuration file (i.e., GENERIC or MYKERNEL) in
-   /usr/src/sys/i386/conf, and ensure the following line is present:
+        Edit the kernel configuration file (i.e., GENERIC or MYKERNEL) in
+        /usr/src/sys/i386/conf, and ensure the following line is present:
 
         device em
 
-   Compile and install the kernel. The system must be rebooted for the kernel
-   updates to take effect. For additional information on compiling the
-   kernel, consult the FreeBSD operating system documentation.
+        Compile and install the kernel. The system must be rebooted for the
+        kernel updates to take effect. For additional information on compiling
+        the kernel, consult the FreeBSD operating system documentation.
 
 5. To assign an IP address to the interface, enter the following:
 
@@ -150,6 +134,12 @@
          not specified and you are not running at gigabit speed, the driver
          defaults to half-duplex.
 
+If the interface is currently forced to 100 full duplex, in order to change
+to half duplex you must use this command:
+
+        ifconfig em<interface_num> <IP_address> media 100baseTX -mediaopt
+            full-duplex
+
 
 This driver supports the following media type options:
 
@@ -207,13 +197,15 @@
   - Some Intel gigabit adapters that support Jumbo Frames have a frame size
     limit of 9238 bytes, with a corresponding MTU size limit of 9216 bytes.
     The adapters with this limitation are based on the Intel(R) 82571EB,
-    82572EI, 82573L and 80003ES2LAN controller.  These correspond to the
-    following product names:
+    82572EI, 82573L, 82566, 82562, and 80003ES2LAN controller.  These
+    correspond to the following product names:
      Intel(R) PRO/1000 PT Server Adapter
      Intel(R) PRO/1000 PT Desktop Adapter
      Intel(R) PRO/1000 PT Network Connection
      Intel(R) PRO/1000 PT Dual Port Server Adapter
      Intel(R) PRO/1000 PT Dual Port Network Connection
+     Intel(R) PRO/1000 PT Quad Port Server Adapter
+     Intel(R) PRO/1000 PF Quad Port Server Adapter
      Intel(R) PRO/1000 PF Server Adapter
      Intel(R) PRO/1000 PF Network Connection
      Intel(R) PRO/1000 PF Dual Port Server Adapter
@@ -221,6 +213,7 @@
      Intel(R) PRO/1000 PL Network Connection
      Intel(R) PRO/1000 EB Network Connection with I/O Acceleration
      Intel(R) PRO/1000 EB Backplane Connection with I/O Acceleration
+     Intel(R) 82566DM-2 Gigabit Network Connection
 
   - Adapters based on the Intel(R) 82542 and 82573V/E controller do not
     support Jumbo Frames. These correspond to the following product names:
@@ -236,7 +229,12 @@
     Intel(R) 82566DC Gigabit Network Connection
     Intel(R) 82566MM Gigabit Network Connection
     Intel(R) 82566MC Gigabit Network Connection
-
+    Intel(R) 82562GT 10/100 Network Connection
+    Intel(R) 82562G 10/100 Network Connection
+    Intel(R) 82566DC-2 Gigabit Network Connection
+    Intel(R) 82562V-2 10/100 Network Connection
+    Intel(R) 82562G-2 10/100 Network Connection
+    Intel(R) 82562GT-2 10/100 Network Connection
 
   VLANs
   -----
@@ -252,18 +250,19 @@
 
   Example:
 
-        ifconfig vlan10 10.0.0.1 netmask 255.255.255.0 vlan10 vlandev em0
+        ifconfig vlan10 10.0.0.1 netmask 255.255.255.0 vlan 10 vlandev em0
 
-  In this example, all packets will be marked on egress with  802.1Q VLAN
+  In this example, all packets will be marked on egress with 802.1Q VLAN
   tags, specifying a VLAN ID of 10.
 
   To remove a VLAN interface:
 
-        ifconfig <vlan_name> destroy
+  Intel Network Connection        ifconfig <vlan_name> destroy
 
 
   Polling
   -------
+
   To enable polling in the driver, add the following options to the kernel
   configuration, and then recompile the kernel:
 
@@ -271,9 +270,9 @@
         options HZ=1000
 
   At runtime use:
-        ifconfig em0 polling to turn polling on
-  Use:
-        ifconfig em0 -polling to turn polling off
+        ifconfig emX polling (to turn polling on)
+  and:
+        ifconfig emX -polling  (to turn it off)
 
 
   Checksum Offload
@@ -306,16 +305,49 @@
   See the ifconfig man page for further information.
 
 
+  TSO
+  ---
+  The FreeBSD driver offers support for TSO (TCP Segmentation Offload).
+
+  You can enable/disable it in two ways/places:
+
+        -  sysctl net.inet.tcp.tso=0    (or 1 to enable it)
+
+  Doing this disables TSO in the stack and will affect all adapters.
+
+        -  ifconfig emX -tso
+
+  Doing this will disable TSO only for this adapter.
+
+  To enable:
+
+        -  ifconfig emX tso
+
+  NOTES: By default only PCI-Express adapters are ENABLED to do TSO. Others
+  can be enabled by the user at their own risk
+  TSO is not supported on 82547 and 82544-based adapters, as well as older adapters.
+
+
 Known Limitations
 =================
 
-  In FreeBSD version 4.x with Symmetric MultiProcessing (SMP), there is a known
-  issue on some newer hardware.  The problem is generic kernel and only in SMP
-  mode.  The workaround is to either use FreeBSD version 4.x in single processor
-  mode, or use FreeBSD 5.4 or later.
+  Detected Tx Unit Hang in Quad Port Adapters
+  -------------------------------------------
+
+  In some cases ports 3 and 4 wont pass traffic. Ports 1 and 2 don't show
+  any errors and will pass traffic.
+
+  This issue MAY be resolved by updating to the latest BIOS. You can
+  check your system's BIOS by downloading the Linux Firmware Developer Kit
+  that can be obtained at http://www.linuxfirmwarekit.org/
+
 
   There are known performance issues with this driver when running UDP traffic
   with Jumbo Frames.
+  ----------------------------------------------------------------------------
+
+  82541/82547 can't link or is slow to link with some link partners
+  -----------------------------------------------------------------
 
   There is a known compatibility issue where time to link is slow or link is not
   established between 82541/82547 controllers and some switches.  Known switches
@@ -325,12 +357,12 @@
 
   The driver can be compiled with the following changes:
 
-  Edit ./em.x.x.x/src/if_em.h to uncomment the #define EM_MASTER_SLAVE
-  from within the comments.  For example, change from:
+  Edit ./em.x.x.x/src/if_em.h to change the #define EM_MASTER_SLAVE
+  For example, change from:
 
-      /* #define EM_MASTER_SLAVE  2 */
+      #define EM_MASTER_SLAVE   e1000_ms_hw_default
   to:
-      #define EM_MASTER_SLAVE  2
+      #define EM_MASTER_SLAVE   2
 
   Use one of the following options:
       1 = Master mode


More information about the Midnightbsd-cvs mailing list