[Midnightbsd-cvs] src: dev/em: sync intel gigabit ethernet
laffer1 at midnightbsd.org
laffer1 at midnightbsd.org
Tue Nov 25 12:13:36 EST 2008
Log Message:
-----------
sync intel gigabit ethernet
Modified Files:
--------------
src/sys/dev/em:
LICENSE (r1.2 -> r1.3)
README (r1.2 -> r1.3)
if_em.c (r1.4 -> r1.5)
if_em.h (r1.3 -> r1.4)
Added Files:
-----------
src/sys/dev/em:
e1000_80003es2lan.c (r1.1)
e1000_80003es2lan.h (r1.1)
e1000_82540.c (r1.1)
e1000_82541.c (r1.1)
e1000_82541.h (r1.1)
e1000_82542.c (r1.1)
e1000_82543.c (r1.1)
e1000_82543.h (r1.1)
e1000_82571.c (r1.1)
e1000_82571.h (r1.1)
e1000_82575.c (r1.1)
e1000_82575.h (r1.1)
e1000_api.c (r1.1)
e1000_api.h (r1.1)
e1000_defines.h (r1.1)
e1000_hw.h (r1.1)
e1000_ich8lan.c (r1.1)
e1000_ich8lan.h (r1.1)
e1000_mac.c (r1.1)
e1000_mac.h (r1.1)
e1000_manage.c (r1.1)
e1000_manage.h (r1.1)
e1000_nvm.c (r1.1)
e1000_nvm.h (r1.1)
e1000_osdep.h (r1.1)
e1000_phy.c (r1.1)
e1000_phy.h (r1.1)
e1000_regs.h (r1.1)
Removed Files:
-------------
src/sys/dev/em:
if_em_hw.c
if_em_hw.h
if_em_osdep.h
-------------- next part --------------
--- /dev/null
+++ sys/dev/em/e1000_nvm.h
@@ -0,0 +1,66 @@
+/*******************************************************************************
+
+ Copyright (c) 2001-2007, Intel Corporation
+ All rights reserved.
+
+ Redistribution and use in source and binary forms, with or without
+ modification, are permitted provided that the following conditions are met:
+
+ 1. Redistributions of source code must retain the above copyright notice,
+ this list of conditions and the following disclaimer.
+
+ 2. Redistributions in binary form must reproduce the above copyright
+ notice, this list of conditions and the following disclaimer in the
+ documentation and/or other materials provided with the distribution.
+
+ 3. Neither the name of the Intel Corporation nor the names of its
+ contributors may be used to endorse or promote products derived from
+ this software without specific prior written permission.
+
+ THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
+ AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+ IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
+ LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
+ CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
+ SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
+ INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
+ CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
+ ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
+ POSSIBILITY OF SUCH DAMAGE.
+
+*******************************************************************************/
+/* $FreeBSD: src/sys/dev/em/e1000_nvm.h,v 1.3.4.1 2007/11/28 23:24:38 jfv Exp $ */
+
+
+#ifndef _E1000_NVM_H_
+#define _E1000_NVM_H_
+
+s32 e1000_acquire_nvm_generic(struct e1000_hw *hw);
+
+s32 e1000_poll_eerd_eewr_done(struct e1000_hw *hw, int ee_reg);
+s32 e1000_read_mac_addr_generic(struct e1000_hw *hw);
+s32 e1000_read_pba_num_generic(struct e1000_hw *hw, u32 *pba_num);
+s32 e1000_read_nvm_spi(struct e1000_hw *hw, u16 offset, u16 words, u16 *data);
+s32 e1000_read_nvm_microwire(struct e1000_hw *hw, u16 offset,
+ u16 words, u16 *data);
+s32 e1000_read_nvm_eerd(struct e1000_hw *hw, u16 offset, u16 words, u16 *data);
+s32 e1000_valid_led_default_generic(struct e1000_hw *hw, u16 *data);
+s32 e1000_validate_nvm_checksum_generic(struct e1000_hw *hw);
+s32 e1000_write_nvm_eewr(struct e1000_hw *hw, u16 offset,
+ u16 words, u16 *data);
+s32 e1000_write_nvm_microwire(struct e1000_hw *hw, u16 offset,
+ u16 words, u16 *data);
+s32 e1000_write_nvm_spi(struct e1000_hw *hw, u16 offset, u16 words, u16 *data);
+s32 e1000_update_nvm_checksum_generic(struct e1000_hw *hw);
+void e1000_stop_nvm(struct e1000_hw *hw);
+void e1000_release_nvm_generic(struct e1000_hw *hw);
+void e1000_reload_nvm_generic(struct e1000_hw *hw);
+
+/* Function pointers */
+s32 e1000_acquire_nvm(struct e1000_hw *hw);
+void e1000_release_nvm(struct e1000_hw *hw);
+
+#define E1000_STM_OPCODE 0xDB00
+
+#endif
--- /dev/null
+++ sys/dev/em/e1000_phy.h
@@ -0,0 +1,173 @@
+/*******************************************************************************
+
+ Copyright (c) 2001-2007, Intel Corporation
+ All rights reserved.
+
+ Redistribution and use in source and binary forms, with or without
+ modification, are permitted provided that the following conditions are met:
+
+ 1. Redistributions of source code must retain the above copyright notice,
+ this list of conditions and the following disclaimer.
+
+ 2. Redistributions in binary form must reproduce the above copyright
+ notice, this list of conditions and the following disclaimer in the
+ documentation and/or other materials provided with the distribution.
+
+ 3. Neither the name of the Intel Corporation nor the names of its
+ contributors may be used to endorse or promote products derived from
+ this software without specific prior written permission.
+
+ THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
+ AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+ IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
+ LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
+ CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
+ SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
+ INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
+ CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
+ ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
+ POSSIBILITY OF SUCH DAMAGE.
+
+*******************************************************************************/
+/* $FreeBSD: src/sys/dev/em/e1000_phy.h,v 1.3.4.1 2007/11/28 23:24:38 jfv Exp $ */
+
+
+#ifndef _E1000_PHY_H_
+#define _E1000_PHY_H_
+
+typedef enum {
+ e1000_ms_hw_default = 0,
+ e1000_ms_force_master,
+ e1000_ms_force_slave,
+ e1000_ms_auto
+} e1000_ms_type;
+
+typedef enum {
+ e1000_smart_speed_default = 0,
+ e1000_smart_speed_on,
+ e1000_smart_speed_off
+} e1000_smart_speed;
+
+s32 e1000_check_downshift_generic(struct e1000_hw *hw);
+s32 e1000_check_polarity_m88(struct e1000_hw *hw);
+s32 e1000_check_polarity_igp(struct e1000_hw *hw);
+s32 e1000_check_reset_block_generic(struct e1000_hw *hw);
+s32 e1000_copper_link_autoneg(struct e1000_hw *hw);
+s32 e1000_phy_force_speed_duplex(struct e1000_hw *hw);
+s32 e1000_copper_link_setup_igp(struct e1000_hw *hw);
+s32 e1000_copper_link_setup_m88(struct e1000_hw *hw);
+s32 e1000_phy_force_speed_duplex_igp(struct e1000_hw *hw);
+s32 e1000_phy_force_speed_duplex_m88(struct e1000_hw *hw);
+s32 e1000_get_cable_length_m88(struct e1000_hw *hw);
+s32 e1000_get_cable_length_igp_2(struct e1000_hw *hw);
+s32 e1000_get_cfg_done_generic(struct e1000_hw *hw);
+s32 e1000_get_phy_id(struct e1000_hw *hw);
+s32 e1000_get_phy_info_igp(struct e1000_hw *hw);
+s32 e1000_get_phy_info_m88(struct e1000_hw *hw);
+s32 e1000_phy_sw_reset_generic(struct e1000_hw *hw);
+void e1000_phy_force_speed_duplex_setup(struct e1000_hw *hw, u16 *phy_ctrl);
+s32 e1000_phy_hw_reset_generic(struct e1000_hw *hw);
+s32 e1000_phy_reset_dsp_generic(struct e1000_hw *hw);
+s32 e1000_phy_setup_autoneg(struct e1000_hw *hw);
+s32 e1000_read_kmrn_reg_generic(struct e1000_hw *hw, u32 offset, u16 *data);
+s32 e1000_read_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 *data);
+s32 e1000_read_phy_reg_m88(struct e1000_hw *hw, u32 offset, u16 *data);
+s32 e1000_set_d3_lplu_state_generic(struct e1000_hw *hw, bool active);
+s32 e1000_setup_copper_link_generic(struct e1000_hw *hw);
+s32 e1000_wait_autoneg_generic(struct e1000_hw *hw);
+s32 e1000_write_kmrn_reg_generic(struct e1000_hw *hw, u32 offset, u16 data);
+s32 e1000_write_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 data);
+s32 e1000_write_phy_reg_m88(struct e1000_hw *hw, u32 offset, u16 data);
+s32 e1000_phy_reset_dsp(struct e1000_hw *hw);
+s32 e1000_phy_has_link_generic(struct e1000_hw *hw, u32 iterations,
+ u32 usec_interval, bool *success);
+s32 e1000_phy_init_script_igp3(struct e1000_hw *hw);
+e1000_phy_type e1000_get_phy_type_from_id(u32 phy_id);
+void e1000_power_up_phy_copper(struct e1000_hw *hw);
+void e1000_power_down_phy_copper(struct e1000_hw *hw);
+
+#define E1000_MAX_PHY_ADDR 4
+
+/* IGP01E1000 Specific Registers */
+#define IGP01E1000_PHY_PORT_CONFIG 0x10 /* Port Config */
+#define IGP01E1000_PHY_PORT_STATUS 0x11 /* Status */
+#define IGP01E1000_PHY_PORT_CTRL 0x12 /* Control */
+#define IGP01E1000_PHY_LINK_HEALTH 0x13 /* PHY Link Health */
+#define IGP01E1000_GMII_FIFO 0x14 /* GMII FIFO */
+#define IGP01E1000_PHY_CHANNEL_QUALITY 0x15 /* PHY Channel Quality */
+#define IGP02E1000_PHY_POWER_MGMT 0x19 /* Power Management */
+#define IGP01E1000_PHY_PAGE_SELECT 0x1F /* Page Select */
+#define BM_PHY_PAGE_SELECT 22 /* Page Select for BM */
+#define IGP_PAGE_SHIFT 5
+#define PHY_REG_MASK 0x1F
+
+
+#define IGP01E1000_PHY_PCS_INIT_REG 0x00B4
+#define IGP01E1000_PHY_POLARITY_MASK 0x0078
+
+#define IGP01E1000_PSCR_AUTO_MDIX 0x1000
+#define IGP01E1000_PSCR_FORCE_MDI_MDIX 0x2000 /* 0=MDI, 1=MDIX */
+
+#define IGP01E1000_PSCFR_SMART_SPEED 0x0080
+
+/* Enable flexible speed on link-up */
+#define IGP01E1000_GMII_FLEX_SPD 0x0010
+#define IGP01E1000_GMII_SPD 0x0020 /* Enable SPD */
+
+#define IGP02E1000_PM_SPD 0x0001 /* Smart Power Down */
+#define IGP02E1000_PM_D0_LPLU 0x0002 /* For D0a states */
+#define IGP02E1000_PM_D3_LPLU 0x0004 /* For all other states */
+
+#define IGP01E1000_PLHR_SS_DOWNGRADE 0x8000
+
+#define IGP01E1000_PSSR_POLARITY_REVERSED 0x0002
+#define IGP01E1000_PSSR_MDIX 0x0008
+#define IGP01E1000_PSSR_SPEED_MASK 0xC000
+#define IGP01E1000_PSSR_SPEED_1000MBPS 0xC000
+
+#define IGP02E1000_PHY_CHANNEL_NUM 4
+#define IGP02E1000_PHY_AGC_A 0x11B1
+#define IGP02E1000_PHY_AGC_B 0x12B1
+#define IGP02E1000_PHY_AGC_C 0x14B1
+#define IGP02E1000_PHY_AGC_D 0x18B1
+
+#define IGP02E1000_AGC_LENGTH_SHIFT 9 /* Course - 15:13, Fine - 12:9 */
+#define IGP02E1000_AGC_LENGTH_MASK 0x7F
+#define IGP02E1000_AGC_RANGE 15
+
+#define IGP03E1000_PHY_MISC_CTRL 0x1B
+#define IGP03E1000_PHY_MISC_DUPLEX_MANUAL_SET 0x1000 /* Manually Set Duplex */
+
+#define E1000_CABLE_LENGTH_UNDEFINED 0xFF
+
+#define E1000_KMRNCTRLSTA_OFFSET 0x001F0000
+#define E1000_KMRNCTRLSTA_OFFSET_SHIFT 16
+#define E1000_KMRNCTRLSTA_REN 0x00200000
+#define E1000_KMRNCTRLSTA_DIAG_OFFSET 0x3 /* Kumeran Diagnostic */
+#define E1000_KMRNCTRLSTA_DIAG_NELPBK 0x1000 /* Nearend Loopback mode */
+
+#define IFE_PHY_EXTENDED_STATUS_CONTROL 0x10
+#define IFE_PHY_SPECIAL_CONTROL 0x11 /* 100BaseTx PHY Special Control */
+#define IFE_PHY_SPECIAL_CONTROL_LED 0x1B /* PHY Special and LED Control */
+#define IFE_PHY_MDIX_CONTROL 0x1C /* MDI/MDI-X Control */
+
+/* IFE PHY Extended Status Control */
+#define IFE_PESC_POLARITY_REVERSED 0x0100
+
+/* IFE PHY Special Control */
+#define IFE_PSC_AUTO_POLARITY_DISABLE 0x0010
+#define IFE_PSC_FORCE_POLARITY 0x0020
+#define IFE_PSC_DISABLE_DYNAMIC_POWER_DOWN 0x0100
+
+/* IFE PHY Special Control and LED Control */
+#define IFE_PSCL_PROBE_MODE 0x0020
+#define IFE_PSCL_PROBE_LEDS_OFF 0x0006 /* Force LEDs 0 and 2 off */
+#define IFE_PSCL_PROBE_LEDS_ON 0x0007 /* Force LEDs 0 and 2 on */
+
+/* IFE PHY MDIX Control */
+#define IFE_PMC_MDIX_STATUS 0x0020 /* 1=MDI-X, 0=MDI */
+#define IFE_PMC_FORCE_MDIX 0x0040 /* 1=force MDI-X, 0=force MDI */
+#define IFE_PMC_AUTO_MDIX 0x0080 /* 1=enable auto MDI/MDI-X, 0=disable */
+
+#endif
--- /dev/null
+++ sys/dev/em/e1000_phy.c
@@ -0,0 +1,2114 @@
+/*******************************************************************************
+
+ Copyright (c) 2001-2007, Intel Corporation
+ All rights reserved.
+
+ Redistribution and use in source and binary forms, with or without
+ modification, are permitted provided that the following conditions are met:
+
+ 1. Redistributions of source code must retain the above copyright notice,
+ this list of conditions and the following disclaimer.
+
+ 2. Redistributions in binary form must reproduce the above copyright
+ notice, this list of conditions and the following disclaimer in the
+ documentation and/or other materials provided with the distribution.
+
+ 3. Neither the name of the Intel Corporation nor the names of its
+ contributors may be used to endorse or promote products derived from
+ this software without specific prior written permission.
+
+ THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
+ AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+ IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
+ LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
+ CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
+ SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
+ INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
+ CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
+ ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
+ POSSIBILITY OF SUCH DAMAGE.
+
+*******************************************************************************/
+/* $FreeBSD: src/sys/dev/em/e1000_phy.c,v 1.3.4.1 2007/11/28 23:24:38 jfv Exp $ */
+
+
+#include "e1000_api.h"
+#include "e1000_phy.h"
+
+static s32 e1000_get_phy_cfg_done(struct e1000_hw *hw);
+STATIC void e1000_release_phy(struct e1000_hw *hw);
+STATIC s32 e1000_acquire_phy(struct e1000_hw *hw);
+
+/* Cable length tables */
+static const u16 e1000_m88_cable_length_table[] =
+ { 0, 50, 80, 110, 140, 140, E1000_CABLE_LENGTH_UNDEFINED };
+#define M88E1000_CABLE_LENGTH_TABLE_SIZE \
+ (sizeof(e1000_m88_cable_length_table) / \
+ sizeof(e1000_m88_cable_length_table[0]))
+
+static const u16 e1000_igp_2_cable_length_table[] =
+ { 0, 0, 0, 0, 0, 0, 0, 0, 3, 5, 8, 11, 13, 16, 18, 21,
+ 0, 0, 0, 3, 6, 10, 13, 16, 19, 23, 26, 29, 32, 35, 38, 41,
+ 6, 10, 14, 18, 22, 26, 30, 33, 37, 41, 44, 48, 51, 54, 58, 61,
+ 21, 26, 31, 35, 40, 44, 49, 53, 57, 61, 65, 68, 72, 75, 79, 82,
+ 40, 45, 51, 56, 61, 66, 70, 75, 79, 83, 87, 91, 94, 98, 101, 104,
+ 60, 66, 72, 77, 82, 87, 92, 96, 100, 104, 108, 111, 114, 117, 119, 121,
+ 83, 89, 95, 100, 105, 109, 113, 116, 119, 122, 124,
+ 104, 109, 114, 118, 121, 124};
+#define IGP02E1000_CABLE_LENGTH_TABLE_SIZE \
+ (sizeof(e1000_igp_2_cable_length_table) / \
+ sizeof(e1000_igp_2_cable_length_table[0]))
+
+/**
+ * e1000_check_reset_block_generic - Check if PHY reset is blocked
+ * @hw: pointer to the HW structure
+ *
+ * Read the PHY management control register and check whether a PHY reset
+ * is blocked. If a reset is not blocked return E1000_SUCCESS, otherwise
+ * return E1000_BLK_PHY_RESET (12).
+ **/
+s32 e1000_check_reset_block_generic(struct e1000_hw *hw)
+{
+ u32 manc;
+
+ DEBUGFUNC("e1000_check_reset_block");
+
+ manc = E1000_READ_REG(hw, E1000_MANC);
+
+ return (manc & E1000_MANC_BLK_PHY_RST_ON_IDE) ?
+ E1000_BLK_PHY_RESET : E1000_SUCCESS;
+}
+
+/**
+ * e1000_get_phy_id - Retrieve the PHY ID and revision
+ * @hw: pointer to the HW structure
+ *
+ * Reads the PHY registers and stores the PHY ID and possibly the PHY
+ * revision in the hardware structure.
+ **/
+s32 e1000_get_phy_id(struct e1000_hw *hw)
+{
+ struct e1000_phy_info *phy = &hw->phy;
+ s32 ret_val = E1000_SUCCESS;
+ u16 phy_id;
+
+ DEBUGFUNC("e1000_get_phy_id");
+
+ ret_val = e1000_read_phy_reg(hw, PHY_ID1, &phy_id);
+ if (ret_val)
+ goto out;
+
+ phy->id = (u32)(phy_id << 16);
+ usec_delay(20);
+ ret_val = e1000_read_phy_reg(hw, PHY_ID2, &phy_id);
+ if (ret_val)
+ goto out;
+
+ phy->id |= (u32)(phy_id & PHY_REVISION_MASK);
+ phy->revision = (u32)(phy_id & ~PHY_REVISION_MASK);
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_phy_reset_dsp_generic - Reset PHY DSP
+ * @hw: pointer to the HW structure
+ *
+ * Reset the digital signal processor.
+ **/
+s32 e1000_phy_reset_dsp_generic(struct e1000_hw *hw)
+{
+ s32 ret_val;
+
+ DEBUGFUNC("e1000_phy_reset_dsp_generic");
+
+ ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xC1);
+ if (ret_val)
+ goto out;
+
+ ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0);
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_read_phy_reg_mdic - Read MDI control register
+ * @hw: pointer to the HW structure
+ * @offset: register offset to be read
+ * @data: pointer to the read data
+ *
+ * Reads the MDI control regsiter in the PHY at offset and stores the
+ * information read to data.
+ **/
+STATIC s32 e1000_read_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 *data)
+{
+ struct e1000_phy_info *phy = &hw->phy;
+ u32 i, mdic = 0;
+ s32 ret_val = E1000_SUCCESS;
+
+ DEBUGFUNC("e1000_read_phy_reg_mdic");
+
+ if (offset > MAX_PHY_REG_ADDRESS) {
+ DEBUGOUT1("PHY Address %d is out of range\n", offset);
+ ret_val = -E1000_ERR_PARAM;
+ goto out;
+ }
+
+ /*
+ * Set up Op-code, Phy Address, and register offset in the MDI
+ * Control register. The MAC will take care of interfacing with the
+ * PHY to retrieve the desired data.
+ */
+ mdic = ((offset << E1000_MDIC_REG_SHIFT) |
+ (phy->addr << E1000_MDIC_PHY_SHIFT) |
+ (E1000_MDIC_OP_READ));
+
+ E1000_WRITE_REG(hw, E1000_MDIC, mdic);
+
+ /*
+ * Poll the ready bit to see if the MDI read completed
+ * Increasing the time out as testing showed failures with
+ * the lower time out
+ */
+ for (i = 0; i < (E1000_GEN_POLL_TIMEOUT * 3); i++) {
+ usec_delay(50);
+ mdic = E1000_READ_REG(hw, E1000_MDIC);
+ if (mdic & E1000_MDIC_READY)
+ break;
+ }
+ if (!(mdic & E1000_MDIC_READY)) {
+ DEBUGOUT("MDI Read did not complete\n");
+ ret_val = -E1000_ERR_PHY;
+ goto out;
+ }
+ if (mdic & E1000_MDIC_ERROR) {
+ DEBUGOUT("MDI Error\n");
+ ret_val = -E1000_ERR_PHY;
+ goto out;
+ }
+ *data = (u16) mdic;
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_write_phy_reg_mdic - Write MDI control register
+ * @hw: pointer to the HW structure
+ * @offset: register offset to write to
+ * @data: data to write to register at offset
+ *
+ * Writes data to MDI control register in the PHY at offset.
+ **/
+STATIC s32 e1000_write_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 data)
+{
+ struct e1000_phy_info *phy = &hw->phy;
+ u32 i, mdic = 0;
+ s32 ret_val = E1000_SUCCESS;
+
+ DEBUGFUNC("e1000_write_phy_reg_mdic");
+
+ if (offset > MAX_PHY_REG_ADDRESS) {
+ DEBUGOUT1("PHY Address %d is out of range\n", offset);
+ ret_val = -E1000_ERR_PARAM;
+ goto out;
+ }
+
+ /*
+ * Set up Op-code, Phy Address, and register offset in the MDI
+ * Control register. The MAC will take care of interfacing with the
+ * PHY to retrieve the desired data.
+ */
+ mdic = (((u32)data) |
+ (offset << E1000_MDIC_REG_SHIFT) |
+ (phy->addr << E1000_MDIC_PHY_SHIFT) |
+ (E1000_MDIC_OP_WRITE));
+
+ E1000_WRITE_REG(hw, E1000_MDIC, mdic);
+
+ /*
+ * Poll the ready bit to see if the MDI read completed
+ * Increasing the time out as testing showed failures with
+ * the lower time out
+ */
+ for (i = 0; i < (E1000_GEN_POLL_TIMEOUT * 3); i++) {
+ usec_delay(50);
+ mdic = E1000_READ_REG(hw, E1000_MDIC);
+ if (mdic & E1000_MDIC_READY)
+ break;
+ }
+ if (!(mdic & E1000_MDIC_READY)) {
+ DEBUGOUT("MDI Write did not complete\n");
+ ret_val = -E1000_ERR_PHY;
+ goto out;
+ }
+ if (mdic & E1000_MDIC_ERROR) {
+ DEBUGOUT("MDI Error\n");
+ ret_val = -E1000_ERR_PHY;
+ goto out;
+ }
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_read_phy_reg_m88 - Read m88 PHY register
+ * @hw: pointer to the HW structure
+ * @offset: register offset to be read
+ * @data: pointer to the read data
+ *
+ * Acquires semaphore, if necessary, then reads the PHY register at offset
+ * and storing the retrieved information in data. Release any acquired
+ * semaphores before exiting.
+ **/
+s32 e1000_read_phy_reg_m88(struct e1000_hw *hw, u32 offset, u16 *data)
+{
+ s32 ret_val;
+
+ DEBUGFUNC("e1000_read_phy_reg_m88");
+
+ ret_val = e1000_acquire_phy(hw);
+ if (ret_val)
+ goto out;
+
+ ret_val = e1000_read_phy_reg_mdic(hw,
+ MAX_PHY_REG_ADDRESS & offset,
+ data);
+
+ e1000_release_phy(hw);
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_write_phy_reg_m88 - Write m88 PHY register
+ * @hw: pointer to the HW structure
+ * @offset: register offset to write to
+ * @data: data to write at register offset
+ *
+ * Acquires semaphore, if necessary, then writes the data to PHY register
+ * at the offset. Release any acquired semaphores before exiting.
+ **/
+s32 e1000_write_phy_reg_m88(struct e1000_hw *hw, u32 offset, u16 data)
+{
+ s32 ret_val;
+
+ DEBUGFUNC("e1000_write_phy_reg_m88");
+
+ ret_val = e1000_acquire_phy(hw);
+ if (ret_val)
+ goto out;
+
+ ret_val = e1000_write_phy_reg_mdic(hw,
+ MAX_PHY_REG_ADDRESS & offset,
+ data);
+
+ e1000_release_phy(hw);
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_read_phy_reg_igp - Read igp PHY register
+ * @hw: pointer to the HW structure
+ * @offset: register offset to be read
+ * @data: pointer to the read data
+ *
+ * Acquires semaphore, if necessary, then reads the PHY register at offset
+ * and storing the retrieved information in data. Release any acquired
+ * semaphores before exiting.
+ **/
+s32 e1000_read_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 *data)
+{
+ s32 ret_val;
+
+ DEBUGFUNC("e1000_read_phy_reg_igp");
+
+ ret_val = e1000_acquire_phy(hw);
+ if (ret_val)
+ goto out;
+
+ if (offset > MAX_PHY_MULTI_PAGE_REG) {
+ ret_val = e1000_write_phy_reg_mdic(hw,
+ IGP01E1000_PHY_PAGE_SELECT,
+ (u16)offset);
+ if (ret_val) {
+ e1000_release_phy(hw);
+ goto out;
+ }
+ }
+
+ ret_val = e1000_read_phy_reg_mdic(hw,
+ MAX_PHY_REG_ADDRESS & offset,
+ data);
+
+ e1000_release_phy(hw);
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_write_phy_reg_igp - Write igp PHY register
+ * @hw: pointer to the HW structure
+ * @offset: register offset to write to
+ * @data: data to write at register offset
+ *
+ * Acquires semaphore, if necessary, then writes the data to PHY register
+ * at the offset. Release any acquired semaphores before exiting.
+ **/
+s32 e1000_write_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 data)
+{
+ s32 ret_val;
+
+ DEBUGFUNC("e1000_write_phy_reg_igp");
+
+ ret_val = e1000_acquire_phy(hw);
+ if (ret_val)
+ goto out;
+
+ if (offset > MAX_PHY_MULTI_PAGE_REG) {
+ ret_val = e1000_write_phy_reg_mdic(hw,
+ IGP01E1000_PHY_PAGE_SELECT,
+ (u16)offset);
+ if (ret_val) {
+ e1000_release_phy(hw);
+ goto out;
+ }
+ }
+
+ ret_val = e1000_write_phy_reg_mdic(hw,
+ MAX_PHY_REG_ADDRESS & offset,
+ data);
+
+ e1000_release_phy(hw);
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_read_kmrn_reg_generic - Read kumeran register
+ * @hw: pointer to the HW structure
+ * @offset: register offset to be read
+ * @data: pointer to the read data
+ *
+ * Acquires semaphore, if necessary. Then reads the PHY register at offset
+ * using the kumeran interface. The information retrieved is stored in data.
+ * Release any acquired semaphores before exiting.
+ **/
+s32 e1000_read_kmrn_reg_generic(struct e1000_hw *hw, u32 offset, u16 *data)
+{
+ u32 kmrnctrlsta;
+ s32 ret_val;
+
+ DEBUGFUNC("e1000_read_kmrn_reg_generic");
+
+ ret_val = e1000_acquire_phy(hw);
+ if (ret_val)
+ goto out;
+
+ kmrnctrlsta = ((offset << E1000_KMRNCTRLSTA_OFFSET_SHIFT) &
+ E1000_KMRNCTRLSTA_OFFSET) | E1000_KMRNCTRLSTA_REN;
+ E1000_WRITE_REG(hw, E1000_KMRNCTRLSTA, kmrnctrlsta);
+
+ usec_delay(2);
+
+ kmrnctrlsta = E1000_READ_REG(hw, E1000_KMRNCTRLSTA);
+ *data = (u16)kmrnctrlsta;
+
+ e1000_release_phy(hw);
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_write_kmrn_reg_generic - Write kumeran register
+ * @hw: pointer to the HW structure
+ * @offset: register offset to write to
+ * @data: data to write at register offset
+ *
+ * Acquires semaphore, if necessary. Then write the data to PHY register
+ * at the offset using the kumeran interface. Release any acquired semaphores
+ * before exiting.
+ **/
+s32 e1000_write_kmrn_reg_generic(struct e1000_hw *hw, u32 offset, u16 data)
+{
+ u32 kmrnctrlsta;
+ s32 ret_val;
+
+ DEBUGFUNC("e1000_write_kmrn_reg_generic");
+
+ ret_val = e1000_acquire_phy(hw);
+ if (ret_val)
+ goto out;
+
+ kmrnctrlsta = ((offset << E1000_KMRNCTRLSTA_OFFSET_SHIFT) &
+ E1000_KMRNCTRLSTA_OFFSET) | data;
+ E1000_WRITE_REG(hw, E1000_KMRNCTRLSTA, kmrnctrlsta);
+
+ usec_delay(2);
+ e1000_release_phy(hw);
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_copper_link_setup_m88 - Setup m88 PHY's for copper link
+ * @hw: pointer to the HW structure
+ *
+ * Sets up MDI/MDI-X and polarity for m88 PHY's. If necessary, transmit clock
+ * and downshift values are set also.
+ **/
+s32 e1000_copper_link_setup_m88(struct e1000_hw *hw)
+{
+ struct e1000_phy_info *phy = &hw->phy;
+ s32 ret_val;
+ u16 phy_data;
+
+ DEBUGFUNC("e1000_copper_link_setup_m88");
+
+ if (phy->reset_disable) {
+ ret_val = E1000_SUCCESS;
+ goto out;
+ }
+
+ /* Enable CRS on TX. This must be set for half-duplex operation. */
+ ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
+ if (ret_val)
+ goto out;
+
+ phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
+
+ /*
+ * Options:
+ * MDI/MDI-X = 0 (default)
+ * 0 - Auto for all speeds
+ * 1 - MDI mode
+ * 2 - MDI-X mode
+ * 3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
+ */
+ phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
+
+ switch (phy->mdix) {
+ case 1:
+ phy_data |= M88E1000_PSCR_MDI_MANUAL_MODE;
+ break;
+ case 2:
+ phy_data |= M88E1000_PSCR_MDIX_MANUAL_MODE;
+ break;
+ case 3:
+ phy_data |= M88E1000_PSCR_AUTO_X_1000T;
+ break;
+ case 0:
+ default:
+ phy_data |= M88E1000_PSCR_AUTO_X_MODE;
+ break;
+ }
+
+ /*
+ * Options:
+ * disable_polarity_correction = 0 (default)
+ * Automatic Correction for Reversed Cable Polarity
+ * 0 - Disabled
+ * 1 - Enabled
+ */
+ phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL;
+ if (phy->disable_polarity_correction == 1)
+ phy_data |= M88E1000_PSCR_POLARITY_REVERSAL;
+
+ ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
+ if (ret_val)
+ goto out;
+
+ if (phy->revision < E1000_REVISION_4) {
+ /*
+ * Force TX_CLK in the Extended PHY Specific Control Register
+ * to 25MHz clock.
+ */
+ ret_val = e1000_read_phy_reg(hw,
+ M88E1000_EXT_PHY_SPEC_CTRL,
+ &phy_data);
+ if (ret_val)
+ goto out;
+
+ phy_data |= M88E1000_EPSCR_TX_CLK_25;
+
+ if ((phy->revision == E1000_REVISION_2) &&
+ (phy->id == M88E1111_I_PHY_ID)) {
+ /* 82573L PHY - set the downshift counter to 5x. */
+ phy_data &= ~M88EC018_EPSCR_DOWNSHIFT_COUNTER_MASK;
+ phy_data |= M88EC018_EPSCR_DOWNSHIFT_COUNTER_5X;
+ } else {
+ /* Configure Master and Slave downshift values */
+ phy_data &= ~(M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK |
+ M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK);
+ phy_data |= (M88E1000_EPSCR_MASTER_DOWNSHIFT_1X |
+ M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X);
+ }
+ ret_val = e1000_write_phy_reg(hw,
+ M88E1000_EXT_PHY_SPEC_CTRL,
+ phy_data);
+ if (ret_val)
+ goto out;
+ }
+
+ /* Commit the changes. */
+ ret_val = e1000_phy_commit(hw);
+ if (ret_val) {
+ DEBUGOUT("Error committing the PHY changes\n");
+ goto out;
+ }
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_copper_link_setup_igp - Setup igp PHY's for copper link
+ * @hw: pointer to the HW structure
+ *
+ * Sets up LPLU, MDI/MDI-X, polarity, Smartspeed and Master/Slave config for
+ * igp PHY's.
+ **/
+s32 e1000_copper_link_setup_igp(struct e1000_hw *hw)
+{
+ struct e1000_phy_info *phy = &hw->phy;
+ s32 ret_val;
+ u16 data;
+
+ DEBUGFUNC("e1000_copper_link_setup_igp");
+
+ if (phy->reset_disable) {
+ ret_val = E1000_SUCCESS;
+ goto out;
+ }
+
+ ret_val = e1000_phy_hw_reset(hw);
+ if (ret_val) {
+ DEBUGOUT("Error resetting the PHY.\n");
+ goto out;
+ }
+
+ /* Wait 15ms for MAC to configure PHY from NVM settings. */
+ msec_delay(15);
+
+ /*
+ * The NVM settings will configure LPLU in D3 for
+ * non-IGP1 PHYs.
+ */
+ if (phy->type == e1000_phy_igp) {
+ /* disable lplu d3 during driver init */
+ ret_val = e1000_set_d3_lplu_state(hw, FALSE);
+ if (ret_val) {
+ DEBUGOUT("Error Disabling LPLU D3\n");
+ goto out;
+ }
+ }
+
+ /* disable lplu d0 during driver init */
+ ret_val = e1000_set_d0_lplu_state(hw, FALSE);
+ if (ret_val) {
+ DEBUGOUT("Error Disabling LPLU D0\n");
+ goto out;
+ }
+ /* Configure mdi-mdix settings */
+ ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, &data);
+ if (ret_val)
+ goto out;
+
+ data &= ~IGP01E1000_PSCR_AUTO_MDIX;
+
+ switch (phy->mdix) {
+ case 1:
+ data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
+ break;
+ case 2:
+ data |= IGP01E1000_PSCR_FORCE_MDI_MDIX;
+ break;
+ case 0:
+ default:
+ data |= IGP01E1000_PSCR_AUTO_MDIX;
+ break;
+ }
+ ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, data);
+ if (ret_val)
+ goto out;
+
+ /* set auto-master slave resolution settings */
+ if (hw->mac.autoneg) {
+ /*
+ * when autonegotiation advertisement is only 1000Mbps then we
+ * should disable SmartSpeed and enable Auto MasterSlave
+ * resolution as hardware default.
+ */
+ if (phy->autoneg_advertised == ADVERTISE_1000_FULL) {
+ /* Disable SmartSpeed */
+ ret_val = e1000_read_phy_reg(hw,
+ IGP01E1000_PHY_PORT_CONFIG,
+ &data);
+ if (ret_val)
+ goto out;
+
+ data &= ~IGP01E1000_PSCFR_SMART_SPEED;
+ ret_val = e1000_write_phy_reg(hw,
+ IGP01E1000_PHY_PORT_CONFIG,
+ data);
+ if (ret_val)
+ goto out;
+
+ /* Set auto Master/Slave resolution process */
+ ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL, &data);
+ if (ret_val)
+ goto out;
+
+ data &= ~CR_1000T_MS_ENABLE;
+ ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL, data);
+ if (ret_val)
+ goto out;
+ }
+
+ ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL, &data);
+ if (ret_val)
+ goto out;
+
+ /* load defaults for future use */
+ phy->original_ms_type = (data & CR_1000T_MS_ENABLE) ?
+ ((data & CR_1000T_MS_VALUE) ?
+ e1000_ms_force_master :
+ e1000_ms_force_slave) :
+ e1000_ms_auto;
+
+ switch (phy->ms_type) {
+ case e1000_ms_force_master:
+ data |= (CR_1000T_MS_ENABLE | CR_1000T_MS_VALUE);
+ break;
+ case e1000_ms_force_slave:
+ data |= CR_1000T_MS_ENABLE;
+ data &= ~(CR_1000T_MS_VALUE);
+ break;
+ case e1000_ms_auto:
+ data &= ~CR_1000T_MS_ENABLE;
+ default:
+ break;
+ }
+ ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL, data);
+ if (ret_val)
+ goto out;
+ }
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_copper_link_autoneg - Setup/Enable autoneg for copper link
+ * @hw: pointer to the HW structure
+ *
+ * Performs initial bounds checking on autoneg advertisement parameter, then
+ * configure to advertise the full capability. Setup the PHY to autoneg
+ * and restart the negotiation process between the link partner. If
+ * autoneg_wait_to_complete, then wait for autoneg to complete before exiting.
+ **/
+s32 e1000_copper_link_autoneg(struct e1000_hw *hw)
+{
+ struct e1000_phy_info *phy = &hw->phy;
+ s32 ret_val;
+ u16 phy_ctrl;
+
+ DEBUGFUNC("e1000_copper_link_autoneg");
+
+ /*
+ * Perform some bounds checking on the autoneg advertisement
+ * parameter.
+ */
+ phy->autoneg_advertised &= phy->autoneg_mask;
+
+ /*
+ * If autoneg_advertised is zero, we assume it was not defaulted
+ * by the calling code so we set to advertise full capability.
+ */
+ if (phy->autoneg_advertised == 0)
+ phy->autoneg_advertised = phy->autoneg_mask;
+
+ DEBUGOUT("Reconfiguring auto-neg advertisement params\n");
+ ret_val = e1000_phy_setup_autoneg(hw);
+ if (ret_val) {
+ DEBUGOUT("Error Setting up Auto-Negotiation\n");
+ goto out;
+ }
+ DEBUGOUT("Restarting Auto-Neg\n");
+
+ /*
+ * Restart auto-negotiation by setting the Auto Neg Enable bit and
+ * the Auto Neg Restart bit in the PHY control register.
+ */
+ ret_val = e1000_read_phy_reg(hw, PHY_CONTROL, &phy_ctrl);
+ if (ret_val)
+ goto out;
+
+ phy_ctrl |= (MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG);
+ ret_val = e1000_write_phy_reg(hw, PHY_CONTROL, phy_ctrl);
+ if (ret_val)
+ goto out;
+
+ /*
+ * Does the user want to wait for Auto-Neg to complete here, or
+ * check at a later time (for example, callback routine).
+ */
+ if (phy->autoneg_wait_to_complete) {
+ ret_val = e1000_wait_autoneg(hw);
+ if (ret_val) {
+ DEBUGOUT("Error while waiting for "
+ "autoneg to complete\n");
+ goto out;
+ }
+ }
+
+ hw->mac.get_link_status = TRUE;
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_phy_setup_autoneg - Configure PHY for auto-negotiation
+ * @hw: pointer to the HW structure
+ *
+ * Reads the MII auto-neg advertisement register and/or the 1000T control
+ * register and if the PHY is already setup for auto-negotiation, then
+ * return successful. Otherwise, setup advertisement and flow control to
+ * the appropriate values for the wanted auto-negotiation.
+ **/
+s32 e1000_phy_setup_autoneg(struct e1000_hw *hw)
+{
+ struct e1000_phy_info *phy = &hw->phy;
+ s32 ret_val;
+ u16 mii_autoneg_adv_reg;
+ u16 mii_1000t_ctrl_reg = 0;
+
+ DEBUGFUNC("e1000_phy_setup_autoneg");
+
+ phy->autoneg_advertised &= phy->autoneg_mask;
+
+ /* Read the MII Auto-Neg Advertisement Register (Address 4). */
+ ret_val = e1000_read_phy_reg(hw, PHY_AUTONEG_ADV, &mii_autoneg_adv_reg);
+ if (ret_val)
+ goto out;
+
+ if (phy->autoneg_mask & ADVERTISE_1000_FULL) {
+ /* Read the MII 1000Base-T Control Register (Address 9). */
+ ret_val = e1000_read_phy_reg(hw,
+ PHY_1000T_CTRL,
+ &mii_1000t_ctrl_reg);
+ if (ret_val)
+ goto out;
+ }
+
+ /*
+ * Need to parse both autoneg_advertised and fc and set up
+ * the appropriate PHY registers. First we will parse for
+ * autoneg_advertised software override. Since we can advertise
+ * a plethora of combinations, we need to check each bit
+ * individually.
+ */
+
+ /*
+ * First we clear all the 10/100 mb speed bits in the Auto-Neg
+ * Advertisement Register (Address 4) and the 1000 mb speed bits in
+ * the 1000Base-T Control Register (Address 9).
+ */
+ mii_autoneg_adv_reg &= ~(NWAY_AR_100TX_FD_CAPS |
+ NWAY_AR_100TX_HD_CAPS |
+ NWAY_AR_10T_FD_CAPS |
+ NWAY_AR_10T_HD_CAPS);
+ mii_1000t_ctrl_reg &= ~(CR_1000T_HD_CAPS | CR_1000T_FD_CAPS);
+
+ DEBUGOUT1("autoneg_advertised %x\n", phy->autoneg_advertised);
+
+ /* Do we want to advertise 10 Mb Half Duplex? */
+ if (phy->autoneg_advertised & ADVERTISE_10_HALF) {
+ DEBUGOUT("Advertise 10mb Half duplex\n");
+ mii_autoneg_adv_reg |= NWAY_AR_10T_HD_CAPS;
+ }
+
+ /* Do we want to advertise 10 Mb Full Duplex? */
+ if (phy->autoneg_advertised & ADVERTISE_10_FULL) {
+ DEBUGOUT("Advertise 10mb Full duplex\n");
+ mii_autoneg_adv_reg |= NWAY_AR_10T_FD_CAPS;
+ }
+
+ /* Do we want to advertise 100 Mb Half Duplex? */
+ if (phy->autoneg_advertised & ADVERTISE_100_HALF) {
+ DEBUGOUT("Advertise 100mb Half duplex\n");
+ mii_autoneg_adv_reg |= NWAY_AR_100TX_HD_CAPS;
+ }
+
+ /* Do we want to advertise 100 Mb Full Duplex? */
+ if (phy->autoneg_advertised & ADVERTISE_100_FULL) {
+ DEBUGOUT("Advertise 100mb Full duplex\n");
+ mii_autoneg_adv_reg |= NWAY_AR_100TX_FD_CAPS;
+ }
+
+ /* We do not allow the Phy to advertise 1000 Mb Half Duplex */
+ if (phy->autoneg_advertised & ADVERTISE_1000_HALF) {
+ DEBUGOUT("Advertise 1000mb Half duplex request denied!\n");
+ }
+
+ /* Do we want to advertise 1000 Mb Full Duplex? */
+ if (phy->autoneg_advertised & ADVERTISE_1000_FULL) {
+ DEBUGOUT("Advertise 1000mb Full duplex\n");
+ mii_1000t_ctrl_reg |= CR_1000T_FD_CAPS;
+ }
+
+ /*
+ * Check for a software override of the flow control settings, and
+ * setup the PHY advertisement registers accordingly. If
+ * auto-negotiation is enabled, then software will have to set the
+ * "PAUSE" bits to the correct value in the Auto-Negotiation
+ * Advertisement Register (PHY_AUTONEG_ADV) and re-start auto-
+ * negotiation.
+ *
+ * The possible values of the "fc" parameter are:
+ * 0: Flow control is completely disabled
+ * 1: Rx flow control is enabled (we can receive pause frames
+ * but not send pause frames).
+ * 2: Tx flow control is enabled (we can send pause frames
+ * but we do not support receiving pause frames).
+ * 3: Both Rx and Tx flow control (symmetric) are enabled.
+ * other: No software override. The flow control configuration
+ * in the EEPROM is used.
+ */
+ switch (hw->fc.type) {
+ case e1000_fc_none:
+ /*
+ * Flow control (Rx & Tx) is completely disabled by a
+ * software over-ride.
+ */
+ mii_autoneg_adv_reg &= ~(NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
+ break;
+ case e1000_fc_rx_pause:
+ /*
+ * Rx Flow control is enabled, and Tx Flow control is
+ * disabled, by a software over-ride.
+ *
+ * Since there really isn't a way to advertise that we are
+ * capable of Rx Pause ONLY, we will advertise that we
+ * support both symmetric and asymmetric Rx PAUSE. Later
+ * (in e1000_config_fc_after_link_up) we will disable the
+ * hw's ability to send PAUSE frames.
+ */
+ mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
+ break;
+ case e1000_fc_tx_pause:
+ /*
+ * Tx Flow control is enabled, and Rx Flow control is
+ * disabled, by a software over-ride.
+ */
+ mii_autoneg_adv_reg |= NWAY_AR_ASM_DIR;
+ mii_autoneg_adv_reg &= ~NWAY_AR_PAUSE;
+ break;
+ case e1000_fc_full:
+ /*
+ * Flow control (both Rx and Tx) is enabled by a software
+ * over-ride.
+ */
+ mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
+ break;
+ default:
+ DEBUGOUT("Flow control param set incorrectly\n");
+ ret_val = -E1000_ERR_CONFIG;
+ goto out;
+ }
+
+ ret_val = e1000_write_phy_reg(hw, PHY_AUTONEG_ADV, mii_autoneg_adv_reg);
+ if (ret_val)
+ goto out;
+
+ DEBUGOUT1("Auto-Neg Advertising %x\n", mii_autoneg_adv_reg);
+
+ if (phy->autoneg_mask & ADVERTISE_1000_FULL) {
+ ret_val = e1000_write_phy_reg(hw,
+ PHY_1000T_CTRL,
+ mii_1000t_ctrl_reg);
+ if (ret_val)
+ goto out;
+ }
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_setup_copper_link_generic - Configure copper link settings
+ * @hw: pointer to the HW structure
+ *
+ * Calls the appropriate function to configure the link for auto-neg or forced
+ * speed and duplex. Then we check for link, once link is established calls
+ * to configure collision distance and flow control are called. If link is
+ * not established, we return -E1000_ERR_PHY (-2).
+ **/
+s32 e1000_setup_copper_link_generic(struct e1000_hw *hw)
+{
+ s32 ret_val;
+ bool link;
+
+ DEBUGFUNC("e1000_setup_copper_link_generic");
+
+ if (hw->mac.autoneg) {
+ /*
+ * Setup autoneg and flow control advertisement and perform
+ * autonegotiation.
+ */
+ ret_val = e1000_copper_link_autoneg(hw);
+ if (ret_val)
+ goto out;
+ } else {
+ /*
+ * PHY will be set to 10H, 10F, 100H or 100F
+ * depending on user settings.
+ */
+ DEBUGOUT("Forcing Speed and Duplex\n");
+ ret_val = e1000_phy_force_speed_duplex(hw);
+ if (ret_val) {
+ DEBUGOUT("Error Forcing Speed and Duplex\n");
+ goto out;
+ }
+ }
+
+ /*
+ * Check link status. Wait up to 100 microseconds for link to become
+ * valid.
+ */
+ ret_val = e1000_phy_has_link_generic(hw,
+ COPPER_LINK_UP_LIMIT,
+ 10,
+ &link);
+ if (ret_val)
+ goto out;
+
+ if (link) {
+ DEBUGOUT("Valid link established!!!\n");
+ e1000_config_collision_dist_generic(hw);
+ ret_val = e1000_config_fc_after_link_up_generic(hw);
+ } else {
+ DEBUGOUT("Unable to establish link!!!\n");
+ }
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_phy_force_speed_duplex_igp - Force speed/duplex for igp PHY
+ * @hw: pointer to the HW structure
+ *
+ * Calls the PHY setup function to force speed and duplex. Clears the
+ * auto-crossover to force MDI manually. Waits for link and returns
+ * successful if link up is successful, else -E1000_ERR_PHY (-2).
+ **/
+s32 e1000_phy_force_speed_duplex_igp(struct e1000_hw *hw)
+{
+ struct e1000_phy_info *phy = &hw->phy;
+ s32 ret_val;
+ u16 phy_data;
+ bool link;
+
+ DEBUGFUNC("e1000_phy_force_speed_duplex_igp");
+
+ ret_val = e1000_read_phy_reg(hw, PHY_CONTROL, &phy_data);
+ if (ret_val)
+ goto out;
+
+ e1000_phy_force_speed_duplex_setup(hw, &phy_data);
+
+ ret_val = e1000_write_phy_reg(hw, PHY_CONTROL, phy_data);
+ if (ret_val)
+ goto out;
+
+ /*
+ * Clear Auto-Crossover to force MDI manually. IGP requires MDI
+ * forced whenever speed and duplex are forced.
+ */
+ ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data);
+ if (ret_val)
+ goto out;
+
+ phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX;
+ phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
+
+ ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, phy_data);
+ if (ret_val)
+ goto out;
+
+ DEBUGOUT1("IGP PSCR: %X\n", phy_data);
+
+ usec_delay(1);
+
+ if (phy->autoneg_wait_to_complete) {
+ DEBUGOUT("Waiting for forced speed/duplex link on IGP phy.\n");
+
+ ret_val = e1000_phy_has_link_generic(hw,
+ PHY_FORCE_LIMIT,
+ 100000,
+ &link);
+ if (ret_val)
+ goto out;
+
+ if (!link) {
+ DEBUGOUT("Link taking longer than expected.\n");
+ }
+
+ /* Try once more */
+ ret_val = e1000_phy_has_link_generic(hw,
+ PHY_FORCE_LIMIT,
+ 100000,
+ &link);
+ if (ret_val)
+ goto out;
+ }
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_phy_force_speed_duplex_m88 - Force speed/duplex for m88 PHY
+ * @hw: pointer to the HW structure
+ *
+ * Calls the PHY setup function to force speed and duplex. Clears the
+ * auto-crossover to force MDI manually. Resets the PHY to commit the
+ * changes. If time expires while waiting for link up, we reset the DSP.
+ * After reset, TX_CLK and CRS on Tx must be set. Return successful upon
+ * successful completion, else return corresponding error code.
+ **/
+s32 e1000_phy_force_speed_duplex_m88(struct e1000_hw *hw)
+{
+ struct e1000_phy_info *phy = &hw->phy;
+ s32 ret_val;
+ u16 phy_data;
+ bool link;
+
+ DEBUGFUNC("e1000_phy_force_speed_duplex_m88");
+
+ /*
+ * Clear Auto-Crossover to force MDI manually. M88E1000 requires MDI
+ * forced whenever speed and duplex are forced.
+ */
+ ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
+ if (ret_val)
+ goto out;
+
+ phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
+ ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
+ if (ret_val)
+ goto out;
+
+ DEBUGOUT1("M88E1000 PSCR: %X\n", phy_data);
+
+ ret_val = e1000_read_phy_reg(hw, PHY_CONTROL, &phy_data);
+ if (ret_val)
+ goto out;
+
+ e1000_phy_force_speed_duplex_setup(hw, &phy_data);
+
+ /* Reset the phy to commit changes. */
+ phy_data |= MII_CR_RESET;
+
+ ret_val = e1000_write_phy_reg(hw, PHY_CONTROL, phy_data);
+ if (ret_val)
+ goto out;
+
+ usec_delay(1);
+
+ if (phy->autoneg_wait_to_complete) {
+ DEBUGOUT("Waiting for forced speed/duplex link on M88 phy.\n");
+
+ ret_val = e1000_phy_has_link_generic(hw,
+ PHY_FORCE_LIMIT,
+ 100000,
+ &link);
+ if (ret_val)
+ goto out;
+
+ if (!link) {
+ /*
+ * We didn't get link.
+ * Reset the DSP and cross our fingers.
+ */
+ ret_val = e1000_write_phy_reg(hw,
+ M88E1000_PHY_PAGE_SELECT,
+ 0x001d);
+ if (ret_val)
+ goto out;
+ ret_val = e1000_phy_reset_dsp_generic(hw);
+ if (ret_val)
+ goto out;
+ }
+
+ /* Try once more */
+ ret_val = e1000_phy_has_link_generic(hw,
+ PHY_FORCE_LIMIT,
+ 100000,
+ &link);
+ if (ret_val)
+ goto out;
+ }
+
+ ret_val = e1000_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data);
+ if (ret_val)
+ goto out;
+
+ /*
+ * Resetting the phy means we need to re-force TX_CLK in the
+ * Extended PHY Specific Control Register to 25MHz clock from
+ * the reset value of 2.5MHz.
+ */
+ phy_data |= M88E1000_EPSCR_TX_CLK_25;
+ ret_val = e1000_write_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
+ if (ret_val)
+ goto out;
+
+ /*
+ * In addition, we must re-enable CRS on Tx for both half and full
+ * duplex.
+ */
+ ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
+ if (ret_val)
+ goto out;
+
+ phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
+ ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_phy_force_speed_duplex_setup - Configure forced PHY speed/duplex
+ * @hw: pointer to the HW structure
+ * @phy_ctrl: pointer to current value of PHY_CONTROL
+ *
+ * Forces speed and duplex on the PHY by doing the following: disable flow
+ * control, force speed/duplex on the MAC, disable auto speed detection,
+ * disable auto-negotiation, configure duplex, configure speed, configure
+ * the collision distance, write configuration to CTRL register. The
+ * caller must write to the PHY_CONTROL register for these settings to
+ * take affect.
+ **/
+void e1000_phy_force_speed_duplex_setup(struct e1000_hw *hw, u16 *phy_ctrl)
+{
+ struct e1000_mac_info *mac = &hw->mac;
+ u32 ctrl;
+
+ DEBUGFUNC("e1000_phy_force_speed_duplex_setup");
+
+ /* Turn off flow control when forcing speed/duplex */
+ hw->fc.type = e1000_fc_none;
+
+ /* Force speed/duplex on the mac */
+ ctrl = E1000_READ_REG(hw, E1000_CTRL);
+ ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
+ ctrl &= ~E1000_CTRL_SPD_SEL;
+
+ /* Disable Auto Speed Detection */
+ ctrl &= ~E1000_CTRL_ASDE;
+
+ /* Disable autoneg on the phy */
+ *phy_ctrl &= ~MII_CR_AUTO_NEG_EN;
+
+ /* Forcing Full or Half Duplex? */
+ if (mac->forced_speed_duplex & E1000_ALL_HALF_DUPLEX) {
+ ctrl &= ~E1000_CTRL_FD;
+ *phy_ctrl &= ~MII_CR_FULL_DUPLEX;
+ DEBUGOUT("Half Duplex\n");
+ } else {
+ ctrl |= E1000_CTRL_FD;
+ *phy_ctrl |= MII_CR_FULL_DUPLEX;
+ DEBUGOUT("Full Duplex\n");
+ }
+
+ /* Forcing 10mb or 100mb? */
+ if (mac->forced_speed_duplex & E1000_ALL_100_SPEED) {
+ ctrl |= E1000_CTRL_SPD_100;
+ *phy_ctrl |= MII_CR_SPEED_100;
+ *phy_ctrl &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_10);
+ DEBUGOUT("Forcing 100mb\n");
+ } else {
+ ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
+ *phy_ctrl |= MII_CR_SPEED_10;
+ *phy_ctrl &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_100);
+ DEBUGOUT("Forcing 10mb\n");
+ }
+
+ e1000_config_collision_dist_generic(hw);
+
+ E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
+}
+
+/**
+ * e1000_set_d3_lplu_state_generic - Sets low power link up state for D3
+ * @hw: pointer to the HW structure
+ * @active: boolean used to enable/disable lplu
+ *
+ * Success returns 0, Failure returns 1
+ *
+ * The low power link up (lplu) state is set to the power management level D3
+ * and SmartSpeed is disabled when active is true, else clear lplu for D3
+ * and enable Smartspeed. LPLU and Smartspeed are mutually exclusive. LPLU
+ * is used during Dx states where the power conservation is most important.
+ * During driver activity, SmartSpeed should be enabled so performance is
+ * maintained.
+ **/
+s32 e1000_set_d3_lplu_state_generic(struct e1000_hw *hw, bool active)
+{
+ struct e1000_phy_info *phy = &hw->phy;
+ s32 ret_val;
+ u16 data;
+
+ DEBUGFUNC("e1000_set_d3_lplu_state_generic");
+
+ ret_val = e1000_read_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, &data);
+ if (ret_val)
+ goto out;
+
+ if (!active) {
+ data &= ~IGP02E1000_PM_D3_LPLU;
+ ret_val = e1000_write_phy_reg(hw,
+ IGP02E1000_PHY_POWER_MGMT,
+ data);
+ if (ret_val)
+ goto out;
+ /*
+ * LPLU and SmartSpeed are mutually exclusive. LPLU is used
+ * during Dx states where the power conservation is most
+ * important. During driver activity we should enable
+ * SmartSpeed, so performance is maintained.
+ */
+ if (phy->smart_speed == e1000_smart_speed_on) {
+ ret_val = e1000_read_phy_reg(hw,
+ IGP01E1000_PHY_PORT_CONFIG,
+ &data);
+ if (ret_val)
+ goto out;
+
+ data |= IGP01E1000_PSCFR_SMART_SPEED;
+ ret_val = e1000_write_phy_reg(hw,
+ IGP01E1000_PHY_PORT_CONFIG,
+ data);
+ if (ret_val)
+ goto out;
+ } else if (phy->smart_speed == e1000_smart_speed_off) {
+ ret_val = e1000_read_phy_reg(hw,
+ IGP01E1000_PHY_PORT_CONFIG,
+ &data);
+ if (ret_val)
+ goto out;
+
+ data &= ~IGP01E1000_PSCFR_SMART_SPEED;
+ ret_val = e1000_write_phy_reg(hw,
+ IGP01E1000_PHY_PORT_CONFIG,
+ data);
+ if (ret_val)
+ goto out;
+ }
+ } else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
+ (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
+ (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
+ data |= IGP02E1000_PM_D3_LPLU;
+ ret_val = e1000_write_phy_reg(hw,
+ IGP02E1000_PHY_POWER_MGMT,
+ data);
+ if (ret_val)
+ goto out;
+
+ /* When LPLU is enabled, we should disable SmartSpeed */
+ ret_val = e1000_read_phy_reg(hw,
+ IGP01E1000_PHY_PORT_CONFIG,
+ &data);
+ if (ret_val)
+ goto out;
+
+ data &= ~IGP01E1000_PSCFR_SMART_SPEED;
+ ret_val = e1000_write_phy_reg(hw,
+ IGP01E1000_PHY_PORT_CONFIG,
+ data);
+ }
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_check_downshift_generic - Checks whether a downshift in speed occured
+ * @hw: pointer to the HW structure
+ *
+ * Success returns 0, Failure returns 1
+ *
+ * A downshift is detected by querying the PHY link health.
+ **/
+s32 e1000_check_downshift_generic(struct e1000_hw *hw)
+{
+ struct e1000_phy_info *phy = &hw->phy;
+ s32 ret_val;
+ u16 phy_data, offset, mask;
+
+ DEBUGFUNC("e1000_check_downshift_generic");
+
+ switch (phy->type) {
+ case e1000_phy_m88:
+ case e1000_phy_gg82563:
+ offset = M88E1000_PHY_SPEC_STATUS;
+ mask = M88E1000_PSSR_DOWNSHIFT;
+ break;
+ case e1000_phy_igp_2:
+ case e1000_phy_igp:
+ case e1000_phy_igp_3:
+ offset = IGP01E1000_PHY_LINK_HEALTH;
+ mask = IGP01E1000_PLHR_SS_DOWNGRADE;
+ break;
+ default:
+ /* speed downshift not supported */
+ phy->speed_downgraded = FALSE;
+ ret_val = E1000_SUCCESS;
+ goto out;
+ }
+
+ ret_val = e1000_read_phy_reg(hw, offset, &phy_data);
+
+ if (!ret_val)
+ phy->speed_downgraded = (phy_data & mask) ? TRUE : FALSE;
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_check_polarity_m88 - Checks the polarity.
+ * @hw: pointer to the HW structure
+ *
+ * Success returns 0, Failure returns -E1000_ERR_PHY (-2)
+ *
+ * Polarity is determined based on the PHY specific status register.
+ **/
+s32 e1000_check_polarity_m88(struct e1000_hw *hw)
+{
+ struct e1000_phy_info *phy = &hw->phy;
+ s32 ret_val;
+ u16 data;
+
+ DEBUGFUNC("e1000_check_polarity_m88");
+
+ ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &data);
+
+ if (!ret_val)
+ phy->cable_polarity = (data & M88E1000_PSSR_REV_POLARITY)
+ ? e1000_rev_polarity_reversed
+ : e1000_rev_polarity_normal;
+
+ return ret_val;
+}
+
+/**
+ * e1000_check_polarity_igp - Checks the polarity.
+ * @hw: pointer to the HW structure
+ *
+ * Success returns 0, Failure returns -E1000_ERR_PHY (-2)
+ *
+ * Polarity is determined based on the PHY port status register, and the
+ * current speed (since there is no polarity at 100Mbps).
+ **/
+s32 e1000_check_polarity_igp(struct e1000_hw *hw)
+{
+ struct e1000_phy_info *phy = &hw->phy;
+ s32 ret_val;
+ u16 data, offset, mask;
+
+ DEBUGFUNC("e1000_check_polarity_igp");
+
+ /*
+ * Polarity is determined based on the speed of
+ * our connection.
+ */
+ ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_STATUS, &data);
+ if (ret_val)
+ goto out;
+
+ if ((data & IGP01E1000_PSSR_SPEED_MASK) ==
+ IGP01E1000_PSSR_SPEED_1000MBPS) {
+ offset = IGP01E1000_PHY_PCS_INIT_REG;
+ mask = IGP01E1000_PHY_POLARITY_MASK;
+ } else {
+ /*
+ * This really only applies to 10Mbps since
+ * there is no polarity for 100Mbps (always 0).
+ */
+ offset = IGP01E1000_PHY_PORT_STATUS;
+ mask = IGP01E1000_PSSR_POLARITY_REVERSED;
+ }
+
+ ret_val = e1000_read_phy_reg(hw, offset, &data);
+
+ if (!ret_val)
+ phy->cable_polarity = (data & mask)
+ ? e1000_rev_polarity_reversed
+ : e1000_rev_polarity_normal;
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_wait_autoneg_generic - Wait for auto-neg compeletion
+ * @hw: pointer to the HW structure
+ *
+ * Waits for auto-negotiation to complete or for the auto-negotiation time
+ * limit to expire, which ever happens first.
+ **/
+s32 e1000_wait_autoneg_generic(struct e1000_hw *hw)
+{
+ s32 ret_val = E1000_SUCCESS;
+ u16 i, phy_status;
+
+ DEBUGFUNC("e1000_wait_autoneg_generic");
+
+ /* Break after autoneg completes or PHY_AUTO_NEG_LIMIT expires. */
+ for (i = PHY_AUTO_NEG_LIMIT; i > 0; i--) {
+ ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_status);
+ if (ret_val)
+ break;
+ ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_status);
+ if (ret_val)
+ break;
+ if (phy_status & MII_SR_AUTONEG_COMPLETE)
+ break;
+ msec_delay(100);
+ }
+
+ /*
+ * PHY_AUTO_NEG_TIME expiration doesn't guarantee auto-negotiation
+ * has completed.
+ */
+ return ret_val;
+}
+
+/**
+ * e1000_phy_has_link_generic - Polls PHY for link
+ * @hw: pointer to the HW structure
+ * @iterations: number of times to poll for link
+ * @usec_interval: delay between polling attempts
+ * @success: pointer to whether polling was successful or not
+ *
+ * Polls the PHY status register for link, 'iterations' number of times.
+ **/
+s32 e1000_phy_has_link_generic(struct e1000_hw *hw, u32 iterations,
+ u32 usec_interval, bool *success)
+{
+ s32 ret_val = E1000_SUCCESS;
+ u16 i, phy_status;
+
+ DEBUGFUNC("e1000_phy_has_link_generic");
+
+ for (i = 0; i < iterations; i++) {
+ /*
+ * Some PHYs require the PHY_STATUS register to be read
+ * twice due to the link bit being sticky. No harm doing
+ * it across the board.
+ */
+ ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_status);
+ if (ret_val)
+ break;
+ ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_status);
+ if (ret_val)
+ break;
+ if (phy_status & MII_SR_LINK_STATUS)
+ break;
+ if (usec_interval >= 1000)
+ msec_delay_irq(usec_interval/1000);
+ else
+ usec_delay(usec_interval);
+ }
+
+ *success = (i < iterations) ? TRUE : FALSE;
+
+ return ret_val;
+}
+
+/**
+ * e1000_get_cable_length_m88 - Determine cable length for m88 PHY
+ * @hw: pointer to the HW structure
+ *
+ * Reads the PHY specific status register to retrieve the cable length
+ * information. The cable length is determined by averaging the minimum and
+ * maximum values to get the "average" cable length. The m88 PHY has four
+ * possible cable length values, which are:
+ * Register Value Cable Length
+ * 0 < 50 meters
+ * 1 50 - 80 meters
+ * 2 80 - 110 meters
+ * 3 110 - 140 meters
+ * 4 > 140 meters
+ **/
+s32 e1000_get_cable_length_m88(struct e1000_hw *hw)
+{
+ struct e1000_phy_info *phy = &hw->phy;
+ s32 ret_val;
+ u16 phy_data, index;
+
+ DEBUGFUNC("e1000_get_cable_length_m88");
+
+ ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
+ if (ret_val)
+ goto out;
+
+ index = (phy_data & M88E1000_PSSR_CABLE_LENGTH) >>
+ M88E1000_PSSR_CABLE_LENGTH_SHIFT;
+ phy->min_cable_length = e1000_m88_cable_length_table[index];
+ phy->max_cable_length = e1000_m88_cable_length_table[index+1];
+
+ phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2;
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_get_cable_length_igp_2 - Determine cable length for igp2 PHY
+ * @hw: pointer to the HW structure
+ *
+ * The automatic gain control (agc) normalizes the amplitude of the
+ * received signal, adjusting for the attenuation produced by the
+ * cable. By reading the AGC registers, which reperesent the
+ * cobination of course and fine gain value, the value can be put
+ * into a lookup table to obtain the approximate cable length
+ * for each channel.
+ **/
+s32 e1000_get_cable_length_igp_2(struct e1000_hw *hw)
+{
+ struct e1000_phy_info *phy = &hw->phy;
+ s32 ret_val = E1000_SUCCESS;
+ u16 phy_data, i, agc_value = 0;
+ u16 cur_agc_index, max_agc_index = 0;
+ u16 min_agc_index = IGP02E1000_CABLE_LENGTH_TABLE_SIZE - 1;
+ u16 agc_reg_array[IGP02E1000_PHY_CHANNEL_NUM] =
+ {IGP02E1000_PHY_AGC_A,
+ IGP02E1000_PHY_AGC_B,
+ IGP02E1000_PHY_AGC_C,
+ IGP02E1000_PHY_AGC_D};
+
+ DEBUGFUNC("e1000_get_cable_length_igp_2");
+
+ /* Read the AGC registers for all channels */
+ for (i = 0; i < IGP02E1000_PHY_CHANNEL_NUM; i++) {
+ ret_val = e1000_read_phy_reg(hw, agc_reg_array[i], &phy_data);
+ if (ret_val)
+ goto out;
+
+ /*
+ * Getting bits 15:9, which represent the combination of
+ * course and fine gain values. The result is a number
+ * that can be put into the lookup table to obtain the
+ * approximate cable length.
+ */
+ cur_agc_index = (phy_data >> IGP02E1000_AGC_LENGTH_SHIFT) &
+ IGP02E1000_AGC_LENGTH_MASK;
+
+ /* Array index bound check. */
+ if ((cur_agc_index >= IGP02E1000_CABLE_LENGTH_TABLE_SIZE) ||
+ (cur_agc_index == 0)) {
+ ret_val = -E1000_ERR_PHY;
+ goto out;
+ }
+
+ /* Remove min & max AGC values from calculation. */
+ if (e1000_igp_2_cable_length_table[min_agc_index] >
+ e1000_igp_2_cable_length_table[cur_agc_index])
+ min_agc_index = cur_agc_index;
+ if (e1000_igp_2_cable_length_table[max_agc_index] <
+ e1000_igp_2_cable_length_table[cur_agc_index])
+ max_agc_index = cur_agc_index;
+
+ agc_value += e1000_igp_2_cable_length_table[cur_agc_index];
+ }
+
+ agc_value -= (e1000_igp_2_cable_length_table[min_agc_index] +
+ e1000_igp_2_cable_length_table[max_agc_index]);
+ agc_value /= (IGP02E1000_PHY_CHANNEL_NUM - 2);
+
+ /* Calculate cable length with the error range of +/- 10 meters. */
+ phy->min_cable_length = ((agc_value - IGP02E1000_AGC_RANGE) > 0) ?
+ (agc_value - IGP02E1000_AGC_RANGE) : 0;
+ phy->max_cable_length = agc_value + IGP02E1000_AGC_RANGE;
+
+ phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2;
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_get_phy_info_m88 - Retrieve PHY information
+ * @hw: pointer to the HW structure
+ *
+ * Valid for only copper links. Read the PHY status register (sticky read)
+ * to verify that link is up. Read the PHY special control register to
+ * determine the polarity and 10base-T extended distance. Read the PHY
+ * special status register to determine MDI/MDIx and current speed. If
+ * speed is 1000, then determine cable length, local and remote receiver.
+ **/
+s32 e1000_get_phy_info_m88(struct e1000_hw *hw)
+{
+ struct e1000_phy_info *phy = &hw->phy;
+ s32 ret_val;
+ u16 phy_data;
+ bool link;
+
+ DEBUGFUNC("e1000_get_phy_info_m88");
+
+ if (hw->phy.media_type != e1000_media_type_copper) {
+ DEBUGOUT("Phy info is only valid for copper media\n");
+ ret_val = -E1000_ERR_CONFIG;
+ goto out;
+ }
+
+ ret_val = e1000_phy_has_link_generic(hw, 1, 0, &link);
+ if (ret_val)
+ goto out;
+
+ if (!link) {
+ DEBUGOUT("Phy info is only valid if link is up\n");
+ ret_val = -E1000_ERR_CONFIG;
+ goto out;
+ }
+
+ ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
+ if (ret_val)
+ goto out;
+
+ phy->polarity_correction = (phy_data & M88E1000_PSCR_POLARITY_REVERSAL)
+ ? TRUE
+ : FALSE;
+
+ ret_val = e1000_check_polarity_m88(hw);
+ if (ret_val)
+ goto out;
+
+ ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
+ if (ret_val)
+ goto out;
+
+ phy->is_mdix = (phy_data & M88E1000_PSSR_MDIX) ? TRUE : FALSE;
+
+ if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS) {
+ ret_val = e1000_get_cable_length(hw);
+ if (ret_val)
+ goto out;
+
+ ret_val = e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_data);
+ if (ret_val)
+ goto out;
+
+ phy->local_rx = (phy_data & SR_1000T_LOCAL_RX_STATUS)
+ ? e1000_1000t_rx_status_ok
+ : e1000_1000t_rx_status_not_ok;
+
+ phy->remote_rx = (phy_data & SR_1000T_REMOTE_RX_STATUS)
+ ? e1000_1000t_rx_status_ok
+ : e1000_1000t_rx_status_not_ok;
+ } else {
+ /* Set values to "undefined" */
+ phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
+ phy->local_rx = e1000_1000t_rx_status_undefined;
+ phy->remote_rx = e1000_1000t_rx_status_undefined;
+ }
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_get_phy_info_igp - Retrieve igp PHY information
+ * @hw: pointer to the HW structure
+ *
+ * Read PHY status to determine if link is up. If link is up, then
+ * set/determine 10base-T extended distance and polarity correction. Read
+ * PHY port status to determine MDI/MDIx and speed. Based on the speed,
+ * determine on the cable length, local and remote receiver.
+ **/
+s32 e1000_get_phy_info_igp(struct e1000_hw *hw)
+{
+ struct e1000_phy_info *phy = &hw->phy;
+ s32 ret_val;
+ u16 data;
+ bool link;
+
+ DEBUGFUNC("e1000_get_phy_info_igp");
+
+ ret_val = e1000_phy_has_link_generic(hw, 1, 0, &link);
+ if (ret_val)
+ goto out;
+
+ if (!link) {
+ DEBUGOUT("Phy info is only valid if link is up\n");
+ ret_val = -E1000_ERR_CONFIG;
+ goto out;
+ }
+
+ phy->polarity_correction = TRUE;
+
+ ret_val = e1000_check_polarity_igp(hw);
+ if (ret_val)
+ goto out;
+
+ ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_STATUS, &data);
+ if (ret_val)
+ goto out;
+
+ phy->is_mdix = (data & IGP01E1000_PSSR_MDIX) ? TRUE : FALSE;
+
+ if ((data & IGP01E1000_PSSR_SPEED_MASK) ==
+ IGP01E1000_PSSR_SPEED_1000MBPS) {
+ ret_val = e1000_get_cable_length(hw);
+ if (ret_val)
+ goto out;
+
+ ret_val = e1000_read_phy_reg(hw, PHY_1000T_STATUS, &data);
+ if (ret_val)
+ goto out;
+
+ phy->local_rx = (data & SR_1000T_LOCAL_RX_STATUS)
+ ? e1000_1000t_rx_status_ok
+ : e1000_1000t_rx_status_not_ok;
+
+ phy->remote_rx = (data & SR_1000T_REMOTE_RX_STATUS)
+ ? e1000_1000t_rx_status_ok
+ : e1000_1000t_rx_status_not_ok;
+ } else {
+ phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
+ phy->local_rx = e1000_1000t_rx_status_undefined;
+ phy->remote_rx = e1000_1000t_rx_status_undefined;
+ }
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_phy_sw_reset_generic - PHY software reset
+ * @hw: pointer to the HW structure
+ *
+ * Does a software reset of the PHY by reading the PHY control register and
+ * setting/write the control register reset bit to the PHY.
+ **/
+s32 e1000_phy_sw_reset_generic(struct e1000_hw *hw)
+{
+ s32 ret_val;
+ u16 phy_ctrl;
+
+ DEBUGFUNC("e1000_phy_sw_reset_generic");
+
+ ret_val = e1000_read_phy_reg(hw, PHY_CONTROL, &phy_ctrl);
+ if (ret_val)
+ goto out;
+
+ phy_ctrl |= MII_CR_RESET;
+ ret_val = e1000_write_phy_reg(hw, PHY_CONTROL, phy_ctrl);
+ if (ret_val)
+ goto out;
+
+ usec_delay(1);
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_phy_hw_reset_generic - PHY hardware reset
+ * @hw: pointer to the HW structure
+ *
+ * Verify the reset block is not blocking us from resetting. Acquire
+ * semaphore (if necessary) and read/set/write the device control reset
+ * bit in the PHY. Wait the appropriate delay time for the device to
+ * reset and relase the semaphore (if necessary).
+ **/
+s32 e1000_phy_hw_reset_generic(struct e1000_hw *hw)
+{
+ struct e1000_phy_info *phy = &hw->phy;
+ s32 ret_val;
+ u32 ctrl;
+
+ DEBUGFUNC("e1000_phy_hw_reset_generic");
+
+ ret_val = e1000_check_reset_block(hw);
+ if (ret_val) {
+ ret_val = E1000_SUCCESS;
+ goto out;
+ }
+
+ ret_val = e1000_acquire_phy(hw);
+ if (ret_val)
+ goto out;
+
+ ctrl = E1000_READ_REG(hw, E1000_CTRL);
+ E1000_WRITE_REG(hw, E1000_CTRL, ctrl | E1000_CTRL_PHY_RST);
+ E1000_WRITE_FLUSH(hw);
+
+ usec_delay(phy->reset_delay_us);
+
+ E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
+ E1000_WRITE_FLUSH(hw);
+
+ usec_delay(150);
+
+ e1000_release_phy(hw);
+
+ ret_val = e1000_get_phy_cfg_done(hw);
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_get_cfg_done_generic - Generic configuration done
+ * @hw: pointer to the HW structure
+ *
+ * Generic function to wait 10 milli-seconds for configuration to complete
+ * and return success.
+ **/
+s32 e1000_get_cfg_done_generic(struct e1000_hw *hw)
+{
+ DEBUGFUNC("e1000_get_cfg_done_generic");
+ UNREFERENCED_PARAMETER(hw);
+
+ msec_delay_irq(10);
+
+ return E1000_SUCCESS;
+}
+
+/* Internal function pointers */
+
+/**
+ * e1000_get_phy_cfg_done - Generic PHY configuration done
+ * @hw: pointer to the HW structure
+ *
+ * Return success if silicon family did not implement a family specific
+ * get_cfg_done function.
+ **/
+s32 e1000_get_phy_cfg_done(struct e1000_hw *hw)
+{
+ if (hw->func.get_cfg_done)
+ return hw->func.get_cfg_done(hw);
+
+ return E1000_SUCCESS;
+}
+
+/**
+ * e1000_release_phy - Generic release PHY
+ * @hw: pointer to the HW structure
+ *
+ * Return if silicon family does not require a semaphore when accessing the
+ * PHY.
+ **/
+void e1000_release_phy(struct e1000_hw *hw)
+{
+ if (hw->func.release_phy)
+ hw->func.release_phy(hw);
+}
+
+/**
+ * e1000_acquire_phy - Generic acquire PHY
+ * @hw: pointer to the HW structure
+ *
+ * Return success if silicon family does not require a semaphore when
+ * accessing the PHY.
+ **/
+s32 e1000_acquire_phy(struct e1000_hw *hw)
+{
+ if (hw->func.acquire_phy)
+ return hw->func.acquire_phy(hw);
+
+ return E1000_SUCCESS;
+}
+
+/**
+ * e1000_phy_force_speed_duplex - Generic force PHY speed/duplex
+ * @hw: pointer to the HW structure
+ *
+ * When the silicon family has not implemented a forced speed/duplex
+ * function for the PHY, simply return E1000_SUCCESS.
+ **/
+s32 e1000_phy_force_speed_duplex(struct e1000_hw *hw)
+{
+ if (hw->func.force_speed_duplex)
+ return hw->func.force_speed_duplex(hw);
+
+ return E1000_SUCCESS;
+}
+
+/**
+ * e1000_phy_init_script_igp3 - Inits the IGP3 PHY
+ * @hw: pointer to the HW structure
+ *
+ * Initializes a Intel Gigabit PHY3 when an EEPROM is not present.
+ **/
+s32 e1000_phy_init_script_igp3(struct e1000_hw *hw)
+{
+ DEBUGOUT("Running IGP 3 PHY init script\n");
+
+ /* PHY init IGP 3 */
+ /* Enable rise/fall, 10-mode work in class-A */
+ e1000_write_phy_reg(hw, 0x2F5B, 0x9018);
+ /* Remove all caps from Replica path filter */
+ e1000_write_phy_reg(hw, 0x2F52, 0x0000);
+ /* Bias trimming for ADC, AFE and Driver (Default) */
+ e1000_write_phy_reg(hw, 0x2FB1, 0x8B24);
+ /* Increase Hybrid poly bias */
+ e1000_write_phy_reg(hw, 0x2FB2, 0xF8F0);
+ /* Add 4% to Tx amplitude in Giga mode */
+ e1000_write_phy_reg(hw, 0x2010, 0x10B0);
+ /* Disable trimming (TTT) */
+ e1000_write_phy_reg(hw, 0x2011, 0x0000);
+ /* Poly DC correction to 94.6% + 2% for all channels */
+ e1000_write_phy_reg(hw, 0x20DD, 0x249A);
+ /* ABS DC correction to 95.9% */
+ e1000_write_phy_reg(hw, 0x20DE, 0x00D3);
+ /* BG temp curve trim */
+ e1000_write_phy_reg(hw, 0x28B4, 0x04CE);
+ /* Increasing ADC OPAMP stage 1 currents to max */
+ e1000_write_phy_reg(hw, 0x2F70, 0x29E4);
+ /* Force 1000 ( required for enabling PHY regs configuration) */
+ e1000_write_phy_reg(hw, 0x0000, 0x0140);
+ /* Set upd_freq to 6 */
+ e1000_write_phy_reg(hw, 0x1F30, 0x1606);
+ /* Disable NPDFE */
+ e1000_write_phy_reg(hw, 0x1F31, 0xB814);
+ /* Disable adaptive fixed FFE (Default) */
+ e1000_write_phy_reg(hw, 0x1F35, 0x002A);
+ /* Enable FFE hysteresis */
+ e1000_write_phy_reg(hw, 0x1F3E, 0x0067);
+ /* Fixed FFE for short cable lengths */
+ e1000_write_phy_reg(hw, 0x1F54, 0x0065);
+ /* Fixed FFE for medium cable lengths */
+ e1000_write_phy_reg(hw, 0x1F55, 0x002A);
+ /* Fixed FFE for long cable lengths */
+ e1000_write_phy_reg(hw, 0x1F56, 0x002A);
+ /* Enable Adaptive Clip Threshold */
+ e1000_write_phy_reg(hw, 0x1F72, 0x3FB0);
+ /* AHT reset limit to 1 */
+ e1000_write_phy_reg(hw, 0x1F76, 0xC0FF);
+ /* Set AHT master delay to 127 msec */
+ e1000_write_phy_reg(hw, 0x1F77, 0x1DEC);
+ /* Set scan bits for AHT */
+ e1000_write_phy_reg(hw, 0x1F78, 0xF9EF);
+ /* Set AHT Preset bits */
+ e1000_write_phy_reg(hw, 0x1F79, 0x0210);
+ /* Change integ_factor of channel A to 3 */
+ e1000_write_phy_reg(hw, 0x1895, 0x0003);
+ /* Change prop_factor of channels BCD to 8 */
+ e1000_write_phy_reg(hw, 0x1796, 0x0008);
+ /* Change cg_icount + enable integbp for channels BCD */
+ e1000_write_phy_reg(hw, 0x1798, 0xD008);
+ /*
+ * Change cg_icount + enable integbp + change prop_factor_master
+ * to 8 for channel A
+ */
+ e1000_write_phy_reg(hw, 0x1898, 0xD918);
+ /* Disable AHT in Slave mode on channel A */
+ e1000_write_phy_reg(hw, 0x187A, 0x0800);
+ /*
+ * Enable LPLU and disable AN to 1000 in non-D0a states,
+ * Enable SPD+B2B
+ */
+ e1000_write_phy_reg(hw, 0x0019, 0x008D);
+ /* Enable restart AN on an1000_dis change */
+ e1000_write_phy_reg(hw, 0x001B, 0x2080);
+ /* Enable wh_fifo read clock in 10/100 modes */
+ e1000_write_phy_reg(hw, 0x0014, 0x0045);
+ /* Restart AN, Speed selection is 1000 */
+ e1000_write_phy_reg(hw, 0x0000, 0x1340);
+
+ return E1000_SUCCESS;
+}
+
+/**
+ * e1000_get_phy_type_from_id - Get PHY type from id
+ * @phy_id: phy_id read from the phy
+ *
+ * Returns the phy type from the id.
+ **/
+e1000_phy_type e1000_get_phy_type_from_id(u32 phy_id)
+{
+ e1000_phy_type phy_type = e1000_phy_unknown;
+
+ switch (phy_id) {
+ case M88E1000_I_PHY_ID:
+ case M88E1000_E_PHY_ID:
+ case M88E1111_I_PHY_ID:
+ case M88E1011_I_PHY_ID:
+ phy_type = e1000_phy_m88;
+ break;
+ case IGP01E1000_I_PHY_ID: /* IGP 1 & 2 share this */
+ phy_type = e1000_phy_igp_2;
+ break;
+ case GG82563_E_PHY_ID:
+ phy_type = e1000_phy_gg82563;
+ break;
+ case IGP03E1000_E_PHY_ID:
+ phy_type = e1000_phy_igp_3;
+ break;
+ case IFE_E_PHY_ID:
+ case IFE_PLUS_E_PHY_ID:
+ case IFE_C_E_PHY_ID:
+ phy_type = e1000_phy_ife;
+ break;
+ default:
+ phy_type = e1000_phy_unknown;
+ break;
+ }
+ return phy_type;
+}
+
+/**
+ * e1000_power_up_phy_copper - Restore copper link in case of PHY power down
+ * @hw: pointer to the HW structure
+ *
+ * In the case of a PHY power down to save power, or to turn off link during a
+ * driver unload, or wake on lan is not enabled, restore the link to previous
+ * settings.
+ **/
+void e1000_power_up_phy_copper(struct e1000_hw *hw)
+{
+ u16 mii_reg = 0;
+
+ /* The PHY will retain its settings across a power down/up cycle */
+ e1000_read_phy_reg(hw, PHY_CONTROL, &mii_reg);
+ mii_reg &= ~MII_CR_POWER_DOWN;
+ e1000_write_phy_reg(hw, PHY_CONTROL, mii_reg);
+}
+
+/**
+ * e1000_power_down_phy_copper - Restore copper link in case of PHY power down
+ * @hw: pointer to the HW structure
+ *
+ * In the case of a PHY power down to save power, or to turn off link during a
+ * driver unload, or wake on lan is not enabled, restore the link to previous
+ * settings.
+ **/
+void e1000_power_down_phy_copper(struct e1000_hw *hw)
+{
+ u16 mii_reg = 0;
+
+ /* The PHY will retain its settings across a power down/up cycle */
+ e1000_read_phy_reg(hw, PHY_CONTROL, &mii_reg);
+ mii_reg |= MII_CR_POWER_DOWN;
+ e1000_write_phy_reg(hw, PHY_CONTROL, mii_reg);
+ msec_delay(1);
+}
--- /dev/null
+++ sys/dev/em/e1000_osdep.h
@@ -0,0 +1,189 @@
+/**************************************************************************
+
+Copyright (c) 2001-2007, Intel Corporation
+All rights reserved.
+
+Redistribution and use in source and binary forms, with or without
+modification, are permitted provided that the following conditions are met:
+
+ 1. Redistributions of source code must retain the above copyright notice,
+ this list of conditions and the following disclaimer.
+
+ 2. Redistributions in binary form must reproduce the above copyright
+ notice, this list of conditions and the following disclaimer in the
+ documentation and/or other materials provided with the distribution.
+
+ 3. Neither the name of the Intel Corporation nor the names of its
+ contributors may be used to endorse or promote products derived from
+ this software without specific prior written permission.
+
+THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
+AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
+LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
+CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
+SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
+INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
+CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
+ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
+POSSIBILITY OF SUCH DAMAGE.
+
+***************************************************************************/
+/* $FreeBSD: src/sys/dev/em/e1000_osdep.h,v 1.3.4.1 2007/11/28 23:24:38 jfv Exp $ */
+
+
+#ifndef _FREEBSD_OS_H_
+#define _FREEBSD_OS_H_
+
+#include <sys/types.h>
+#include <sys/param.h>
+#include <sys/systm.h>
+#include <sys/mbuf.h>
+#include <sys/protosw.h>
+#include <sys/socket.h>
+#include <sys/malloc.h>
+#include <sys/kernel.h>
+#include <sys/bus.h>
+#include <machine/bus.h>
+#include <sys/rman.h>
+#include <machine/resource.h>
+#include <vm/vm.h>
+#include <vm/pmap.h>
+#include <machine/clock.h>
+#include <dev/pci/pcivar.h>
+#include <dev/pci/pcireg.h>
+
+
+#define ASSERT(x) if(!(x)) panic("EM: x")
+
+/* The happy-fun DELAY macro is defined in /usr/src/sys/i386/include/clock.h */
+#define usec_delay(x) DELAY(x)
+#define msec_delay(x) DELAY(1000*(x))
+/* TODO: Should we be paranoid about delaying in interrupt context? */
+#define msec_delay_irq(x) DELAY(1000*(x))
+
+#define MSGOUT(S, A, B) printf(S "\n", A, B)
+#define DEBUGFUNC(F) DEBUGOUT(F);
+ #define DEBUGOUT(S)
+ #define DEBUGOUT1(S,A)
+ #define DEBUGOUT2(S,A,B)
+ #define DEBUGOUT3(S,A,B,C)
+ #define DEBUGOUT7(S,A,B,C,D,E,F,G)
+
+#define STATIC static
+#define FALSE 0
+#define TRUE 1
+#define CMD_MEM_WRT_INVALIDATE 0x0010 /* BIT_4 */
+#define PCI_COMMAND_REGISTER PCIR_COMMAND
+
+/*
+** These typedefs are necessary due to the new
+** shared code, they are native to Linux.
+*/
+typedef uint64_t u64;
+typedef uint32_t u32;
+typedef uint16_t u16;
+typedef uint8_t u8;
+typedef int64_t s64;
+typedef int32_t s32;
+typedef int16_t s16;
+typedef int8_t s8;
+typedef boolean_t bool;
+
+struct e1000_osdep
+{
+ bus_space_tag_t mem_bus_space_tag;
+ bus_space_handle_t mem_bus_space_handle;
+ bus_space_tag_t io_bus_space_tag;
+ bus_space_handle_t io_bus_space_handle;
+ bus_space_tag_t flash_bus_space_tag;
+ bus_space_handle_t flash_bus_space_handle;
+ struct device *dev;
+};
+
+#ifdef NO_82542_SUPPORT
+#define E1000_REGISTER(hw, reg) reg
+#else
+#define E1000_REGISTER(hw, reg) (((hw)->mac.type >= e1000_82543) \
+ ? reg : e1000_translate_register_82542(reg))
+#endif
+
+#define E1000_WRITE_FLUSH(a) E1000_READ_REG(a, E1000_STATUS)
+
+/* Read from an absolute offset in the adapter's memory space */
+#define E1000_READ_OFFSET(hw, offset) \
+ bus_space_read_4(((struct e1000_osdep *)(hw)->back)->mem_bus_space_tag, \
+ ((struct e1000_osdep *)(hw)->back)->mem_bus_space_handle, offset)
+
+/* Write to an absolute offset in the adapter's memory space */
+#define E1000_WRITE_OFFSET(hw, offset, value) \
+ bus_space_write_4(((struct e1000_osdep *)(hw)->back)->mem_bus_space_tag, \
+ ((struct e1000_osdep *)(hw)->back)->mem_bus_space_handle, offset, value)
+
+/* Register READ/WRITE macros */
+
+#define E1000_READ_REG(hw, reg) \
+ bus_space_read_4(((struct e1000_osdep *)(hw)->back)->mem_bus_space_tag, \
+ ((struct e1000_osdep *)(hw)->back)->mem_bus_space_handle, \
+ E1000_REGISTER(hw, reg))
+
+#define E1000_WRITE_REG(hw, reg, value) \
+ bus_space_write_4(((struct e1000_osdep *)(hw)->back)->mem_bus_space_tag, \
+ ((struct e1000_osdep *)(hw)->back)->mem_bus_space_handle, \
+ E1000_REGISTER(hw, reg), value)
+
+#define E1000_READ_REG_ARRAY(hw, reg, index) \
+ bus_space_read_4(((struct e1000_osdep *)(hw)->back)->mem_bus_space_tag, \
+ ((struct e1000_osdep *)(hw)->back)->mem_bus_space_handle, \
+ E1000_REGISTER(hw, reg) + ((index)<< 2))
+
+#define E1000_WRITE_REG_ARRAY(hw, reg, index, value) \
+ bus_space_write_4(((struct e1000_osdep *)(hw)->back)->mem_bus_space_tag, \
+ ((struct e1000_osdep *)(hw)->back)->mem_bus_space_handle, \
+ E1000_REGISTER(hw, reg) + ((index)<< 2), value)
+
+#define E1000_READ_REG_ARRAY_DWORD E1000_READ_REG_ARRAY
+#define E1000_WRITE_REG_ARRAY_DWORD E1000_WRITE_REG_ARRAY
+
+#define E1000_READ_REG_ARRAY_BYTE(hw, reg, index) \
+ bus_space_read_1(((struct e1000_osdep *)(hw)->back)->mem_bus_space_tag, \
+ ((struct e1000_osdep *)(hw)->back)->mem_bus_space_handle, \
+ E1000_REGISTER(hw, reg) + index)
+
+#define E1000_WRITE_REG_ARRAY_BYTE(hw, reg, index, value) \
+ bus_space_write_1(((struct e1000_osdep *)(hw)->back)->mem_bus_space_tag, \
+ ((struct e1000_osdep *)(hw)->back)->mem_bus_space_handle, \
+ E1000_REGISTER(hw, reg) + index, value)
+
+#define E1000_WRITE_REG_ARRAY_WORD(hw, reg, index, value) \
+ bus_space_write_2(((struct e1000_osdep *)(hw)->back)->mem_bus_space_tag, \
+ ((struct e1000_osdep *)(hw)->back)->mem_bus_space_handle, \
+ E1000_REGISTER(hw, reg) + (index << 1), value)
+
+#define E1000_WRITE_REG_IO(hw, reg, value) do {\
+ bus_space_write_4(((struct e1000_osdep *)(hw)->back)->io_bus_space_tag, \
+ ((struct e1000_osdep *)(hw)->back)->io_bus_space_handle, \
+ (hw)->io_base, reg); \
+ bus_space_write_4(((struct e1000_osdep *)(hw)->back)->io_bus_space_tag, \
+ ((struct e1000_osdep *)(hw)->back)->io_bus_space_handle, \
+ (hw)->io_base + 4, value); } while (0)
+
+#define E1000_READ_FLASH_REG(hw, reg) \
+ bus_space_read_4(((struct e1000_osdep *)(hw)->back)->flash_bus_space_tag, \
+ ((struct e1000_osdep *)(hw)->back)->flash_bus_space_handle, reg)
+
+#define E1000_READ_FLASH_REG16(hw, reg) \
+ bus_space_read_2(((struct e1000_osdep *)(hw)->back)->flash_bus_space_tag, \
+ ((struct e1000_osdep *)(hw)->back)->flash_bus_space_handle, reg)
+
+#define E1000_WRITE_FLASH_REG(hw, reg, value) \
+ bus_space_write_4(((struct e1000_osdep *)(hw)->back)->flash_bus_space_tag, \
+ ((struct e1000_osdep *)(hw)->back)->flash_bus_space_handle, reg, value)
+
+#define E1000_WRITE_FLASH_REG16(hw, reg, value) \
+ bus_space_write_2(((struct e1000_osdep *)(hw)->back)->flash_bus_space_tag, \
+ ((struct e1000_osdep *)(hw)->back)->flash_bus_space_handle, reg, value)
+
+#endif /* _FREEBSD_OS_H_ */
+
--- /dev/null
+++ sys/dev/em/e1000_ich8lan.h
@@ -0,0 +1,117 @@
+/*******************************************************************************
+
+ Copyright (c) 2001-2007, Intel Corporation
+ All rights reserved.
+
+ Redistribution and use in source and binary forms, with or without
+ modification, are permitted provided that the following conditions are met:
+
+ 1. Redistributions of source code must retain the above copyright notice,
+ this list of conditions and the following disclaimer.
+
+ 2. Redistributions in binary form must reproduce the above copyright
+ notice, this list of conditions and the following disclaimer in the
+ documentation and/or other materials provided with the distribution.
+
+ 3. Neither the name of the Intel Corporation nor the names of its
+ contributors may be used to endorse or promote products derived from
+ this software without specific prior written permission.
+
+ THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
+ AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+ IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
+ LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
+ CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
+ SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
+ INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
+ CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
+ ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
+ POSSIBILITY OF SUCH DAMAGE.
+
+*******************************************************************************/
+/* $FreeBSD: src/sys/dev/em/e1000_ich8lan.h,v 1.3.4.1 2007/11/28 23:24:38 jfv Exp $ */
+
+
+#ifndef _E1000_ICH8LAN_H_
+#define _E1000_ICH8LAN_H_
+
+#define ICH_FLASH_GFPREG 0x0000
+#define ICH_FLASH_HSFSTS 0x0004
+#define ICH_FLASH_HSFCTL 0x0006
+#define ICH_FLASH_FADDR 0x0008
+#define ICH_FLASH_FDATA0 0x0010
+
+#define ICH_FLASH_READ_COMMAND_TIMEOUT 500
+#define ICH_FLASH_WRITE_COMMAND_TIMEOUT 500
+#define ICH_FLASH_ERASE_COMMAND_TIMEOUT 3000000
+#define ICH_FLASH_LINEAR_ADDR_MASK 0x00FFFFFF
+#define ICH_FLASH_CYCLE_REPEAT_COUNT 10
+
+#define ICH_CYCLE_READ 0
+#define ICH_CYCLE_WRITE 2
+#define ICH_CYCLE_ERASE 3
+
+#define FLASH_GFPREG_BASE_MASK 0x1FFF
+#define FLASH_SECTOR_ADDR_SHIFT 12
+
+#define E1000_SHADOW_RAM_WORDS 2048
+
+#define ICH_FLASH_SEG_SIZE_256 256
+#define ICH_FLASH_SEG_SIZE_4K 4096
+#define ICH_FLASH_SEG_SIZE_8K 8192
+#define ICH_FLASH_SEG_SIZE_64K 65536
+#define ICH_FLASH_SECTOR_SIZE 4096
+
+#define ICH_FLASH_REG_MAPSIZE 0x00A0
+
+#define E1000_ICH_FWSM_RSPCIPHY 0x00000040 /* Reset PHY on PCI Reset */
+#define E1000_ICH_FWSM_DISSW 0x10000000 /* FW Disables SW Writes */
+/* FW established a valid mode */
+#define E1000_ICH_FWSM_FW_VALID 0x00008000
+
+#define E1000_ICH_MNG_IAMT_MODE 0x2
+
+#define ID_LED_DEFAULT_ICH8LAN ((ID_LED_DEF1_DEF2 << 12) | \
+ (ID_LED_DEF1_OFF2 << 8) | \
+ (ID_LED_DEF1_ON2 << 4) | \
+ (ID_LED_DEF1_DEF2))
+
+#define E1000_ICH_NVM_SIG_WORD 0x13
+#define E1000_ICH_NVM_SIG_MASK 0xC000
+
+#define E1000_ICH8_LAN_INIT_TIMEOUT 1500
+
+#define E1000_FEXTNVM_SW_CONFIG 1
+#define E1000_FEXTNVM_SW_CONFIG_ICH8M (1 << 27) /* Bit redefined for ICH8M :/ */
+
+#define PCIE_ICH8_SNOOP_ALL PCIE_NO_SNOOP_ALL
+
+#define E1000_ICH_RAR_ENTRIES 7
+
+#define PHY_PAGE_SHIFT 5
+#define PHY_REG(page, reg) (((page) << PHY_PAGE_SHIFT) | \
+ ((reg) & MAX_PHY_REG_ADDRESS))
+#define IGP3_KMRN_DIAG PHY_REG(770, 19) /* KMRN Diagnostic */
+#define IGP3_VR_CTRL PHY_REG(776, 18) /* Voltage Regulator Control */
+#define IGP3_CAPABILITY PHY_REG(776, 19) /* Capability */
+#define IGP3_PM_CTRL PHY_REG(769, 20) /* Power Management Control */
+
+#define IGP3_KMRN_DIAG_PCS_LOCK_LOSS 0x0002
+#define IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK 0x0300
+#define IGP3_VR_CTRL_MODE_SHUTDOWN 0x0200
+#define IGP3_PM_CTRL_FORCE_PWR_DOWN 0x0020
+
+/*
+ * Additional interrupts need to be handled for ICH family:
+ * DSW = The FW changed the status of the DISSW bit in FWSM
+ * PHYINT = The LAN connected device generates an interrupt
+ * EPRST = Manageability reset event
+ */
+#define IMS_ICH_ENABLE_MASK (\
+ E1000_IMS_DSW | \
+ E1000_IMS_PHYINT | \
+ E1000_IMS_EPRST)
+
+
+#endif
--- /dev/null
+++ sys/dev/em/e1000_80003es2lan.c
@@ -0,0 +1,1370 @@
+/*******************************************************************************
+
+ Copyright (c) 2001-2007, Intel Corporation
+ All rights reserved.
+
+ Redistribution and use in source and binary forms, with or without
+ modification, are permitted provided that the following conditions are met:
+
+ 1. Redistributions of source code must retain the above copyright notice,
+ this list of conditions and the following disclaimer.
+
+ 2. Redistributions in binary form must reproduce the above copyright
+ notice, this list of conditions and the following disclaimer in the
+ documentation and/or other materials provided with the distribution.
+
+ 3. Neither the name of the Intel Corporation nor the names of its
+ contributors may be used to endorse or promote products derived from
+ this software without specific prior written permission.
+
+ THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
+ AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+ IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
+ LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
+ CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
+ SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
+ INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
+ CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
+ ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
+ POSSIBILITY OF SUCH DAMAGE.
+
+*******************************************************************************/
+/* $FreeBSD: src/sys/dev/em/e1000_80003es2lan.c,v 1.3.4.1 2007/11/28 23:24:37 jfv Exp $ */
+
+/* e1000_80003es2lan
+ */
+
+#include "e1000_api.h"
+#include "e1000_80003es2lan.h"
+
+void e1000_init_function_pointers_80003es2lan(struct e1000_hw *hw);
+
+STATIC s32 e1000_init_phy_params_80003es2lan(struct e1000_hw *hw);
+STATIC s32 e1000_init_nvm_params_80003es2lan(struct e1000_hw *hw);
+STATIC s32 e1000_init_mac_params_80003es2lan(struct e1000_hw *hw);
+STATIC s32 e1000_acquire_phy_80003es2lan(struct e1000_hw *hw);
+STATIC void e1000_release_phy_80003es2lan(struct e1000_hw *hw);
+STATIC s32 e1000_acquire_nvm_80003es2lan(struct e1000_hw *hw);
+STATIC void e1000_release_nvm_80003es2lan(struct e1000_hw *hw);
+STATIC s32 e1000_read_phy_reg_gg82563_80003es2lan(struct e1000_hw *hw,
+ u32 offset,
+ u16 *data);
+STATIC s32 e1000_write_phy_reg_gg82563_80003es2lan(struct e1000_hw *hw,
+ u32 offset,
+ u16 data);
+STATIC s32 e1000_write_nvm_80003es2lan(struct e1000_hw *hw, u16 offset,
+ u16 words, u16 *data);
+STATIC s32 e1000_get_cfg_done_80003es2lan(struct e1000_hw *hw);
+STATIC s32 e1000_phy_force_speed_duplex_80003es2lan(struct e1000_hw *hw);
+STATIC s32 e1000_get_cable_length_80003es2lan(struct e1000_hw *hw);
+STATIC s32 e1000_get_link_up_info_80003es2lan(struct e1000_hw *hw, u16 *speed,
+ u16 *duplex);
+STATIC s32 e1000_reset_hw_80003es2lan(struct e1000_hw *hw);
+STATIC s32 e1000_init_hw_80003es2lan(struct e1000_hw *hw);
+STATIC s32 e1000_setup_copper_link_80003es2lan(struct e1000_hw *hw);
+STATIC void e1000_clear_hw_cntrs_80003es2lan(struct e1000_hw *hw);
+static s32 e1000_acquire_swfw_sync_80003es2lan(struct e1000_hw *hw, u16 mask);
+static s32 e1000_cfg_kmrn_10_100_80003es2lan(struct e1000_hw *hw, u16 duplex);
+static s32 e1000_cfg_kmrn_1000_80003es2lan(struct e1000_hw *hw);
+static s32 e1000_copper_link_setup_gg82563_80003es2lan(struct e1000_hw *hw);
+static void e1000_initialize_hw_bits_80003es2lan(struct e1000_hw *hw);
+static void e1000_release_swfw_sync_80003es2lan(struct e1000_hw *hw, u16 mask);
+STATIC void e1000_power_down_phy_copper_80003es2lan(struct e1000_hw *hw);
+
+/*
+ * A table for the GG82563 cable length where the range is defined
+ * with a lower bound at "index" and the upper bound at
+ * "index + 5".
+ */
+static const u16 e1000_gg82563_cable_length_table[] =
+ { 0, 60, 115, 150, 150, 60, 115, 150, 180, 180, 0xFF };
+#define GG82563_CABLE_LENGTH_TABLE_SIZE \
+ (sizeof(e1000_gg82563_cable_length_table) / \
+ sizeof(e1000_gg82563_cable_length_table[0]))
+
+/**
+ * e1000_init_phy_params_80003es2lan - Init ESB2 PHY func ptrs.
+ * @hw: pointer to the HW structure
+ *
+ * This is a function pointer entry point called by the api module.
+ **/
+STATIC s32 e1000_init_phy_params_80003es2lan(struct e1000_hw *hw)
+{
+ struct e1000_phy_info *phy = &hw->phy;
+ struct e1000_functions *func = &hw->func;
+ s32 ret_val = E1000_SUCCESS;
+
+ DEBUGFUNC("e1000_init_phy_params_80003es2lan");
+
+ if (hw->phy.media_type != e1000_media_type_copper) {
+ phy->type = e1000_phy_none;
+ goto out;
+ } else {
+ func->power_up_phy = e1000_power_up_phy_copper;
+ func->power_down_phy = e1000_power_down_phy_copper_80003es2lan;
+ }
+
+ phy->addr = 1;
+ phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
+ phy->reset_delay_us = 100;
+ phy->type = e1000_phy_gg82563;
+
+ func->acquire_phy = e1000_acquire_phy_80003es2lan;
+ func->check_polarity = e1000_check_polarity_m88;
+ func->check_reset_block = e1000_check_reset_block_generic;
+ func->commit_phy = e1000_phy_sw_reset_generic;
+ func->get_cfg_done = e1000_get_cfg_done_80003es2lan;
+ func->get_phy_info = e1000_get_phy_info_m88;
+ func->release_phy = e1000_release_phy_80003es2lan;
+ func->reset_phy = e1000_phy_hw_reset_generic;
+ func->set_d3_lplu_state = e1000_set_d3_lplu_state_generic;
+
+ func->force_speed_duplex = e1000_phy_force_speed_duplex_80003es2lan;
+ func->get_cable_length = e1000_get_cable_length_80003es2lan;
+ func->read_phy_reg = e1000_read_phy_reg_gg82563_80003es2lan;
+ func->write_phy_reg = e1000_write_phy_reg_gg82563_80003es2lan;
+
+ /* This can only be done after all function pointers are setup. */
+ ret_val = e1000_get_phy_id(hw);
+
+ /* Verify phy id */
+ if (phy->id != GG82563_E_PHY_ID) {
+ ret_val = -E1000_ERR_PHY;
+ goto out;
+ }
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_init_nvm_params_80003es2lan - Init ESB2 NVM func ptrs.
+ * @hw: pointer to the HW structure
+ *
+ * This is a function pointer entry point called by the api module.
+ **/
+STATIC s32 e1000_init_nvm_params_80003es2lan(struct e1000_hw *hw)
+{
+ struct e1000_nvm_info *nvm = &hw->nvm;
+ struct e1000_functions *func = &hw->func;
+ u32 eecd = E1000_READ_REG(hw, E1000_EECD);
+ u16 size;
+
+ DEBUGFUNC("e1000_init_nvm_params_80003es2lan");
+
+ nvm->opcode_bits = 8;
+ nvm->delay_usec = 1;
+ switch (nvm->override) {
+ case e1000_nvm_override_spi_large:
+ nvm->page_size = 32;
+ nvm->address_bits = 16;
+ break;
+ case e1000_nvm_override_spi_small:
+ nvm->page_size = 8;
+ nvm->address_bits = 8;
+ break;
+ default:
+ nvm->page_size = eecd & E1000_EECD_ADDR_BITS ? 32 : 8;
+ nvm->address_bits = eecd & E1000_EECD_ADDR_BITS ? 16 : 8;
+ break;
+ }
+
+ nvm->type = e1000_nvm_eeprom_spi;
+
+ size = (u16)((eecd & E1000_EECD_SIZE_EX_MASK) >>
+ E1000_EECD_SIZE_EX_SHIFT);
+
+ /*
+ * Added to a constant, "size" becomes the left-shift value
+ * for setting word_size.
+ */
+ size += NVM_WORD_SIZE_BASE_SHIFT;
+
+ /* EEPROM access above 16k is unsupported */
+ if (size > 14)
+ size = 14;
+ nvm->word_size = 1 << size;
+
+ /* Function Pointers */
+ func->acquire_nvm = e1000_acquire_nvm_80003es2lan;
+ func->read_nvm = e1000_read_nvm_eerd;
+ func->release_nvm = e1000_release_nvm_80003es2lan;
+ func->update_nvm = e1000_update_nvm_checksum_generic;
+ func->valid_led_default = e1000_valid_led_default_generic;
+ func->validate_nvm = e1000_validate_nvm_checksum_generic;
+ func->write_nvm = e1000_write_nvm_80003es2lan;
+
+ return E1000_SUCCESS;
+}
+
+/**
+ * e1000_init_mac_params_80003es2lan - Init ESB2 MAC func ptrs.
+ * @hw: pointer to the HW structure
+ *
+ * This is a function pointer entry point called by the api module.
+ **/
+STATIC s32 e1000_init_mac_params_80003es2lan(struct e1000_hw *hw)
+{
+ struct e1000_mac_info *mac = &hw->mac;
+ struct e1000_functions *func = &hw->func;
+ s32 ret_val = E1000_SUCCESS;
+
+ DEBUGFUNC("e1000_init_mac_params_80003es2lan");
+
+ /* Set media type */
+ switch (hw->device_id) {
+ case E1000_DEV_ID_80003ES2LAN_SERDES_DPT:
+ hw->phy.media_type = e1000_media_type_internal_serdes;
+ break;
+ default:
+ hw->phy.media_type = e1000_media_type_copper;
+ break;
+ }
+
+ /* Set mta register count */
+ mac->mta_reg_count = 128;
+ /* Set rar entry count */
+ mac->rar_entry_count = E1000_RAR_ENTRIES;
+ /* Set if part includes ASF firmware */
+ mac->asf_firmware_present = TRUE;
+ /* Set if manageability features are enabled. */
+ mac->arc_subsystem_valid =
+ (E1000_READ_REG(hw, E1000_FWSM) & E1000_FWSM_MODE_MASK)
+ ? TRUE : FALSE;
+
+ /* Function pointers */
+
+ /* bus type/speed/width */
+ func->get_bus_info = e1000_get_bus_info_pcie_generic;
+ /* reset */
+ func->reset_hw = e1000_reset_hw_80003es2lan;
+ /* hw initialization */
+ func->init_hw = e1000_init_hw_80003es2lan;
+ /* link setup */
+ func->setup_link = e1000_setup_link_generic;
+ /* physical interface link setup */
+ func->setup_physical_interface =
+ (hw->phy.media_type == e1000_media_type_copper)
+ ? e1000_setup_copper_link_80003es2lan
+ : e1000_setup_fiber_serdes_link_generic;
+ /* check for link */
+ switch (hw->phy.media_type) {
+ case e1000_media_type_copper:
+ func->check_for_link = e1000_check_for_copper_link_generic;
+ break;
+ case e1000_media_type_fiber:
+ func->check_for_link = e1000_check_for_fiber_link_generic;
+ break;
+ case e1000_media_type_internal_serdes:
+ func->check_for_link = e1000_check_for_serdes_link_generic;
+ break;
+ default:
+ ret_val = -E1000_ERR_CONFIG;
+ goto out;
+ break;
+ }
+ /* check management mode */
+ func->check_mng_mode = e1000_check_mng_mode_generic;
+ /* multicast address update */
+ func->update_mc_addr_list = e1000_update_mc_addr_list_generic;
+ /* writing VFTA */
+ func->write_vfta = e1000_write_vfta_generic;
+ /* clearing VFTA */
+ func->clear_vfta = e1000_clear_vfta_generic;
+ /* setting MTA */
+ func->mta_set = e1000_mta_set_generic;
+ /* blink LED */
+ func->blink_led = e1000_blink_led_generic;
+ /* setup LED */
+ func->setup_led = e1000_setup_led_generic;
+ /* cleanup LED */
+ func->cleanup_led = e1000_cleanup_led_generic;
+ /* turn on/off LED */
+ func->led_on = e1000_led_on_generic;
+ func->led_off = e1000_led_off_generic;
+ /* remove device */
+ func->remove_device = e1000_remove_device_generic;
+ /* clear hardware counters */
+ func->clear_hw_cntrs = e1000_clear_hw_cntrs_80003es2lan;
+ /* link info */
+ func->get_link_up_info = e1000_get_link_up_info_80003es2lan;
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_init_function_pointers_80003es2lan - Init ESB2 func ptrs.
+ * @hw: pointer to the HW structure
+ *
+ * The only function explicitly called by the api module to initialize
+ * all function pointers and parameters.
+ **/
+void e1000_init_function_pointers_80003es2lan(struct e1000_hw *hw)
+{
+ DEBUGFUNC("e1000_init_function_pointers_80003es2lan");
+
+ hw->func.init_mac_params = e1000_init_mac_params_80003es2lan;
+ hw->func.init_nvm_params = e1000_init_nvm_params_80003es2lan;
+ hw->func.init_phy_params = e1000_init_phy_params_80003es2lan;
+}
+
+/**
+ * e1000_acquire_phy_80003es2lan - Acquire rights to access PHY
+ * @hw: pointer to the HW structure
+ *
+ * A wrapper to acquire access rights to the correct PHY. This is a
+ * function pointer entry point called by the api module.
+ **/
+STATIC s32 e1000_acquire_phy_80003es2lan(struct e1000_hw *hw)
+{
+ u16 mask;
+
+ DEBUGFUNC("e1000_acquire_phy_80003es2lan");
+
+ mask = hw->bus.func ? E1000_SWFW_PHY1_SM : E1000_SWFW_PHY0_SM;
+
+ return e1000_acquire_swfw_sync_80003es2lan(hw, mask);
+}
+
+/**
+ * e1000_release_phy_80003es2lan - Release rights to access PHY
+ * @hw: pointer to the HW structure
+ *
+ * A wrapper to release access rights to the correct PHY. This is a
+ * function pointer entry point called by the api module.
+ **/
+STATIC void e1000_release_phy_80003es2lan(struct e1000_hw *hw)
+{
+ u16 mask;
+
+ DEBUGFUNC("e1000_release_phy_80003es2lan");
+
+ mask = hw->bus.func ? E1000_SWFW_PHY1_SM : E1000_SWFW_PHY0_SM;
+ e1000_release_swfw_sync_80003es2lan(hw, mask);
+}
+
+/**
+ * e1000_acquire_nvm_80003es2lan - Acquire rights to access NVM
+ * @hw: pointer to the HW structure
+ *
+ * Acquire the semaphore to access the EEPROM. This is a function
+ * pointer entry point called by the api module.
+ **/
+STATIC s32 e1000_acquire_nvm_80003es2lan(struct e1000_hw *hw)
+{
+ s32 ret_val;
+
+ DEBUGFUNC("e1000_acquire_nvm_80003es2lan");
+
+ ret_val = e1000_acquire_swfw_sync_80003es2lan(hw, E1000_SWFW_EEP_SM);
+ if (ret_val)
+ goto out;
+
+ ret_val = e1000_acquire_nvm_generic(hw);
+
+ if (ret_val)
+ e1000_release_swfw_sync_80003es2lan(hw, E1000_SWFW_EEP_SM);
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_release_nvm_80003es2lan - Relinquish rights to access NVM
+ * @hw: pointer to the HW structure
+ *
+ * Release the semaphore used to access the EEPROM. This is a
+ * function pointer entry point called by the api module.
+ **/
+STATIC void e1000_release_nvm_80003es2lan(struct e1000_hw *hw)
+{
+ DEBUGFUNC("e1000_release_nvm_80003es2lan");
+
+ e1000_release_nvm_generic(hw);
+ e1000_release_swfw_sync_80003es2lan(hw, E1000_SWFW_EEP_SM);
+}
+
+/**
+ * e1000_acquire_swfw_sync_80003es2lan - Acquire SW/FW semaphore
+ * @hw: pointer to the HW structure
+ * @mask: specifies which semaphore to acquire
+ *
+ * Acquire the SW/FW semaphore to access the PHY or NVM. The mask
+ * will also specify which port we're acquiring the lock for.
+ **/
+static s32 e1000_acquire_swfw_sync_80003es2lan(struct e1000_hw *hw, u16 mask)
+{
+ u32 swfw_sync;
+ u32 swmask = mask;
+ u32 fwmask = mask << 16;
+ s32 ret_val = E1000_SUCCESS;
+ s32 i = 0, timeout = 200;
+
+ DEBUGFUNC("e1000_acquire_swfw_sync_80003es2lan");
+
+ while (i < timeout) {
+ if (e1000_get_hw_semaphore_generic(hw)) {
+ ret_val = -E1000_ERR_SWFW_SYNC;
+ goto out;
+ }
+
+ swfw_sync = E1000_READ_REG(hw, E1000_SW_FW_SYNC);
+ if (!(swfw_sync & (fwmask | swmask)))
+ break;
+
+ /*
+ * Firmware currently using resource (fwmask)
+ * or other software thread using resource (swmask)
+ */
+ e1000_put_hw_semaphore_generic(hw);
+ msec_delay_irq(5);
+ i++;
+ }
+
+ if (i == timeout) {
+ DEBUGOUT("Driver can't access resource, SW_FW_SYNC timeout.\n");
+ ret_val = -E1000_ERR_SWFW_SYNC;
+ goto out;
+ }
+
+ swfw_sync |= swmask;
+ E1000_WRITE_REG(hw, E1000_SW_FW_SYNC, swfw_sync);
+
+ e1000_put_hw_semaphore_generic(hw);
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_release_swfw_sync_80003es2lan - Release SW/FW semaphore
+ * @hw: pointer to the HW structure
+ * @mask: specifies which semaphore to acquire
+ *
+ * Release the SW/FW semaphore used to access the PHY or NVM. The mask
+ * will also specify which port we're releasing the lock for.
+ **/
+static void e1000_release_swfw_sync_80003es2lan(struct e1000_hw *hw, u16 mask)
+{
+ u32 swfw_sync;
+
+ DEBUGFUNC("e1000_release_swfw_sync_80003es2lan");
+
+ while (e1000_get_hw_semaphore_generic(hw) != E1000_SUCCESS);
+ /* Empty */
+
+ swfw_sync = E1000_READ_REG(hw, E1000_SW_FW_SYNC);
+ swfw_sync &= ~mask;
+ E1000_WRITE_REG(hw, E1000_SW_FW_SYNC, swfw_sync);
+
+ e1000_put_hw_semaphore_generic(hw);
+}
+
+/**
+ * e1000_read_phy_reg_gg82563_80003es2lan - Read GG82563 PHY register
+ * @hw: pointer to the HW structure
+ * @offset: offset of the register to read
+ * @data: pointer to the data returned from the operation
+ *
+ * Read the GG82563 PHY register. This is a function pointer entry
+ * point called by the api module.
+ **/
+STATIC s32 e1000_read_phy_reg_gg82563_80003es2lan(struct e1000_hw *hw,
+ u32 offset, u16 *data)
+{
+ s32 ret_val;
+ u32 page_select;
+ u16 temp;
+
+ DEBUGFUNC("e1000_read_phy_reg_gg82563_80003es2lan");
+
+ /* Select Configuration Page */
+ if ((offset & MAX_PHY_REG_ADDRESS) < GG82563_MIN_ALT_REG) {
+ page_select = GG82563_PHY_PAGE_SELECT;
+ } else {
+ /*
+ * Use Alternative Page Select register to access
+ * registers 30 and 31
+ */
+ page_select = GG82563_PHY_PAGE_SELECT_ALT;
+ }
+
+ temp = (u16)((u16)offset >> GG82563_PAGE_SHIFT);
+ ret_val = e1000_write_phy_reg_m88(hw, page_select, temp);
+ if (ret_val)
+ goto out;
+
+ /*
+ * The "ready" bit in the MDIC register may be incorrectly set
+ * before the device has completed the "Page Select" MDI
+ * transaction. So we wait 200us after each MDI command...
+ */
+ usec_delay(200);
+
+ /* ...and verify the command was successful. */
+ ret_val = e1000_read_phy_reg_m88(hw, page_select, &temp);
+
+ if (((u16)offset >> GG82563_PAGE_SHIFT) != temp) {
+ ret_val = -E1000_ERR_PHY;
+ goto out;
+ }
+
+ usec_delay(200);
+
+ ret_val = e1000_read_phy_reg_m88(hw,
+ MAX_PHY_REG_ADDRESS & offset,
+ data);
+
+ usec_delay(200);
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_write_phy_reg_gg82563_80003es2lan - Write GG82563 PHY register
+ * @hw: pointer to the HW structure
+ * @offset: offset of the register to read
+ * @data: value to write to the register
+ *
+ * Write to the GG82563 PHY register. This is a function pointer entry
+ * point called by the api module.
+ **/
+STATIC s32 e1000_write_phy_reg_gg82563_80003es2lan(struct e1000_hw *hw,
+ u32 offset, u16 data)
+{
+ s32 ret_val;
+ u32 page_select;
+ u16 temp;
+
+ DEBUGFUNC("e1000_write_phy_reg_gg82563_80003es2lan");
+
+ /* Select Configuration Page */
+ if ((offset & MAX_PHY_REG_ADDRESS) < GG82563_MIN_ALT_REG) {
+ page_select = GG82563_PHY_PAGE_SELECT;
+ } else {
+ /*
+ * Use Alternative Page Select register to access
+ * registers 30 and 31
+ */
+ page_select = GG82563_PHY_PAGE_SELECT_ALT;
+ }
+
+ temp = (u16)((u16)offset >> GG82563_PAGE_SHIFT);
+ ret_val = e1000_write_phy_reg_m88(hw, page_select, temp);
+ if (ret_val)
+ goto out;
+
+
+ /*
+ * The "ready" bit in the MDIC register may be incorrectly set
+ * before the device has completed the "Page Select" MDI
+ * transaction. So we wait 200us after each MDI command...
+ */
+ usec_delay(200);
+
+ /* ...and verify the command was successful. */
+ ret_val = e1000_read_phy_reg_m88(hw, page_select, &temp);
+
+ if (((u16)offset >> GG82563_PAGE_SHIFT) != temp) {
+ ret_val = -E1000_ERR_PHY;
+ goto out;
+ }
+
+ usec_delay(200);
+
+ ret_val = e1000_write_phy_reg_m88(hw,
+ MAX_PHY_REG_ADDRESS & offset,
+ data);
+
+ usec_delay(200);
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_write_nvm_80003es2lan - Write to ESB2 NVM
+ * @hw: pointer to the HW structure
+ * @offset: offset of the register to read
+ * @words: number of words to write
+ * @data: buffer of data to write to the NVM
+ *
+ * Write "words" of data to the ESB2 NVM. This is a function
+ * pointer entry point called by the api module.
+ **/
+STATIC s32 e1000_write_nvm_80003es2lan(struct e1000_hw *hw, u16 offset,
+ u16 words, u16 *data)
+{
+ DEBUGFUNC("e1000_write_nvm_80003es2lan");
+
+ return e1000_write_nvm_spi(hw, offset, words, data);
+}
+
+/**
+ * e1000_get_cfg_done_80003es2lan - Wait for configuration to complete
+ * @hw: pointer to the HW structure
+ *
+ * Wait a specific amount of time for manageability processes to complete.
+ * This is a function pointer entry point called by the phy module.
+ **/
+STATIC s32 e1000_get_cfg_done_80003es2lan(struct e1000_hw *hw)
+{
+ s32 timeout = PHY_CFG_TIMEOUT;
+ s32 ret_val = E1000_SUCCESS;
+ u32 mask = E1000_NVM_CFG_DONE_PORT_0;
+
+ DEBUGFUNC("e1000_get_cfg_done_80003es2lan");
+
+ if (hw->bus.func == 1)
+ mask = E1000_NVM_CFG_DONE_PORT_1;
+
+ while (timeout) {
+ if (E1000_READ_REG(hw, E1000_EEMNGCTL) & mask)
+ break;
+ msec_delay(1);
+ timeout--;
+ }
+ if (!timeout) {
+ DEBUGOUT("MNG configuration cycle has not completed.\n");
+ ret_val = -E1000_ERR_RESET;
+ goto out;
+ }
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_phy_force_speed_duplex_80003es2lan - Force PHY speed and duplex
+ * @hw: pointer to the HW structure
+ *
+ * Force the speed and duplex settings onto the PHY. This is a
+ * function pointer entry point called by the phy module.
+ **/
+STATIC s32 e1000_phy_force_speed_duplex_80003es2lan(struct e1000_hw *hw)
+{
+ s32 ret_val;
+ u16 phy_data;
+ bool link;
+
+ DEBUGFUNC("e1000_phy_force_speed_duplex_80003es2lan");
+
+ /*
+ * Clear Auto-Crossover to force MDI manually. M88E1000 requires MDI
+ * forced whenever speed and duplex are forced.
+ */
+ ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
+ if (ret_val)
+ goto out;
+
+ phy_data &= ~GG82563_PSCR_CROSSOVER_MODE_AUTO;
+ ret_val = e1000_write_phy_reg(hw, GG82563_PHY_SPEC_CTRL, phy_data);
+ if (ret_val)
+ goto out;
+
+ DEBUGOUT1("GG82563 PSCR: %X\n", phy_data);
+
+ ret_val = e1000_read_phy_reg(hw, PHY_CONTROL, &phy_data);
+ if (ret_val)
+ goto out;
+
+ e1000_phy_force_speed_duplex_setup(hw, &phy_data);
+
+ /* Reset the phy to commit changes. */
+ phy_data |= MII_CR_RESET;
+
+ ret_val = e1000_write_phy_reg(hw, PHY_CONTROL, phy_data);
+ if (ret_val)
+ goto out;
+
+ usec_delay(1);
+
+ if (hw->phy.autoneg_wait_to_complete) {
+ DEBUGOUT("Waiting for forced speed/duplex link "
+ "on GG82563 phy.\n");
+
+ ret_val = e1000_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
+ 100000, &link);
+ if (ret_val)
+ goto out;
+
+ if (!link) {
+ /*
+ * We didn't get link.
+ * Reset the DSP and cross our fingers.
+ */
+ ret_val = e1000_phy_reset_dsp_generic(hw);
+ if (ret_val)
+ goto out;
+ }
+
+ /* Try once more */
+ ret_val = e1000_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
+ 100000, &link);
+ if (ret_val)
+ goto out;
+ }
+
+ ret_val = e1000_read_phy_reg(hw, GG82563_PHY_MAC_SPEC_CTRL, &phy_data);
+ if (ret_val)
+ goto out;
+
+ /*
+ * Resetting the phy means we need to verify the TX_CLK corresponds
+ * to the link speed. 10Mbps -> 2.5MHz, else 25MHz.
+ */
+ phy_data &= ~GG82563_MSCR_TX_CLK_MASK;
+ if (hw->mac.forced_speed_duplex & E1000_ALL_10_SPEED)
+ phy_data |= GG82563_MSCR_TX_CLK_10MBPS_2_5;
+ else
+ phy_data |= GG82563_MSCR_TX_CLK_100MBPS_25;
+
+ /*
+ * In addition, we must re-enable CRS on Tx for both half and full
+ * duplex.
+ */
+ phy_data |= GG82563_MSCR_ASSERT_CRS_ON_TX;
+ ret_val = e1000_write_phy_reg(hw, GG82563_PHY_MAC_SPEC_CTRL, phy_data);
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_get_cable_length_80003es2lan - Set approximate cable length
+ * @hw: pointer to the HW structure
+ *
+ * Find the approximate cable length as measured by the GG82563 PHY.
+ * This is a function pointer entry point called by the phy module.
+ **/
+STATIC s32 e1000_get_cable_length_80003es2lan(struct e1000_hw *hw)
+{
+ struct e1000_phy_info *phy = &hw->phy;
+ s32 ret_val;
+ u16 phy_data, index;
+
+ DEBUGFUNC("e1000_get_cable_length_80003es2lan");
+
+ ret_val = e1000_read_phy_reg(hw, GG82563_PHY_DSP_DISTANCE, &phy_data);
+ if (ret_val)
+ goto out;
+
+ index = phy_data & GG82563_DSPD_CABLE_LENGTH;
+ phy->min_cable_length = e1000_gg82563_cable_length_table[index];
+ phy->max_cable_length = e1000_gg82563_cable_length_table[index+5];
+
+ phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2;
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_get_link_up_info_80003es2lan - Report speed and duplex
+ * @hw: pointer to the HW structure
+ * @speed: pointer to speed buffer
+ * @duplex: pointer to duplex buffer
+ *
+ * Retrieve the current speed and duplex configuration.
+ * This is a function pointer entry point called by the api module.
+ **/
+STATIC s32 e1000_get_link_up_info_80003es2lan(struct e1000_hw *hw, u16 *speed,
+ u16 *duplex)
+{
+ s32 ret_val;
+
+ DEBUGFUNC("e1000_get_link_up_info_80003es2lan");
+
+ if (hw->phy.media_type == e1000_media_type_copper) {
+ ret_val = e1000_get_speed_and_duplex_copper_generic(hw,
+ speed,
+ duplex);
+ if (ret_val)
+ goto out;
+ if (*speed == SPEED_1000)
+ ret_val = e1000_cfg_kmrn_1000_80003es2lan(hw);
+ else
+ ret_val = e1000_cfg_kmrn_10_100_80003es2lan(hw,
+ *duplex);
+ } else {
+ ret_val = e1000_get_speed_and_duplex_fiber_serdes_generic(hw,
+ speed,
+ duplex);
+ }
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_reset_hw_80003es2lan - Reset the ESB2 controller
+ * @hw: pointer to the HW structure
+ *
+ * Perform a global reset to the ESB2 controller.
+ * This is a function pointer entry point called by the api module.
+ **/
+STATIC s32 e1000_reset_hw_80003es2lan(struct e1000_hw *hw)
+{
+ u32 ctrl, icr;
+ s32 ret_val;
+
+ DEBUGFUNC("e1000_reset_hw_80003es2lan");
+
+ /*
+ * Prevent the PCI-E bus from sticking if there is no TLP connection
+ * on the last TLP read/write transaction when MAC is reset.
+ */
+ ret_val = e1000_disable_pcie_master_generic(hw);
+ if (ret_val) {
+ DEBUGOUT("PCI-E Master disable polling has failed.\n");
+ }
+
+ DEBUGOUT("Masking off all interrupts\n");
+ E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff);
+
+ E1000_WRITE_REG(hw, E1000_RCTL, 0);
+ E1000_WRITE_REG(hw, E1000_TCTL, E1000_TCTL_PSP);
+ E1000_WRITE_FLUSH(hw);
+
+ msec_delay(10);
+
+ ctrl = E1000_READ_REG(hw, E1000_CTRL);
+
+ DEBUGOUT("Issuing a global reset to MAC\n");
+ E1000_WRITE_REG(hw, E1000_CTRL, ctrl | E1000_CTRL_RST);
+
+ ret_val = e1000_get_auto_rd_done_generic(hw);
+ if (ret_val)
+ /* We don't want to continue accessing MAC registers. */
+ goto out;
+
+ /* Clear any pending interrupt events. */
+ E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff);
+ icr = E1000_READ_REG(hw, E1000_ICR);
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_init_hw_80003es2lan - Initialize the ESB2 controller
+ * @hw: pointer to the HW structure
+ *
+ * Initialize the hw bits, LED, VFTA, MTA, link and hw counters.
+ * This is a function pointer entry point called by the api module.
+ **/
+STATIC s32 e1000_init_hw_80003es2lan(struct e1000_hw *hw)
+{
+ struct e1000_mac_info *mac = &hw->mac;
+ u32 reg_data;
+ s32 ret_val;
+ u16 i;
+
+ DEBUGFUNC("e1000_init_hw_80003es2lan");
+
+ e1000_initialize_hw_bits_80003es2lan(hw);
+
+ /* Initialize identification LED */
+ ret_val = e1000_id_led_init_generic(hw);
+ if (ret_val) {
+ DEBUGOUT("Error initializing identification LED\n");
+ /* This is not fatal and we should not stop init due to this */
+ }
+
+ /* Disabling VLAN filtering */
+ DEBUGOUT("Initializing the IEEE VLAN\n");
+ e1000_clear_vfta(hw);
+
+ /* Setup the receive address. */
+ e1000_init_rx_addrs_generic(hw, mac->rar_entry_count);
+
+ /* Zero out the Multicast HASH table */
+ DEBUGOUT("Zeroing the MTA\n");
+ for (i = 0; i < mac->mta_reg_count; i++)
+ E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
+
+ /* Setup link and flow control */
+ ret_val = e1000_setup_link(hw);
+
+ /* Set the transmit descriptor write-back policy */
+ reg_data = E1000_READ_REG(hw, E1000_TXDCTL(0));
+ reg_data = (reg_data & ~E1000_TXDCTL_WTHRESH) |
+ E1000_TXDCTL_FULL_TX_DESC_WB | E1000_TXDCTL_COUNT_DESC;
+ E1000_WRITE_REG(hw, E1000_TXDCTL(0), reg_data);
+
+ /* ...for both queues. */
+ reg_data = E1000_READ_REG(hw, E1000_TXDCTL(1));
+ reg_data = (reg_data & ~E1000_TXDCTL_WTHRESH) |
+ E1000_TXDCTL_FULL_TX_DESC_WB | E1000_TXDCTL_COUNT_DESC;
+ E1000_WRITE_REG(hw, E1000_TXDCTL(1), reg_data);
+
+ /* Enable retransmit on late collisions */
+ reg_data = E1000_READ_REG(hw, E1000_TCTL);
+ reg_data |= E1000_TCTL_RTLC;
+ E1000_WRITE_REG(hw, E1000_TCTL, reg_data);
+
+ /* Configure Gigabit Carry Extend Padding */
+ reg_data = E1000_READ_REG(hw, E1000_TCTL_EXT);
+ reg_data &= ~E1000_TCTL_EXT_GCEX_MASK;
+ reg_data |= DEFAULT_TCTL_EXT_GCEX_80003ES2LAN;
+ E1000_WRITE_REG(hw, E1000_TCTL_EXT, reg_data);
+
+ /* Configure Transmit Inter-Packet Gap */
+ reg_data = E1000_READ_REG(hw, E1000_TIPG);
+ reg_data &= ~E1000_TIPG_IPGT_MASK;
+ reg_data |= DEFAULT_TIPG_IPGT_1000_80003ES2LAN;
+ E1000_WRITE_REG(hw, E1000_TIPG, reg_data);
+
+ reg_data = E1000_READ_REG_ARRAY(hw, E1000_FFLT, 0x0001);
+ reg_data &= ~0x00100000;
+ E1000_WRITE_REG_ARRAY(hw, E1000_FFLT, 0x0001, reg_data);
+
+ /*
+ * Clear all of the statistics registers (clear on read). It is
+ * important that we do this after we have tried to establish link
+ * because the symbol error count will increment wildly if there
+ * is no link.
+ */
+ e1000_clear_hw_cntrs_80003es2lan(hw);
+
+ return ret_val;
+}
+
+/**
+ * e1000_initialize_hw_bits_80003es2lan - Init hw bits of ESB2
+ * @hw: pointer to the HW structure
+ *
+ * Initializes required hardware-dependent bits needed for normal operation.
+ **/
+static void e1000_initialize_hw_bits_80003es2lan(struct e1000_hw *hw)
+{
+ u32 reg;
+
+ DEBUGFUNC("e1000_initialize_hw_bits_80003es2lan");
+
+ if (hw->mac.disable_hw_init_bits)
+ goto out;
+
+ /* Transmit Descriptor Control 0 */
+ reg = E1000_READ_REG(hw, E1000_TXDCTL(0));
+ reg |= (1 << 22);
+ E1000_WRITE_REG(hw, E1000_TXDCTL(0), reg);
+
+ /* Transmit Descriptor Control 1 */
+ reg = E1000_READ_REG(hw, E1000_TXDCTL(1));
+ reg |= (1 << 22);
+ E1000_WRITE_REG(hw, E1000_TXDCTL(1), reg);
+
+ /* Transmit Arbitration Control 0 */
+ reg = E1000_READ_REG(hw, E1000_TARC(0));
+ reg &= ~(0xF << 27); /* 30:27 */
+ if (hw->phy.media_type != e1000_media_type_copper)
+ reg &= ~(1 << 20);
+ E1000_WRITE_REG(hw, E1000_TARC(0), reg);
+
+ /* Transmit Arbitration Control 1 */
+ reg = E1000_READ_REG(hw, E1000_TARC(1));
+ if (E1000_READ_REG(hw, E1000_TCTL) & E1000_TCTL_MULR)
+ reg &= ~(1 << 28);
+ else
+ reg |= (1 << 28);
+ E1000_WRITE_REG(hw, E1000_TARC(1), reg);
+
+out:
+ return;
+}
+
+/**
+ * e1000_copper_link_setup_gg82563_80003es2lan - Configure GG82563 Link
+ * @hw: pointer to the HW structure
+ *
+ * Setup some GG82563 PHY registers for obtaining link
+ **/
+static s32 e1000_copper_link_setup_gg82563_80003es2lan(struct e1000_hw *hw)
+{
+ struct e1000_phy_info *phy = &hw->phy;
+ s32 ret_val;
+ u32 ctrl_ext;
+ u16 data;
+
+ DEBUGFUNC("e1000_copper_link_setup_gg82563_80003es2lan");
+
+ if (!phy->reset_disable) {
+ ret_val = e1000_read_phy_reg(hw, GG82563_PHY_MAC_SPEC_CTRL,
+ &data);
+ if (ret_val)
+ goto out;
+
+ data |= GG82563_MSCR_ASSERT_CRS_ON_TX;
+ /* Use 25MHz for both link down and 1000Base-T for Tx clock. */
+ data |= GG82563_MSCR_TX_CLK_1000MBPS_25;
+
+ ret_val = e1000_write_phy_reg(hw, GG82563_PHY_MAC_SPEC_CTRL,
+ data);
+ if (ret_val)
+ goto out;
+
+ /*
+ * Options:
+ * MDI/MDI-X = 0 (default)
+ * 0 - Auto for all speeds
+ * 1 - MDI mode
+ * 2 - MDI-X mode
+ * 3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
+ */
+ ret_val = e1000_read_phy_reg(hw, GG82563_PHY_SPEC_CTRL, &data);
+ if (ret_val)
+ goto out;
+
+ data &= ~GG82563_PSCR_CROSSOVER_MODE_MASK;
+
+ switch (phy->mdix) {
+ case 1:
+ data |= GG82563_PSCR_CROSSOVER_MODE_MDI;
+ break;
+ case 2:
+ data |= GG82563_PSCR_CROSSOVER_MODE_MDIX;
+ break;
+ case 0:
+ default:
+ data |= GG82563_PSCR_CROSSOVER_MODE_AUTO;
+ break;
+ }
+
+ /*
+ * Options:
+ * disable_polarity_correction = 0 (default)
+ * Automatic Correction for Reversed Cable Polarity
+ * 0 - Disabled
+ * 1 - Enabled
+ */
+ data &= ~GG82563_PSCR_POLARITY_REVERSAL_DISABLE;
+ if (phy->disable_polarity_correction)
+ data |= GG82563_PSCR_POLARITY_REVERSAL_DISABLE;
+
+ ret_val = e1000_write_phy_reg(hw, GG82563_PHY_SPEC_CTRL, data);
+ if (ret_val)
+ goto out;
+
+ /* SW Reset the PHY so all changes take effect */
+ ret_val = e1000_phy_commit(hw);
+ if (ret_val) {
+ DEBUGOUT("Error Resetting the PHY\n");
+ goto out;
+ }
+
+ }
+
+ /* Bypass Rx and Tx FIFO's */
+ ret_val = e1000_write_kmrn_reg(hw,
+ E1000_KMRNCTRLSTA_OFFSET_FIFO_CTRL,
+ E1000_KMRNCTRLSTA_FIFO_CTRL_RX_BYPASS |
+ E1000_KMRNCTRLSTA_FIFO_CTRL_TX_BYPASS);
+ if (ret_val)
+ goto out;
+
+ ret_val = e1000_read_kmrn_reg(hw,
+ E1000_KMRNCTRLSTA_OFFSET_MAC2PHY_OPMODE,
+ &data);
+ if (ret_val)
+ goto out;
+ data |= E1000_KMRNCTRLSTA_OPMODE_E_IDLE;
+ ret_val = e1000_write_kmrn_reg(hw,
+ E1000_KMRNCTRLSTA_OFFSET_MAC2PHY_OPMODE,
+ data);
+ if (ret_val)
+ goto out;
+
+ ret_val = e1000_read_phy_reg(hw, GG82563_PHY_SPEC_CTRL_2, &data);
+ if (ret_val)
+ goto out;
+
+ data &= ~GG82563_PSCR2_REVERSE_AUTO_NEG;
+ ret_val = e1000_write_phy_reg(hw, GG82563_PHY_SPEC_CTRL_2, data);
+ if (ret_val)
+ goto out;
+
+ ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
+ ctrl_ext &= ~(E1000_CTRL_EXT_LINK_MODE_MASK);
+ E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
+
+ ret_val = e1000_read_phy_reg(hw, GG82563_PHY_PWR_MGMT_CTRL, &data);
+ if (ret_val)
+ goto out;
+
+ /*
+ * Do not init these registers when the HW is in IAMT mode, since the
+ * firmware will have already initialized them. We only initialize
+ * them if the HW is not in IAMT mode.
+ */
+ if (!(e1000_check_mng_mode(hw))) {
+ /* Enable Electrical Idle on the PHY */
+ data |= GG82563_PMCR_ENABLE_ELECTRICAL_IDLE;
+ ret_val = e1000_write_phy_reg(hw,
+ GG82563_PHY_PWR_MGMT_CTRL,
+ data);
+ if (ret_val)
+ goto out;
+
+ ret_val = e1000_read_phy_reg(hw,
+ GG82563_PHY_KMRN_MODE_CTRL,
+ &data);
+ if (ret_val)
+ goto out;
+
+ data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
+ ret_val = e1000_write_phy_reg(hw,
+ GG82563_PHY_KMRN_MODE_CTRL,
+ data);
+
+ if (ret_val)
+ goto out;
+ }
+
+ /*
+ * Workaround: Disable padding in Kumeran interface in the MAC
+ * and in the PHY to avoid CRC errors.
+ */
+ ret_val = e1000_read_phy_reg(hw, GG82563_PHY_INBAND_CTRL, &data);
+ if (ret_val)
+ goto out;
+
+ data |= GG82563_ICR_DIS_PADDING;
+ ret_val = e1000_write_phy_reg(hw, GG82563_PHY_INBAND_CTRL, data);
+ if (ret_val)
+ goto out;
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_setup_copper_link_80003es2lan - Setup Copper Link for ESB2
+ * @hw: pointer to the HW structure
+ *
+ * Essentially a wrapper for setting up all things "copper" related.
+ * This is a function pointer entry point called by the mac module.
+ **/
+STATIC s32 e1000_setup_copper_link_80003es2lan(struct e1000_hw *hw)
+{
+ u32 ctrl;
+ s32 ret_val;
+ u16 reg_data;
+
+ DEBUGFUNC("e1000_setup_copper_link_80003es2lan");
+
+ ctrl = E1000_READ_REG(hw, E1000_CTRL);
+ ctrl |= E1000_CTRL_SLU;
+ ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
+ E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
+
+ /*
+ * Set the mac to wait the maximum time between each
+ * iteration and increase the max iterations when
+ * polling the phy; this fixes erroneous timeouts at 10Mbps.
+ */
+ ret_val = e1000_write_kmrn_reg(hw, GG82563_REG(0x34, 4), 0xFFFF);
+ if (ret_val)
+ goto out;
+ ret_val = e1000_read_kmrn_reg(hw, GG82563_REG(0x34, 9), ®_data);
+ if (ret_val)
+ goto out;
+ reg_data |= 0x3F;
+ ret_val = e1000_write_kmrn_reg(hw, GG82563_REG(0x34, 9), reg_data);
+ if (ret_val)
+ goto out;
+ ret_val = e1000_read_kmrn_reg(hw,
+ E1000_KMRNCTRLSTA_OFFSET_INB_CTRL,
+ ®_data);
+ if (ret_val)
+ goto out;
+ reg_data |= E1000_KMRNCTRLSTA_INB_CTRL_DIS_PADDING;
+ ret_val = e1000_write_kmrn_reg(hw,
+ E1000_KMRNCTRLSTA_OFFSET_INB_CTRL,
+ reg_data);
+ if (ret_val)
+ goto out;
+
+ ret_val = e1000_copper_link_setup_gg82563_80003es2lan(hw);
+ if (ret_val)
+ goto out;
+
+ ret_val = e1000_setup_copper_link_generic(hw);
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_cfg_kmrn_10_100_80003es2lan - Apply "quirks" for 10/100 operation
+ * @hw: pointer to the HW structure
+ * @duplex: current duplex setting
+ *
+ * Configure the KMRN interface by applying last minute quirks for
+ * 10/100 operation.
+ **/
+static s32 e1000_cfg_kmrn_10_100_80003es2lan(struct e1000_hw *hw, u16 duplex)
+{
+ s32 ret_val = E1000_SUCCESS;
+ u32 tipg;
+ u32 i = 0;
+ u16 reg_data, reg_data2;
+
+ DEBUGFUNC("e1000_configure_kmrn_for_10_100");
+
+ reg_data = E1000_KMRNCTRLSTA_HD_CTRL_10_100_DEFAULT;
+ ret_val = e1000_write_kmrn_reg(hw,
+ E1000_KMRNCTRLSTA_OFFSET_HD_CTRL,
+ reg_data);
+ if (ret_val)
+ goto out;
+
+ /* Configure Transmit Inter-Packet Gap */
+ tipg = E1000_READ_REG(hw, E1000_TIPG);
+ tipg &= ~E1000_TIPG_IPGT_MASK;
+ tipg |= DEFAULT_TIPG_IPGT_10_100_80003ES2LAN;
+ E1000_WRITE_REG(hw, E1000_TIPG, tipg);
+
+
+ do {
+ ret_val = e1000_read_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL,
+ ®_data);
+ if (ret_val)
+ goto out;
+
+ ret_val = e1000_read_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL,
+ ®_data2);
+ if (ret_val)
+ goto out;
+ i++;
+ } while ((reg_data != reg_data2) && (i < GG82563_MAX_KMRN_RETRY));
+
+ if (duplex == HALF_DUPLEX)
+ reg_data |= GG82563_KMCR_PASS_FALSE_CARRIER;
+ else
+ reg_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
+
+ ret_val = e1000_write_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, reg_data);
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_cfg_kmrn_1000_80003es2lan - Apply "quirks" for gigabit operation
+ * @hw: pointer to the HW structure
+ *
+ * Configure the KMRN interface by applying last minute quirks for
+ * gigabit operation.
+ **/
+static s32 e1000_cfg_kmrn_1000_80003es2lan(struct e1000_hw *hw)
+{
+ s32 ret_val = E1000_SUCCESS;
+ u16 reg_data, reg_data2;
+ u32 tipg;
+ u32 i = 0;
+
+ DEBUGFUNC("e1000_configure_kmrn_for_1000");
+
+ reg_data = E1000_KMRNCTRLSTA_HD_CTRL_1000_DEFAULT;
+ ret_val = e1000_write_kmrn_reg(hw,
+ E1000_KMRNCTRLSTA_OFFSET_HD_CTRL,
+ reg_data);
+ if (ret_val)
+ goto out;
+
+ /* Configure Transmit Inter-Packet Gap */
+ tipg = E1000_READ_REG(hw, E1000_TIPG);
+ tipg &= ~E1000_TIPG_IPGT_MASK;
+ tipg |= DEFAULT_TIPG_IPGT_1000_80003ES2LAN;
+ E1000_WRITE_REG(hw, E1000_TIPG, tipg);
+
+
+ do {
+ ret_val = e1000_read_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL,
+ ®_data);
+ if (ret_val)
+ goto out;
+
+ ret_val = e1000_read_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL,
+ ®_data2);
+ if (ret_val)
+ goto out;
+ i++;
+ } while ((reg_data != reg_data2) && (i < GG82563_MAX_KMRN_RETRY));
+
+ reg_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
+ ret_val = e1000_write_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, reg_data);
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_power_down_phy_copper_80003es2lan - Remove link during PHY power down
+ * @hw: pointer to the HW structure
+ *
+ * In the case of a PHY power down to save power, or to turn off link during a
+ * driver unload, or wake on lan is not enabled, remove the link.
+ **/
+STATIC void e1000_power_down_phy_copper_80003es2lan(struct e1000_hw *hw)
+{
+ /* If the management interface is not enabled, then power down */
+ if (!(e1000_check_mng_mode(hw) || e1000_check_reset_block(hw)))
+ e1000_power_down_phy_copper(hw);
+
+ return;
+}
+
+/**
+ * e1000_clear_hw_cntrs_80003es2lan - Clear device specific hardware counters
+ * @hw: pointer to the HW structure
+ *
+ * Clears the hardware counters by reading the counter registers.
+ **/
+STATIC void e1000_clear_hw_cntrs_80003es2lan(struct e1000_hw *hw)
+{
+ volatile u32 temp;
+
+ DEBUGFUNC("e1000_clear_hw_cntrs_80003es2lan");
+
+ e1000_clear_hw_cntrs_base_generic(hw);
+
+ temp = E1000_READ_REG(hw, E1000_PRC64);
+ temp = E1000_READ_REG(hw, E1000_PRC127);
+ temp = E1000_READ_REG(hw, E1000_PRC255);
+ temp = E1000_READ_REG(hw, E1000_PRC511);
+ temp = E1000_READ_REG(hw, E1000_PRC1023);
+ temp = E1000_READ_REG(hw, E1000_PRC1522);
+ temp = E1000_READ_REG(hw, E1000_PTC64);
+ temp = E1000_READ_REG(hw, E1000_PTC127);
+ temp = E1000_READ_REG(hw, E1000_PTC255);
+ temp = E1000_READ_REG(hw, E1000_PTC511);
+ temp = E1000_READ_REG(hw, E1000_PTC1023);
+ temp = E1000_READ_REG(hw, E1000_PTC1522);
+
+ temp = E1000_READ_REG(hw, E1000_ALGNERRC);
+ temp = E1000_READ_REG(hw, E1000_RXERRC);
+ temp = E1000_READ_REG(hw, E1000_TNCRS);
+ temp = E1000_READ_REG(hw, E1000_CEXTERR);
+ temp = E1000_READ_REG(hw, E1000_TSCTC);
+ temp = E1000_READ_REG(hw, E1000_TSCTFC);
+
+ temp = E1000_READ_REG(hw, E1000_MGTPRC);
+ temp = E1000_READ_REG(hw, E1000_MGTPDC);
+ temp = E1000_READ_REG(hw, E1000_MGTPTC);
+
+ temp = E1000_READ_REG(hw, E1000_IAC);
+ temp = E1000_READ_REG(hw, E1000_ICRXOC);
+
+ temp = E1000_READ_REG(hw, E1000_ICRXPTC);
+ temp = E1000_READ_REG(hw, E1000_ICRXATC);
+ temp = E1000_READ_REG(hw, E1000_ICTXPTC);
+ temp = E1000_READ_REG(hw, E1000_ICTXATC);
+ temp = E1000_READ_REG(hw, E1000_ICTXQEC);
+ temp = E1000_READ_REG(hw, E1000_ICTXQMTC);
+ temp = E1000_READ_REG(hw, E1000_ICRXDMTC);
+}
--- /dev/null
+++ sys/dev/em/e1000_manage.h
@@ -0,0 +1,88 @@
+/*******************************************************************************
+
+ Copyright (c) 2001-2007, Intel Corporation
+ All rights reserved.
+
+ Redistribution and use in source and binary forms, with or without
+ modification, are permitted provided that the following conditions are met:
+
+ 1. Redistributions of source code must retain the above copyright notice,
+ this list of conditions and the following disclaimer.
+
+ 2. Redistributions in binary form must reproduce the above copyright
+ notice, this list of conditions and the following disclaimer in the
+ documentation and/or other materials provided with the distribution.
+
+ 3. Neither the name of the Intel Corporation nor the names of its
+ contributors may be used to endorse or promote products derived from
+ this software without specific prior written permission.
+
+ THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
+ AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+ IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
+ LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
+ CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
+ SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
+ INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
+ CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
+ ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
+ POSSIBILITY OF SUCH DAMAGE.
+
+*******************************************************************************/
+/* $FreeBSD: src/sys/dev/em/e1000_manage.h,v 1.3.4.1 2007/11/28 23:24:38 jfv Exp $ */
+
+
+#ifndef _E1000_MANAGE_H_
+#define _E1000_MANAGE_H_
+
+bool e1000_check_mng_mode_generic(struct e1000_hw *hw);
+bool e1000_enable_tx_pkt_filtering_generic(struct e1000_hw *hw);
+s32 e1000_mng_enable_host_if_generic(struct e1000_hw *hw);
+s32 e1000_mng_host_if_write_generic(struct e1000_hw *hw, u8 *buffer,
+ u16 length, u16 offset, u8 *sum);
+s32 e1000_mng_write_cmd_header_generic(struct e1000_hw *hw,
+ struct e1000_host_mng_command_header *hdr);
+s32 e1000_mng_write_dhcp_info_generic(struct e1000_hw *hw,
+ u8 *buffer, u16 length);
+
+typedef enum {
+ e1000_mng_mode_none = 0,
+ e1000_mng_mode_asf,
+ e1000_mng_mode_pt,
+ e1000_mng_mode_ipmi,
+ e1000_mng_mode_host_if_only
+} e1000_mng_mode;
+
+#define E1000_FACTPS_MNGCG 0x20000000
+
+#define E1000_FWSM_MODE_MASK 0xE
+#define E1000_FWSM_MODE_SHIFT 1
+
+#define E1000_MNG_IAMT_MODE 0x3
+#define E1000_MNG_DHCP_COOKIE_LENGTH 0x10
+#define E1000_MNG_DHCP_COOKIE_OFFSET 0x6F0
+#define E1000_MNG_DHCP_COMMAND_TIMEOUT 10
+#define E1000_MNG_DHCP_TX_PAYLOAD_CMD 64
+#define E1000_MNG_DHCP_COOKIE_STATUS_PARSING 0x1
+#define E1000_MNG_DHCP_COOKIE_STATUS_VLAN 0x2
+
+#define E1000_VFTA_ENTRY_SHIFT 5
+#define E1000_VFTA_ENTRY_MASK 0x7F
+#define E1000_VFTA_ENTRY_BIT_SHIFT_MASK 0x1F
+
+#define E1000_HI_MAX_BLOCK_BYTE_LENGTH 1792 /* Number of bytes in range */
+#define E1000_HI_MAX_BLOCK_DWORD_LENGTH 448 /* Number of dwords in range */
+#define E1000_HI_COMMAND_TIMEOUT 500 /* Process HI command limit */
+
+#define E1000_HICR_EN 0x01 /* Enable bit - RO */
+/* Driver sets this bit when done to put command in RAM */
+#define E1000_HICR_C 0x02
+#define E1000_HICR_SV 0x04 /* Status Validity */
+#define E1000_HICR_FW_RESET_ENABLE 0x40
+#define E1000_HICR_FW_RESET 0x80
+
+/* Intel(R) Active Management Technology signature */
+#define E1000_IAMT_SIGNATURE 0x544D4149
+
+#endif
--- /dev/null
+++ sys/dev/em/e1000_82571.h
@@ -0,0 +1,47 @@
+/*******************************************************************************
+
+ Copyright (c) 2001-2007, Intel Corporation
+ All rights reserved.
+
+ Redistribution and use in source and binary forms, with or without
+ modification, are permitted provided that the following conditions are met:
+
+ 1. Redistributions of source code must retain the above copyright notice,
+ this list of conditions and the following disclaimer.
+
+ 2. Redistributions in binary form must reproduce the above copyright
+ notice, this list of conditions and the following disclaimer in the
+ documentation and/or other materials provided with the distribution.
+
+ 3. Neither the name of the Intel Corporation nor the names of its
+ contributors may be used to endorse or promote products derived from
+ this software without specific prior written permission.
+
+ THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
+ AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+ IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
+ LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
+ CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
+ SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
+ INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
+ CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
+ ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
+ POSSIBILITY OF SUCH DAMAGE.
+
+*******************************************************************************/
+/* $FreeBSD: src/sys/dev/em/e1000_82571.h,v 1.3.4.1 2007/11/28 23:24:37 jfv Exp $ */
+
+
+#ifndef _E1000_82571_H_
+#define _E1000_82571_H_
+
+#define ID_LED_RESERVED_F746 0xF746
+#define ID_LED_DEFAULT_82573 ((ID_LED_DEF1_DEF2 << 12) | \
+ (ID_LED_OFF1_ON2 << 8) | \
+ (ID_LED_DEF1_DEF2 << 4) | \
+ (ID_LED_DEF1_DEF2))
+
+#define E1000_GCR_L1_ACT_WITHOUT_L0S_RX 0x08000000
+
+#endif
--- /dev/null
+++ sys/dev/em/e1000_80003es2lan.h
@@ -0,0 +1,102 @@
+/*******************************************************************************
+
+ Copyright (c) 2001-2007, Intel Corporation
+ All rights reserved.
+
+ Redistribution and use in source and binary forms, with or without
+ modification, are permitted provided that the following conditions are met:
+
+ 1. Redistributions of source code must retain the above copyright notice,
+ this list of conditions and the following disclaimer.
+
+ 2. Redistributions in binary form must reproduce the above copyright
+ notice, this list of conditions and the following disclaimer in the
+ documentation and/or other materials provided with the distribution.
+
+ 3. Neither the name of the Intel Corporation nor the names of its
+ contributors may be used to endorse or promote products derived from
+ this software without specific prior written permission.
+
+ THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
+ AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+ IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
+ LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
+ CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
+ SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
+ INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
+ CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
+ ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
+ POSSIBILITY OF SUCH DAMAGE.
+
+*******************************************************************************/
+/* $FreeBSD: src/sys/dev/em/e1000_80003es2lan.h,v 1.3.4.1 2007/11/28 23:24:37 jfv Exp $ */
+
+
+#ifndef _E1000_80003ES2LAN_H_
+#define _E1000_80003ES2LAN_H_
+
+#define E1000_KMRNCTRLSTA_OFFSET_FIFO_CTRL 0x00
+#define E1000_KMRNCTRLSTA_OFFSET_INB_CTRL 0x02
+#define E1000_KMRNCTRLSTA_OFFSET_HD_CTRL 0x10
+#define E1000_KMRNCTRLSTA_OFFSET_MAC2PHY_OPMODE 0x1F
+
+#define E1000_KMRNCTRLSTA_FIFO_CTRL_RX_BYPASS 0x0008
+#define E1000_KMRNCTRLSTA_FIFO_CTRL_TX_BYPASS 0x0800
+#define E1000_KMRNCTRLSTA_INB_CTRL_DIS_PADDING 0x0010
+
+#define E1000_KMRNCTRLSTA_HD_CTRL_10_100_DEFAULT 0x0004
+#define E1000_KMRNCTRLSTA_HD_CTRL_1000_DEFAULT 0x0000
+#define E1000_KMRNCTRLSTA_OPMODE_E_IDLE 0x2000
+
+#define E1000_TCTL_EXT_GCEX_MASK 0x000FFC00 /* Gigabit Carry Extend Padding */
+#define DEFAULT_TCTL_EXT_GCEX_80003ES2LAN 0x00010000
+
+#define DEFAULT_TIPG_IPGT_1000_80003ES2LAN 0x8
+#define DEFAULT_TIPG_IPGT_10_100_80003ES2LAN 0x9
+
+/* GG82563 PHY Specific Status Register (Page 0, Register 16 */
+#define GG82563_PSCR_POLARITY_REVERSAL_DISABLE 0x0002 /* 1=Reversal Disabled */
+#define GG82563_PSCR_CROSSOVER_MODE_MASK 0x0060
+#define GG82563_PSCR_CROSSOVER_MODE_MDI 0x0000 /* 00=Manual MDI */
+#define GG82563_PSCR_CROSSOVER_MODE_MDIX 0x0020 /* 01=Manual MDIX */
+#define GG82563_PSCR_CROSSOVER_MODE_AUTO 0x0060 /* 11=Auto crossover */
+
+/* PHY Specific Control Register 2 (Page 0, Register 26) */
+#define GG82563_PSCR2_REVERSE_AUTO_NEG 0x2000
+ /* 1=Reverse Auto-Negotiation */
+
+/* MAC Specific Control Register (Page 2, Register 21) */
+/* Tx clock speed for Link Down and 1000BASE-T for the following speeds */
+#define GG82563_MSCR_TX_CLK_MASK 0x0007
+#define GG82563_MSCR_TX_CLK_10MBPS_2_5 0x0004
+#define GG82563_MSCR_TX_CLK_100MBPS_25 0x0005
+#define GG82563_MSCR_TX_CLK_1000MBPS_2_5 0x0006
+#define GG82563_MSCR_TX_CLK_1000MBPS_25 0x0007
+
+#define GG82563_MSCR_ASSERT_CRS_ON_TX 0x0010 /* 1=Assert */
+
+/* DSP Distance Register (Page 5, Register 26) */
+/*
+ * 0 = <50M
+ * 1 = 50-80M
+ * 2 = 80-100M
+ * 3 = 110-140M
+ * 4 = >140M
+ */
+#define GG82563_DSPD_CABLE_LENGTH 0x0007
+
+/* Kumeran Mode Control Register (Page 193, Register 16) */
+#define GG82563_KMCR_PASS_FALSE_CARRIER 0x0800
+
+/* Max number of times Kumeran read/write should be validated */
+#define GG82563_MAX_KMRN_RETRY 0x5
+
+/* Power Management Control Register (Page 193, Register 20) */
+#define GG82563_PMCR_ENABLE_ELECTRICAL_IDLE 0x0001
+ /* 1=Enable SERDES Electrical Idle */
+
+/* In-Band Control Register (Page 194, Register 18) */
+#define GG82563_ICR_DIS_PADDING 0x0010 /* Disable Padding */
+
+#endif
--- /dev/null
+++ sys/dev/em/e1000_hw.h
@@ -0,0 +1,726 @@
+/*******************************************************************************
+
+ Copyright (c) 2001-2007, Intel Corporation
+ All rights reserved.
+
+ Redistribution and use in source and binary forms, with or without
+ modification, are permitted provided that the following conditions are met:
+
+ 1. Redistributions of source code must retain the above copyright notice,
+ this list of conditions and the following disclaimer.
+
+ 2. Redistributions in binary form must reproduce the above copyright
+ notice, this list of conditions and the following disclaimer in the
+ documentation and/or other materials provided with the distribution.
+
+ 3. Neither the name of the Intel Corporation nor the names of its
+ contributors may be used to endorse or promote products derived from
+ this software without specific prior written permission.
+
+ THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
+ AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+ IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
+ LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
+ CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
+ SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
+ INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
+ CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
+ ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
+ POSSIBILITY OF SUCH DAMAGE.
+
+*******************************************************************************/
+/* $FreeBSD: src/sys/dev/em/e1000_hw.h,v 1.3.4.1 2007/11/28 23:24:37 jfv Exp $ */
+
+
+#ifndef _E1000_HW_H_
+#define _E1000_HW_H_
+
+#include "e1000_osdep.h"
+#include "e1000_regs.h"
+#include "e1000_defines.h"
+
+struct e1000_hw;
+
+#ifndef NO_82542_SUPPORT
+#define E1000_DEV_ID_82542 0x1000
+#endif
+#define E1000_DEV_ID_82543GC_FIBER 0x1001
+#define E1000_DEV_ID_82543GC_COPPER 0x1004
+#define E1000_DEV_ID_82544EI_COPPER 0x1008
+#define E1000_DEV_ID_82544EI_FIBER 0x1009
+#define E1000_DEV_ID_82544GC_COPPER 0x100C
+#define E1000_DEV_ID_82544GC_LOM 0x100D
+#define E1000_DEV_ID_82540EM 0x100E
+#define E1000_DEV_ID_82540EM_LOM 0x1015
+#define E1000_DEV_ID_82540EP_LOM 0x1016
+#define E1000_DEV_ID_82540EP 0x1017
+#define E1000_DEV_ID_82540EP_LP 0x101E
+#define E1000_DEV_ID_82545EM_COPPER 0x100F
+#define E1000_DEV_ID_82545EM_FIBER 0x1011
+#define E1000_DEV_ID_82545GM_COPPER 0x1026
+#define E1000_DEV_ID_82545GM_FIBER 0x1027
+#define E1000_DEV_ID_82545GM_SERDES 0x1028
+#define E1000_DEV_ID_82546EB_COPPER 0x1010
+#define E1000_DEV_ID_82546EB_FIBER 0x1012
+#define E1000_DEV_ID_82546EB_QUAD_COPPER 0x101D
+#define E1000_DEV_ID_82546GB_COPPER 0x1079
+#define E1000_DEV_ID_82546GB_FIBER 0x107A
+#define E1000_DEV_ID_82546GB_SERDES 0x107B
+#define E1000_DEV_ID_82546GB_PCIE 0x108A
+#define E1000_DEV_ID_82546GB_QUAD_COPPER 0x1099
+#define E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3 0x10B5
+#define E1000_DEV_ID_82541EI 0x1013
+#define E1000_DEV_ID_82541EI_MOBILE 0x1018
+#define E1000_DEV_ID_82541ER_LOM 0x1014
+#define E1000_DEV_ID_82541ER 0x1078
+#define E1000_DEV_ID_82541GI 0x1076
+#define E1000_DEV_ID_82541GI_LF 0x107C
+#define E1000_DEV_ID_82541GI_MOBILE 0x1077
+#define E1000_DEV_ID_82547EI 0x1019
+#define E1000_DEV_ID_82547EI_MOBILE 0x101A
+#define E1000_DEV_ID_82547GI 0x1075
+#define E1000_DEV_ID_82571EB_COPPER 0x105E
+#define E1000_DEV_ID_82571EB_FIBER 0x105F
+#define E1000_DEV_ID_82571EB_SERDES 0x1060
+#define E1000_DEV_ID_82571EB_SERDES_DUAL 0x10D9
+#define E1000_DEV_ID_82571EB_SERDES_QUAD 0x10DA
+#define E1000_DEV_ID_82571EB_QUAD_COPPER 0x10A4
+#define E1000_DEV_ID_82571PT_QUAD_COPPER 0x10D5
+#define E1000_DEV_ID_82571EB_QUAD_FIBER 0x10A5
+#define E1000_DEV_ID_82571EB_QUAD_COPPER_LP 0x10BC
+#define E1000_DEV_ID_82572EI_COPPER 0x107D
+#define E1000_DEV_ID_82572EI_FIBER 0x107E
+#define E1000_DEV_ID_82572EI_SERDES 0x107F
+#define E1000_DEV_ID_82572EI 0x10B9
+#define E1000_DEV_ID_82573E 0x108B
+#define E1000_DEV_ID_82573E_IAMT 0x108C
+#define E1000_DEV_ID_82573L 0x109A
+#define E1000_DEV_ID_80003ES2LAN_COPPER_DPT 0x1096
+#define E1000_DEV_ID_80003ES2LAN_SERDES_DPT 0x1098
+#define E1000_DEV_ID_80003ES2LAN_COPPER_SPT 0x10BA
+#define E1000_DEV_ID_80003ES2LAN_SERDES_SPT 0x10BB
+#define E1000_DEV_ID_ICH8_IGP_M_AMT 0x1049
+#define E1000_DEV_ID_ICH8_IGP_AMT 0x104A
+#define E1000_DEV_ID_ICH8_IGP_C 0x104B
+#define E1000_DEV_ID_ICH8_IFE 0x104C
+#define E1000_DEV_ID_ICH8_IFE_GT 0x10C4
+#define E1000_DEV_ID_ICH8_IFE_G 0x10C5
+#define E1000_DEV_ID_ICH8_IGP_M 0x104D
+#define E1000_DEV_ID_ICH9_IGP_AMT 0x10BD
+#define E1000_DEV_ID_ICH9_IGP_C 0x294C
+#define E1000_DEV_ID_ICH9_IFE 0x10C0
+#define E1000_DEV_ID_ICH9_IFE_GT 0x10C3
+#define E1000_DEV_ID_ICH9_IFE_G 0x10C2
+#define E1000_DEV_ID_82575EB_COPPER 0x10A7
+#define E1000_DEV_ID_82575EB_FIBER_SERDES 0x10A9
+#define E1000_DEV_ID_82575GB_QUAD_COPPER 0x10D6
+
+#define E1000_REVISION_0 0
+#define E1000_REVISION_1 1
+#define E1000_REVISION_2 2
+#define E1000_REVISION_3 3
+#define E1000_REVISION_4 4
+
+#define E1000_FUNC_0 0
+#define E1000_FUNC_1 1
+
+typedef enum {
+ e1000_undefined = 0,
+#ifndef NO_82542_SUPPORT
+ e1000_82542,
+#endif
+ e1000_82543,
+ e1000_82544,
+ e1000_82540,
+ e1000_82545,
+ e1000_82545_rev_3,
+ e1000_82546,
+ e1000_82546_rev_3,
+ e1000_82541,
+ e1000_82541_rev_2,
+ e1000_82547,
+ e1000_82547_rev_2,
+ e1000_82571,
+ e1000_82572,
+ e1000_82573,
+ e1000_80003es2lan,
+ e1000_ich8lan,
+ e1000_ich9lan,
+ e1000_82575,
+ e1000_num_macs /* List is 1-based, so subtract 1 for true count. */
+} e1000_mac_type;
+
+typedef enum {
+ e1000_media_type_unknown = 0,
+ e1000_media_type_copper = 1,
+ e1000_media_type_fiber = 2,
+ e1000_media_type_internal_serdes = 3,
+ e1000_num_media_types
+} e1000_media_type;
+
+typedef enum {
+ e1000_nvm_unknown = 0,
+ e1000_nvm_none,
+ e1000_nvm_eeprom_spi,
+ e1000_nvm_eeprom_microwire,
+ e1000_nvm_flash_hw,
+ e1000_nvm_flash_sw
+} e1000_nvm_type;
+
+typedef enum {
+ e1000_nvm_override_none = 0,
+ e1000_nvm_override_spi_small,
+ e1000_nvm_override_spi_large,
+ e1000_nvm_override_microwire_small,
+ e1000_nvm_override_microwire_large
+} e1000_nvm_override;
+
+typedef enum {
+ e1000_phy_unknown = 0,
+ e1000_phy_none,
+ e1000_phy_m88,
+ e1000_phy_igp,
+ e1000_phy_igp_2,
+ e1000_phy_gg82563,
+ e1000_phy_igp_3,
+ e1000_phy_ife,
+} e1000_phy_type;
+
+typedef enum {
+ e1000_bus_type_unknown = 0,
+ e1000_bus_type_pci,
+ e1000_bus_type_pcix,
+ e1000_bus_type_pci_express,
+ e1000_bus_type_reserved
+} e1000_bus_type;
+
+typedef enum {
+ e1000_bus_speed_unknown = 0,
+ e1000_bus_speed_33,
+ e1000_bus_speed_66,
+ e1000_bus_speed_100,
+ e1000_bus_speed_120,
+ e1000_bus_speed_133,
+ e1000_bus_speed_2500,
+ e1000_bus_speed_5000,
+ e1000_bus_speed_reserved
+} e1000_bus_speed;
+
+typedef enum {
+ e1000_bus_width_unknown = 0,
+ e1000_bus_width_pcie_x1,
+ e1000_bus_width_pcie_x2,
+ e1000_bus_width_pcie_x4 = 4,
+ e1000_bus_width_pcie_x8 = 8,
+ e1000_bus_width_32,
+ e1000_bus_width_64,
+ e1000_bus_width_reserved
+} e1000_bus_width;
+
+typedef enum {
+ e1000_1000t_rx_status_not_ok = 0,
+ e1000_1000t_rx_status_ok,
+ e1000_1000t_rx_status_undefined = 0xFF
+} e1000_1000t_rx_status;
+
+typedef enum {
+ e1000_rev_polarity_normal = 0,
+ e1000_rev_polarity_reversed,
+ e1000_rev_polarity_undefined = 0xFF
+} e1000_rev_polarity;
+
+typedef enum {
+ e1000_fc_none = 0,
+ e1000_fc_rx_pause,
+ e1000_fc_tx_pause,
+ e1000_fc_full,
+ e1000_fc_default = 0xFF
+} e1000_fc_type;
+
+typedef enum {
+ e1000_ffe_config_enabled = 0,
+ e1000_ffe_config_active,
+ e1000_ffe_config_blocked
+} e1000_ffe_config;
+
+typedef enum {
+ e1000_dsp_config_disabled = 0,
+ e1000_dsp_config_enabled,
+ e1000_dsp_config_activated,
+ e1000_dsp_config_undefined = 0xFF
+} e1000_dsp_config;
+
+/* Receive Descriptor */
+struct e1000_rx_desc {
+ u64 buffer_addr; /* Address of the descriptor's data buffer */
+ u16 length; /* Length of data DMAed into data buffer */
+ u16 csum; /* Packet checksum */
+ u8 status; /* Descriptor status */
+ u8 errors; /* Descriptor Errors */
+ u16 special;
+};
+
+/* Receive Descriptor - Extended */
+union e1000_rx_desc_extended {
+ struct {
+ u64 buffer_addr;
+ u64 reserved;
+ } read;
+ struct {
+ struct {
+ u32 mrq; /* Multiple Rx Queues */
+ union {
+ u32 rss; /* RSS Hash */
+ struct {
+ u16 ip_id; /* IP id */
+ u16 csum; /* Packet Checksum */
+ } csum_ip;
+ } hi_dword;
+ } lower;
+ struct {
+ u32 status_error; /* ext status/error */
+ u16 length;
+ u16 vlan; /* VLAN tag */
+ } upper;
+ } wb; /* writeback */
+};
+
+#define MAX_PS_BUFFERS 4
+/* Receive Descriptor - Packet Split */
+union e1000_rx_desc_packet_split {
+ struct {
+ /* one buffer for protocol header(s), three data buffers */
+ u64 buffer_addr[MAX_PS_BUFFERS];
+ } read;
+ struct {
+ struct {
+ u32 mrq; /* Multiple Rx Queues */
+ union {
+ u32 rss; /* RSS Hash */
+ struct {
+ u16 ip_id; /* IP id */
+ u16 csum; /* Packet Checksum */
+ } csum_ip;
+ } hi_dword;
+ } lower;
+ struct {
+ u32 status_error; /* ext status/error */
+ u16 length0; /* length of buffer 0 */
+ u16 vlan; /* VLAN tag */
+ } middle;
+ struct {
+ u16 header_status;
+ u16 length[3]; /* length of buffers 1-3 */
+ } upper;
+ u64 reserved;
+ } wb; /* writeback */
+};
+
+/* Transmit Descriptor */
+struct e1000_tx_desc {
+ u64 buffer_addr; /* Address of the descriptor's data buffer */
+ union {
+ u32 data;
+ struct {
+ u16 length; /* Data buffer length */
+ u8 cso; /* Checksum offset */
+ u8 cmd; /* Descriptor control */
+ } flags;
+ } lower;
+ union {
+ u32 data;
+ struct {
+ u8 status; /* Descriptor status */
+ u8 css; /* Checksum start */
+ u16 special;
+ } fields;
+ } upper;
+};
+
+/* Offload Context Descriptor */
+struct e1000_context_desc {
+ union {
+ u32 ip_config;
+ struct {
+ u8 ipcss; /* IP checksum start */
+ u8 ipcso; /* IP checksum offset */
+ u16 ipcse; /* IP checksum end */
+ } ip_fields;
+ } lower_setup;
+ union {
+ u32 tcp_config;
+ struct {
+ u8 tucss; /* TCP checksum start */
+ u8 tucso; /* TCP checksum offset */
+ u16 tucse; /* TCP checksum end */
+ } tcp_fields;
+ } upper_setup;
+ u32 cmd_and_length;
+ union {
+ u32 data;
+ struct {
+ u8 status; /* Descriptor status */
+ u8 hdr_len; /* Header length */
+ u16 mss; /* Maximum segment size */
+ } fields;
+ } tcp_seg_setup;
+};
+
+/* Offload data descriptor */
+struct e1000_data_desc {
+ u64 buffer_addr; /* Address of the descriptor's buffer address */
+ union {
+ u32 data;
+ struct {
+ u16 length; /* Data buffer length */
+ u8 typ_len_ext;
+ u8 cmd;
+ } flags;
+ } lower;
+ union {
+ u32 data;
+ struct {
+ u8 status; /* Descriptor status */
+ u8 popts; /* Packet Options */
+ u16 special;
+ } fields;
+ } upper;
+};
+
+/* Statistics counters collected by the MAC */
+struct e1000_hw_stats {
+ u64 crcerrs;
+ u64 algnerrc;
+ u64 symerrs;
+ u64 rxerrc;
+ u64 mpc;
+ u64 scc;
+ u64 ecol;
+ u64 mcc;
+ u64 latecol;
+ u64 colc;
+ u64 dc;
+ u64 tncrs;
+ u64 sec;
+ u64 cexterr;
+ u64 rlec;
+ u64 xonrxc;
+ u64 xontxc;
+ u64 xoffrxc;
+ u64 xofftxc;
+ u64 fcruc;
+ u64 prc64;
+ u64 prc127;
+ u64 prc255;
+ u64 prc511;
+ u64 prc1023;
+ u64 prc1522;
+ u64 gprc;
+ u64 bprc;
+ u64 mprc;
+ u64 gptc;
+ u64 gorc;
+ u64 gotc;
+ u64 rnbc;
+ u64 ruc;
+ u64 rfc;
+ u64 roc;
+ u64 rjc;
+ u64 mgprc;
+ u64 mgpdc;
+ u64 mgptc;
+ u64 tor;
+ u64 tot;
+ u64 tpr;
+ u64 tpt;
+ u64 ptc64;
+ u64 ptc127;
+ u64 ptc255;
+ u64 ptc511;
+ u64 ptc1023;
+ u64 ptc1522;
+ u64 mptc;
+ u64 bptc;
+ u64 tsctc;
+ u64 tsctfc;
+ u64 iac;
+ u64 icrxptc;
+ u64 icrxatc;
+ u64 ictxptc;
+ u64 ictxatc;
+ u64 ictxqec;
+ u64 ictxqmtc;
+ u64 icrxdmtc;
+ u64 icrxoc;
+ u64 cbtmpc;
+ u64 htdpmc;
+ u64 cbrdpc;
+ u64 cbrmpc;
+ u64 rpthc;
+ u64 hgptc;
+ u64 htcbdpc;
+ u64 hgorc;
+ u64 hgotc;
+ u64 lenerrs;
+ u64 scvpc;
+ u64 hrmpc;
+};
+
+struct e1000_phy_stats {
+ u32 idle_errors;
+ u32 receive_errors;
+};
+
+struct e1000_host_mng_dhcp_cookie {
+ u32 signature;
+ u8 status;
+ u8 reserved0;
+ u16 vlan_id;
+ u32 reserved1;
+ u16 reserved2;
+ u8 reserved3;
+ u8 checksum;
+};
+
+/* Host Interface "Rev 1" */
+struct e1000_host_command_header {
+ u8 command_id;
+ u8 command_length;
+ u8 command_options;
+ u8 checksum;
+};
+
+#define E1000_HI_MAX_DATA_LENGTH 252
+struct e1000_host_command_info {
+ struct e1000_host_command_header command_header;
+ u8 command_data[E1000_HI_MAX_DATA_LENGTH];
+};
+
+/* Host Interface "Rev 2" */
+struct e1000_host_mng_command_header {
+ u8 command_id;
+ u8 checksum;
+ u16 reserved1;
+ u16 reserved2;
+ u16 command_length;
+};
+
+#define E1000_HI_MAX_MNG_DATA_LENGTH 0x6F8
+struct e1000_host_mng_command_info {
+ struct e1000_host_mng_command_header command_header;
+ u8 command_data[E1000_HI_MAX_MNG_DATA_LENGTH];
+};
+
+#include "e1000_mac.h"
+#include "e1000_phy.h"
+#include "e1000_nvm.h"
+#include "e1000_manage.h"
+
+struct e1000_functions {
+ /* Function pointers for the MAC. */
+ s32 (*init_mac_params)(struct e1000_hw *);
+ s32 (*blink_led)(struct e1000_hw *);
+ s32 (*check_for_link)(struct e1000_hw *);
+ bool (*check_mng_mode)(struct e1000_hw *hw);
+ s32 (*cleanup_led)(struct e1000_hw *);
+ void (*clear_hw_cntrs)(struct e1000_hw *);
+ void (*clear_vfta)(struct e1000_hw *);
+ s32 (*get_bus_info)(struct e1000_hw *);
+ s32 (*get_link_up_info)(struct e1000_hw *, u16 *, u16 *);
+ s32 (*led_on)(struct e1000_hw *);
+ s32 (*led_off)(struct e1000_hw *);
+ void (*update_mc_addr_list)(struct e1000_hw *, u8 *, u32, u32,
+ u32);
+ void (*remove_device)(struct e1000_hw *);
+ s32 (*reset_hw)(struct e1000_hw *);
+ s32 (*init_hw)(struct e1000_hw *);
+ s32 (*setup_link)(struct e1000_hw *);
+ s32 (*setup_physical_interface)(struct e1000_hw *);
+ s32 (*setup_led)(struct e1000_hw *);
+ void (*write_vfta)(struct e1000_hw *, u32, u32);
+ void (*mta_set)(struct e1000_hw *, u32);
+ void (*config_collision_dist)(struct e1000_hw*);
+ void (*rar_set)(struct e1000_hw*, u8*, u32);
+ s32 (*read_mac_addr)(struct e1000_hw*);
+ s32 (*validate_mdi_setting)(struct e1000_hw*);
+ s32 (*mng_host_if_write)(struct e1000_hw*, u8*, u16, u16, u8*);
+ s32 (*mng_write_cmd_header)(struct e1000_hw *hw,
+ struct e1000_host_mng_command_header*);
+ s32 (*mng_enable_host_if)(struct e1000_hw*);
+ s32 (*wait_autoneg)(struct e1000_hw*);
+
+ /* Function pointers for the PHY. */
+ s32 (*init_phy_params)(struct e1000_hw *);
+ s32 (*acquire_phy)(struct e1000_hw *);
+ s32 (*check_polarity)(struct e1000_hw *);
+ s32 (*check_reset_block)(struct e1000_hw *);
+ s32 (*commit_phy)(struct e1000_hw *);
+ s32 (*force_speed_duplex)(struct e1000_hw *);
+ s32 (*get_cfg_done)(struct e1000_hw *hw);
+ s32 (*get_cable_length)(struct e1000_hw *);
+ s32 (*get_phy_info)(struct e1000_hw *);
+ s32 (*read_phy_reg)(struct e1000_hw *, u32, u16 *);
+ void (*release_phy)(struct e1000_hw *);
+ s32 (*reset_phy)(struct e1000_hw *);
+ s32 (*set_d0_lplu_state)(struct e1000_hw *, bool);
+ s32 (*set_d3_lplu_state)(struct e1000_hw *, bool);
+ s32 (*write_phy_reg)(struct e1000_hw *, u32, u16);
+ void (*power_up_phy)(struct e1000_hw *);
+ void (*power_down_phy)(struct e1000_hw *);
+
+ /* Function pointers for the NVM. */
+ s32 (*init_nvm_params)(struct e1000_hw *);
+ s32 (*acquire_nvm)(struct e1000_hw *);
+ s32 (*read_nvm)(struct e1000_hw *, u16, u16, u16 *);
+ void (*release_nvm)(struct e1000_hw *);
+ void (*reload_nvm)(struct e1000_hw *);
+ s32 (*update_nvm)(struct e1000_hw *);
+ s32 (*valid_led_default)(struct e1000_hw *, u16 *);
+ s32 (*validate_nvm)(struct e1000_hw *);
+ s32 (*write_nvm)(struct e1000_hw *, u16, u16, u16 *);
+};
+
+struct e1000_mac_info {
+ u8 addr[6];
+ u8 perm_addr[6];
+
+ e1000_mac_type type;
+
+ u32 collision_delta;
+ u32 ledctl_default;
+ u32 ledctl_mode1;
+ u32 ledctl_mode2;
+ u32 mc_filter_type;
+ u32 tx_packet_delta;
+ u32 txcw;
+
+ u16 current_ifs_val;
+ u16 ifs_max_val;
+ u16 ifs_min_val;
+ u16 ifs_ratio;
+ u16 ifs_step_size;
+ u16 mta_reg_count;
+ u16 rar_entry_count;
+
+ u8 forced_speed_duplex;
+
+ bool adaptive_ifs;
+ bool arc_subsystem_valid;
+ bool asf_firmware_present;
+ bool autoneg;
+ bool autoneg_failed;
+ bool disable_av;
+ bool disable_hw_init_bits;
+ bool get_link_status;
+ bool ifs_params_forced;
+ bool in_ifs_mode;
+ bool report_tx_early;
+ bool serdes_has_link;
+ bool tx_pkt_filtering;
+};
+
+struct e1000_phy_info {
+ e1000_phy_type type;
+
+ e1000_1000t_rx_status local_rx;
+ e1000_1000t_rx_status remote_rx;
+ e1000_ms_type ms_type;
+ e1000_ms_type original_ms_type;
+ e1000_rev_polarity cable_polarity;
+ e1000_smart_speed smart_speed;
+
+ u32 addr;
+ u32 id;
+ u32 reset_delay_us; /* in usec */
+ u32 revision;
+
+ e1000_media_type media_type;
+
+ u16 autoneg_advertised;
+ u16 autoneg_mask;
+ u16 cable_length;
+ u16 max_cable_length;
+ u16 min_cable_length;
+
+ u8 mdix;
+
+ bool disable_polarity_correction;
+ bool is_mdix;
+ bool polarity_correction;
+ bool reset_disable;
+ bool speed_downgraded;
+ bool autoneg_wait_to_complete;
+};
+
+struct e1000_nvm_info {
+ e1000_nvm_type type;
+ e1000_nvm_override override;
+
+ u32 flash_bank_size;
+ u32 flash_base_addr;
+
+ u16 word_size;
+ u16 delay_usec;
+ u16 address_bits;
+ u16 opcode_bits;
+ u16 page_size;
+};
+
+struct e1000_bus_info {
+ e1000_bus_type type;
+ e1000_bus_speed speed;
+ e1000_bus_width width;
+
+ u32 snoop;
+
+ u16 func;
+ u16 pci_cmd_word;
+};
+
+struct e1000_fc_info {
+ u32 high_water; /* Flow control high-water mark */
+ u32 low_water; /* Flow control low-water mark */
+ u16 pause_time; /* Flow control pause timer */
+ bool send_xon; /* Flow control send XON */
+ bool strict_ieee; /* Strict IEEE mode */
+ e1000_fc_type type; /* Type of flow control */
+ e1000_fc_type original_type;
+};
+
+struct e1000_hw {
+ void *back;
+ void *dev_spec;
+
+ u8 *hw_addr;
+ u8 *flash_address;
+ unsigned long io_base;
+
+ struct e1000_functions func;
+ struct e1000_mac_info mac;
+ struct e1000_fc_info fc;
+ struct e1000_phy_info phy;
+ struct e1000_nvm_info nvm;
+ struct e1000_bus_info bus;
+ struct e1000_host_mng_dhcp_cookie mng_cookie;
+
+ u32 dev_spec_size;
+
+ u16 device_id;
+ u16 subsystem_vendor_id;
+ u16 subsystem_device_id;
+ u16 vendor_id;
+
+ u8 revision_id;
+};
+
+/* These functions must be implemented by drivers */
+void e1000_pci_clear_mwi(struct e1000_hw *hw);
+void e1000_pci_set_mwi(struct e1000_hw *hw);
+s32 e1000_alloc_zeroed_dev_spec_struct(struct e1000_hw *hw, u32 size);
+s32 e1000_read_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value);
+void e1000_free_dev_spec_struct(struct e1000_hw *hw);
+void e1000_read_pci_cfg(struct e1000_hw *hw, u32 reg, u16 *value);
+void e1000_write_pci_cfg(struct e1000_hw *hw, u32 reg, u16 *value);
+
+#endif
--- /dev/null
+++ sys/dev/em/e1000_82543.h
@@ -0,0 +1,51 @@
+/*******************************************************************************
+
+ Copyright (c) 2001-2007, Intel Corporation
+ All rights reserved.
+
+ Redistribution and use in source and binary forms, with or without
+ modification, are permitted provided that the following conditions are met:
+
+ 1. Redistributions of source code must retain the above copyright notice,
+ this list of conditions and the following disclaimer.
+
+ 2. Redistributions in binary form must reproduce the above copyright
+ notice, this list of conditions and the following disclaimer in the
+ documentation and/or other materials provided with the distribution.
+
+ 3. Neither the name of the Intel Corporation nor the names of its
+ contributors may be used to endorse or promote products derived from
+ this software without specific prior written permission.
+
+ THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
+ AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+ IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
+ LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
+ CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
+ SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
+ INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
+ CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
+ ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
+ POSSIBILITY OF SUCH DAMAGE.
+
+*******************************************************************************/
+/* $FreeBSD: src/sys/dev/em/e1000_82543.h,v 1.3.4.1 2007/11/28 23:24:37 jfv Exp $ */
+
+
+#ifndef _E1000_82543_H_
+#define _E1000_82543_H_
+
+#define PHY_PREAMBLE 0xFFFFFFFF
+#define PHY_PREAMBLE_SIZE 32
+#define PHY_SOF 0x1
+#define PHY_OP_READ 0x2
+#define PHY_OP_WRITE 0x1
+#define PHY_TURNAROUND 0x2
+
+#define TBI_COMPAT_ENABLED 0x1 /* Global "knob" for the workaround */
+/* If TBI_COMPAT_ENABLED, then this is the current state (on/off) */
+#define TBI_SBP_ENABLED 0x2
+
+
+#endif
--- sys/dev/em/if_em_osdep.h
+++ /dev/null
@@ -1,177 +0,0 @@
-/**************************************************************************
-
-Copyright (c) 2001-2006, Intel Corporation
-All rights reserved.
-
-Redistribution and use in source and binary forms, with or without
-modification, are permitted provided that the following conditions are met:
-
- 1. Redistributions of source code must retain the above copyright notice,
- this list of conditions and the following disclaimer.
-
- 2. Redistributions in binary form must reproduce the above copyright
- notice, this list of conditions and the following disclaimer in the
- documentation and/or other materials provided with the distribution.
-
- 3. Neither the name of the Intel Corporation nor the names of its
- contributors may be used to endorse or promote products derived from
- this software without specific prior written permission.
-
-THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
-AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
-IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
-ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
-LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
-CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
-SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
-INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
-CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
-ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
-POSSIBILITY OF SUCH DAMAGE.
-
-***************************************************************************/
-
-/*$FreeBSD: /repoman/r/ncvs/src/sys/dev/em/if_em_osdep.h,v 1.14.2.2 2006/08/08 09:20:26 glebius Exp $*/
-
-#ifndef _FREEBSD_OS_H_
-#define _FREEBSD_OS_H_
-
-#include <sys/types.h>
-#include <sys/systm.h>
-#include <sys/bus.h>
-#include <sys/mbuf.h>
-#include <sys/malloc.h>
-#include <sys/socket.h>
-
-#include <machine/bus.h>
-#include <sys/rman.h>
-#include <machine/resource.h>
-
-#include <dev/pci/pcivar.h>
-#include <dev/pci/pcireg.h>
-
-#define usec_delay(x) DELAY(x)
-#define msec_delay(x) DELAY(1000*(x))
-/* TODO: Should we be paranoid about delaying in interrupt context? */
-#define msec_delay_irq(x) DELAY(1000*(x))
-
-#define MSGOUT(S, A, B) printf(S "\n", A, B)
-#define DEBUGFUNC(F) DEBUGOUT(F);
-#ifdef DBG
- #define DEBUGOUT(S) printf(S "\n")
- #define DEBUGOUT1(S,A) printf(S "\n",A)
- #define DEBUGOUT2(S,A,B) printf(S "\n",A,B)
- #define DEBUGOUT3(S,A,B,C) printf(S "\n",A,B,C)
- #define DEBUGOUT7(S,A,B,C,D,E,F,G) printf(S "\n",A,B,C,D,E,F,G)
-#else
- #define DEBUGOUT(S)
- #define DEBUGOUT1(S,A)
- #define DEBUGOUT2(S,A,B)
- #define DEBUGOUT3(S,A,B,C)
- #define DEBUGOUT7(S,A,B,C,D,E,F,G)
-#endif
-
-#define FALSE 0
-#define TRUE 1
-#define CMD_MEM_WRT_INVALIDATE 0x0010 /* BIT_4 */
-#define PCI_COMMAND_REGISTER PCIR_COMMAND
-
-struct em_osdep
-{
- bus_space_tag_t mem_bus_space_tag;
- bus_space_handle_t mem_bus_space_handle;
- bus_space_tag_t io_bus_space_tag;
- bus_space_handle_t io_bus_space_handle;
- bus_space_tag_t flash_bus_space_tag;
- bus_space_handle_t flash_bus_space_handle;
- device_t dev;
-};
-
-#define E1000_WRITE_FLUSH(hw) E1000_READ_REG(hw, STATUS)
-
-/* Read from an absolute offset in the adapter's memory space */
-#define E1000_READ_OFFSET(hw, offset) \
- bus_space_read_4( ((struct em_osdep *)(hw)->back)->mem_bus_space_tag, \
- ((struct em_osdep *)(hw)->back)->mem_bus_space_handle, offset)
-
-/* Write to an absolute offset in the adapter's memory space */
-#define E1000_WRITE_OFFSET(hw, offset, value) \
- bus_space_write_4( ((struct em_osdep *)(hw)->back)->mem_bus_space_tag, \
- ((struct em_osdep *)(hw)->back)->mem_bus_space_handle, offset, value)
-
-/* Convert a register name to its offset in the adapter's memory space */
-#define E1000_REG_OFFSET(hw, reg) \
- ((hw)->mac_type >= em_82543 ? E1000_##reg : E1000_82542_##reg)
-
-/*
- * Register READ/WRITE macros.
- *
- * XXXGL: Due to define's namespace mangling in recent version of
- * if_em_hw.*, we prepend "_" to the register name in all macros,
- * to prevent reg from being substituted, and then, in E1000_REG_OFFSET()
- * we prepend either "E1000" or "E1000_82542".
- *
- * P.S. The problematic defines are E1000_PHY_CTRL and PHY_CTRL.
- *
- * P.P.S. Intel has removed E1000_REG_OFFSET() and copy-pasted it to all
- * macros.
- */
-#define _E1000_REG_OFFSET(hw, reg) \
- ((hw)->mac_type >= em_82543 ? E1000##reg : E1000_82542##reg)
-
-#define E1000_READ_REG(hw, reg) \
- E1000_READ_OFFSET(hw, _E1000_REG_OFFSET(hw, _##reg))
-
-#define E1000_WRITE_REG(hw, reg, value) \
- E1000_WRITE_OFFSET(hw, _E1000_REG_OFFSET(hw, _##reg), value)
-
-#define E1000_READ_REG_ARRAY(hw, reg, index) \
- E1000_READ_OFFSET(hw, _E1000_REG_OFFSET(hw, _##reg) + ((index) << 2))
-
-#define E1000_READ_REG_ARRAY_DWORD E1000_READ_REG_ARRAY
-
-#define E1000_WRITE_REG_ARRAY(hw, reg, index, value) \
- E1000_WRITE_OFFSET(hw, _E1000_REG_OFFSET(hw, _##reg) + ((index) << 2), value)
-
-#define E1000_WRITE_REG_ARRAY_BYTE(hw, reg, index, value) \
- bus_space_write_1( ((struct em_osdep *)(hw)->back)->mem_bus_space_tag, \
- ((struct em_osdep *)(hw)->back)->mem_bus_space_handle, \
- _E1000_REG_OFFSET(hw, _##reg) + (index), \
- value)
-
-#define E1000_WRITE_REG_ARRAY_WORD(hw, reg, index, value) \
- bus_space_write_2( ((struct em_osdep *)(hw)->back)->mem_bus_space_tag, \
- ((struct em_osdep *)(hw)->back)->mem_bus_space_handle, \
- _E1000_REG_OFFSET(hw, _##reg) + (index), \
- value)
-
-#define E1000_WRITE_REG_ARRAY_DWORD(hw, reg, index, value) \
- E1000_WRITE_OFFSET(hw, _E1000_REG_OFFSET(hw, _##reg) + ((index) << 2), value)
-
-#define E1000_READ_ICH8_REG(hw, reg) \
- bus_space_read_4(((struct em_osdep *)(hw)->back)->flash_bus_space_tag, \
- ((struct em_osdep *)(hw)->back)->flash_bus_space_handle, reg)
-
-#define E1000_READ_ICH8_REG16(hw, reg) \
- bus_space_read_2(((struct em_osdep *)(hw)->back)->flash_bus_space_tag, \
- ((struct em_osdep *)(hw)->back)->flash_bus_space_handle, reg)
-
-#define E1000_WRITE_ICH8_REG(hw, reg, value) \
- bus_space_write_4(((struct em_osdep *)(hw)->back)->flash_bus_space_tag, \
- ((struct em_osdep *)(hw)->back)->flash_bus_space_handle, reg, value)
-
-#define E1000_WRITE_ICH8_REG16(hw, reg, value) \
- bus_space_write_2(((struct em_osdep *)(hw)->back)->flash_bus_space_tag, \
- ((struct em_osdep *)(hw)->back)->flash_bus_space_handle, reg, value)
-
-#define em_io_read(hw, port) \
- bus_space_read_4(((struct em_osdep *)(hw)->back)->io_bus_space_tag, \
- ((struct em_osdep *)(hw)->back)->io_bus_space_handle, (port))
-
-#define em_io_write(hw, port, value) \
- bus_space_write_4(((struct em_osdep *)(hw)->back)->io_bus_space_tag, \
- ((struct em_osdep *)(hw)->back)->io_bus_space_handle, (port), \
- (value))
-
-#endif /* _FREEBSD_OS_H_ */
-
--- /dev/null
+++ sys/dev/em/e1000_nvm.c
@@ -0,0 +1,900 @@
+/*******************************************************************************
+
+ Copyright (c) 2001-2007, Intel Corporation
+ All rights reserved.
+
+ Redistribution and use in source and binary forms, with or without
+ modification, are permitted provided that the following conditions are met:
+
+ 1. Redistributions of source code must retain the above copyright notice,
+ this list of conditions and the following disclaimer.
+
+ 2. Redistributions in binary form must reproduce the above copyright
+ notice, this list of conditions and the following disclaimer in the
+ documentation and/or other materials provided with the distribution.
+
+ 3. Neither the name of the Intel Corporation nor the names of its
+ contributors may be used to endorse or promote products derived from
+ this software without specific prior written permission.
+
+ THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
+ AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+ IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
+ LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
+ CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
+ SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
+ INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
+ CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
+ ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
+ POSSIBILITY OF SUCH DAMAGE.
+
+*******************************************************************************/
+/* $FreeBSD: src/sys/dev/em/e1000_nvm.c,v 1.3.4.1 2007/11/28 23:24:38 jfv Exp $ */
+
+
+#include "e1000_api.h"
+#include "e1000_nvm.h"
+
+/**
+ * e1000_raise_eec_clk - Raise EEPROM clock
+ * @hw: pointer to the HW structure
+ * @eecd: pointer to the EEPROM
+ *
+ * Enable/Raise the EEPROM clock bit.
+ **/
+static void e1000_raise_eec_clk(struct e1000_hw *hw, u32 *eecd)
+{
+ *eecd = *eecd | E1000_EECD_SK;
+ E1000_WRITE_REG(hw, E1000_EECD, *eecd);
+ E1000_WRITE_FLUSH(hw);
+ usec_delay(hw->nvm.delay_usec);
+}
+
+/**
+ * e1000_lower_eec_clk - Lower EEPROM clock
+ * @hw: pointer to the HW structure
+ * @eecd: pointer to the EEPROM
+ *
+ * Clear/Lower the EEPROM clock bit.
+ **/
+static void e1000_lower_eec_clk(struct e1000_hw *hw, u32 *eecd)
+{
+ *eecd = *eecd & ~E1000_EECD_SK;
+ E1000_WRITE_REG(hw, E1000_EECD, *eecd);
+ E1000_WRITE_FLUSH(hw);
+ usec_delay(hw->nvm.delay_usec);
+}
+
+/**
+ * e1000_shift_out_eec_bits - Shift data bits our to the EEPROM
+ * @hw: pointer to the HW structure
+ * @data: data to send to the EEPROM
+ * @count: number of bits to shift out
+ *
+ * We need to shift 'count' bits out to the EEPROM. So, the value in the
+ * "data" parameter will be shifted out to the EEPROM one bit at a time.
+ * In order to do this, "data" must be broken down into bits.
+ **/
+static void e1000_shift_out_eec_bits(struct e1000_hw *hw, u16 data, u16 count)
+{
+ struct e1000_nvm_info *nvm = &hw->nvm;
+ u32 eecd = E1000_READ_REG(hw, E1000_EECD);
+ u32 mask;
+
+ DEBUGFUNC("e1000_shift_out_eec_bits");
+
+ mask = 0x01 << (count - 1);
+ if (nvm->type == e1000_nvm_eeprom_microwire)
+ eecd &= ~E1000_EECD_DO;
+ else if (nvm->type == e1000_nvm_eeprom_spi)
+ eecd |= E1000_EECD_DO;
+
+ do {
+ eecd &= ~E1000_EECD_DI;
+
+ if (data & mask)
+ eecd |= E1000_EECD_DI;
+
+ E1000_WRITE_REG(hw, E1000_EECD, eecd);
+ E1000_WRITE_FLUSH(hw);
+
+ usec_delay(nvm->delay_usec);
+
+ e1000_raise_eec_clk(hw, &eecd);
+ e1000_lower_eec_clk(hw, &eecd);
+
+ mask >>= 1;
+ } while (mask);
+
+ eecd &= ~E1000_EECD_DI;
+ E1000_WRITE_REG(hw, E1000_EECD, eecd);
+}
+
+/**
+ * e1000_shift_in_eec_bits - Shift data bits in from the EEPROM
+ * @hw: pointer to the HW structure
+ * @count: number of bits to shift in
+ *
+ * In order to read a register from the EEPROM, we need to shift 'count' bits
+ * in from the EEPROM. Bits are "shifted in" by raising the clock input to
+ * the EEPROM (setting the SK bit), and then reading the value of the data out
+ * "DO" bit. During this "shifting in" process the data in "DI" bit should
+ * always be clear.
+ **/
+static u16 e1000_shift_in_eec_bits(struct e1000_hw *hw, u16 count)
+{
+ u32 eecd;
+ u32 i;
+ u16 data;
+
+ DEBUGFUNC("e1000_shift_in_eec_bits");
+
+ eecd = E1000_READ_REG(hw, E1000_EECD);
+
+ eecd &= ~(E1000_EECD_DO | E1000_EECD_DI);
+ data = 0;
+
+ for (i = 0; i < count; i++) {
+ data <<= 1;
+ e1000_raise_eec_clk(hw, &eecd);
+
+ eecd = E1000_READ_REG(hw, E1000_EECD);
+
+ eecd &= ~E1000_EECD_DI;
+ if (eecd & E1000_EECD_DO)
+ data |= 1;
+
+ e1000_lower_eec_clk(hw, &eecd);
+ }
+
+ return data;
+}
+
+/**
+ * e1000_poll_eerd_eewr_done - Poll for EEPROM read/write completion
+ * @hw: pointer to the HW structure
+ * @ee_reg: EEPROM flag for polling
+ *
+ * Polls the EEPROM status bit for either read or write completion based
+ * upon the value of 'ee_reg'.
+ **/
+s32 e1000_poll_eerd_eewr_done(struct e1000_hw *hw, int ee_reg)
+{
+ u32 attempts = 100000;
+ u32 i, reg = 0;
+ s32 ret_val = -E1000_ERR_NVM;
+
+ DEBUGFUNC("e1000_poll_eerd_eewr_done");
+
+ for (i = 0; i < attempts; i++) {
+ if (ee_reg == E1000_NVM_POLL_READ)
+ reg = E1000_READ_REG(hw, E1000_EERD);
+ else
+ reg = E1000_READ_REG(hw, E1000_EEWR);
+
+ if (reg & E1000_NVM_RW_REG_DONE) {
+ ret_val = E1000_SUCCESS;
+ break;
+ }
+
+ usec_delay(5);
+ }
+
+ return ret_val;
+}
+
+/**
+ * e1000_acquire_nvm_generic - Generic request for access to EEPROM
+ * @hw: pointer to the HW structure
+ *
+ * Set the EEPROM access request bit and wait for EEPROM access grant bit.
+ * Return successful if access grant bit set, else clear the request for
+ * EEPROM access and return -E1000_ERR_NVM (-1).
+ **/
+s32 e1000_acquire_nvm_generic(struct e1000_hw *hw)
+{
+ u32 eecd = E1000_READ_REG(hw, E1000_EECD);
+ s32 timeout = E1000_NVM_GRANT_ATTEMPTS;
+ s32 ret_val = E1000_SUCCESS;
+
+ DEBUGFUNC("e1000_acquire_nvm_generic");
+
+ E1000_WRITE_REG(hw, E1000_EECD, eecd | E1000_EECD_REQ);
+ eecd = E1000_READ_REG(hw, E1000_EECD);
+
+ while (timeout) {
+ if (eecd & E1000_EECD_GNT)
+ break;
+ usec_delay(5);
+ eecd = E1000_READ_REG(hw, E1000_EECD);
+ timeout--;
+ }
+
+ if (!timeout) {
+ eecd &= ~E1000_EECD_REQ;
+ E1000_WRITE_REG(hw, E1000_EECD, eecd);
+ DEBUGOUT("Could not acquire NVM grant\n");
+ ret_val = -E1000_ERR_NVM;
+ }
+
+ return ret_val;
+}
+
+/**
+ * e1000_standby_nvm - Return EEPROM to standby state
+ * @hw: pointer to the HW structure
+ *
+ * Return the EEPROM to a standby state.
+ **/
+static void e1000_standby_nvm(struct e1000_hw *hw)
+{
+ struct e1000_nvm_info *nvm = &hw->nvm;
+ u32 eecd = E1000_READ_REG(hw, E1000_EECD);
+
+ DEBUGFUNC("e1000_standby_nvm");
+
+ if (nvm->type == e1000_nvm_eeprom_microwire) {
+ eecd &= ~(E1000_EECD_CS | E1000_EECD_SK);
+ E1000_WRITE_REG(hw, E1000_EECD, eecd);
+ E1000_WRITE_FLUSH(hw);
+ usec_delay(nvm->delay_usec);
+
+ e1000_raise_eec_clk(hw, &eecd);
+
+ /* Select EEPROM */
+ eecd |= E1000_EECD_CS;
+ E1000_WRITE_REG(hw, E1000_EECD, eecd);
+ E1000_WRITE_FLUSH(hw);
+ usec_delay(nvm->delay_usec);
+
+ e1000_lower_eec_clk(hw, &eecd);
+ } else if (nvm->type == e1000_nvm_eeprom_spi) {
+ /* Toggle CS to flush commands */
+ eecd |= E1000_EECD_CS;
+ E1000_WRITE_REG(hw, E1000_EECD, eecd);
+ E1000_WRITE_FLUSH(hw);
+ usec_delay(nvm->delay_usec);
+ eecd &= ~E1000_EECD_CS;
+ E1000_WRITE_REG(hw, E1000_EECD, eecd);
+ E1000_WRITE_FLUSH(hw);
+ usec_delay(nvm->delay_usec);
+ }
+}
+
+/**
+ * e1000_stop_nvm - Terminate EEPROM command
+ * @hw: pointer to the HW structure
+ *
+ * Terminates the current command by inverting the EEPROM's chip select pin.
+ **/
+void e1000_stop_nvm(struct e1000_hw *hw)
+{
+ u32 eecd;
+
+ DEBUGFUNC("e1000_stop_nvm");
+
+ eecd = E1000_READ_REG(hw, E1000_EECD);
+ if (hw->nvm.type == e1000_nvm_eeprom_spi) {
+ /* Pull CS high */
+ eecd |= E1000_EECD_CS;
+ e1000_lower_eec_clk(hw, &eecd);
+ } else if (hw->nvm.type == e1000_nvm_eeprom_microwire) {
+ /* CS on Microcwire is active-high */
+ eecd &= ~(E1000_EECD_CS | E1000_EECD_DI);
+ E1000_WRITE_REG(hw, E1000_EECD, eecd);
+ e1000_raise_eec_clk(hw, &eecd);
+ e1000_lower_eec_clk(hw, &eecd);
+ }
+}
+
+/**
+ * e1000_release_nvm_generic - Release exclusive access to EEPROM
+ * @hw: pointer to the HW structure
+ *
+ * Stop any current commands to the EEPROM and clear the EEPROM request bit.
+ **/
+void e1000_release_nvm_generic(struct e1000_hw *hw)
+{
+ u32 eecd;
+
+ DEBUGFUNC("e1000_release_nvm_generic");
+
+ e1000_stop_nvm(hw);
+
+ eecd = E1000_READ_REG(hw, E1000_EECD);
+ eecd &= ~E1000_EECD_REQ;
+ E1000_WRITE_REG(hw, E1000_EECD, eecd);
+}
+
+/**
+ * e1000_ready_nvm_eeprom - Prepares EEPROM for read/write
+ * @hw: pointer to the HW structure
+ *
+ * Setups the EEPROM for reading and writing.
+ **/
+static s32 e1000_ready_nvm_eeprom(struct e1000_hw *hw)
+{
+ struct e1000_nvm_info *nvm = &hw->nvm;
+ u32 eecd = E1000_READ_REG(hw, E1000_EECD);
+ s32 ret_val = E1000_SUCCESS;
+ u16 timeout = 0;
+ u8 spi_stat_reg;
+
+ DEBUGFUNC("e1000_ready_nvm_eeprom");
+
+ if (nvm->type == e1000_nvm_eeprom_microwire) {
+ /* Clear SK and DI */
+ eecd &= ~(E1000_EECD_DI | E1000_EECD_SK);
+ E1000_WRITE_REG(hw, E1000_EECD, eecd);
+ /* Set CS */
+ eecd |= E1000_EECD_CS;
+ E1000_WRITE_REG(hw, E1000_EECD, eecd);
+ } else if (nvm->type == e1000_nvm_eeprom_spi) {
+ /* Clear SK and CS */
+ eecd &= ~(E1000_EECD_CS | E1000_EECD_SK);
+ E1000_WRITE_REG(hw, E1000_EECD, eecd);
+ usec_delay(1);
+ timeout = NVM_MAX_RETRY_SPI;
+
+ /*
+ * Read "Status Register" repeatedly until the LSB is cleared.
+ * The EEPROM will signal that the command has been completed
+ * by clearing bit 0 of the internal status register. If it's
+ * not cleared within 'timeout', then error out.
+ */
+ while (timeout) {
+ e1000_shift_out_eec_bits(hw, NVM_RDSR_OPCODE_SPI,
+ hw->nvm.opcode_bits);
+ spi_stat_reg = (u8)e1000_shift_in_eec_bits(hw, 8);
+ if (!(spi_stat_reg & NVM_STATUS_RDY_SPI))
+ break;
+
+ usec_delay(5);
+ e1000_standby_nvm(hw);
+ timeout--;
+ }
+
+ if (!timeout) {
+ DEBUGOUT("SPI NVM Status error\n");
+ ret_val = -E1000_ERR_NVM;
+ goto out;
+ }
+ }
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_read_nvm_spi - Read EEPROM's using SPI
+ * @hw: pointer to the HW structure
+ * @offset: offset of word in the EEPROM to read
+ * @words: number of words to read
+ * @data: word read from the EEPROM
+ *
+ * Reads a 16 bit word from the EEPROM.
+ **/
+s32 e1000_read_nvm_spi(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
+{
+ struct e1000_nvm_info *nvm = &hw->nvm;
+ u32 i = 0;
+ s32 ret_val;
+ u16 word_in;
+ u8 read_opcode = NVM_READ_OPCODE_SPI;
+
+ DEBUGFUNC("e1000_read_nvm_spi");
+
+ /*
+ * A check for invalid values: offset too large, too many words,
+ * and not enough words.
+ */
+ if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
+ (words == 0)) {
+ DEBUGOUT("nvm parameter(s) out of bounds\n");
+ ret_val = -E1000_ERR_NVM;
+ goto out;
+ }
+
+ ret_val = e1000_acquire_nvm(hw);
+ if (ret_val)
+ goto out;
+
+ ret_val = e1000_ready_nvm_eeprom(hw);
+ if (ret_val)
+ goto release;
+
+ e1000_standby_nvm(hw);
+
+ if ((nvm->address_bits == 8) && (offset >= 128))
+ read_opcode |= NVM_A8_OPCODE_SPI;
+
+ /* Send the READ command (opcode + addr) */
+ e1000_shift_out_eec_bits(hw, read_opcode, nvm->opcode_bits);
+ e1000_shift_out_eec_bits(hw, (u16)(offset*2), nvm->address_bits);
+
+ /*
+ * Read the data. SPI NVMs increment the address with each byte
+ * read and will roll over if reading beyond the end. This allows
+ * us to read the whole NVM from any offset
+ */
+ for (i = 0; i < words; i++) {
+ word_in = e1000_shift_in_eec_bits(hw, 16);
+ data[i] = (word_in >> 8) | (word_in << 8);
+ }
+
+release:
+ e1000_release_nvm(hw);
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_read_nvm_microwire - Reads EEPROM's using microwire
+ * @hw: pointer to the HW structure
+ * @offset: offset of word in the EEPROM to read
+ * @words: number of words to read
+ * @data: word read from the EEPROM
+ *
+ * Reads a 16 bit word from the EEPROM.
+ **/
+s32 e1000_read_nvm_microwire(struct e1000_hw *hw, u16 offset, u16 words,
+ u16 *data)
+{
+ struct e1000_nvm_info *nvm = &hw->nvm;
+ u32 i = 0;
+ s32 ret_val;
+ u8 read_opcode = NVM_READ_OPCODE_MICROWIRE;
+
+ DEBUGFUNC("e1000_read_nvm_microwire");
+
+ /*
+ * A check for invalid values: offset too large, too many words,
+ * and not enough words.
+ */
+ if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
+ (words == 0)) {
+ DEBUGOUT("nvm parameter(s) out of bounds\n");
+ ret_val = -E1000_ERR_NVM;
+ goto out;
+ }
+
+ ret_val = e1000_acquire_nvm(hw);
+ if (ret_val)
+ goto out;
+
+ ret_val = e1000_ready_nvm_eeprom(hw);
+ if (ret_val)
+ goto release;
+
+ for (i = 0; i < words; i++) {
+ /* Send the READ command (opcode + addr) */
+ e1000_shift_out_eec_bits(hw, read_opcode, nvm->opcode_bits);
+ e1000_shift_out_eec_bits(hw, (u16)(offset + i),
+ nvm->address_bits);
+
+ /*
+ * Read the data. For microwire, each word requires the
+ * overhead of setup and tear-down.
+ */
+ data[i] = e1000_shift_in_eec_bits(hw, 16);
+ e1000_standby_nvm(hw);
+ }
+
+release:
+ e1000_release_nvm(hw);
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_read_nvm_eerd - Reads EEPROM using EERD register
+ * @hw: pointer to the HW structure
+ * @offset: offset of word in the EEPROM to read
+ * @words: number of words to read
+ * @data: word read from the EEPROM
+ *
+ * Reads a 16 bit word from the EEPROM using the EERD register.
+ **/
+s32 e1000_read_nvm_eerd(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
+{
+ struct e1000_nvm_info *nvm = &hw->nvm;
+ u32 i, eerd = 0;
+ s32 ret_val = E1000_SUCCESS;
+
+ DEBUGFUNC("e1000_read_nvm_eerd");
+
+ /*
+ * A check for invalid values: offset too large, too many words,
+ * too many words for the offset, and not enough words.
+ */
+ if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
+ (words == 0)) {
+ DEBUGOUT("nvm parameter(s) out of bounds\n");
+ ret_val = -E1000_ERR_NVM;
+ goto out;
+ }
+
+ for (i = 0; i < words; i++) {
+ eerd = ((offset+i) << E1000_NVM_RW_ADDR_SHIFT) +
+ E1000_NVM_RW_REG_START;
+
+ E1000_WRITE_REG(hw, E1000_EERD, eerd);
+ ret_val = e1000_poll_eerd_eewr_done(hw, E1000_NVM_POLL_READ);
+ if (ret_val)
+ break;
+
+ data[i] = (E1000_READ_REG(hw, E1000_EERD) >>
+ E1000_NVM_RW_REG_DATA);
+ }
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_write_nvm_spi - Write to EEPROM using SPI
+ * @hw: pointer to the HW structure
+ * @offset: offset within the EEPROM to be written to
+ * @words: number of words to write
+ * @data: 16 bit word(s) to be written to the EEPROM
+ *
+ * Writes data to EEPROM at offset using SPI interface.
+ *
+ * If e1000_update_nvm_checksum is not called after this function , the
+ * EEPROM will most likley contain an invalid checksum.
+ **/
+s32 e1000_write_nvm_spi(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
+{
+ struct e1000_nvm_info *nvm = &hw->nvm;
+ s32 ret_val;
+ u16 widx = 0;
+
+ DEBUGFUNC("e1000_write_nvm_spi");
+
+ /*
+ * A check for invalid values: offset too large, too many words,
+ * and not enough words.
+ */
+ if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
+ (words == 0)) {
+ DEBUGOUT("nvm parameter(s) out of bounds\n");
+ ret_val = -E1000_ERR_NVM;
+ goto out;
+ }
+
+ ret_val = e1000_acquire_nvm(hw);
+ if (ret_val)
+ goto out;
+
+ msec_delay(10);
+
+ while (widx < words) {
+ u8 write_opcode = NVM_WRITE_OPCODE_SPI;
+
+ ret_val = e1000_ready_nvm_eeprom(hw);
+ if (ret_val)
+ goto release;
+
+ e1000_standby_nvm(hw);
+
+ /* Send the WRITE ENABLE command (8 bit opcode) */
+ e1000_shift_out_eec_bits(hw, NVM_WREN_OPCODE_SPI,
+ nvm->opcode_bits);
+
+ e1000_standby_nvm(hw);
+
+ /*
+ * Some SPI eeproms use the 8th address bit embedded in the
+ * opcode
+ */
+ if ((nvm->address_bits == 8) && (offset >= 128))
+ write_opcode |= NVM_A8_OPCODE_SPI;
+
+ /* Send the Write command (8-bit opcode + addr) */
+ e1000_shift_out_eec_bits(hw, write_opcode, nvm->opcode_bits);
+ e1000_shift_out_eec_bits(hw, (u16)((offset + widx) * 2),
+ nvm->address_bits);
+
+ /* Loop to allow for up to whole page write of eeprom */
+ while (widx < words) {
+ u16 word_out = data[widx];
+ word_out = (word_out >> 8) | (word_out << 8);
+ e1000_shift_out_eec_bits(hw, word_out, 16);
+ widx++;
+
+ if ((((offset + widx) * 2) % nvm->page_size) == 0) {
+ e1000_standby_nvm(hw);
+ break;
+ }
+ }
+ }
+
+ msec_delay(10);
+release:
+ e1000_release_nvm(hw);
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_write_nvm_microwire - Writes EEPROM using microwire
+ * @hw: pointer to the HW structure
+ * @offset: offset within the EEPROM to be written to
+ * @words: number of words to write
+ * @data: 16 bit word(s) to be written to the EEPROM
+ *
+ * Writes data to EEPROM at offset using microwire interface.
+ *
+ * If e1000_update_nvm_checksum is not called after this function , the
+ * EEPROM will most likley contain an invalid checksum.
+ **/
+s32 e1000_write_nvm_microwire(struct e1000_hw *hw, u16 offset, u16 words,
+ u16 *data)
+{
+ struct e1000_nvm_info *nvm = &hw->nvm;
+ s32 ret_val;
+ u32 eecd;
+ u16 words_written = 0;
+ u16 widx = 0;
+
+ DEBUGFUNC("e1000_write_nvm_microwire");
+
+ /*
+ * A check for invalid values: offset too large, too many words,
+ * and not enough words.
+ */
+ if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
+ (words == 0)) {
+ DEBUGOUT("nvm parameter(s) out of bounds\n");
+ ret_val = -E1000_ERR_NVM;
+ goto out;
+ }
+
+ ret_val = e1000_acquire_nvm(hw);
+ if (ret_val)
+ goto out;
+
+ ret_val = e1000_ready_nvm_eeprom(hw);
+ if (ret_val)
+ goto release;
+
+ e1000_shift_out_eec_bits(hw, NVM_EWEN_OPCODE_MICROWIRE,
+ (u16)(nvm->opcode_bits + 2));
+
+ e1000_shift_out_eec_bits(hw, 0, (u16)(nvm->address_bits - 2));
+
+ e1000_standby_nvm(hw);
+
+ while (words_written < words) {
+ e1000_shift_out_eec_bits(hw, NVM_WRITE_OPCODE_MICROWIRE,
+ nvm->opcode_bits);
+
+ e1000_shift_out_eec_bits(hw, (u16)(offset + words_written),
+ nvm->address_bits);
+
+ e1000_shift_out_eec_bits(hw, data[words_written], 16);
+
+ e1000_standby_nvm(hw);
+
+ for (widx = 0; widx < 200; widx++) {
+ eecd = E1000_READ_REG(hw, E1000_EECD);
+ if (eecd & E1000_EECD_DO)
+ break;
+ usec_delay(50);
+ }
+
+ if (widx == 200) {
+ DEBUGOUT("NVM Write did not complete\n");
+ ret_val = -E1000_ERR_NVM;
+ goto release;
+ }
+
+ e1000_standby_nvm(hw);
+
+ words_written++;
+ }
+
+ e1000_shift_out_eec_bits(hw, NVM_EWDS_OPCODE_MICROWIRE,
+ (u16)(nvm->opcode_bits + 2));
+
+ e1000_shift_out_eec_bits(hw, 0, (u16)(nvm->address_bits - 2));
+
+release:
+ e1000_release_nvm(hw);
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_read_pba_num_generic - Read device part number
+ * @hw: pointer to the HW structure
+ * @pba_num: pointer to device part number
+ *
+ * Reads the product board assembly (PBA) number from the EEPROM and stores
+ * the value in pba_num.
+ **/
+s32 e1000_read_pba_num_generic(struct e1000_hw *hw, u32 *pba_num)
+{
+ s32 ret_val;
+ u16 nvm_data;
+
+ DEBUGFUNC("e1000_read_pba_num_generic");
+
+ ret_val = e1000_read_nvm(hw, NVM_PBA_OFFSET_0, 1, &nvm_data);
+ if (ret_val) {
+ DEBUGOUT("NVM Read Error\n");
+ goto out;
+ }
+ *pba_num = (u32)(nvm_data << 16);
+
+ ret_val = e1000_read_nvm(hw, NVM_PBA_OFFSET_1, 1, &nvm_data);
+ if (ret_val) {
+ DEBUGOUT("NVM Read Error\n");
+ goto out;
+ }
+ *pba_num |= nvm_data;
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_read_mac_addr_generic - Read device MAC address
+ * @hw: pointer to the HW structure
+ *
+ * Reads the device MAC address from the EEPROM and stores the value.
+ * Since devices with two ports use the same EEPROM, we increment the
+ * last bit in the MAC address for the second port.
+ **/
+s32 e1000_read_mac_addr_generic(struct e1000_hw *hw)
+{
+ s32 ret_val = E1000_SUCCESS;
+ u16 offset, nvm_data, i;
+
+ DEBUGFUNC("e1000_read_mac_addr");
+
+ for (i = 0; i < ETH_ADDR_LEN; i += 2) {
+ offset = i >> 1;
+ ret_val = e1000_read_nvm(hw, offset, 1, &nvm_data);
+ if (ret_val) {
+ DEBUGOUT("NVM Read Error\n");
+ goto out;
+ }
+ hw->mac.perm_addr[i] = (u8)(nvm_data & 0xFF);
+ hw->mac.perm_addr[i+1] = (u8)(nvm_data >> 8);
+ }
+
+ /* Flip last bit of mac address if we're on second port */
+ if (hw->bus.func == E1000_FUNC_1)
+ hw->mac.perm_addr[5] ^= 1;
+
+ for (i = 0; i < ETH_ADDR_LEN; i++)
+ hw->mac.addr[i] = hw->mac.perm_addr[i];
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_validate_nvm_checksum_generic - Validate EEPROM checksum
+ * @hw: pointer to the HW structure
+ *
+ * Calculates the EEPROM checksum by reading/adding each word of the EEPROM
+ * and then verifies that the sum of the EEPROM is equal to 0xBABA.
+ **/
+s32 e1000_validate_nvm_checksum_generic(struct e1000_hw *hw)
+{
+ s32 ret_val = E1000_SUCCESS;
+ u16 checksum = 0;
+ u16 i, nvm_data;
+
+ DEBUGFUNC("e1000_validate_nvm_checksum_generic");
+
+ for (i = 0; i < (NVM_CHECKSUM_REG + 1); i++) {
+ ret_val = e1000_read_nvm(hw, i, 1, &nvm_data);
+ if (ret_val) {
+ DEBUGOUT("NVM Read Error\n");
+ goto out;
+ }
+ checksum += nvm_data;
+ }
+
+ if (checksum != (u16) NVM_SUM) {
+ DEBUGOUT("NVM Checksum Invalid\n");
+ ret_val = -E1000_ERR_NVM;
+ goto out;
+ }
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_update_nvm_checksum_generic - Update EEPROM checksum
+ * @hw: pointer to the HW structure
+ *
+ * Updates the EEPROM checksum by reading/adding each word of the EEPROM
+ * up to the checksum. Then calculates the EEPROM checksum and writes the
+ * value to the EEPROM.
+ **/
+s32 e1000_update_nvm_checksum_generic(struct e1000_hw *hw)
+{
+ s32 ret_val;
+ u16 checksum = 0;
+ u16 i, nvm_data;
+
+ DEBUGFUNC("e1000_update_nvm_checksum");
+
+ for (i = 0; i < NVM_CHECKSUM_REG; i++) {
+ ret_val = e1000_read_nvm(hw, i, 1, &nvm_data);
+ if (ret_val) {
+ DEBUGOUT("NVM Read Error while updating checksum.\n");
+ goto out;
+ }
+ checksum += nvm_data;
+ }
+ checksum = (u16) NVM_SUM - checksum;
+ ret_val = e1000_write_nvm(hw, NVM_CHECKSUM_REG, 1, &checksum);
+ if (ret_val) {
+ DEBUGOUT("NVM Write Error while updating checksum.\n");
+ }
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_reload_nvm_generic - Reloads EEPROM
+ * @hw: pointer to the HW structure
+ *
+ * Reloads the EEPROM by setting the "Reinitialize from EEPROM" bit in the
+ * extended control register.
+ **/
+void e1000_reload_nvm_generic(struct e1000_hw *hw)
+{
+ u32 ctrl_ext;
+
+ DEBUGFUNC("e1000_reload_nvm_generic");
+
+ usec_delay(10);
+ ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
+ ctrl_ext |= E1000_CTRL_EXT_EE_RST;
+ E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
+ E1000_WRITE_FLUSH(hw);
+}
+
+/* Function pointers local to this file and not intended for public use */
+
+/**
+ * e1000_acquire_nvm - Acquire exclusive access to EEPROM
+ * @hw: pointer to the HW structure
+ *
+ * For those silicon families which have implemented a NVM acquire function,
+ * run the defined function else return success.
+ **/
+s32 e1000_acquire_nvm(struct e1000_hw *hw)
+{
+ if (hw->func.acquire_nvm)
+ return hw->func.acquire_nvm(hw);
+
+ return E1000_SUCCESS;
+}
+
+/**
+ * e1000_release_nvm - Release exclusive access to EEPROM
+ * @hw: pointer to the HW structure
+ *
+ * For those silicon families which have implemented a NVM release function,
+ * run the defined fucntion else return success.
+ **/
+void e1000_release_nvm(struct e1000_hw *hw)
+{
+ if (hw->func.release_nvm)
+ hw->func.release_nvm(hw);
+}
+
--- /dev/null
+++ sys/dev/em/e1000_ich8lan.c
@@ -0,0 +1,2590 @@
+/*******************************************************************************
+
+ Copyright (c) 2001-2007, Intel Corporation
+ All rights reserved.
+
+ Redistribution and use in source and binary forms, with or without
+ modification, are permitted provided that the following conditions are met:
+
+ 1. Redistributions of source code must retain the above copyright notice,
+ this list of conditions and the following disclaimer.
+
+ 2. Redistributions in binary form must reproduce the above copyright
+ notice, this list of conditions and the following disclaimer in the
+ documentation and/or other materials provided with the distribution.
+
+ 3. Neither the name of the Intel Corporation nor the names of its
+ contributors may be used to endorse or promote products derived from
+ this software without specific prior written permission.
+
+ THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
+ AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+ IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
+ LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
+ CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
+ SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
+ INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
+ CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
+ ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
+ POSSIBILITY OF SUCH DAMAGE.
+
+*******************************************************************************/
+/* $FreeBSD: src/sys/dev/em/e1000_ich8lan.c,v 1.3.4.1 2007/11/28 23:24:37 jfv Exp $ */
+
+
+/* e1000_ich8lan
+ * e1000_ich9lan
+ */
+
+#include "e1000_api.h"
+#include "e1000_ich8lan.h"
+
+void e1000_init_function_pointers_ich8lan(struct e1000_hw *hw);
+
+STATIC s32 e1000_init_phy_params_ich8lan(struct e1000_hw *hw);
+STATIC s32 e1000_init_nvm_params_ich8lan(struct e1000_hw *hw);
+STATIC s32 e1000_init_mac_params_ich8lan(struct e1000_hw *hw);
+STATIC s32 e1000_acquire_swflag_ich8lan(struct e1000_hw *hw);
+STATIC void e1000_release_swflag_ich8lan(struct e1000_hw *hw);
+STATIC bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw);
+STATIC s32 e1000_check_polarity_ife_ich8lan(struct e1000_hw *hw);
+STATIC s32 e1000_check_reset_block_ich8lan(struct e1000_hw *hw);
+STATIC s32 e1000_phy_force_speed_duplex_ich8lan(struct e1000_hw *hw);
+STATIC s32 e1000_phy_hw_reset_ich8lan(struct e1000_hw *hw);
+STATIC s32 e1000_get_phy_info_ich8lan(struct e1000_hw *hw);
+STATIC s32 e1000_set_d0_lplu_state_ich8lan(struct e1000_hw *hw,
+ bool active);
+STATIC s32 e1000_set_d3_lplu_state_ich8lan(struct e1000_hw *hw,
+ bool active);
+STATIC s32 e1000_read_nvm_ich8lan(struct e1000_hw *hw, u16 offset,
+ u16 words, u16 *data);
+STATIC s32 e1000_write_nvm_ich8lan(struct e1000_hw *hw, u16 offset,
+ u16 words, u16 *data);
+STATIC s32 e1000_validate_nvm_checksum_ich8lan(struct e1000_hw *hw);
+STATIC s32 e1000_update_nvm_checksum_ich8lan(struct e1000_hw *hw);
+STATIC s32 e1000_valid_led_default_ich8lan(struct e1000_hw *hw,
+ u16 *data);
+STATIC s32 e1000_get_bus_info_ich8lan(struct e1000_hw *hw);
+STATIC s32 e1000_reset_hw_ich8lan(struct e1000_hw *hw);
+STATIC s32 e1000_init_hw_ich8lan(struct e1000_hw *hw);
+STATIC s32 e1000_setup_link_ich8lan(struct e1000_hw *hw);
+STATIC s32 e1000_setup_copper_link_ich8lan(struct e1000_hw *hw);
+STATIC s32 e1000_get_link_up_info_ich8lan(struct e1000_hw *hw,
+ u16 *speed, u16 *duplex);
+STATIC s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw);
+STATIC s32 e1000_led_on_ich8lan(struct e1000_hw *hw);
+STATIC s32 e1000_led_off_ich8lan(struct e1000_hw *hw);
+STATIC void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw);
+STATIC s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank);
+static s32 e1000_flash_cycle_ich8lan(struct e1000_hw *hw, u32 timeout);
+static s32 e1000_flash_cycle_init_ich8lan(struct e1000_hw *hw);
+static s32 e1000_get_phy_info_ife_ich8lan(struct e1000_hw *hw);
+static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw);
+static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw);
+static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
+ u8 size, u16* data);
+STATIC s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw,
+ u32 offset, u16 *data);
+static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
+ u32 offset, u8 byte);
+STATIC s32 e1000_write_flash_byte_ich8lan(struct e1000_hw *hw,
+ u32 offset, u8 data);
+static s32 e1000_write_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
+ u8 size, u16 data);
+STATIC s32 e1000_get_cfg_done_ich8lan(struct e1000_hw *hw);
+STATIC void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw);
+
+/* ICH GbE Flash Hardware Sequencing Flash Status Register bit breakdown */
+/* Offset 04h HSFSTS */
+union ich8_hws_flash_status {
+ struct ich8_hsfsts {
+ u16 flcdone :1; /* bit 0 Flash Cycle Done */
+ u16 flcerr :1; /* bit 1 Flash Cycle Error */
+ u16 dael :1; /* bit 2 Direct Access error Log */
+ u16 berasesz :2; /* bit 4:3 Sector Erase Size */
+ u16 flcinprog :1; /* bit 5 flash cycle in Progress */
+ u16 reserved1 :2; /* bit 13:6 Reserved */
+ u16 reserved2 :6; /* bit 13:6 Reserved */
+ u16 fldesvalid :1; /* bit 14 Flash Descriptor Valid */
+ u16 flockdn :1; /* bit 15 Flash Config Lock-Down */
+ } hsf_status;
+ u16 regval;
+};
+
+/* ICH GbE Flash Hardware Sequencing Flash control Register bit breakdown */
+/* Offset 06h FLCTL */
+union ich8_hws_flash_ctrl {
+ struct ich8_hsflctl {
+ u16 flcgo :1; /* 0 Flash Cycle Go */
+ u16 flcycle :2; /* 2:1 Flash Cycle */
+ u16 reserved :5; /* 7:3 Reserved */
+ u16 fldbcount :2; /* 9:8 Flash Data Byte Count */
+ u16 flockdn :6; /* 15:10 Reserved */
+ } hsf_ctrl;
+ u16 regval;
+};
+
+/* ICH Flash Region Access Permissions */
+union ich8_hws_flash_regacc {
+ struct ich8_flracc {
+ u32 grra :8; /* 0:7 GbE region Read Access */
+ u32 grwa :8; /* 8:15 GbE region Write Access */
+ u32 gmrag :8; /* 23:16 GbE Master Read Access Grant */
+ u32 gmwag :8; /* 31:24 GbE Master Write Access Grant */
+ } hsf_flregacc;
+ u16 regval;
+};
+
+struct e1000_shadow_ram {
+ u16 value;
+ bool modified;
+};
+
+struct e1000_dev_spec_ich8lan {
+ bool kmrn_lock_loss_workaround_enabled;
+ struct e1000_shadow_ram shadow_ram[E1000_SHADOW_RAM_WORDS];
+};
+
+/**
+ * e1000_init_phy_params_ich8lan - Initialize PHY function pointers
+ * @hw: pointer to the HW structure
+ *
+ * Initialize family-specific PHY parameters and function pointers.
+ **/
+STATIC s32 e1000_init_phy_params_ich8lan(struct e1000_hw *hw)
+{
+ struct e1000_phy_info *phy = &hw->phy;
+ struct e1000_functions *func = &hw->func;
+ s32 ret_val = E1000_SUCCESS;
+ u16 i = 0;
+
+ DEBUGFUNC("e1000_init_phy_params_ich8lan");
+
+ phy->addr = 1;
+ phy->reset_delay_us = 100;
+
+ func->acquire_phy = e1000_acquire_swflag_ich8lan;
+ func->check_polarity = e1000_check_polarity_ife_ich8lan;
+ func->check_reset_block = e1000_check_reset_block_ich8lan;
+ func->force_speed_duplex = e1000_phy_force_speed_duplex_ich8lan;
+ func->get_cable_length = e1000_get_cable_length_igp_2;
+ func->get_cfg_done = e1000_get_cfg_done_ich8lan;
+ func->get_phy_info = e1000_get_phy_info_ich8lan;
+ func->read_phy_reg = e1000_read_phy_reg_igp;
+ func->release_phy = e1000_release_swflag_ich8lan;
+ func->reset_phy = e1000_phy_hw_reset_ich8lan;
+ func->set_d0_lplu_state = e1000_set_d0_lplu_state_ich8lan;
+ func->set_d3_lplu_state = e1000_set_d3_lplu_state_ich8lan;
+ func->write_phy_reg = e1000_write_phy_reg_igp;
+ func->power_up_phy = e1000_power_up_phy_copper;
+ func->power_down_phy = e1000_power_down_phy_copper_ich8lan;
+
+
+ phy->id = 0;
+ while ((e1000_phy_unknown == e1000_get_phy_type_from_id(phy->id)) &&
+ (i++ < 100)) {
+ msec_delay(1);
+ ret_val = e1000_get_phy_id(hw);
+ if (ret_val)
+ goto out;
+ }
+
+ /* Verify phy id */
+ switch (phy->id) {
+ case IGP03E1000_E_PHY_ID:
+ phy->type = e1000_phy_igp_3;
+ phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
+ break;
+ case IFE_E_PHY_ID:
+ case IFE_PLUS_E_PHY_ID:
+ case IFE_C_E_PHY_ID:
+ phy->type = e1000_phy_ife;
+ phy->autoneg_mask = E1000_ALL_NOT_GIG;
+ break;
+ default:
+ ret_val = -E1000_ERR_PHY;
+ goto out;
+ }
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_init_nvm_params_ich8lan - Initialize NVM function pointers
+ * @hw: pointer to the HW structure
+ *
+ * Initialize family-specific NVM parameters and function
+ * pointers.
+ **/
+STATIC s32 e1000_init_nvm_params_ich8lan(struct e1000_hw *hw)
+{
+ struct e1000_nvm_info *nvm = &hw->nvm;
+ struct e1000_functions *func = &hw->func;
+ struct e1000_dev_spec_ich8lan *dev_spec;
+ u32 gfpreg, sector_base_addr, sector_end_addr;
+ s32 ret_val = E1000_SUCCESS;
+ u16 i;
+
+ DEBUGFUNC("e1000_init_nvm_params_ich8lan");
+
+ /* Can't read flash registers if the register set isn't mapped. */
+ if (!hw->flash_address) {
+ DEBUGOUT("ERROR: Flash registers not mapped\n");
+ ret_val = -E1000_ERR_CONFIG;
+ goto out;
+ }
+
+ nvm->type = e1000_nvm_flash_sw;
+
+ gfpreg = E1000_READ_FLASH_REG(hw, ICH_FLASH_GFPREG);
+
+ /*
+ * sector_X_addr is a "sector"-aligned address (4096 bytes)
+ * Add 1 to sector_end_addr since this sector is included in
+ * the overall size.
+ */
+ sector_base_addr = gfpreg & FLASH_GFPREG_BASE_MASK;
+ sector_end_addr = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK) + 1;
+
+ /* flash_base_addr is byte-aligned */
+ nvm->flash_base_addr = sector_base_addr << FLASH_SECTOR_ADDR_SHIFT;
+
+ /*
+ * find total size of the NVM, then cut in half since the total
+ * size represents two separate NVM banks.
+ */
+ nvm->flash_bank_size = (sector_end_addr - sector_base_addr)
+ << FLASH_SECTOR_ADDR_SHIFT;
+ nvm->flash_bank_size /= 2;
+ /* Adjust to word count */
+ nvm->flash_bank_size /= sizeof(u16);
+
+ nvm->word_size = E1000_SHADOW_RAM_WORDS;
+
+ dev_spec = (struct e1000_dev_spec_ich8lan *)hw->dev_spec;
+
+ if (!dev_spec) {
+ DEBUGOUT("dev_spec pointer is set to NULL.\n");
+ ret_val = -E1000_ERR_CONFIG;
+ goto out;
+ }
+
+ /* Clear shadow ram */
+ for (i = 0; i < nvm->word_size; i++) {
+ dev_spec->shadow_ram[i].modified = FALSE;
+ dev_spec->shadow_ram[i].value = 0xFFFF;
+ }
+
+ /* Function Pointers */
+ func->acquire_nvm = e1000_acquire_swflag_ich8lan;
+ func->read_nvm = e1000_read_nvm_ich8lan;
+ func->release_nvm = e1000_release_swflag_ich8lan;
+ func->update_nvm = e1000_update_nvm_checksum_ich8lan;
+ func->valid_led_default = e1000_valid_led_default_ich8lan;
+ func->validate_nvm = e1000_validate_nvm_checksum_ich8lan;
+ func->write_nvm = e1000_write_nvm_ich8lan;
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_init_mac_params_ich8lan - Initialize MAC function pointers
+ * @hw: pointer to the HW structure
+ *
+ * Initialize family-specific MAC parameters and function
+ * pointers.
+ **/
+STATIC s32 e1000_init_mac_params_ich8lan(struct e1000_hw *hw)
+{
+ struct e1000_mac_info *mac = &hw->mac;
+ struct e1000_functions *func = &hw->func;
+ s32 ret_val = E1000_SUCCESS;
+
+ DEBUGFUNC("e1000_init_mac_params_ich8lan");
+
+ /* Set media type function pointer */
+ hw->phy.media_type = e1000_media_type_copper;
+
+ /* Set mta register count */
+ mac->mta_reg_count = 32;
+ /* Set rar entry count */
+ mac->rar_entry_count = E1000_ICH_RAR_ENTRIES;
+ if (mac->type == e1000_ich8lan)
+ mac->rar_entry_count--;
+ /* Set if part includes ASF firmware */
+ mac->asf_firmware_present = TRUE;
+ /* Set if manageability features are enabled. */
+ mac->arc_subsystem_valid = TRUE;
+
+ /* Function pointers */
+
+ /* bus type/speed/width */
+ func->get_bus_info = e1000_get_bus_info_ich8lan;
+ /* reset */
+ func->reset_hw = e1000_reset_hw_ich8lan;
+ /* hw initialization */
+ func->init_hw = e1000_init_hw_ich8lan;
+ /* link setup */
+ func->setup_link = e1000_setup_link_ich8lan;
+ /* physical interface setup */
+ func->setup_physical_interface = e1000_setup_copper_link_ich8lan;
+ /* check for link */
+ func->check_for_link = e1000_check_for_copper_link_generic;
+ /* check management mode */
+ func->check_mng_mode = e1000_check_mng_mode_ich8lan;
+ /* link info */
+ func->get_link_up_info = e1000_get_link_up_info_ich8lan;
+ /* multicast address update */
+ func->update_mc_addr_list = e1000_update_mc_addr_list_generic;
+ /* setting MTA */
+ func->mta_set = e1000_mta_set_generic;
+ /* blink LED */
+ func->blink_led = e1000_blink_led_generic;
+ /* setup LED */
+ func->setup_led = e1000_setup_led_generic;
+ /* cleanup LED */
+ func->cleanup_led = e1000_cleanup_led_ich8lan;
+ /* turn on/off LED */
+ func->led_on = e1000_led_on_ich8lan;
+ func->led_off = e1000_led_off_ich8lan;
+ /* remove device */
+ func->remove_device = e1000_remove_device_generic;
+ /* clear hardware counters */
+ func->clear_hw_cntrs = e1000_clear_hw_cntrs_ich8lan;
+
+ hw->dev_spec_size = sizeof(struct e1000_dev_spec_ich8lan);
+
+ /* Device-specific structure allocation */
+ ret_val = e1000_alloc_zeroed_dev_spec_struct(hw, hw->dev_spec_size);
+ if (ret_val)
+ goto out;
+
+ /* Enable PCS Lock-loss workaround for ICH8 */
+ if (mac->type == e1000_ich8lan)
+ e1000_set_kmrn_lock_loss_workaround_ich8lan(hw, TRUE);
+
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_init_function_pointers_ich8lan - Initialize ICH8 function pointers
+ * @hw: pointer to the HW structure
+ *
+ * Initialize family-specific function pointers for PHY, MAC, and NVM.
+ **/
+void e1000_init_function_pointers_ich8lan(struct e1000_hw *hw)
+{
+ DEBUGFUNC("e1000_init_function_pointers_ich8lan");
+
+ hw->func.init_mac_params = e1000_init_mac_params_ich8lan;
+ hw->func.init_nvm_params = e1000_init_nvm_params_ich8lan;
+ hw->func.init_phy_params = e1000_init_phy_params_ich8lan;
+}
+
+/**
+ * e1000_acquire_swflag_ich8lan - Acquire software control flag
+ * @hw: pointer to the HW structure
+ *
+ * Acquires the software control flag for performing NVM and PHY
+ * operations. This is a function pointer entry point only called by
+ * read/write routines for the PHY and NVM parts.
+ **/
+STATIC s32 e1000_acquire_swflag_ich8lan(struct e1000_hw *hw)
+{
+ u32 extcnf_ctrl, timeout = PHY_CFG_TIMEOUT;
+ s32 ret_val = E1000_SUCCESS;
+
+ DEBUGFUNC("e1000_acquire_swflag_ich8lan");
+
+ while (timeout) {
+ extcnf_ctrl = E1000_READ_REG(hw, E1000_EXTCNF_CTRL);
+ extcnf_ctrl |= E1000_EXTCNF_CTRL_SWFLAG;
+ E1000_WRITE_REG(hw, E1000_EXTCNF_CTRL, extcnf_ctrl);
+
+ extcnf_ctrl = E1000_READ_REG(hw, E1000_EXTCNF_CTRL);
+ if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG)
+ break;
+ msec_delay_irq(1);
+ timeout--;
+ }
+
+ if (!timeout) {
+ DEBUGOUT("FW or HW has locked the resource for too long.\n");
+ extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
+ E1000_WRITE_REG(hw, E1000_EXTCNF_CTRL, extcnf_ctrl);
+ ret_val = -E1000_ERR_CONFIG;
+ goto out;
+ }
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_release_swflag_ich8lan - Release software control flag
+ * @hw: pointer to the HW structure
+ *
+ * Releases the software control flag for performing NVM and PHY operations.
+ * This is a function pointer entry point only called by read/write
+ * routines for the PHY and NVM parts.
+ **/
+STATIC void e1000_release_swflag_ich8lan(struct e1000_hw *hw)
+{
+ u32 extcnf_ctrl;
+
+ DEBUGFUNC("e1000_release_swflag_ich8lan");
+
+ extcnf_ctrl = E1000_READ_REG(hw, E1000_EXTCNF_CTRL);
+ extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
+ E1000_WRITE_REG(hw, E1000_EXTCNF_CTRL, extcnf_ctrl);
+
+ return;
+}
+
+/**
+ * e1000_check_mng_mode_ich8lan - Checks management mode
+ * @hw: pointer to the HW structure
+ *
+ * This checks if the adapter has manageability enabled.
+ * This is a function pointer entry point only called by read/write
+ * routines for the PHY and NVM parts.
+ **/
+STATIC bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw)
+{
+ u32 fwsm;
+
+ DEBUGFUNC("e1000_check_mng_mode_ich8lan");
+
+ fwsm = E1000_READ_REG(hw, E1000_FWSM);
+
+ return ((fwsm & E1000_FWSM_MODE_MASK) ==
+ (E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT));
+}
+
+/**
+ * e1000_check_reset_block_ich8lan - Check if PHY reset is blocked
+ * @hw: pointer to the HW structure
+ *
+ * Checks if firmware is blocking the reset of the PHY.
+ * This is a function pointer entry point only called by
+ * reset routines.
+ **/
+STATIC s32 e1000_check_reset_block_ich8lan(struct e1000_hw *hw)
+{
+ u32 fwsm;
+
+ DEBUGFUNC("e1000_check_reset_block_ich8lan");
+
+ fwsm = E1000_READ_REG(hw, E1000_FWSM);
+
+ return (fwsm & E1000_ICH_FWSM_RSPCIPHY) ? E1000_SUCCESS
+ : E1000_BLK_PHY_RESET;
+}
+
+/**
+ * e1000_phy_force_speed_duplex_ich8lan - Force PHY speed & duplex
+ * @hw: pointer to the HW structure
+ *
+ * Forces the speed and duplex settings of the PHY.
+ * This is a function pointer entry point only called by
+ * PHY setup routines.
+ **/
+STATIC s32 e1000_phy_force_speed_duplex_ich8lan(struct e1000_hw *hw)
+{
+ struct e1000_phy_info *phy = &hw->phy;
+ s32 ret_val;
+ u16 data;
+ bool link;
+
+ DEBUGFUNC("e1000_phy_force_speed_duplex_ich8lan");
+
+ if (phy->type != e1000_phy_ife) {
+ ret_val = e1000_phy_force_speed_duplex_igp(hw);
+ goto out;
+ }
+
+ ret_val = e1000_read_phy_reg(hw, PHY_CONTROL, &data);
+ if (ret_val)
+ goto out;
+
+ e1000_phy_force_speed_duplex_setup(hw, &data);
+
+ ret_val = e1000_write_phy_reg(hw, PHY_CONTROL, data);
+ if (ret_val)
+ goto out;
+
+ /* Disable MDI-X support for 10/100 */
+ ret_val = e1000_read_phy_reg(hw, IFE_PHY_MDIX_CONTROL, &data);
+ if (ret_val)
+ goto out;
+
+ data &= ~IFE_PMC_AUTO_MDIX;
+ data &= ~IFE_PMC_FORCE_MDIX;
+
+ ret_val = e1000_write_phy_reg(hw, IFE_PHY_MDIX_CONTROL, data);
+ if (ret_val)
+ goto out;
+
+ DEBUGOUT1("IFE PMC: %X\n", data);
+
+ usec_delay(1);
+
+ if (phy->autoneg_wait_to_complete) {
+ DEBUGOUT("Waiting for forced speed/duplex link on IFE phy.\n");
+
+ ret_val = e1000_phy_has_link_generic(hw,
+ PHY_FORCE_LIMIT,
+ 100000,
+ &link);
+ if (ret_val)
+ goto out;
+
+ if (!link) {
+ DEBUGOUT("Link taking longer than expected.\n");
+ }
+
+ /* Try once more */
+ ret_val = e1000_phy_has_link_generic(hw,
+ PHY_FORCE_LIMIT,
+ 100000,
+ &link);
+ if (ret_val)
+ goto out;
+ }
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_phy_hw_reset_ich8lan - Performs a PHY reset
+ * @hw: pointer to the HW structure
+ *
+ * Resets the PHY
+ * This is a function pointer entry point called by drivers
+ * or other shared routines.
+ **/
+STATIC s32 e1000_phy_hw_reset_ich8lan(struct e1000_hw *hw)
+{
+ struct e1000_phy_info *phy = &hw->phy;
+ u32 i, data, cnf_size, cnf_base_addr, sw_cfg_mask;
+ s32 ret_val;
+ u16 loop = E1000_ICH8_LAN_INIT_TIMEOUT;
+ u16 word_addr, reg_data, reg_addr, phy_page = 0;
+
+ DEBUGFUNC("e1000_phy_hw_reset_ich8lan");
+
+ ret_val = e1000_phy_hw_reset_generic(hw);
+ if (ret_val)
+ goto out;
+
+ /*
+ * Initialize the PHY from the NVM on ICH platforms. This
+ * is needed due to an issue where the NVM configuration is
+ * not properly autoloaded after power transitions.
+ * Therefore, after each PHY reset, we will load the
+ * configuration data out of the NVM manually.
+ */
+ if (hw->mac.type == e1000_ich8lan && phy->type == e1000_phy_igp_3) {
+ /* Check if SW needs configure the PHY */
+ if ((hw->device_id == E1000_DEV_ID_ICH8_IGP_M_AMT) ||
+ (hw->device_id == E1000_DEV_ID_ICH8_IGP_M))
+ sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG_ICH8M;
+ else
+ sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG;
+
+ data = E1000_READ_REG(hw, E1000_FEXTNVM);
+ if (!(data & sw_cfg_mask))
+ goto out;
+
+ /* Wait for basic configuration completes before proceeding*/
+ do {
+ data = E1000_READ_REG(hw, E1000_STATUS);
+ data &= E1000_STATUS_LAN_INIT_DONE;
+ usec_delay(100);
+ } while ((!data) && --loop);
+
+ /*
+ * If basic configuration is incomplete before the above loop
+ * count reaches 0, loading the configuration from NVM will
+ * leave the PHY in a bad state possibly resulting in no link.
+ */
+ if (loop == 0) {
+ DEBUGOUT("LAN_INIT_DONE not set, increase timeout\n");
+ }
+
+ /* Clear the Init Done bit for the next init event */
+ data = E1000_READ_REG(hw, E1000_STATUS);
+ data &= ~E1000_STATUS_LAN_INIT_DONE;
+ E1000_WRITE_REG(hw, E1000_STATUS, data);
+
+ /*
+ * Make sure HW does not configure LCD from PHY
+ * extended configuration before SW configuration
+ */
+ data = E1000_READ_REG(hw, E1000_EXTCNF_CTRL);
+ if (data & E1000_EXTCNF_CTRL_LCD_WRITE_ENABLE)
+ goto out;
+
+ cnf_size = E1000_READ_REG(hw, E1000_EXTCNF_SIZE);
+ cnf_size &= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_MASK;
+ cnf_size >>= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_SHIFT;
+ if (!cnf_size)
+ goto out;
+
+ cnf_base_addr = data & E1000_EXTCNF_CTRL_EXT_CNF_POINTER_MASK;
+ cnf_base_addr >>= E1000_EXTCNF_CTRL_EXT_CNF_POINTER_SHIFT;
+
+ /*
+ * Configure LCD from extended configuration
+ * region.
+ */
+
+ /* cnf_base_addr is in DWORD */
+ word_addr = (u16)(cnf_base_addr << 1);
+
+ for (i = 0; i < cnf_size; i++) {
+ ret_val = e1000_read_nvm(hw,
+ (word_addr + i * 2),
+ 1,
+ ®_data);
+ if (ret_val)
+ goto out;
+
+ ret_val = e1000_read_nvm(hw,
+ (word_addr + i * 2 + 1),
+ 1,
+ ®_addr);
+ if (ret_val)
+ goto out;
+
+ /* Save off the PHY page for future writes. */
+ if (reg_addr == IGP01E1000_PHY_PAGE_SELECT) {
+ phy_page = reg_data;
+ continue;
+ }
+
+ reg_addr |= phy_page;
+
+ ret_val = e1000_write_phy_reg(hw,
+ (u32)reg_addr,
+ reg_data);
+ if (ret_val)
+ goto out;
+ }
+ }
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_get_phy_info_ich8lan - Calls appropriate PHY type get_phy_info
+ * @hw: pointer to the HW structure
+ *
+ * Wrapper for calling the get_phy_info routines for the appropriate phy type.
+ * This is a function pointer entry point called by drivers
+ * or other shared routines.
+ **/
+STATIC s32 e1000_get_phy_info_ich8lan(struct e1000_hw *hw)
+{
+ s32 ret_val = -E1000_ERR_PHY_TYPE;
+
+ DEBUGFUNC("e1000_get_phy_info_ich8lan");
+
+ switch (hw->phy.type) {
+ case e1000_phy_ife:
+ ret_val = e1000_get_phy_info_ife_ich8lan(hw);
+ break;
+ case e1000_phy_igp_3:
+ ret_val = e1000_get_phy_info_igp(hw);
+ break;
+ default:
+ break;
+ }
+
+ return ret_val;
+}
+
+/**
+ * e1000_get_phy_info_ife_ich8lan - Retrieves various IFE PHY states
+ * @hw: pointer to the HW structure
+ *
+ * Populates "phy" structure with various feature states.
+ * This function is only called by other family-specific
+ * routines.
+ **/
+static s32 e1000_get_phy_info_ife_ich8lan(struct e1000_hw *hw)
+{
+ struct e1000_phy_info *phy = &hw->phy;
+ s32 ret_val;
+ u16 data;
+ bool link;
+
+ DEBUGFUNC("e1000_get_phy_info_ife_ich8lan");
+
+ ret_val = e1000_phy_has_link_generic(hw, 1, 0, &link);
+ if (ret_val)
+ goto out;
+
+ if (!link) {
+ DEBUGOUT("Phy info is only valid if link is up\n");
+ ret_val = -E1000_ERR_CONFIG;
+ goto out;
+ }
+
+ ret_val = e1000_read_phy_reg(hw, IFE_PHY_SPECIAL_CONTROL, &data);
+ if (ret_val)
+ goto out;
+ phy->polarity_correction = (data & IFE_PSC_AUTO_POLARITY_DISABLE)
+ ? FALSE : TRUE;
+
+ if (phy->polarity_correction) {
+ ret_val = e1000_check_polarity_ife_ich8lan(hw);
+ if (ret_val)
+ goto out;
+ } else {
+ /* Polarity is forced */
+ phy->cable_polarity = (data & IFE_PSC_FORCE_POLARITY)
+ ? e1000_rev_polarity_reversed
+ : e1000_rev_polarity_normal;
+ }
+
+ ret_val = e1000_read_phy_reg(hw, IFE_PHY_MDIX_CONTROL, &data);
+ if (ret_val)
+ goto out;
+
+ phy->is_mdix = (data & IFE_PMC_MDIX_STATUS) ? TRUE : FALSE;
+
+ /* The following parameters are undefined for 10/100 operation. */
+ phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
+ phy->local_rx = e1000_1000t_rx_status_undefined;
+ phy->remote_rx = e1000_1000t_rx_status_undefined;
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_check_polarity_ife_ich8lan - Check cable polarity for IFE PHY
+ * @hw: pointer to the HW structure
+ *
+ * Polarity is determined on the polarity reveral feature being enabled.
+ * This function is only called by other family-specific
+ * routines.
+ **/
+STATIC s32 e1000_check_polarity_ife_ich8lan(struct e1000_hw *hw)
+{
+ struct e1000_phy_info *phy = &hw->phy;
+ s32 ret_val;
+ u16 phy_data, offset, mask;
+
+ DEBUGFUNC("e1000_check_polarity_ife_ich8lan");
+
+ /*
+ * Polarity is determined based on the reversal feature
+ * being enabled.
+ */
+ if (phy->polarity_correction) {
+ offset = IFE_PHY_EXTENDED_STATUS_CONTROL;
+ mask = IFE_PESC_POLARITY_REVERSED;
+ } else {
+ offset = IFE_PHY_SPECIAL_CONTROL;
+ mask = IFE_PSC_FORCE_POLARITY;
+ }
+
+ ret_val = e1000_read_phy_reg(hw, offset, &phy_data);
+
+ if (!ret_val)
+ phy->cable_polarity = (phy_data & mask)
+ ? e1000_rev_polarity_reversed
+ : e1000_rev_polarity_normal;
+
+ return ret_val;
+}
+
+/**
+ * e1000_set_d0_lplu_state_ich8lan - Set Low Power Linkup D0 state
+ * @hw: pointer to the HW structure
+ * @active: TRUE to enable LPLU, FALSE to disable
+ *
+ * Sets the LPLU D0 state according to the active flag. When
+ * activating LPLU this function also disables smart speed
+ * and vice versa. LPLU will not be activated unless the
+ * device autonegotiation advertisement meets standards of
+ * either 10 or 10/100 or 10/100/1000 at all duplexes.
+ * This is a function pointer entry point only called by
+ * PHY setup routines.
+ **/
+STATIC s32 e1000_set_d0_lplu_state_ich8lan(struct e1000_hw *hw,
+ bool active)
+{
+ struct e1000_phy_info *phy = &hw->phy;
+ u32 phy_ctrl;
+ s32 ret_val = E1000_SUCCESS;
+ u16 data;
+
+ DEBUGFUNC("e1000_set_d0_lplu_state_ich8lan");
+
+ if (phy->type == e1000_phy_ife)
+ goto out;
+
+ phy_ctrl = E1000_READ_REG(hw, E1000_PHY_CTRL);
+
+ if (active) {
+ phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU;
+ E1000_WRITE_REG(hw, E1000_PHY_CTRL, phy_ctrl);
+
+ /*
+ * Call gig speed drop workaround on LPLU before accessing
+ * any PHY registers
+ */
+ if ((hw->mac.type == e1000_ich8lan) &&
+ (hw->phy.type == e1000_phy_igp_3))
+ e1000_gig_downshift_workaround_ich8lan(hw);
+
+ /* When LPLU is enabled, we should disable SmartSpeed */
+ ret_val = e1000_read_phy_reg(hw,
+ IGP01E1000_PHY_PORT_CONFIG,
+ &data);
+ data &= ~IGP01E1000_PSCFR_SMART_SPEED;
+ ret_val = e1000_write_phy_reg(hw,
+ IGP01E1000_PHY_PORT_CONFIG,
+ data);
+ if (ret_val)
+ goto out;
+ } else {
+ phy_ctrl &= ~E1000_PHY_CTRL_D0A_LPLU;
+ E1000_WRITE_REG(hw, E1000_PHY_CTRL, phy_ctrl);
+
+ /*
+ * LPLU and SmartSpeed are mutually exclusive. LPLU is used
+ * during Dx states where the power conservation is most
+ * important. During driver activity we should enable
+ * SmartSpeed, so performance is maintained.
+ */
+ if (phy->smart_speed == e1000_smart_speed_on) {
+ ret_val = e1000_read_phy_reg(hw,
+ IGP01E1000_PHY_PORT_CONFIG,
+ &data);
+ if (ret_val)
+ goto out;
+
+ data |= IGP01E1000_PSCFR_SMART_SPEED;
+ ret_val = e1000_write_phy_reg(hw,
+ IGP01E1000_PHY_PORT_CONFIG,
+ data);
+ if (ret_val)
+ goto out;
+ } else if (phy->smart_speed == e1000_smart_speed_off) {
+ ret_val = e1000_read_phy_reg(hw,
+ IGP01E1000_PHY_PORT_CONFIG,
+ &data);
+ if (ret_val)
+ goto out;
+
+ data &= ~IGP01E1000_PSCFR_SMART_SPEED;
+ ret_val = e1000_write_phy_reg(hw,
+ IGP01E1000_PHY_PORT_CONFIG,
+ data);
+ if (ret_val)
+ goto out;
+ }
+ }
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_set_d3_lplu_state_ich8lan - Set Low Power Linkup D3 state
+ * @hw: pointer to the HW structure
+ * @active: TRUE to enable LPLU, FALSE to disable
+ *
+ * Sets the LPLU D3 state according to the active flag. When
+ * activating LPLU this function also disables smart speed
+ * and vice versa. LPLU will not be activated unless the
+ * device autonegotiation advertisement meets standards of
+ * either 10 or 10/100 or 10/100/1000 at all duplexes.
+ * This is a function pointer entry point only called by
+ * PHY setup routines.
+ **/
+STATIC s32 e1000_set_d3_lplu_state_ich8lan(struct e1000_hw *hw,
+ bool active)
+{
+ struct e1000_phy_info *phy = &hw->phy;
+ u32 phy_ctrl;
+ s32 ret_val = E1000_SUCCESS;
+ u16 data;
+
+ DEBUGFUNC("e1000_set_d3_lplu_state_ich8lan");
+
+ phy_ctrl = E1000_READ_REG(hw, E1000_PHY_CTRL);
+
+ if (!active) {
+ phy_ctrl &= ~E1000_PHY_CTRL_NOND0A_LPLU;
+ E1000_WRITE_REG(hw, E1000_PHY_CTRL, phy_ctrl);
+ /*
+ * LPLU and SmartSpeed are mutually exclusive. LPLU is used
+ * during Dx states where the power conservation is most
+ * important. During driver activity we should enable
+ * SmartSpeed, so performance is maintained.
+ */
+ if (phy->smart_speed == e1000_smart_speed_on) {
+ ret_val = e1000_read_phy_reg(hw,
+ IGP01E1000_PHY_PORT_CONFIG,
+ &data);
+ if (ret_val)
+ goto out;
+
+ data |= IGP01E1000_PSCFR_SMART_SPEED;
+ ret_val = e1000_write_phy_reg(hw,
+ IGP01E1000_PHY_PORT_CONFIG,
+ data);
+ if (ret_val)
+ goto out;
+ } else if (phy->smart_speed == e1000_smart_speed_off) {
+ ret_val = e1000_read_phy_reg(hw,
+ IGP01E1000_PHY_PORT_CONFIG,
+ &data);
+ if (ret_val)
+ goto out;
+
+ data &= ~IGP01E1000_PSCFR_SMART_SPEED;
+ ret_val = e1000_write_phy_reg(hw,
+ IGP01E1000_PHY_PORT_CONFIG,
+ data);
+ if (ret_val)
+ goto out;
+ }
+ } else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
+ (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
+ (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
+ phy_ctrl |= E1000_PHY_CTRL_NOND0A_LPLU;
+ E1000_WRITE_REG(hw, E1000_PHY_CTRL, phy_ctrl);
+
+ /*
+ * Call gig speed drop workaround on LPLU before accessing
+ * any PHY registers
+ */
+ if ((hw->mac.type == e1000_ich8lan) &&
+ (hw->phy.type == e1000_phy_igp_3))
+ e1000_gig_downshift_workaround_ich8lan(hw);
+
+ /* When LPLU is enabled, we should disable SmartSpeed */
+ ret_val = e1000_read_phy_reg(hw,
+ IGP01E1000_PHY_PORT_CONFIG,
+ &data);
+ if (ret_val)
+ goto out;
+
+ data &= ~IGP01E1000_PSCFR_SMART_SPEED;
+ ret_val = e1000_write_phy_reg(hw,
+ IGP01E1000_PHY_PORT_CONFIG,
+ data);
+ }
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_valid_nvm_bank_detect_ich8lan - finds out the valid bank 0 or 1
+ * @hw: pointer to the HW structure
+ * @bank: pointer to the variable that returns the active bank
+ *
+ * Reads signature byte from the NVM using the flash access registers.
+ **/
+STATIC s32 e1000_valid_nvm_bank_detect_ich8lan(struct e1000_hw *hw, u32 *bank)
+{
+ s32 ret_val = E1000_SUCCESS;
+ if (E1000_READ_REG(hw, E1000_EECD) & E1000_EECD_SEC1VAL)
+ *bank = 1;
+ else
+ *bank = 0;
+
+ return ret_val;
+}
+
+/**
+ * e1000_read_nvm_ich8lan - Read word(s) from the NVM
+ * @hw: pointer to the HW structure
+ * @offset: The offset (in bytes) of the word(s) to read.
+ * @words: Size of data to read in words
+ * @data: Pointer to the word(s) to read at offset.
+ *
+ * Reads a word(s) from the NVM using the flash access registers.
+ **/
+STATIC s32 e1000_read_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
+ u16 *data)
+{
+ struct e1000_nvm_info *nvm = &hw->nvm;
+ struct e1000_dev_spec_ich8lan *dev_spec;
+ u32 act_offset;
+ s32 ret_val = E1000_SUCCESS;
+ u32 bank = 0;
+ u16 i, word;
+
+ DEBUGFUNC("e1000_read_nvm_ich8lan");
+
+ dev_spec = (struct e1000_dev_spec_ich8lan *)hw->dev_spec;
+
+ if (!dev_spec) {
+ DEBUGOUT("dev_spec pointer is set to NULL.\n");
+ ret_val = -E1000_ERR_CONFIG;
+ goto out;
+ }
+
+ if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
+ (words == 0)) {
+ DEBUGOUT("nvm parameter(s) out of bounds\n");
+ ret_val = -E1000_ERR_NVM;
+ goto out;
+ }
+
+ ret_val = e1000_acquire_nvm(hw);
+ if (ret_val)
+ goto out;
+
+ ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
+ if (ret_val != E1000_SUCCESS)
+ goto out;
+
+ act_offset = (bank) ? nvm->flash_bank_size : 0;
+ act_offset += offset;
+
+ for (i = 0; i < words; i++) {
+ if ((dev_spec->shadow_ram) &&
+ (dev_spec->shadow_ram[offset+i].modified)) {
+ data[i] = dev_spec->shadow_ram[offset+i].value;
+ } else {
+ ret_val = e1000_read_flash_word_ich8lan(hw,
+ act_offset + i,
+ &word);
+ if (ret_val)
+ break;
+ data[i] = word;
+ }
+ }
+
+ e1000_release_nvm(hw);
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_flash_cycle_init_ich8lan - Initialize flash
+ * @hw: pointer to the HW structure
+ *
+ * This function does initial flash setup so that a new read/write/erase cycle
+ * can be started.
+ **/
+static s32 e1000_flash_cycle_init_ich8lan(struct e1000_hw *hw)
+{
+ union ich8_hws_flash_status hsfsts;
+ s32 ret_val = -E1000_ERR_NVM;
+ s32 i = 0;
+
+ DEBUGFUNC("e1000_flash_cycle_init_ich8lan");
+
+ hsfsts.regval = E1000_READ_FLASH_REG16(hw, ICH_FLASH_HSFSTS);
+
+ /* Check if the flash descriptor is valid */
+ if (hsfsts.hsf_status.fldesvalid == 0) {
+ DEBUGOUT("Flash descriptor invalid. "
+ "SW Sequencing must be used.");
+ goto out;
+ }
+
+ /* Clear FCERR and DAEL in hw status by writing 1 */
+ hsfsts.hsf_status.flcerr = 1;
+ hsfsts.hsf_status.dael = 1;
+
+ E1000_WRITE_FLASH_REG16(hw, ICH_FLASH_HSFSTS, hsfsts.regval);
+
+ /*
+ * Either we should have a hardware SPI cycle in progress
+ * bit to check against, in order to start a new cycle or
+ * FDONE bit should be changed in the hardware so that it
+ * is 1 after harware reset, which can then be used as an
+ * indication whether a cycle is in progress or has been
+ * completed.
+ */
+
+ if (hsfsts.hsf_status.flcinprog == 0) {
+ /*
+ * There is no cycle running at present,
+ * so we can start a cycle.
+ * Begin by setting Flash Cycle Done.
+ */
+ hsfsts.hsf_status.flcdone = 1;
+ E1000_WRITE_FLASH_REG16(hw, ICH_FLASH_HSFSTS, hsfsts.regval);
+ ret_val = E1000_SUCCESS;
+ } else {
+ /*
+ * Otherwise poll for sometime so the current
+ * cycle has a chance to end before giving up.
+ */
+ for (i = 0; i < ICH_FLASH_READ_COMMAND_TIMEOUT; i++) {
+ hsfsts.regval = E1000_READ_FLASH_REG16(hw,
+ ICH_FLASH_HSFSTS);
+ if (hsfsts.hsf_status.flcinprog == 0) {
+ ret_val = E1000_SUCCESS;
+ break;
+ }
+ usec_delay(1);
+ }
+ if (ret_val == E1000_SUCCESS) {
+ /*
+ * Successful in waiting for previous cycle to timeout,
+ * now set the Flash Cycle Done.
+ */
+ hsfsts.hsf_status.flcdone = 1;
+ E1000_WRITE_FLASH_REG16(hw,
+ ICH_FLASH_HSFSTS,
+ hsfsts.regval);
+ } else {
+ DEBUGOUT("Flash controller busy, cannot get access");
+ }
+ }
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_flash_cycle_ich8lan - Starts flash cycle (read/write/erase)
+ * @hw: pointer to the HW structure
+ * @timeout: maximum time to wait for completion
+ *
+ * This function starts a flash cycle and waits for its completion.
+ **/
+static s32 e1000_flash_cycle_ich8lan(struct e1000_hw *hw, u32 timeout)
+{
+ union ich8_hws_flash_ctrl hsflctl;
+ union ich8_hws_flash_status hsfsts;
+ s32 ret_val = -E1000_ERR_NVM;
+ u32 i = 0;
+
+ DEBUGFUNC("e1000_flash_cycle_ich8lan");
+
+ /* Start a cycle by writing 1 in Flash Cycle Go in Hw Flash Control */
+ hsflctl.regval = E1000_READ_FLASH_REG16(hw, ICH_FLASH_HSFCTL);
+ hsflctl.hsf_ctrl.flcgo = 1;
+ E1000_WRITE_FLASH_REG16(hw, ICH_FLASH_HSFCTL, hsflctl.regval);
+
+ /* wait till FDONE bit is set to 1 */
+ do {
+ hsfsts.regval = E1000_READ_FLASH_REG16(hw, ICH_FLASH_HSFSTS);
+ if (hsfsts.hsf_status.flcdone == 1)
+ break;
+ usec_delay(1);
+ } while (i++ < timeout);
+
+ if (hsfsts.hsf_status.flcdone == 1 && hsfsts.hsf_status.flcerr == 0)
+ ret_val = E1000_SUCCESS;
+
+ return ret_val;
+}
+
+/**
+ * e1000_read_flash_word_ich8lan - Read word from flash
+ * @hw: pointer to the HW structure
+ * @offset: offset to data location
+ * @data: pointer to the location for storing the data
+ *
+ * Reads the flash word at offset into data. Offset is converted
+ * to bytes before read.
+ **/
+STATIC s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset,
+ u16 *data)
+{
+ s32 ret_val;
+
+ DEBUGFUNC("e1000_read_flash_word_ich8lan");
+
+ if (!data) {
+ ret_val = -E1000_ERR_NVM;
+ goto out;
+ }
+
+ /* Must convert offset into bytes. */
+ offset <<= 1;
+
+ ret_val = e1000_read_flash_data_ich8lan(hw, offset, 2, data);
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_read_flash_data_ich8lan - Read byte or word from NVM
+ * @hw: pointer to the HW structure
+ * @offset: The offset (in bytes) of the byte or word to read.
+ * @size: Size of data to read, 1=byte 2=word
+ * @data: Pointer to the word to store the value read.
+ *
+ * Reads a byte or word from the NVM using the flash access registers.
+ **/
+static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
+ u8 size, u16* data)
+{
+ union ich8_hws_flash_status hsfsts;
+ union ich8_hws_flash_ctrl hsflctl;
+ u32 flash_linear_addr;
+ u32 flash_data = 0;
+ s32 ret_val = -E1000_ERR_NVM;
+ u8 count = 0;
+
+ DEBUGFUNC("e1000_read_flash_data_ich8lan");
+
+ if (size < 1 || size > 2 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
+ goto out;
+
+ flash_linear_addr = (ICH_FLASH_LINEAR_ADDR_MASK & offset) +
+ hw->nvm.flash_base_addr;
+
+ do {
+ usec_delay(1);
+ /* Steps */
+ ret_val = e1000_flash_cycle_init_ich8lan(hw);
+ if (ret_val != E1000_SUCCESS)
+ break;
+
+ hsflctl.regval = E1000_READ_FLASH_REG16(hw, ICH_FLASH_HSFCTL);
+ /* 0b/1b corresponds to 1 or 2 byte size, respectively. */
+ hsflctl.hsf_ctrl.fldbcount = size - 1;
+ hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_READ;
+ E1000_WRITE_FLASH_REG16(hw, ICH_FLASH_HSFCTL, hsflctl.regval);
+
+ E1000_WRITE_FLASH_REG(hw, ICH_FLASH_FADDR, flash_linear_addr);
+
+ ret_val = e1000_flash_cycle_ich8lan(hw,
+ ICH_FLASH_READ_COMMAND_TIMEOUT);
+
+ /*
+ * Check if FCERR is set to 1, if set to 1, clear it
+ * and try the whole sequence a few more times, else
+ * read in (shift in) the Flash Data0, the order is
+ * least significant byte first msb to lsb
+ */
+ if (ret_val == E1000_SUCCESS) {
+ flash_data = E1000_READ_FLASH_REG(hw, ICH_FLASH_FDATA0);
+ if (size == 1) {
+ *data = (u8)(flash_data & 0x000000FF);
+ } else if (size == 2) {
+ *data = (u16)(flash_data & 0x0000FFFF);
+ }
+ break;
+ } else {
+ /*
+ * If we've gotten here, then things are probably
+ * completely hosed, but if the error condition is
+ * detected, it won't hurt to give it another try...
+ * ICH_FLASH_CYCLE_REPEAT_COUNT times.
+ */
+ hsfsts.regval = E1000_READ_FLASH_REG16(hw,
+ ICH_FLASH_HSFSTS);
+ if (hsfsts.hsf_status.flcerr == 1) {
+ /* Repeat for some time before giving up. */
+ continue;
+ } else if (hsfsts.hsf_status.flcdone == 0) {
+ DEBUGOUT("Timeout error - flash cycle "
+ "did not complete.");
+ break;
+ }
+ }
+ } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_write_nvm_ich8lan - Write word(s) to the NVM
+ * @hw: pointer to the HW structure
+ * @offset: The offset (in bytes) of the word(s) to write.
+ * @words: Size of data to write in words
+ * @data: Pointer to the word(s) to write at offset.
+ *
+ * Writes a byte or word to the NVM using the flash access registers.
+ **/
+STATIC s32 e1000_write_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
+ u16 *data)
+{
+ struct e1000_nvm_info *nvm = &hw->nvm;
+ struct e1000_dev_spec_ich8lan *dev_spec;
+ s32 ret_val = E1000_SUCCESS;
+ u16 i;
+
+ DEBUGFUNC("e1000_write_nvm_ich8lan");
+
+ dev_spec = (struct e1000_dev_spec_ich8lan *)hw->dev_spec;
+
+ if (!dev_spec) {
+ DEBUGOUT("dev_spec pointer is set to NULL.\n");
+ ret_val = -E1000_ERR_CONFIG;
+ goto out;
+ }
+
+ if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
+ (words == 0)) {
+ DEBUGOUT("nvm parameter(s) out of bounds\n");
+ ret_val = -E1000_ERR_NVM;
+ goto out;
+ }
+
+ ret_val = e1000_acquire_nvm(hw);
+ if (ret_val)
+ goto out;
+
+ for (i = 0; i < words; i++) {
+ dev_spec->shadow_ram[offset+i].modified = TRUE;
+ dev_spec->shadow_ram[offset+i].value = data[i];
+ }
+
+ e1000_release_nvm(hw);
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_update_nvm_checksum_ich8lan - Update the checksum for NVM
+ * @hw: pointer to the HW structure
+ *
+ * The NVM checksum is updated by calling the generic update_nvm_checksum,
+ * which writes the checksum to the shadow ram. The changes in the shadow
+ * ram are then committed to the EEPROM by processing each bank at a time
+ * checking for the modified bit and writing only the pending changes.
+ * After a succesful commit, the shadow ram is cleared and is ready for
+ * future writes.
+ **/
+STATIC s32 e1000_update_nvm_checksum_ich8lan(struct e1000_hw *hw)
+{
+ struct e1000_nvm_info *nvm = &hw->nvm;
+ struct e1000_dev_spec_ich8lan *dev_spec;
+ u32 i, act_offset, new_bank_offset, old_bank_offset, bank;
+ s32 ret_val;
+ u16 data;
+
+ DEBUGFUNC("e1000_update_nvm_checksum_ich8lan");
+
+ dev_spec = (struct e1000_dev_spec_ich8lan *)hw->dev_spec;
+
+ ret_val = e1000_update_nvm_checksum_generic(hw);
+ if (ret_val)
+ goto out;
+
+ if (nvm->type != e1000_nvm_flash_sw)
+ goto out;
+
+ ret_val = e1000_acquire_nvm(hw);
+ if (ret_val)
+ goto out;
+
+ /*
+ * We're writing to the opposite bank so if we're on bank 1,
+ * write to bank 0 etc. We also need to erase the segment that
+ * is going to be written
+ */
+ ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
+ if (ret_val != E1000_SUCCESS)
+ goto out;
+
+ if (bank == 0) {
+ new_bank_offset = nvm->flash_bank_size;
+ old_bank_offset = 0;
+ e1000_erase_flash_bank_ich8lan(hw, 1);
+ } else {
+ old_bank_offset = nvm->flash_bank_size;
+ new_bank_offset = 0;
+ e1000_erase_flash_bank_ich8lan(hw, 0);
+ }
+
+ for (i = 0; i < E1000_SHADOW_RAM_WORDS; i++) {
+ /*
+ * Determine whether to write the value stored
+ * in the other NVM bank or a modified value stored
+ * in the shadow RAM
+ */
+ if (dev_spec->shadow_ram[i].modified) {
+ data = dev_spec->shadow_ram[i].value;
+ } else {
+ e1000_read_flash_word_ich8lan(hw,
+ i + old_bank_offset,
+ &data);
+ }
+
+ /*
+ * If the word is 0x13, then make sure the signature bits
+ * (15:14) are 11b until the commit has completed.
+ * This will allow us to write 10b which indicates the
+ * signature is valid. We want to do this after the write
+ * has completed so that we don't mark the segment valid
+ * while the write is still in progress
+ */
+ if (i == E1000_ICH_NVM_SIG_WORD)
+ data |= E1000_ICH_NVM_SIG_MASK;
+
+ /* Convert offset to bytes. */
+ act_offset = (i + new_bank_offset) << 1;
+
+ usec_delay(100);
+ /* Write the bytes to the new bank. */
+ ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
+ act_offset,
+ (u8)data);
+ if (ret_val)
+ break;
+
+ usec_delay(100);
+ ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
+ act_offset + 1,
+ (u8)(data >> 8));
+ if (ret_val)
+ break;
+ }
+
+ /*
+ * Don't bother writing the segment valid bits if sector
+ * programming failed.
+ */
+ if (ret_val) {
+ DEBUGOUT("Flash commit failed.\n");
+ e1000_release_nvm(hw);
+ goto out;
+ }
+
+ /*
+ * Finally validate the new segment by setting bit 15:14
+ * to 10b in word 0x13 , this can be done without an
+ * erase as well since these bits are 11 to start with
+ * and we need to change bit 14 to 0b
+ */
+ act_offset = new_bank_offset + E1000_ICH_NVM_SIG_WORD;
+ e1000_read_flash_word_ich8lan(hw, act_offset, &data);
+ data &= 0xBFFF;
+ ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
+ act_offset * 2 + 1,
+ (u8)(data >> 8));
+ if (ret_val) {
+ e1000_release_nvm(hw);
+ goto out;
+ }
+
+ /*
+ * And invalidate the previously valid segment by setting
+ * its signature word (0x13) high_byte to 0b. This can be
+ * done without an erase because flash erase sets all bits
+ * to 1's. We can write 1's to 0's without an erase
+ */
+ act_offset = (old_bank_offset + E1000_ICH_NVM_SIG_WORD) * 2 + 1;
+ ret_val = e1000_retry_write_flash_byte_ich8lan(hw, act_offset, 0);
+ if (ret_val) {
+ e1000_release_nvm(hw);
+ goto out;
+ }
+
+ /* Great! Everything worked, we can now clear the cached entries. */
+ for (i = 0; i < E1000_SHADOW_RAM_WORDS; i++) {
+ dev_spec->shadow_ram[i].modified = FALSE;
+ dev_spec->shadow_ram[i].value = 0xFFFF;
+ }
+
+ e1000_release_nvm(hw);
+
+ /*
+ * Reload the EEPROM, or else modifications will not appear
+ * until after the next adapter reset.
+ */
+ e1000_reload_nvm(hw);
+ msec_delay(10);
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_validate_nvm_checksum_ich8lan - Validate EEPROM checksum
+ * @hw: pointer to the HW structure
+ *
+ * Check to see if checksum needs to be fixed by reading bit 6 in word 0x19.
+ * If the bit is 0, that the EEPROM had been modified, but the checksum was not
+ * calculated, in which case we need to calculate the checksum and set bit 6.
+ **/
+STATIC s32 e1000_validate_nvm_checksum_ich8lan(struct e1000_hw *hw)
+{
+ s32 ret_val = E1000_SUCCESS;
+ u16 data;
+
+ DEBUGFUNC("e1000_validate_nvm_checksum_ich8lan");
+
+ /*
+ * Read 0x19 and check bit 6. If this bit is 0, the checksum
+ * needs to be fixed. This bit is an indication that the NVM
+ * was prepared by OEM software and did not calculate the
+ * checksum...a likely scenario.
+ */
+ ret_val = e1000_read_nvm(hw, 0x19, 1, &data);
+ if (ret_val)
+ goto out;
+
+ if ((data & 0x40) == 0) {
+ data |= 0x40;
+ ret_val = e1000_write_nvm(hw, 0x19, 1, &data);
+ if (ret_val)
+ goto out;
+ ret_val = e1000_update_nvm_checksum(hw);
+ if (ret_val)
+ goto out;
+ }
+
+ ret_val = e1000_validate_nvm_checksum_generic(hw);
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_write_flash_data_ich8lan - Writes bytes to the NVM
+ * @hw: pointer to the HW structure
+ * @offset: The offset (in bytes) of the byte/word to read.
+ * @size: Size of data to read, 1=byte 2=word
+ * @data: The byte(s) to write to the NVM.
+ *
+ * Writes one/two bytes to the NVM using the flash access registers.
+ **/
+static s32 e1000_write_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
+ u8 size, u16 data)
+{
+ union ich8_hws_flash_status hsfsts;
+ union ich8_hws_flash_ctrl hsflctl;
+ u32 flash_linear_addr;
+ u32 flash_data = 0;
+ s32 ret_val = -E1000_ERR_NVM;
+ u8 count = 0;
+
+ DEBUGFUNC("e1000_write_ich8_data");
+
+ if (size < 1 || size > 2 || data > size * 0xff ||
+ offset > ICH_FLASH_LINEAR_ADDR_MASK)
+ goto out;
+
+ flash_linear_addr = (ICH_FLASH_LINEAR_ADDR_MASK & offset) +
+ hw->nvm.flash_base_addr;
+
+ do {
+ usec_delay(1);
+ /* Steps */
+ ret_val = e1000_flash_cycle_init_ich8lan(hw);
+ if (ret_val != E1000_SUCCESS)
+ break;
+
+ hsflctl.regval = E1000_READ_FLASH_REG16(hw, ICH_FLASH_HSFCTL);
+ /* 0b/1b corresponds to 1 or 2 byte size, respectively. */
+ hsflctl.hsf_ctrl.fldbcount = size -1;
+ hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_WRITE;
+ E1000_WRITE_FLASH_REG16(hw, ICH_FLASH_HSFCTL, hsflctl.regval);
+
+ E1000_WRITE_FLASH_REG(hw, ICH_FLASH_FADDR, flash_linear_addr);
+
+ if (size == 1)
+ flash_data = (u32)data & 0x00FF;
+ else
+ flash_data = (u32)data;
+
+ E1000_WRITE_FLASH_REG(hw, ICH_FLASH_FDATA0, flash_data);
+
+ /*
+ * check if FCERR is set to 1 , if set to 1, clear it
+ * and try the whole sequence a few more times else done
+ */
+ ret_val = e1000_flash_cycle_ich8lan(hw,
+ ICH_FLASH_WRITE_COMMAND_TIMEOUT);
+ if (ret_val == E1000_SUCCESS) {
+ break;
+ } else {
+ /*
+ * If we're here, then things are most likely
+ * completely hosed, but if the error condition
+ * is detected, it won't hurt to give it another
+ * try...ICH_FLASH_CYCLE_REPEAT_COUNT times.
+ */
+ hsfsts.regval = E1000_READ_FLASH_REG16(hw,
+ ICH_FLASH_HSFSTS);
+ if (hsfsts.hsf_status.flcerr == 1) {
+ /* Repeat for some time before giving up. */
+ continue;
+ } else if (hsfsts.hsf_status.flcdone == 0) {
+ DEBUGOUT("Timeout error - flash cycle "
+ "did not complete.");
+ break;
+ }
+ }
+ } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_write_flash_byte_ich8lan - Write a single byte to NVM
+ * @hw: pointer to the HW structure
+ * @offset: The index of the byte to read.
+ * @data: The byte to write to the NVM.
+ *
+ * Writes a single byte to the NVM using the flash access registers.
+ **/
+STATIC s32 e1000_write_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
+ u8 data)
+{
+ u16 word = (u16)data;
+
+ DEBUGFUNC("e1000_write_flash_byte_ich8lan");
+
+ return e1000_write_flash_data_ich8lan(hw, offset, 1, word);
+}
+
+/**
+ * e1000_retry_write_flash_byte_ich8lan - Writes a single byte to NVM
+ * @hw: pointer to the HW structure
+ * @offset: The offset of the byte to write.
+ * @byte: The byte to write to the NVM.
+ *
+ * Writes a single byte to the NVM using the flash access registers.
+ * Goes through a retry algorithm before giving up.
+ **/
+static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
+ u8 byte)
+{
+ s32 ret_val;
+ u16 program_retries;
+
+ DEBUGFUNC("e1000_retry_write_flash_byte_ich8lan");
+
+ ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
+ if (ret_val == E1000_SUCCESS)
+ goto out;
+
+ for (program_retries = 0; program_retries < 100; program_retries++) {
+ DEBUGOUT2("Retrying Byte %2.2X at offset %u\n", byte, offset);
+ usec_delay(100);
+ ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
+ if (ret_val == E1000_SUCCESS)
+ break;
+ }
+ if (program_retries == 100) {
+ ret_val = -E1000_ERR_NVM;
+ goto out;
+ }
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_erase_flash_bank_ich8lan - Erase a bank (4k) from NVM
+ * @hw: pointer to the HW structure
+ * @bank: 0 for first bank, 1 for second bank, etc.
+ *
+ * Erases the bank specified. Each bank is a 4k block. Banks are 0 based.
+ * bank N is 4096 * N + flash_reg_addr.
+ **/
+STATIC s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank)
+{
+ struct e1000_nvm_info *nvm = &hw->nvm;
+ union ich8_hws_flash_status hsfsts;
+ union ich8_hws_flash_ctrl hsflctl;
+ u32 flash_linear_addr;
+ /* bank size is in 16bit words - adjust to bytes */
+ u32 flash_bank_size = nvm->flash_bank_size * 2;
+ s32 ret_val = E1000_SUCCESS;
+ s32 count = 0;
+ s32 j, iteration, sector_size;
+
+ DEBUGFUNC("e1000_erase_flash_bank_ich8lan");
+
+ hsfsts.regval = E1000_READ_FLASH_REG16(hw, ICH_FLASH_HSFSTS);
+
+ /*
+ * Determine HW Sector size: Read BERASE bits of hw flash status
+ * register
+ * 00: The Hw sector is 256 bytes, hence we need to erase 16
+ * consecutive sectors. The start index for the nth Hw sector
+ * can be calculated as = bank * 4096 + n * 256
+ * 01: The Hw sector is 4K bytes, hence we need to erase 1 sector.
+ * The start index for the nth Hw sector can be calculated
+ * as = bank * 4096
+ * 10: The Hw sector is 8K bytes, nth sector = bank * 8192
+ * (ich9 only, otherwise error condition)
+ * 11: The Hw sector is 64K bytes, nth sector = bank * 65536
+ */
+ switch (hsfsts.hsf_status.berasesz) {
+ case 0:
+ /* Hw sector size 256 */
+ sector_size = ICH_FLASH_SEG_SIZE_256;
+ iteration = flash_bank_size / ICH_FLASH_SEG_SIZE_256;
+ break;
+ case 1:
+ sector_size = ICH_FLASH_SEG_SIZE_4K;
+ iteration = flash_bank_size / ICH_FLASH_SEG_SIZE_4K;
+ break;
+ case 2:
+ if (hw->mac.type == e1000_ich9lan) {
+ sector_size = ICH_FLASH_SEG_SIZE_8K;
+ iteration = flash_bank_size / ICH_FLASH_SEG_SIZE_8K;
+ } else {
+ ret_val = -E1000_ERR_NVM;
+ goto out;
+ }
+ break;
+ case 3:
+ sector_size = ICH_FLASH_SEG_SIZE_64K;
+ iteration = flash_bank_size / ICH_FLASH_SEG_SIZE_64K;
+ break;
+ default:
+ ret_val = -E1000_ERR_NVM;
+ goto out;
+ }
+
+ /* Start with the base address, then add the sector offset. */
+ flash_linear_addr = hw->nvm.flash_base_addr;
+ flash_linear_addr += (bank) ? (sector_size * iteration) : 0;
+
+ for (j = 0; j < iteration ; j++) {
+ do {
+ /* Steps */
+ ret_val = e1000_flash_cycle_init_ich8lan(hw);
+ if (ret_val)
+ goto out;
+
+ /*
+ * Write a value 11 (block Erase) in Flash
+ * Cycle field in hw flash control
+ */
+ hsflctl.regval = E1000_READ_FLASH_REG16(hw,
+ ICH_FLASH_HSFCTL);
+ hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_ERASE;
+ E1000_WRITE_FLASH_REG16(hw,
+ ICH_FLASH_HSFCTL,
+ hsflctl.regval);
+
+ /*
+ * Write the last 24 bits of an index within the
+ * block into Flash Linear address field in Flash
+ * Address.
+ */
+ flash_linear_addr += (j * sector_size);
+ E1000_WRITE_FLASH_REG(hw,
+ ICH_FLASH_FADDR,
+ flash_linear_addr);
+
+ ret_val = e1000_flash_cycle_ich8lan(hw,
+ ICH_FLASH_ERASE_COMMAND_TIMEOUT);
+ if (ret_val == E1000_SUCCESS) {
+ break;
+ } else {
+ /*
+ * Check if FCERR is set to 1. If 1,
+ * clear it and try the whole sequence
+ * a few more times else Done
+ */
+ hsfsts.regval = E1000_READ_FLASH_REG16(hw,
+ ICH_FLASH_HSFSTS);
+ if (hsfsts.hsf_status.flcerr == 1) {
+ /*
+ * repeat for some time before
+ * giving up
+ */
+ continue;
+ } else if (hsfsts.hsf_status.flcdone == 0)
+ goto out;
+ }
+ } while (++count < ICH_FLASH_CYCLE_REPEAT_COUNT);
+ }
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_valid_led_default_ich8lan - Set the default LED settings
+ * @hw: pointer to the HW structure
+ * @data: Pointer to the LED settings
+ *
+ * Reads the LED default settings from the NVM to data. If the NVM LED
+ * settings is all 0's or F's, set the LED default to a valid LED default
+ * setting.
+ **/
+STATIC s32 e1000_valid_led_default_ich8lan(struct e1000_hw *hw, u16 *data)
+{
+ s32 ret_val;
+
+ DEBUGFUNC("e1000_valid_led_default_ich8lan");
+
+ ret_val = e1000_read_nvm(hw, NVM_ID_LED_SETTINGS, 1, data);
+ if (ret_val) {
+ DEBUGOUT("NVM Read Error\n");
+ goto out;
+ }
+
+ if (*data == ID_LED_RESERVED_0000 ||
+ *data == ID_LED_RESERVED_FFFF)
+ *data = ID_LED_DEFAULT_ICH8LAN;
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_get_bus_info_ich8lan - Get/Set the bus type and width
+ * @hw: pointer to the HW structure
+ *
+ * ICH8 use the PCI Express bus, but does not contain a PCI Express Capability
+ * register, so the the bus width is hard coded.
+ **/
+STATIC s32 e1000_get_bus_info_ich8lan(struct e1000_hw *hw)
+{
+ struct e1000_bus_info *bus = &hw->bus;
+ s32 ret_val;
+
+ DEBUGFUNC("e1000_get_bus_info_ich8lan");
+
+ ret_val = e1000_get_bus_info_pcie_generic(hw);
+
+ /*
+ * ICH devices are "PCI Express"-ish. They have
+ * a configuration space, but do not contain
+ * PCI Express Capability registers, so bus width
+ * must be hardcoded.
+ */
+ if (bus->width == e1000_bus_width_unknown)
+ bus->width = e1000_bus_width_pcie_x1;
+
+ return ret_val;
+}
+
+/**
+ * e1000_reset_hw_ich8lan - Reset the hardware
+ * @hw: pointer to the HW structure
+ *
+ * Does a full reset of the hardware which includes a reset of the PHY and
+ * MAC.
+ **/
+STATIC s32 e1000_reset_hw_ich8lan(struct e1000_hw *hw)
+{
+ u32 ctrl, icr, kab;
+ s32 ret_val;
+
+ DEBUGFUNC("e1000_reset_hw_ich8lan");
+
+ /*
+ * Prevent the PCI-E bus from sticking if there is no TLP connection
+ * on the last TLP read/write transaction when MAC is reset.
+ */
+ ret_val = e1000_disable_pcie_master_generic(hw);
+ if (ret_val) {
+ DEBUGOUT("PCI-E Master disable polling has failed.\n");
+ }
+
+ DEBUGOUT("Masking off all interrupts\n");
+ E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff);
+
+ /*
+ * Disable the Transmit and Receive units. Then delay to allow
+ * any pending transactions to complete before we hit the MAC
+ * with the global reset.
+ */
+ E1000_WRITE_REG(hw, E1000_RCTL, 0);
+ E1000_WRITE_REG(hw, E1000_TCTL, E1000_TCTL_PSP);
+ E1000_WRITE_FLUSH(hw);
+
+ msec_delay(10);
+
+ /* Workaround for ICH8 bit corruption issue in FIFO memory */
+ if (hw->mac.type == e1000_ich8lan) {
+ /* Set Tx and Rx buffer allocation to 8k apiece. */
+ E1000_WRITE_REG(hw, E1000_PBA, E1000_PBA_8K);
+ /* Set Packet Buffer Size to 16k. */
+ E1000_WRITE_REG(hw, E1000_PBS, E1000_PBS_16K);
+ }
+
+ ctrl = E1000_READ_REG(hw, E1000_CTRL);
+
+ if (!e1000_check_reset_block(hw) && !hw->phy.reset_disable) {
+ /*
+ * PHY HW reset requires MAC CORE reset at the same
+ * time to make sure the interface between MAC and the
+ * external PHY is reset.
+ */
+ ctrl |= E1000_CTRL_PHY_RST;
+ }
+ ret_val = e1000_acquire_swflag_ich8lan(hw);
+ DEBUGOUT("Issuing a global reset to ich8lan");
+ E1000_WRITE_REG(hw, E1000_CTRL, (ctrl | E1000_CTRL_RST));
+ msec_delay(20);
+
+ ret_val = e1000_get_auto_rd_done_generic(hw);
+ if (ret_val) {
+ /*
+ * When auto config read does not complete, do not
+ * return with an error. This can happen in situations
+ * where there is no eeprom and prevents getting link.
+ */
+ DEBUGOUT("Auto Read Done did not complete\n");
+ }
+
+ E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff);
+ icr = E1000_READ_REG(hw, E1000_ICR);
+
+ kab = E1000_READ_REG(hw, E1000_KABGTXD);
+ kab |= E1000_KABGTXD_BGSQLBIAS;
+ E1000_WRITE_REG(hw, E1000_KABGTXD, kab);
+
+ return ret_val;
+}
+
+/**
+ * e1000_init_hw_ich8lan - Initialize the hardware
+ * @hw: pointer to the HW structure
+ *
+ * Prepares the hardware for transmit and receive by doing the following:
+ * - initialize hardware bits
+ * - initialize LED identification
+ * - setup receive address registers
+ * - setup flow control
+ * - setup transmit discriptors
+ * - clear statistics
+ **/
+STATIC s32 e1000_init_hw_ich8lan(struct e1000_hw *hw)
+{
+ struct e1000_mac_info *mac = &hw->mac;
+ u32 ctrl_ext, txdctl, snoop;
+ s32 ret_val;
+ u16 i;
+
+ DEBUGFUNC("e1000_init_hw_ich8lan");
+
+ e1000_initialize_hw_bits_ich8lan(hw);
+
+ /* Initialize identification LED */
+ ret_val = e1000_id_led_init_generic(hw);
+ if (ret_val) {
+ DEBUGOUT("Error initializing identification LED\n");
+ /* This is not fatal and we should not stop init due to this */
+ }
+
+ /* Setup the receive address. */
+ e1000_init_rx_addrs_generic(hw, mac->rar_entry_count);
+
+ /* Zero out the Multicast HASH table */
+ DEBUGOUT("Zeroing the MTA\n");
+ for (i = 0; i < mac->mta_reg_count; i++)
+ E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
+
+ /* Setup link and flow control */
+ ret_val = e1000_setup_link(hw);
+
+ /* Set the transmit descriptor write-back policy for both queues */
+ txdctl = E1000_READ_REG(hw, E1000_TXDCTL(0));
+ txdctl = (txdctl & ~E1000_TXDCTL_WTHRESH) |
+ E1000_TXDCTL_FULL_TX_DESC_WB;
+ txdctl = (txdctl & ~E1000_TXDCTL_PTHRESH) |
+ E1000_TXDCTL_MAX_TX_DESC_PREFETCH;
+ E1000_WRITE_REG(hw, E1000_TXDCTL(0), txdctl);
+ txdctl = E1000_READ_REG(hw, E1000_TXDCTL(1));
+ txdctl = (txdctl & ~E1000_TXDCTL_WTHRESH) |
+ E1000_TXDCTL_FULL_TX_DESC_WB;
+ txdctl = (txdctl & ~E1000_TXDCTL_PTHRESH) |
+ E1000_TXDCTL_MAX_TX_DESC_PREFETCH;
+ E1000_WRITE_REG(hw, E1000_TXDCTL(1), txdctl);
+
+ /*
+ * ICH8 has opposite polarity of no_snoop bits.
+ * By default, we should use snoop behavior.
+ */
+ if (mac->type == e1000_ich8lan)
+ snoop = PCIE_ICH8_SNOOP_ALL;
+ else
+ snoop = (u32)~(PCIE_NO_SNOOP_ALL);
+ e1000_set_pcie_no_snoop_generic(hw, snoop);
+
+ ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
+ ctrl_ext |= E1000_CTRL_EXT_RO_DIS;
+ E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
+
+ /*
+ * Clear all of the statistics registers (clear on read). It is
+ * important that we do this after we have tried to establish link
+ * because the symbol error count will increment wildly if there
+ * is no link.
+ */
+ e1000_clear_hw_cntrs_ich8lan(hw);
+
+ return ret_val;
+}
+/**
+ * e1000_initialize_hw_bits_ich8lan - Initialize required hardware bits
+ * @hw: pointer to the HW structure
+ *
+ * Sets/Clears required hardware bits necessary for correctly setting up the
+ * hardware for transmit and receive.
+ **/
+static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw)
+{
+ u32 reg;
+
+ DEBUGFUNC("e1000_initialize_hw_bits_ich8lan");
+
+ if (hw->mac.disable_hw_init_bits)
+ goto out;
+
+ /* Extended Device Control */
+ reg = E1000_READ_REG(hw, E1000_CTRL_EXT);
+ reg |= (1 << 22);
+ E1000_WRITE_REG(hw, E1000_CTRL_EXT, reg);
+
+ /* Transmit Descriptor Control 0 */
+ reg = E1000_READ_REG(hw, E1000_TXDCTL(0));
+ reg |= (1 << 22);
+ E1000_WRITE_REG(hw, E1000_TXDCTL(0), reg);
+
+ /* Transmit Descriptor Control 1 */
+ reg = E1000_READ_REG(hw, E1000_TXDCTL(1));
+ reg |= (1 << 22);
+ E1000_WRITE_REG(hw, E1000_TXDCTL(1), reg);
+
+ /* Transmit Arbitration Control 0 */
+ reg = E1000_READ_REG(hw, E1000_TARC(0));
+ if (hw->mac.type == e1000_ich8lan)
+ reg |= (1 << 28) | (1 << 29);
+ reg |= (1 << 23) | (1 << 24) | (1 << 26) | (1 << 27);
+ E1000_WRITE_REG(hw, E1000_TARC(0), reg);
+
+ /* Transmit Arbitration Control 1 */
+ reg = E1000_READ_REG(hw, E1000_TARC(1));
+ if (E1000_READ_REG(hw, E1000_TCTL) & E1000_TCTL_MULR)
+ reg &= ~(1 << 28);
+ else
+ reg |= (1 << 28);
+ reg |= (1 << 24) | (1 << 26) | (1 << 30);
+ E1000_WRITE_REG(hw, E1000_TARC(1), reg);
+
+ /* Device Status */
+ if (hw->mac.type == e1000_ich8lan) {
+ reg = E1000_READ_REG(hw, E1000_STATUS);
+ reg &= ~(1 << 31);
+ E1000_WRITE_REG(hw, E1000_STATUS, reg);
+ }
+
+out:
+ return;
+}
+
+/**
+ * e1000_setup_link_ich8lan - Setup flow control and link settings
+ * @hw: pointer to the HW structure
+ *
+ * Determines which flow control settings to use, then configures flow
+ * control. Calls the appropriate media-specific link configuration
+ * function. Assuming the adapter has a valid link partner, a valid link
+ * should be established. Assumes the hardware has previously been reset
+ * and the transmitter and receiver are not enabled.
+ **/
+STATIC s32 e1000_setup_link_ich8lan(struct e1000_hw *hw)
+{
+ struct e1000_functions *func = &hw->func;
+ s32 ret_val = E1000_SUCCESS;
+
+ DEBUGFUNC("e1000_setup_link_ich8lan");
+
+ if (e1000_check_reset_block(hw))
+ goto out;
+
+ /*
+ * ICH parts do not have a word in the NVM to determine
+ * the default flow control setting, so we explicitly
+ * set it to full.
+ */
+ if (hw->fc.type == e1000_fc_default)
+ hw->fc.type = e1000_fc_full;
+
+ hw->fc.original_type = hw->fc.type;
+
+ DEBUGOUT1("After fix-ups FlowControl is now = %x\n", hw->fc.type);
+
+ /* Continue to configure the copper link. */
+ ret_val = func->setup_physical_interface(hw);
+ if (ret_val)
+ goto out;
+
+ E1000_WRITE_REG(hw, E1000_FCTTV, hw->fc.pause_time);
+
+ ret_val = e1000_set_fc_watermarks_generic(hw);
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_setup_copper_link_ich8lan - Configure MAC/PHY interface
+ * @hw: pointer to the HW structure
+ *
+ * Configures the kumeran interface to the PHY to wait the appropriate time
+ * when polling the PHY, then call the generic setup_copper_link to finish
+ * configuring the copper link.
+ **/
+STATIC s32 e1000_setup_copper_link_ich8lan(struct e1000_hw *hw)
+{
+ u32 ctrl;
+ s32 ret_val;
+ u16 reg_data;
+
+ DEBUGFUNC("e1000_setup_copper_link_ich8lan");
+
+ ctrl = E1000_READ_REG(hw, E1000_CTRL);
+ ctrl |= E1000_CTRL_SLU;
+ ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
+ E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
+
+ /*
+ * Set the mac to wait the maximum time between each iteration
+ * and increase the max iterations when polling the phy;
+ * this fixes erroneous timeouts at 10Mbps.
+ */
+ ret_val = e1000_write_kmrn_reg(hw, GG82563_REG(0x34, 4), 0xFFFF);
+ if (ret_val)
+ goto out;
+ ret_val = e1000_read_kmrn_reg(hw, GG82563_REG(0x34, 9), ®_data);
+ if (ret_val)
+ goto out;
+ reg_data |= 0x3F;
+ ret_val = e1000_write_kmrn_reg(hw, GG82563_REG(0x34, 9), reg_data);
+ if (ret_val)
+ goto out;
+
+ if (hw->phy.type == e1000_phy_igp_3) {
+ ret_val = e1000_copper_link_setup_igp(hw);
+ if (ret_val)
+ goto out;
+ }
+
+ if (hw->phy.type == e1000_phy_ife) {
+ ret_val = e1000_read_phy_reg(hw, IFE_PHY_MDIX_CONTROL, ®_data);
+ if (ret_val)
+ goto out;
+
+ reg_data &= ~IFE_PMC_AUTO_MDIX;
+
+ switch (hw->phy.mdix) {
+ case 1:
+ reg_data &= ~IFE_PMC_FORCE_MDIX;
+ break;
+ case 2:
+ reg_data |= IFE_PMC_FORCE_MDIX;
+ break;
+ case 0:
+ default:
+ reg_data |= IFE_PMC_AUTO_MDIX;
+ break;
+ }
+ ret_val = e1000_write_phy_reg(hw, IFE_PHY_MDIX_CONTROL, reg_data);
+ if (ret_val)
+ goto out;
+ }
+ ret_val = e1000_setup_copper_link_generic(hw);
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_get_link_up_info_ich8lan - Get current link speed and duplex
+ * @hw: pointer to the HW structure
+ * @speed: pointer to store current link speed
+ * @duplex: pointer to store the current link duplex
+ *
+ * Calls the generic get_speed_and_duplex to retreive the current link
+ * information and then calls the Kumeran lock loss workaround for links at
+ * gigabit speeds.
+ **/
+STATIC s32 e1000_get_link_up_info_ich8lan(struct e1000_hw *hw, u16 *speed,
+ u16 *duplex)
+{
+ s32 ret_val;
+
+ DEBUGFUNC("e1000_get_link_up_info_ich8lan");
+
+ ret_val = e1000_get_speed_and_duplex_copper_generic(hw, speed, duplex);
+ if (ret_val)
+ goto out;
+
+ if ((hw->mac.type == e1000_ich8lan) &&
+ (hw->phy.type == e1000_phy_igp_3) &&
+ (*speed == SPEED_1000)) {
+ ret_val = e1000_kmrn_lock_loss_workaround_ich8lan(hw);
+ }
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_kmrn_lock_loss_workaround_ich8lan - Kumeran workaround
+ * @hw: pointer to the HW structure
+ *
+ * Work-around for 82566 Kumeran PCS lock loss:
+ * On link status change (i.e. PCI reset, speed change) and link is up and
+ * speed is gigabit-
+ * 0) if workaround is optionally disabled do nothing
+ * 1) wait 1ms for Kumeran link to come up
+ * 2) check Kumeran Diagnostic register PCS lock loss bit
+ * 3) if not set the link is locked (all is good), otherwise...
+ * 4) reset the PHY
+ * 5) repeat up to 10 times
+ * Note: this is only called for IGP3 copper when speed is 1gb.
+ **/
+static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw)
+{
+ struct e1000_dev_spec_ich8lan *dev_spec;
+ u32 phy_ctrl;
+ s32 ret_val = E1000_SUCCESS;
+ u16 i, data;
+ bool link;
+
+ DEBUGFUNC("e1000_kmrn_lock_loss_workaround_ich8lan");
+
+ dev_spec = (struct e1000_dev_spec_ich8lan *)hw->dev_spec;
+
+ if (!dev_spec) {
+ DEBUGOUT("dev_spec pointer is set to NULL.\n");
+ ret_val = -E1000_ERR_CONFIG;
+ goto out;
+ }
+
+ if (!(dev_spec->kmrn_lock_loss_workaround_enabled))
+ goto out;
+
+ /*
+ * Make sure link is up before proceeding. If not just return.
+ * Attempting this while link is negotiating fouled up link
+ * stability
+ */
+ ret_val = e1000_phy_has_link_generic(hw, 1, 0, &link);
+ if (!link) {
+ ret_val = E1000_SUCCESS;
+ goto out;
+ }
+
+ for (i = 0; i < 10; i++) {
+ /* read once to clear */
+ ret_val = e1000_read_phy_reg(hw, IGP3_KMRN_DIAG, &data);
+ if (ret_val)
+ goto out;
+ /* and again to get new status */
+ ret_val = e1000_read_phy_reg(hw, IGP3_KMRN_DIAG, &data);
+ if (ret_val)
+ goto out;
+
+ /* check for PCS lock */
+ if (!(data & IGP3_KMRN_DIAG_PCS_LOCK_LOSS)) {
+ ret_val = E1000_SUCCESS;
+ goto out;
+ }
+
+ /* Issue PHY reset */
+ e1000_phy_hw_reset(hw);
+ msec_delay_irq(5);
+ }
+ /* Disable GigE link negotiation */
+ phy_ctrl = E1000_READ_REG(hw, E1000_PHY_CTRL);
+ phy_ctrl |= (E1000_PHY_CTRL_GBE_DISABLE |
+ E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
+ E1000_WRITE_REG(hw, E1000_PHY_CTRL, phy_ctrl);
+
+ /*
+ * Call gig speed drop workaround on Giga disable before accessing
+ * any PHY registers
+ */
+ e1000_gig_downshift_workaround_ich8lan(hw);
+
+ /* unable to acquire PCS lock */
+ ret_val = -E1000_ERR_PHY;
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_set_kmrn_lock_loss_workaound_ich8lan - Set Kumeran workaround state
+ * @hw: pointer to the HW structure
+ * @state: boolean value used to set the current Kumaran workaround state
+ *
+ * If ICH8, set the current Kumeran workaround state (enabled - TRUE
+ * /disabled - FALSE).
+ **/
+void e1000_set_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw,
+ bool state)
+{
+ struct e1000_dev_spec_ich8lan *dev_spec;
+
+ DEBUGFUNC("e1000_set_kmrn_lock_loss_workaround_ich8lan");
+
+ if (hw->mac.type != e1000_ich8lan) {
+ DEBUGOUT("Workaround applies to ICH8 only.\n");
+ goto out;
+ }
+
+ dev_spec = (struct e1000_dev_spec_ich8lan *)hw->dev_spec;
+
+ if (!dev_spec) {
+ DEBUGOUT("dev_spec pointer is set to NULL.\n");
+ goto out;
+ }
+
+ dev_spec->kmrn_lock_loss_workaround_enabled = state;
+
+out:
+ return;
+}
+
+/**
+ * e1000_ipg3_phy_powerdown_workaround_ich8lan - Power down workaround on D3
+ * @hw: pointer to the HW structure
+ *
+ * Workaround for 82566 power-down on D3 entry:
+ * 1) disable gigabit link
+ * 2) write VR power-down enable
+ * 3) read it back
+ * Continue if successful, else issue LCD reset and repeat
+ **/
+void e1000_igp3_phy_powerdown_workaround_ich8lan(struct e1000_hw *hw)
+{
+ u32 reg;
+ u16 data;
+ u8 retry = 0;
+
+ DEBUGFUNC("e1000_igp3_phy_powerdown_workaround_ich8lan");
+
+ if (hw->phy.type != e1000_phy_igp_3)
+ goto out;
+
+ /* Try the workaround twice (if needed) */
+ do {
+ /* Disable link */
+ reg = E1000_READ_REG(hw, E1000_PHY_CTRL);
+ reg |= (E1000_PHY_CTRL_GBE_DISABLE |
+ E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
+ E1000_WRITE_REG(hw, E1000_PHY_CTRL, reg);
+
+ /*
+ * Call gig speed drop workaround on Giga disable before
+ * accessing any PHY registers
+ */
+ if (hw->mac.type == e1000_ich8lan)
+ e1000_gig_downshift_workaround_ich8lan(hw);
+
+ /* Write VR power-down enable */
+ e1000_read_phy_reg(hw, IGP3_VR_CTRL, &data);
+ data &= ~IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
+ e1000_write_phy_reg(hw,
+ IGP3_VR_CTRL,
+ data | IGP3_VR_CTRL_MODE_SHUTDOWN);
+
+ /* Read it back and test */
+ e1000_read_phy_reg(hw, IGP3_VR_CTRL, &data);
+ data &= IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
+ if ((data == IGP3_VR_CTRL_MODE_SHUTDOWN) || retry)
+ break;
+
+ /* Issue PHY reset and repeat at most one more time */
+ reg = E1000_READ_REG(hw, E1000_CTRL);
+ E1000_WRITE_REG(hw, E1000_CTRL, reg | E1000_CTRL_PHY_RST);
+ retry++;
+ } while (retry);
+
+out:
+ return;
+}
+
+/**
+ * e1000_gig_downshift_workaround_ich8lan - WoL from S5 stops working
+ * @hw: pointer to the HW structure
+ *
+ * Steps to take when dropping from 1Gb/s (eg. link cable removal (LSC),
+ * LPLU, Giga disable, MDIC PHY reset):
+ * 1) Set Kumeran Near-end loopback
+ * 2) Clear Kumeran Near-end loopback
+ * Should only be called for ICH8[m] devices with IGP_3 Phy.
+ **/
+void e1000_gig_downshift_workaround_ich8lan(struct e1000_hw *hw)
+{
+ s32 ret_val = E1000_SUCCESS;
+ u16 reg_data;
+
+ DEBUGFUNC("e1000_gig_downshift_workaround_ich8lan");
+
+ if ((hw->mac.type != e1000_ich8lan) ||
+ (hw->phy.type != e1000_phy_igp_3))
+ goto out;
+
+ ret_val = e1000_read_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
+ ®_data);
+ if (ret_val)
+ goto out;
+ reg_data |= E1000_KMRNCTRLSTA_DIAG_NELPBK;
+ ret_val = e1000_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
+ reg_data);
+ if (ret_val)
+ goto out;
+ reg_data &= ~E1000_KMRNCTRLSTA_DIAG_NELPBK;
+ ret_val = e1000_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
+ reg_data);
+out:
+ return;
+}
+
+/**
+ * e1000_cleanup_led_ich8lan - Restore the default LED operation
+ * @hw: pointer to the HW structure
+ *
+ * Return the LED back to the default configuration.
+ **/
+STATIC s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw)
+{
+ s32 ret_val = E1000_SUCCESS;
+
+ DEBUGFUNC("e1000_cleanup_led_ich8lan");
+
+ if (hw->phy.type == e1000_phy_ife)
+ ret_val = e1000_write_phy_reg(hw,
+ IFE_PHY_SPECIAL_CONTROL_LED,
+ 0);
+ else
+ E1000_WRITE_REG(hw, E1000_LEDCTL, hw->mac.ledctl_default);
+
+ return ret_val;
+}
+
+/**
+ * e1000_led_on_ich8lan - Turn LED's on
+ * @hw: pointer to the HW structure
+ *
+ * Turn on the LED's.
+ **/
+STATIC s32 e1000_led_on_ich8lan(struct e1000_hw *hw)
+{
+ s32 ret_val = E1000_SUCCESS;
+
+ DEBUGFUNC("e1000_led_on_ich8lan");
+
+ if (hw->phy.type == e1000_phy_ife)
+ ret_val = e1000_write_phy_reg(hw,
+ IFE_PHY_SPECIAL_CONTROL_LED,
+ (IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_ON));
+ else
+ E1000_WRITE_REG(hw, E1000_LEDCTL, hw->mac.ledctl_mode2);
+
+ return ret_val;
+}
+
+/**
+ * e1000_led_off_ich8lan - Turn LED's off
+ * @hw: pointer to the HW structure
+ *
+ * Turn off the LED's.
+ **/
+STATIC s32 e1000_led_off_ich8lan(struct e1000_hw *hw)
+{
+ s32 ret_val = E1000_SUCCESS;
+
+ DEBUGFUNC("e1000_led_off_ich8lan");
+
+ if (hw->phy.type == e1000_phy_ife)
+ ret_val = e1000_write_phy_reg(hw,
+ IFE_PHY_SPECIAL_CONTROL_LED,
+ (IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_OFF));
+ else
+ E1000_WRITE_REG(hw, E1000_LEDCTL, hw->mac.ledctl_mode1);
+
+ return ret_val;
+}
+
+/**
+ * e1000_get_cfg_done_ich8lan - Read config done bit
+ * @hw: pointer to the HW structure
+ *
+ * Read the management control register for the config done bit for
+ * completion status. NOTE: silicon which is EEPROM-less will fail trying
+ * to read the config done bit, so an error is *ONLY* logged and returns
+ * E1000_SUCCESS. If we were to return with error, EEPROM-less silicon
+ * would not be able to be reset or change link.
+ **/
+STATIC s32 e1000_get_cfg_done_ich8lan(struct e1000_hw *hw)
+{
+ s32 ret_val = E1000_SUCCESS;
+
+ e1000_get_cfg_done_generic(hw);
+
+ /* If EEPROM is not marked present, init the IGP 3 PHY manually */
+ if (((E1000_READ_REG(hw, E1000_EECD) & E1000_EECD_PRES) == 0) &&
+ (hw->phy.type == e1000_phy_igp_3)) {
+ e1000_phy_init_script_igp3(hw);
+ }
+
+ return ret_val;
+}
+
+/**
+ * e1000_power_down_phy_copper_ich8lan - Remove link during PHY power down
+ * @hw: pointer to the HW structure
+ *
+ * In the case of a PHY power down to save power, or to turn off link during a
+ * driver unload, or wake on lan is not enabled, remove the link.
+ **/
+STATIC void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw)
+{
+ /* If the management interface is not enabled, then power down */
+ if (!(e1000_check_mng_mode(hw) || e1000_check_reset_block(hw)))
+ e1000_power_down_phy_copper(hw);
+
+ return;
+}
+
+/**
+ * e1000_clear_hw_cntrs_ich8lan - Clear statistical counters
+ * @hw: pointer to the HW structure
+ *
+ * Clears hardware counters specific to the silicon family and calls
+ * clear_hw_cntrs_generic to clear all general purpose counters.
+ **/
+STATIC void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw)
+{
+ volatile u32 temp;
+
+ DEBUGFUNC("e1000_clear_hw_cntrs_ich8lan");
+
+ e1000_clear_hw_cntrs_base_generic(hw);
+
+ temp = E1000_READ_REG(hw, E1000_ALGNERRC);
+ temp = E1000_READ_REG(hw, E1000_RXERRC);
+ temp = E1000_READ_REG(hw, E1000_TNCRS);
+ temp = E1000_READ_REG(hw, E1000_CEXTERR);
+ temp = E1000_READ_REG(hw, E1000_TSCTC);
+ temp = E1000_READ_REG(hw, E1000_TSCTFC);
+
+ temp = E1000_READ_REG(hw, E1000_MGTPRC);
+ temp = E1000_READ_REG(hw, E1000_MGTPDC);
+ temp = E1000_READ_REG(hw, E1000_MGTPTC);
+
+ temp = E1000_READ_REG(hw, E1000_IAC);
+ temp = E1000_READ_REG(hw, E1000_ICRXOC);
+}
+
--- /dev/null
+++ sys/dev/em/e1000_82575.c
@@ -0,0 +1,1450 @@
+/*******************************************************************************
+
+ Copyright (c) 2001-2007, Intel Corporation
+ All rights reserved.
+
+ Redistribution and use in source and binary forms, with or without
+ modification, are permitted provided that the following conditions are met:
+
+ 1. Redistributions of source code must retain the above copyright notice,
+ this list of conditions and the following disclaimer.
+
+ 2. Redistributions in binary form must reproduce the above copyright
+ notice, this list of conditions and the following disclaimer in the
+ documentation and/or other materials provided with the distribution.
+
+ 3. Neither the name of the Intel Corporation nor the names of its
+ contributors may be used to endorse or promote products derived from
+ this software without specific prior written permission.
+
+ THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
+ AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+ IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
+ LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
+ CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
+ SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
+ INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
+ CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
+ ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
+ POSSIBILITY OF SUCH DAMAGE.
+
+*******************************************************************************/
+/* $FreeBSD: src/sys/dev/em/e1000_82575.c,v 1.3.4.1 2007/11/28 23:24:37 jfv Exp $ */
+
+
+/* e1000_82575
+ * e1000_82576
+ */
+
+#include "e1000_api.h"
+#include "e1000_82575.h"
+
+void e1000_init_function_pointers_82575(struct e1000_hw *hw);
+
+STATIC s32 e1000_init_phy_params_82575(struct e1000_hw *hw);
+STATIC s32 e1000_init_nvm_params_82575(struct e1000_hw *hw);
+STATIC s32 e1000_init_mac_params_82575(struct e1000_hw *hw);
+STATIC s32 e1000_acquire_phy_82575(struct e1000_hw *hw);
+STATIC void e1000_release_phy_82575(struct e1000_hw *hw);
+STATIC s32 e1000_acquire_nvm_82575(struct e1000_hw *hw);
+STATIC void e1000_release_nvm_82575(struct e1000_hw *hw);
+STATIC s32 e1000_check_for_link_82575(struct e1000_hw *hw);
+STATIC s32 e1000_get_cfg_done_82575(struct e1000_hw *hw);
+STATIC s32 e1000_get_link_up_info_82575(struct e1000_hw *hw, u16 *speed,
+ u16 *duplex);
+STATIC s32 e1000_init_hw_82575(struct e1000_hw *hw);
+STATIC s32 e1000_phy_hw_reset_sgmii_82575(struct e1000_hw *hw);
+STATIC s32 e1000_read_phy_reg_sgmii_82575(struct e1000_hw *hw, u32 offset,
+ u16 *data);
+STATIC void e1000_rar_set_82575(struct e1000_hw *hw, u8 *addr, u32 index);
+STATIC s32 e1000_reset_hw_82575(struct e1000_hw *hw);
+STATIC s32 e1000_set_d0_lplu_state_82575(struct e1000_hw *hw,
+ bool active);
+STATIC s32 e1000_setup_copper_link_82575(struct e1000_hw *hw);
+STATIC s32 e1000_setup_fiber_serdes_link_82575(struct e1000_hw *hw);
+STATIC s32 e1000_write_phy_reg_sgmii_82575(struct e1000_hw *hw,
+ u32 offset, u16 data);
+STATIC void e1000_clear_hw_cntrs_82575(struct e1000_hw *hw);
+static s32 e1000_acquire_swfw_sync_82575(struct e1000_hw *hw, u16 mask);
+static s32 e1000_configure_pcs_link_82575(struct e1000_hw *hw);
+static s32 e1000_get_pcs_speed_and_duplex_82575(struct e1000_hw *hw,
+ u16 *speed, u16 *duplex);
+static s32 e1000_get_phy_id_82575(struct e1000_hw *hw);
+static void e1000_release_swfw_sync_82575(struct e1000_hw *hw, u16 mask);
+static bool e1000_sgmii_active_82575(struct e1000_hw *hw);
+STATIC s32 e1000_reset_init_script_82575(struct e1000_hw *hw);
+STATIC s32 e1000_read_mac_addr_82575(struct e1000_hw *hw);
+STATIC void e1000_power_down_phy_copper_82575(struct e1000_hw *hw);
+
+
+struct e1000_dev_spec_82575 {
+ bool sgmii_active;
+};
+
+/**
+ * e1000_init_phy_params_82575 - Init PHY func ptrs.
+ * @hw: pointer to the HW structure
+ *
+ * This is a function pointer entry point called by the api module.
+ **/
+STATIC s32 e1000_init_phy_params_82575(struct e1000_hw *hw)
+{
+ struct e1000_phy_info *phy = &hw->phy;
+ struct e1000_functions *func = &hw->func;
+ s32 ret_val = E1000_SUCCESS;
+
+ DEBUGFUNC("e1000_init_phy_params_82575");
+
+ if (hw->phy.media_type != e1000_media_type_copper) {
+ phy->type = e1000_phy_none;
+ goto out;
+ } else {
+ func->power_up_phy = e1000_power_up_phy_copper;
+ func->power_down_phy = e1000_power_down_phy_copper_82575;
+ }
+
+ phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
+ phy->reset_delay_us = 100;
+
+ func->acquire_phy = e1000_acquire_phy_82575;
+ func->check_reset_block = e1000_check_reset_block_generic;
+ func->commit_phy = e1000_phy_sw_reset_generic;
+ func->get_cfg_done = e1000_get_cfg_done_82575;
+ func->release_phy = e1000_release_phy_82575;
+
+ if (e1000_sgmii_active_82575(hw)) {
+ func->reset_phy = e1000_phy_hw_reset_sgmii_82575;
+ func->read_phy_reg = e1000_read_phy_reg_sgmii_82575;
+ func->write_phy_reg = e1000_write_phy_reg_sgmii_82575;
+ } else {
+ func->reset_phy = e1000_phy_hw_reset_generic;
+ func->read_phy_reg = e1000_read_phy_reg_igp;
+ func->write_phy_reg = e1000_write_phy_reg_igp;
+ }
+
+ /* Set phy->phy_addr and phy->id. */
+ ret_val = e1000_get_phy_id_82575(hw);
+
+ /* Verify phy id and set remaining function pointers */
+ switch (phy->id) {
+ case M88E1111_I_PHY_ID:
+ phy->type = e1000_phy_m88;
+ func->check_polarity = e1000_check_polarity_m88;
+ func->get_phy_info = e1000_get_phy_info_m88;
+ func->get_cable_length = e1000_get_cable_length_m88;
+ func->force_speed_duplex = e1000_phy_force_speed_duplex_m88;
+ break;
+ case IGP03E1000_E_PHY_ID:
+ phy->type = e1000_phy_igp_3;
+ func->check_polarity = e1000_check_polarity_igp;
+ func->get_phy_info = e1000_get_phy_info_igp;
+ func->get_cable_length = e1000_get_cable_length_igp_2;
+ func->force_speed_duplex = e1000_phy_force_speed_duplex_igp;
+ func->set_d0_lplu_state = e1000_set_d0_lplu_state_82575;
+ func->set_d3_lplu_state = e1000_set_d3_lplu_state_generic;
+ break;
+ default:
+ ret_val = -E1000_ERR_PHY;
+ goto out;
+ }
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_init_nvm_params_82575 - Init NVM func ptrs.
+ * @hw: pointer to the HW structure
+ *
+ * This is a function pointer entry point called by the api module.
+ **/
+STATIC s32 e1000_init_nvm_params_82575(struct e1000_hw *hw)
+{
+ struct e1000_nvm_info *nvm = &hw->nvm;
+ struct e1000_functions *func = &hw->func;
+ u32 eecd = E1000_READ_REG(hw, E1000_EECD);
+ u16 size;
+
+ DEBUGFUNC("e1000_init_nvm_params_82575");
+
+ nvm->opcode_bits = 8;
+ nvm->delay_usec = 1;
+ switch (nvm->override) {
+ case e1000_nvm_override_spi_large:
+ nvm->page_size = 32;
+ nvm->address_bits = 16;
+ break;
+ case e1000_nvm_override_spi_small:
+ nvm->page_size = 8;
+ nvm->address_bits = 8;
+ break;
+ default:
+ nvm->page_size = eecd & E1000_EECD_ADDR_BITS ? 32 : 8;
+ nvm->address_bits = eecd & E1000_EECD_ADDR_BITS ? 16 : 8;
+ break;
+ }
+
+ nvm->type = e1000_nvm_eeprom_spi;
+
+ size = (u16)((eecd & E1000_EECD_SIZE_EX_MASK) >>
+ E1000_EECD_SIZE_EX_SHIFT);
+
+ /*
+ * Added to a constant, "size" becomes the left-shift value
+ * for setting word_size.
+ */
+ size += NVM_WORD_SIZE_BASE_SHIFT;
+
+ /* EEPROM access above 16k is unsupported */
+ if (size > 14)
+ size = 14;
+ nvm->word_size = 1 << size;
+
+ /* Function Pointers */
+ func->acquire_nvm = e1000_acquire_nvm_82575;
+ func->read_nvm = e1000_read_nvm_eerd;
+ func->release_nvm = e1000_release_nvm_82575;
+ func->update_nvm = e1000_update_nvm_checksum_generic;
+ func->valid_led_default = e1000_valid_led_default_generic;
+ func->validate_nvm = e1000_validate_nvm_checksum_generic;
+ func->write_nvm = e1000_write_nvm_spi;
+
+ return E1000_SUCCESS;
+}
+
+/**
+ * e1000_init_mac_params_82575 - Init MAC func ptrs.
+ * @hw: pointer to the HW structure
+ *
+ * This is a function pointer entry point called by the api module.
+ **/
+STATIC s32 e1000_init_mac_params_82575(struct e1000_hw *hw)
+{
+ struct e1000_mac_info *mac = &hw->mac;
+ struct e1000_functions *func = &hw->func;
+ struct e1000_dev_spec_82575 *dev_spec;
+ u32 ctrl_ext = 0;
+ s32 ret_val = E1000_SUCCESS;
+
+ DEBUGFUNC("e1000_init_mac_params_82575");
+
+ hw->dev_spec_size = sizeof(struct e1000_dev_spec_82575);
+
+ /* Device-specific structure allocation */
+ ret_val = e1000_alloc_zeroed_dev_spec_struct(hw, hw->dev_spec_size);
+ if (ret_val)
+ goto out;
+
+ dev_spec = (struct e1000_dev_spec_82575 *)hw->dev_spec;
+
+ /* Set media type */
+ /*
+ * The 82575 uses bits 22:23 for link mode. The mode can be changed
+ * based on the EEPROM. We cannot rely upon device ID. There
+ * is no distinguishable difference between fiber and internal
+ * SerDes mode on the 82575. There can be an external PHY attached
+ * on the SGMII interface. For this, we'll set sgmii_active to TRUE.
+ */
+ hw->phy.media_type = e1000_media_type_copper;
+ dev_spec->sgmii_active = FALSE;
+
+ ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
+ if ((ctrl_ext & E1000_CTRL_EXT_LINK_MODE_MASK) ==
+ E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES) {
+ hw->phy.media_type = e1000_media_type_internal_serdes;
+ ctrl_ext |= E1000_CTRL_I2C_ENA;
+ } else if (ctrl_ext & E1000_CTRL_EXT_LINK_MODE_SGMII) {
+ dev_spec->sgmii_active = TRUE;
+ ctrl_ext |= E1000_CTRL_I2C_ENA;
+ } else {
+ ctrl_ext &= ~E1000_CTRL_I2C_ENA;
+ }
+ E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
+
+ /* Set mta register count */
+ mac->mta_reg_count = 128;
+ /* Set rar entry count */
+ mac->rar_entry_count = E1000_RAR_ENTRIES_82575;
+ /* Set if part includes ASF firmware */
+ mac->asf_firmware_present = TRUE;
+ /* Set if manageability features are enabled. */
+ mac->arc_subsystem_valid =
+ (E1000_READ_REG(hw, E1000_FWSM) & E1000_FWSM_MODE_MASK)
+ ? TRUE : FALSE;
+
+ /* Function pointers */
+
+ /* bus type/speed/width */
+ func->get_bus_info = e1000_get_bus_info_pcie_generic;
+ /* reset */
+ func->reset_hw = e1000_reset_hw_82575;
+ /* hw initialization */
+ func->init_hw = e1000_init_hw_82575;
+ /* link setup */
+ func->setup_link = e1000_setup_link_generic;
+ /* physical interface link setup */
+ func->setup_physical_interface =
+ (hw->phy.media_type == e1000_media_type_copper)
+ ? e1000_setup_copper_link_82575
+ : e1000_setup_fiber_serdes_link_82575;
+ /* check for link */
+ func->check_for_link = e1000_check_for_link_82575;
+ /* receive address register setting */
+ func->rar_set = e1000_rar_set_82575;
+ /* read mac address */
+ func->read_mac_addr = e1000_read_mac_addr_82575;
+ /* multicast address update */
+ func->update_mc_addr_list = e1000_update_mc_addr_list_generic;
+ /* writing VFTA */
+ func->write_vfta = e1000_write_vfta_generic;
+ /* clearing VFTA */
+ func->clear_vfta = e1000_clear_vfta_generic;
+ /* setting MTA */
+ func->mta_set = e1000_mta_set_generic;
+ /* blink LED */
+ func->blink_led = e1000_blink_led_generic;
+ /* setup LED */
+ func->setup_led = e1000_setup_led_generic;
+ /* cleanup LED */
+ func->cleanup_led = e1000_cleanup_led_generic;
+ /* turn on/off LED */
+ func->led_on = e1000_led_on_generic;
+ func->led_off = e1000_led_off_generic;
+ /* remove device */
+ func->remove_device = e1000_remove_device_generic;
+ /* clear hardware counters */
+ func->clear_hw_cntrs = e1000_clear_hw_cntrs_82575;
+ /* link info */
+ func->get_link_up_info = e1000_get_link_up_info_82575;
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_init_function_pointers_82575 - Init func ptrs.
+ * @hw: pointer to the HW structure
+ *
+ * The only function explicitly called by the api module to initialize
+ * all function pointers and parameters.
+ **/
+void e1000_init_function_pointers_82575(struct e1000_hw *hw)
+{
+ DEBUGFUNC("e1000_init_function_pointers_82575");
+
+ hw->func.init_mac_params = e1000_init_mac_params_82575;
+ hw->func.init_nvm_params = e1000_init_nvm_params_82575;
+ hw->func.init_phy_params = e1000_init_phy_params_82575;
+}
+
+/**
+ * e1000_acquire_phy_82575 - Acquire rights to access PHY
+ * @hw: pointer to the HW structure
+ *
+ * Acquire access rights to the correct PHY. This is a
+ * function pointer entry point called by the api module.
+ **/
+STATIC s32 e1000_acquire_phy_82575(struct e1000_hw *hw)
+{
+ u16 mask;
+
+ DEBUGFUNC("e1000_acquire_phy_82575");
+
+ mask = hw->bus.func ? E1000_SWFW_PHY1_SM : E1000_SWFW_PHY0_SM;
+
+ return e1000_acquire_swfw_sync_82575(hw, mask);
+}
+
+/**
+ * e1000_release_phy_82575 - Release rights to access PHY
+ * @hw: pointer to the HW structure
+ *
+ * A wrapper to release access rights to the correct PHY. This is a
+ * function pointer entry point called by the api module.
+ **/
+STATIC void e1000_release_phy_82575(struct e1000_hw *hw)
+{
+ u16 mask;
+
+ DEBUGFUNC("e1000_release_phy_82575");
+
+ mask = hw->bus.func ? E1000_SWFW_PHY1_SM : E1000_SWFW_PHY0_SM;
+ e1000_release_swfw_sync_82575(hw, mask);
+}
+
+/**
+ * e1000_read_phy_reg_sgmii_82575 - Read PHY register using sgmii
+ * @hw: pointer to the HW structure
+ * @offset: register offset to be read
+ * @data: pointer to the read data
+ *
+ * Reads the PHY register at offset using the serial gigabit media independent
+ * interface and stores the retrieved information in data.
+ **/
+STATIC s32 e1000_read_phy_reg_sgmii_82575(struct e1000_hw *hw, u32 offset,
+ u16 *data)
+{
+ struct e1000_phy_info *phy = &hw->phy;
+ u32 i, i2ccmd = 0;
+
+ DEBUGFUNC("e1000_read_phy_reg_sgmii_82575");
+
+ if (offset > E1000_MAX_SGMII_PHY_REG_ADDR) {
+ DEBUGOUT1("PHY Address %u is out of range\n", offset);
+ return -E1000_ERR_PARAM;
+ }
+
+ /*
+ * Set up Op-code, Phy Address, and register address in the I2CCMD
+ * register. The MAC will take care of interfacing with the
+ * PHY to retrieve the desired data.
+ */
+ i2ccmd = ((offset << E1000_I2CCMD_REG_ADDR_SHIFT) |
+ (phy->addr << E1000_I2CCMD_PHY_ADDR_SHIFT) |
+ (E1000_I2CCMD_OPCODE_READ));
+
+ E1000_WRITE_REG(hw, E1000_I2CCMD, i2ccmd);
+
+ /* Poll the ready bit to see if the I2C read completed */
+ for (i = 0; i < E1000_I2CCMD_PHY_TIMEOUT; i++) {
+ usec_delay(50);
+ i2ccmd = E1000_READ_REG(hw, E1000_I2CCMD);
+ if (i2ccmd & E1000_I2CCMD_READY)
+ break;
+ }
+ if (!(i2ccmd & E1000_I2CCMD_READY)) {
+ DEBUGOUT("I2CCMD Read did not complete\n");
+ return -E1000_ERR_PHY;
+ }
+ if (i2ccmd & E1000_I2CCMD_ERROR) {
+ DEBUGOUT("I2CCMD Error bit set\n");
+ return -E1000_ERR_PHY;
+ }
+
+ /* Need to byte-swap the 16-bit value. */
+ *data = ((i2ccmd >> 8) & 0x00FF) | ((i2ccmd << 8) & 0xFF00);
+
+ return E1000_SUCCESS;
+}
+
+/**
+ * e1000_write_phy_reg_sgmii_82575 - Write PHY register using sgmii
+ * @hw: pointer to the HW structure
+ * @offset: register offset to write to
+ * @data: data to write at register offset
+ *
+ * Writes the data to PHY register at the offset using the serial gigabit
+ * media independent interface.
+ **/
+STATIC s32 e1000_write_phy_reg_sgmii_82575(struct e1000_hw *hw, u32 offset,
+ u16 data)
+{
+ struct e1000_phy_info *phy = &hw->phy;
+ u32 i, i2ccmd = 0;
+ u16 phy_data_swapped;
+
+ DEBUGFUNC("e1000_write_phy_reg_sgmii_82575");
+
+ if (offset > E1000_MAX_SGMII_PHY_REG_ADDR) {
+ DEBUGOUT1("PHY Address %d is out of range\n", offset);
+ return -E1000_ERR_PARAM;
+ }
+
+ /* Swap the data bytes for the I2C interface */
+ phy_data_swapped = ((data >> 8) & 0x00FF) | ((data << 8) & 0xFF00);
+
+ /*
+ * Set up Op-code, Phy Address, and register address in the I2CCMD
+ * register. The MAC will take care of interfacing with the
+ * PHY to retrieve the desired data.
+ */
+ i2ccmd = ((offset << E1000_I2CCMD_REG_ADDR_SHIFT) |
+ (phy->addr << E1000_I2CCMD_PHY_ADDR_SHIFT) |
+ E1000_I2CCMD_OPCODE_WRITE |
+ phy_data_swapped);
+
+ E1000_WRITE_REG(hw, E1000_I2CCMD, i2ccmd);
+
+ /* Poll the ready bit to see if the I2C read completed */
+ for (i = 0; i < E1000_I2CCMD_PHY_TIMEOUT; i++) {
+ usec_delay(50);
+ i2ccmd = E1000_READ_REG(hw, E1000_I2CCMD);
+ if (i2ccmd & E1000_I2CCMD_READY)
+ break;
+ }
+ if (!(i2ccmd & E1000_I2CCMD_READY)) {
+ DEBUGOUT("I2CCMD Write did not complete\n");
+ return -E1000_ERR_PHY;
+ }
+ if (i2ccmd & E1000_I2CCMD_ERROR) {
+ DEBUGOUT("I2CCMD Error bit set\n");
+ return -E1000_ERR_PHY;
+ }
+
+ return E1000_SUCCESS;
+}
+
+/**
+ * e1000_get_phy_id_82575 - Retreive PHY addr and id
+ * @hw: pointer to the HW structure
+ *
+ * Retreives the PHY address and ID for both PHY's which do and do not use
+ * sgmi interface.
+ **/
+static s32 e1000_get_phy_id_82575(struct e1000_hw *hw)
+{
+ struct e1000_phy_info *phy = &hw->phy;
+ s32 ret_val = E1000_SUCCESS;
+ u16 phy_id;
+
+ DEBUGFUNC("e1000_get_phy_id_82575");
+
+ /*
+ * For SGMII PHYs, we try the list of possible addresses until
+ * we find one that works. For non-SGMII PHYs
+ * (e.g. integrated copper PHYs), an address of 1 should
+ * work. The result of this function should mean phy->phy_addr
+ * and phy->id are set correctly.
+ */
+ if (!(e1000_sgmii_active_82575(hw))) {
+ phy->addr = 1;
+ ret_val = e1000_get_phy_id(hw);
+ goto out;
+ }
+
+ /*
+ * The address field in the I2CCMD register is 3 bits and 0 is invalid.
+ * Therefore, we need to test 1-7
+ */
+ for (phy->addr = 1; phy->addr < 8; phy->addr++) {
+ ret_val = e1000_read_phy_reg_sgmii_82575(hw, PHY_ID1, &phy_id);
+ if (ret_val == E1000_SUCCESS) {
+ DEBUGOUT2("Vendor ID 0x%08X read at address %u\n",
+ phy_id,
+ phy->addr);
+ /*
+ * At the time of this writing, The M88 part is
+ * the only supported SGMII PHY product.
+ */
+ if (phy_id == M88_VENDOR)
+ break;
+ } else {
+ DEBUGOUT1("PHY address %u was unreadable\n",
+ phy->addr);
+ }
+ }
+
+ /* A valid PHY type couldn't be found. */
+ if (phy->addr == 8) {
+ phy->addr = 0;
+ ret_val = -E1000_ERR_PHY;
+ goto out;
+ }
+
+ ret_val = e1000_get_phy_id(hw);
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_phy_hw_reset_sgmii_82575 - Performs a PHY reset
+ * @hw: pointer to the HW structure
+ *
+ * Resets the PHY using the serial gigabit media independent interface.
+ **/
+STATIC s32 e1000_phy_hw_reset_sgmii_82575(struct e1000_hw *hw)
+{
+ s32 ret_val;
+
+ DEBUGFUNC("e1000_phy_hw_reset_sgmii_82575");
+
+ /*
+ * This isn't a true "hard" reset, but is the only reset
+ * available to us at this time.
+ */
+
+ DEBUGOUT("Soft resetting SGMII attached PHY...\n");
+
+ /*
+ * SFP documentation requires the following to configure the SPF module
+ * to work on SGMII. No further documentation is given.
+ */
+ ret_val = e1000_write_phy_reg(hw, 0x1B, 0x8084);
+ if (ret_val)
+ goto out;
+
+ ret_val = e1000_phy_commit(hw);
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_set_d0_lplu_state_82575 - Set Low Power Linkup D0 state
+ * @hw: pointer to the HW structure
+ * @active: TRUE to enable LPLU, FALSE to disable
+ *
+ * Sets the LPLU D0 state according to the active flag. When
+ * activating LPLU this function also disables smart speed
+ * and vice versa. LPLU will not be activated unless the
+ * device autonegotiation advertisement meets standards of
+ * either 10 or 10/100 or 10/100/1000 at all duplexes.
+ * This is a function pointer entry point only called by
+ * PHY setup routines.
+ **/
+STATIC s32 e1000_set_d0_lplu_state_82575(struct e1000_hw *hw, bool active)
+{
+ struct e1000_phy_info *phy = &hw->phy;
+ s32 ret_val;
+ u16 data;
+
+ DEBUGFUNC("e1000_set_d0_lplu_state_82575");
+
+ ret_val = e1000_read_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, &data);
+ if (ret_val)
+ goto out;
+
+ if (active) {
+ data |= IGP02E1000_PM_D0_LPLU;
+ ret_val = e1000_write_phy_reg(hw,
+ IGP02E1000_PHY_POWER_MGMT,
+ data);
+ if (ret_val)
+ goto out;
+
+ /* When LPLU is enabled, we should disable SmartSpeed */
+ ret_val = e1000_read_phy_reg(hw,
+ IGP01E1000_PHY_PORT_CONFIG,
+ &data);
+ data &= ~IGP01E1000_PSCFR_SMART_SPEED;
+ ret_val = e1000_write_phy_reg(hw,
+ IGP01E1000_PHY_PORT_CONFIG,
+ data);
+ if (ret_val)
+ goto out;
+ } else {
+ data &= ~IGP02E1000_PM_D0_LPLU;
+ ret_val = e1000_write_phy_reg(hw,
+ IGP02E1000_PHY_POWER_MGMT,
+ data);
+ /*
+ * LPLU and SmartSpeed are mutually exclusive. LPLU is used
+ * during Dx states where the power conservation is most
+ * important. During driver activity we should enable
+ * SmartSpeed, so performance is maintained.
+ */
+ if (phy->smart_speed == e1000_smart_speed_on) {
+ ret_val = e1000_read_phy_reg(hw,
+ IGP01E1000_PHY_PORT_CONFIG,
+ &data);
+ if (ret_val)
+ goto out;
+
+ data |= IGP01E1000_PSCFR_SMART_SPEED;
+ ret_val = e1000_write_phy_reg(hw,
+ IGP01E1000_PHY_PORT_CONFIG,
+ data);
+ if (ret_val)
+ goto out;
+ } else if (phy->smart_speed == e1000_smart_speed_off) {
+ ret_val = e1000_read_phy_reg(hw,
+ IGP01E1000_PHY_PORT_CONFIG,
+ &data);
+ if (ret_val)
+ goto out;
+
+ data &= ~IGP01E1000_PSCFR_SMART_SPEED;
+ ret_val = e1000_write_phy_reg(hw,
+ IGP01E1000_PHY_PORT_CONFIG,
+ data);
+ if (ret_val)
+ goto out;
+ }
+ }
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_acquire_nvm_82575 - Request for access to EEPROM
+ * @hw: pointer to the HW structure
+ *
+ * Acquire the necessary semaphores for exclussive access to the EEPROM.
+ * Set the EEPROM access request bit and wait for EEPROM access grant bit.
+ * Return successful if access grant bit set, else clear the request for
+ * EEPROM access and return -E1000_ERR_NVM (-1).
+ **/
+STATIC s32 e1000_acquire_nvm_82575(struct e1000_hw *hw)
+{
+ s32 ret_val;
+
+ DEBUGFUNC("e1000_acquire_nvm_82575");
+
+ ret_val = e1000_acquire_swfw_sync_82575(hw, E1000_SWFW_EEP_SM);
+ if (ret_val)
+ goto out;
+
+ ret_val = e1000_acquire_nvm_generic(hw);
+
+ if (ret_val)
+ e1000_release_swfw_sync_82575(hw, E1000_SWFW_EEP_SM);
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_release_nvm_82575 - Release exclusive access to EEPROM
+ * @hw: pointer to the HW structure
+ *
+ * Stop any current commands to the EEPROM and clear the EEPROM request bit,
+ * then release the semaphores acquired.
+ **/
+STATIC void e1000_release_nvm_82575(struct e1000_hw *hw)
+{
+ DEBUGFUNC("e1000_release_nvm_82575");
+
+ e1000_release_nvm_generic(hw);
+ e1000_release_swfw_sync_82575(hw, E1000_SWFW_EEP_SM);
+}
+
+/**
+ * e1000_acquire_swfw_sync_82575 - Acquire SW/FW semaphore
+ * @hw: pointer to the HW structure
+ * @mask: specifies which semaphore to acquire
+ *
+ * Acquire the SW/FW semaphore to access the PHY or NVM. The mask
+ * will also specify which port we're acquiring the lock for.
+ **/
+static s32 e1000_acquire_swfw_sync_82575(struct e1000_hw *hw, u16 mask)
+{
+ u32 swfw_sync;
+ u32 swmask = mask;
+ u32 fwmask = mask << 16;
+ s32 ret_val = E1000_SUCCESS;
+ s32 i = 0, timeout = 200; /* FIXME: find real value to use here */
+
+ DEBUGFUNC("e1000_acquire_swfw_sync_82575");
+
+ while (i < timeout) {
+ if (e1000_get_hw_semaphore_generic(hw)) {
+ ret_val = -E1000_ERR_SWFW_SYNC;
+ goto out;
+ }
+
+ swfw_sync = E1000_READ_REG(hw, E1000_SW_FW_SYNC);
+ if (!(swfw_sync & (fwmask | swmask)))
+ break;
+
+ /*
+ * Firmware currently using resource (fwmask)
+ * or other software thread using resource (swmask)
+ */
+ e1000_put_hw_semaphore_generic(hw);
+ msec_delay_irq(5);
+ i++;
+ }
+
+ if (i == timeout) {
+ DEBUGOUT("Driver can't access resource, SW_FW_SYNC timeout.\n");
+ ret_val = -E1000_ERR_SWFW_SYNC;
+ goto out;
+ }
+
+ swfw_sync |= swmask;
+ E1000_WRITE_REG(hw, E1000_SW_FW_SYNC, swfw_sync);
+
+ e1000_put_hw_semaphore_generic(hw);
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_release_swfw_sync_82575 - Release SW/FW semaphore
+ * @hw: pointer to the HW structure
+ * @mask: specifies which semaphore to acquire
+ *
+ * Release the SW/FW semaphore used to access the PHY or NVM. The mask
+ * will also specify which port we're releasing the lock for.
+ **/
+static void e1000_release_swfw_sync_82575(struct e1000_hw *hw, u16 mask)
+{
+ u32 swfw_sync;
+
+ DEBUGFUNC("e1000_release_swfw_sync_82575");
+
+ while (e1000_get_hw_semaphore_generic(hw) != E1000_SUCCESS);
+ /* Empty */
+
+ swfw_sync = E1000_READ_REG(hw, E1000_SW_FW_SYNC);
+ swfw_sync &= ~mask;
+ E1000_WRITE_REG(hw, E1000_SW_FW_SYNC, swfw_sync);
+
+ e1000_put_hw_semaphore_generic(hw);
+}
+
+/**
+ * e1000_get_cfg_done_82575 - Read config done bit
+ * @hw: pointer to the HW structure
+ *
+ * Read the management control register for the config done bit for
+ * completion status. NOTE: silicon which is EEPROM-less will fail trying
+ * to read the config done bit, so an error is *ONLY* logged and returns
+ * E1000_SUCCESS. If we were to return with error, EEPROM-less silicon
+ * would not be able to be reset or change link.
+ **/
+STATIC s32 e1000_get_cfg_done_82575(struct e1000_hw *hw)
+{
+ s32 timeout = PHY_CFG_TIMEOUT;
+ s32 ret_val = E1000_SUCCESS;
+ u32 mask = E1000_NVM_CFG_DONE_PORT_0;
+
+ DEBUGFUNC("e1000_get_cfg_done_82575");
+
+ if (hw->bus.func == 1)
+ mask = E1000_NVM_CFG_DONE_PORT_1;
+
+ while (timeout) {
+ if (E1000_READ_REG(hw, E1000_EEMNGCTL) & mask)
+ break;
+ msec_delay(1);
+ timeout--;
+ }
+ if (!timeout) {
+ DEBUGOUT("MNG configuration cycle has not completed.\n");
+ }
+
+ /* If EEPROM is not marked present, init the PHY manually */
+ if (((E1000_READ_REG(hw, E1000_EECD) & E1000_EECD_PRES) == 0) &&
+ (hw->phy.type == e1000_phy_igp_3)) {
+ e1000_phy_init_script_igp3(hw);
+ }
+
+ return ret_val;
+}
+
+/**
+ * e1000_get_link_up_info_82575 - Get link speed/duplex info
+ * @hw: pointer to the HW structure
+ * @speed: stores the current speed
+ * @duplex: stores the current duplex
+ *
+ * This is a wrapper function, if using the serial gigabit media independent
+ * interface, use pcs to retreive the link speed and duplex information.
+ * Otherwise, use the generic function to get the link speed and duplex info.
+ **/
+STATIC s32 e1000_get_link_up_info_82575(struct e1000_hw *hw, u16 *speed,
+ u16 *duplex)
+{
+ s32 ret_val;
+
+ DEBUGFUNC("e1000_get_link_up_info_82575");
+
+ if (hw->phy.media_type != e1000_media_type_copper ||
+ e1000_sgmii_active_82575(hw)) {
+ ret_val = e1000_get_pcs_speed_and_duplex_82575(hw, speed,
+ duplex);
+ } else {
+ ret_val = e1000_get_speed_and_duplex_copper_generic(hw, speed,
+ duplex);
+ }
+
+ return ret_val;
+}
+
+/**
+ * e1000_check_for_link_82575 - Check for link
+ * @hw: pointer to the HW structure
+ *
+ * If sgmii is enabled, then use the pcs register to determine link, otherwise
+ * use the generic interface for determining link.
+ **/
+STATIC s32 e1000_check_for_link_82575(struct e1000_hw *hw)
+{
+ s32 ret_val;
+ u16 speed, duplex;
+
+ DEBUGFUNC("e1000_check_for_link_82575");
+
+ /* SGMII link check is done through the PCS register. */
+ if ((hw->phy.media_type != e1000_media_type_copper) ||
+ (e1000_sgmii_active_82575(hw)))
+ ret_val = e1000_get_pcs_speed_and_duplex_82575(hw, &speed,
+ &duplex);
+ else
+ ret_val = e1000_check_for_copper_link_generic(hw);
+
+ return ret_val;
+}
+
+/**
+ * e1000_get_pcs_speed_and_duplex_82575 - Retrieve current speed/duplex
+ * @hw: pointer to the HW structure
+ * @speed: stores the current speed
+ * @duplex: stores the current duplex
+ *
+ * Using the physical coding sub-layer (PCS), retreive the current speed and
+ * duplex, then store the values in the pointers provided.
+ **/
+static s32 e1000_get_pcs_speed_and_duplex_82575(struct e1000_hw *hw, u16 *speed,
+ u16 *duplex)
+{
+ struct e1000_mac_info *mac = &hw->mac;
+ u32 pcs;
+
+ DEBUGFUNC("e1000_get_pcs_speed_and_duplex_82575");
+
+ /* Set up defaults for the return values of this function */
+ mac->serdes_has_link = FALSE;
+ *speed = 0;
+ *duplex = 0;
+
+ /*
+ * Read the PCS Status register for link state. For non-copper mode,
+ * the status register is not accurate. The PCS status register is
+ * used instead.
+ */
+ pcs = E1000_READ_REG(hw, E1000_PCS_LSTAT);
+
+ /*
+ * The link up bit determines when link is up on autoneg. The sync ok
+ * gets set once both sides sync up and agree upon link. Stable link
+ * can be determined by checking for both link up and link sync ok
+ */
+ if ((pcs & E1000_PCS_LSTS_LINK_OK) && (pcs & E1000_PCS_LSTS_SYNK_OK)) {
+ mac->serdes_has_link = TRUE;
+
+ /* Detect and store PCS speed */
+ if (pcs & E1000_PCS_LSTS_SPEED_1000) {
+ *speed = SPEED_1000;
+ } else if (pcs & E1000_PCS_LSTS_SPEED_100) {
+ *speed = SPEED_100;
+ } else {
+ *speed = SPEED_10;
+ }
+
+ /* Detect and store PCS duplex */
+ if (pcs & E1000_PCS_LSTS_DUPLEX_FULL) {
+ *duplex = FULL_DUPLEX;
+ } else {
+ *duplex = HALF_DUPLEX;
+ }
+ }
+
+ return E1000_SUCCESS;
+}
+
+/**
+ * e1000_rar_set_82575 - Set receive address register
+ * @hw: pointer to the HW structure
+ * @addr: pointer to the receive address
+ * @index: receive address array register
+ *
+ * Sets the receive address array register at index to the address passed
+ * in by addr.
+ **/
+void e1000_rar_set_82575(struct e1000_hw *hw, u8 *addr, u32 index)
+{
+ DEBUGFUNC("e1000_rar_set_82575");
+
+ if (index < E1000_RAR_ENTRIES_82575) {
+ e1000_rar_set_generic(hw, addr, index);
+ }
+
+ return;
+}
+
+/**
+ * e1000_reset_hw_82575 - Reset hardware
+ * @hw: pointer to the HW structure
+ *
+ * This resets the hardware into a known state. This is a
+ * function pointer entry point called by the api module.
+ **/
+STATIC s32 e1000_reset_hw_82575(struct e1000_hw *hw)
+{
+ u32 ctrl, icr;
+ s32 ret_val;
+
+ DEBUGFUNC("e1000_reset_hw_82575");
+
+ /*
+ * Prevent the PCI-E bus from sticking if there is no TLP connection
+ * on the last TLP read/write transaction when MAC is reset.
+ */
+ ret_val = e1000_disable_pcie_master_generic(hw);
+ if (ret_val) {
+ DEBUGOUT("PCI-E Master disable polling has failed.\n");
+ }
+
+ DEBUGOUT("Masking off all interrupts\n");
+ E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff);
+
+ E1000_WRITE_REG(hw, E1000_RCTL, 0);
+ E1000_WRITE_REG(hw, E1000_TCTL, E1000_TCTL_PSP);
+ E1000_WRITE_FLUSH(hw);
+
+ msec_delay(10);
+
+ ctrl = E1000_READ_REG(hw, E1000_CTRL);
+
+ DEBUGOUT("Issuing a global reset to MAC\n");
+ E1000_WRITE_REG(hw, E1000_CTRL, ctrl | E1000_CTRL_RST);
+
+ ret_val = e1000_get_auto_rd_done_generic(hw);
+ if (ret_val) {
+ /*
+ * When auto config read does not complete, do not
+ * return with an error. This can happen in situations
+ * where there is no eeprom and prevents getting link.
+ */
+ DEBUGOUT("Auto Read Done did not complete\n");
+ }
+
+ /* If EEPROM is not present, run manual init scripts */
+ if ((E1000_READ_REG(hw, E1000_EECD) & E1000_EECD_PRES) == 0)
+ e1000_reset_init_script_82575(hw);
+
+ /* Clear any pending interrupt events. */
+ E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff);
+ icr = E1000_READ_REG(hw, E1000_ICR);
+
+ e1000_check_alt_mac_addr_generic(hw);
+
+ return ret_val;
+}
+
+/**
+ * e1000_init_hw_82575 - Initialize hardware
+ * @hw: pointer to the HW structure
+ *
+ * This inits the hardware readying it for operation.
+ **/
+STATIC s32 e1000_init_hw_82575(struct e1000_hw *hw)
+{
+ struct e1000_mac_info *mac = &hw->mac;
+ s32 ret_val;
+ u16 i, rar_count = mac->rar_entry_count;
+
+ DEBUGFUNC("e1000_init_hw_82575");
+
+ /* Initialize identification LED */
+ ret_val = e1000_id_led_init_generic(hw);
+ if (ret_val) {
+ DEBUGOUT("Error initializing identification LED\n");
+ /* This is not fatal and we should not stop init due to this */
+ }
+
+ /* Disabling VLAN filtering */
+ DEBUGOUT("Initializing the IEEE VLAN\n");
+ e1000_clear_vfta(hw);
+
+ /* Setup the receive address */
+ e1000_init_rx_addrs_generic(hw, rar_count);
+ /* Zero out the Multicast HASH table */
+ DEBUGOUT("Zeroing the MTA\n");
+ for (i = 0; i < mac->mta_reg_count; i++)
+ E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
+
+ /* Setup link and flow control */
+ ret_val = e1000_setup_link(hw);
+
+ /*
+ * Clear all of the statistics registers (clear on read). It is
+ * important that we do this after we have tried to establish link
+ * because the symbol error count will increment wildly if there
+ * is no link.
+ */
+ e1000_clear_hw_cntrs_82575(hw);
+
+ return ret_val;
+}
+
+/**
+ * e1000_setup_copper_link_82575 - Configure copper link settings
+ * @hw: pointer to the HW structure
+ *
+ * Configures the link for auto-neg or forced speed and duplex. Then we check
+ * for link, once link is established calls to configure collision distance
+ * and flow control are called.
+ **/
+STATIC s32 e1000_setup_copper_link_82575(struct e1000_hw *hw)
+{
+ u32 ctrl, led_ctrl;
+ s32 ret_val;
+ bool link;
+
+ DEBUGFUNC("e1000_setup_copper_link_82575");
+
+ ctrl = E1000_READ_REG(hw, E1000_CTRL);
+ ctrl |= E1000_CTRL_SLU;
+ ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
+ E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
+
+ switch (hw->phy.type) {
+ case e1000_phy_m88:
+ ret_val = e1000_copper_link_setup_m88(hw);
+ break;
+ case e1000_phy_igp_3:
+ ret_val = e1000_copper_link_setup_igp(hw);
+ /* Setup activity LED */
+ led_ctrl = E1000_READ_REG(hw, E1000_LEDCTL);
+ led_ctrl &= IGP_ACTIVITY_LED_MASK;
+ led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE);
+ E1000_WRITE_REG(hw, E1000_LEDCTL, led_ctrl);
+ break;
+ default:
+ ret_val = -E1000_ERR_PHY;
+ break;
+ }
+
+ if (ret_val)
+ goto out;
+
+ if (hw->mac.autoneg) {
+ /*
+ * Setup autoneg and flow control advertisement
+ * and perform autonegotiation.
+ */
+ ret_val = e1000_copper_link_autoneg(hw);
+ if (ret_val)
+ goto out;
+ } else {
+ /*
+ * PHY will be set to 10H, 10F, 100H or 100F
+ * depending on user settings.
+ */
+ DEBUGOUT("Forcing Speed and Duplex\n");
+ ret_val = e1000_phy_force_speed_duplex(hw);
+ if (ret_val) {
+ DEBUGOUT("Error Forcing Speed and Duplex\n");
+ goto out;
+ }
+ }
+
+ ret_val = e1000_configure_pcs_link_82575(hw);
+ if (ret_val)
+ goto out;
+
+ /*
+ * Check link status. Wait up to 100 microseconds for link to become
+ * valid.
+ */
+ ret_val = e1000_phy_has_link_generic(hw,
+ COPPER_LINK_UP_LIMIT,
+ 10,
+ &link);
+ if (ret_val)
+ goto out;
+
+ if (link) {
+ DEBUGOUT("Valid link established!!!\n");
+ /* Config the MAC and PHY after link is up */
+ e1000_config_collision_dist_generic(hw);
+ ret_val = e1000_config_fc_after_link_up_generic(hw);
+ } else {
+ DEBUGOUT("Unable to establish link!!!\n");
+ }
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_setup_fiber_serdes_link_82575 - Setup link for fiber/serdes
+ * @hw: pointer to the HW structure
+ *
+ * Configures speed and duplex for fiber and serdes links.
+ **/
+STATIC s32 e1000_setup_fiber_serdes_link_82575(struct e1000_hw *hw)
+{
+ u32 reg;
+
+ DEBUGFUNC("e1000_setup_fiber_serdes_link_82575");
+
+ /*
+ * On the 82575, SerDes loopback mode persists until it is
+ * explicitly turned off or a power cycle is performed. A read to
+ * the register does not indicate its status. Therefore, we ensure
+ * loopback mode is disabled during initialization.
+ */
+ E1000_WRITE_REG(hw, E1000_SCTL, E1000_SCTL_DISABLE_SERDES_LOOPBACK);
+
+ /* Force link up, set 1gb, set both sw defined pins */
+ reg = E1000_READ_REG(hw, E1000_CTRL);
+ reg |= E1000_CTRL_SLU |
+ E1000_CTRL_SPD_1000 |
+ E1000_CTRL_FRCSPD |
+ E1000_CTRL_SWDPIN0 |
+ E1000_CTRL_SWDPIN1;
+ E1000_WRITE_REG(hw, E1000_CTRL, reg);
+
+ /* Set switch control to serdes energy detect */
+ reg = E1000_READ_REG(hw, E1000_CONNSW);
+ reg |= E1000_CONNSW_ENRGSRC;
+ E1000_WRITE_REG(hw, E1000_CONNSW, reg);
+
+ /*
+ * New SerDes mode allows for forcing speed or autonegotiating speed
+ * at 1gb. Autoneg should be default set by most drivers. This is the
+ * mode that will be compatible with older link partners and switches.
+ * However, both are supported by the hardware and some drivers/tools.
+ */
+ reg = E1000_READ_REG(hw, E1000_PCS_LCTL);
+
+ reg &= ~(E1000_PCS_LCTL_AN_ENABLE | E1000_PCS_LCTL_FLV_LINK_UP |
+ E1000_PCS_LCTL_FSD | E1000_PCS_LCTL_FORCE_LINK);
+
+ if (hw->mac.autoneg) {
+ /* Set PCS register for autoneg */
+ reg |= E1000_PCS_LCTL_FSV_1000 | /* Force 1000 */
+ E1000_PCS_LCTL_FDV_FULL | /* SerDes Full duplex */
+ E1000_PCS_LCTL_AN_ENABLE | /* Enable Autoneg */
+ E1000_PCS_LCTL_AN_RESTART; /* Restart autoneg */
+ DEBUGOUT1("Configuring Autoneg; PCS_LCTL = 0x%08X\n", reg);
+ } else {
+ /* Set PCS register for forced speed */
+ reg |= E1000_PCS_LCTL_FLV_LINK_UP | /* Force link up */
+ E1000_PCS_LCTL_FSV_1000 | /* Force 1000 */
+ E1000_PCS_LCTL_FDV_FULL | /* SerDes Full duplex */
+ E1000_PCS_LCTL_FSD | /* Force Speed */
+ E1000_PCS_LCTL_FORCE_LINK; /* Force Link */
+ DEBUGOUT1("Configuring Forced Link; PCS_LCTL = 0x%08X\n", reg);
+ }
+ E1000_WRITE_REG(hw, E1000_PCS_LCTL, reg);
+
+ return E1000_SUCCESS;
+}
+
+/**
+ * e1000_configure_pcs_link_82575 - Configure PCS link
+ * @hw: pointer to the HW structure
+ *
+ * Configure the physical coding sub-layer (PCS) link. The PCS link is
+ * only used on copper connections where the serialized gigabit media
+ * independent interface (sgmii) is being used. Configures the link
+ * for auto-negotiation or forces speed/duplex.
+ **/
+static s32 e1000_configure_pcs_link_82575(struct e1000_hw *hw)
+{
+ struct e1000_mac_info *mac = &hw->mac;
+ u32 reg = 0;
+
+ DEBUGFUNC("e1000_configure_pcs_link_82575");
+
+ if (hw->phy.media_type != e1000_media_type_copper ||
+ !(e1000_sgmii_active_82575(hw)))
+ goto out;
+
+ /* For SGMII, we need to issue a PCS autoneg restart */
+ reg = E1000_READ_REG(hw, E1000_PCS_LCTL);
+
+ /* AN time out should be disabled for SGMII mode */
+ reg &= ~(E1000_PCS_LCTL_AN_TIMEOUT);
+
+ if (mac->autoneg) {
+ /* Make sure forced speed and force link are not set */
+ reg &= ~(E1000_PCS_LCTL_FSD | E1000_PCS_LCTL_FORCE_LINK);
+
+ /*
+ * The PHY should be setup prior to calling this function.
+ * All we need to do is restart autoneg and enable autoneg.
+ */
+ reg |= E1000_PCS_LCTL_AN_RESTART | E1000_PCS_LCTL_AN_ENABLE;
+ } else {
+ /* Set PCS regiseter for forced speed */
+
+ /* Turn off bits for full duplex, speed, and autoneg */
+ reg &= ~(E1000_PCS_LCTL_FSV_1000 |
+ E1000_PCS_LCTL_FSV_100 |
+ E1000_PCS_LCTL_FDV_FULL |
+ E1000_PCS_LCTL_AN_ENABLE);
+
+ /* Check for duplex first */
+ if (mac->forced_speed_duplex & E1000_ALL_FULL_DUPLEX)
+ reg |= E1000_PCS_LCTL_FDV_FULL;
+
+ /* Now set speed */
+ if (mac->forced_speed_duplex & E1000_ALL_100_SPEED)
+ reg |= E1000_PCS_LCTL_FSV_100;
+
+ /* Force speed and force link */
+ reg |= E1000_PCS_LCTL_FSD |
+ E1000_PCS_LCTL_FORCE_LINK |
+ E1000_PCS_LCTL_FLV_LINK_UP;
+
+ DEBUGOUT1("Wrote 0x%08X to PCS_LCTL to configure forced link\n",
+ reg);
+ }
+ E1000_WRITE_REG(hw, E1000_PCS_LCTL, reg);
+
+out:
+ return E1000_SUCCESS;
+}
+
+/**
+ * e1000_sgmii_active_82575 - Return sgmii state
+ * @hw: pointer to the HW structure
+ *
+ * 82575 silicon has a serialized gigabit media independent interface (sgmii)
+ * which can be enabled for use in the embedded applications. Simply
+ * return the current state of the sgmii interface.
+ **/
+static bool e1000_sgmii_active_82575(struct e1000_hw *hw)
+{
+ struct e1000_dev_spec_82575 *dev_spec;
+ bool ret_val;
+
+ DEBUGFUNC("e1000_sgmii_active_82575");
+
+ if (hw->mac.type != e1000_82575) {
+ ret_val = FALSE;
+ goto out;
+ }
+
+ dev_spec = (struct e1000_dev_spec_82575 *)hw->dev_spec;
+
+ ret_val = dev_spec->sgmii_active;
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_reset_init_script_82575 - Inits HW defaults after reset
+ * @hw: pointer to the HW structure
+ *
+ * Inits recommended HW defaults after a reset when there is no EEPROM
+ * detected. This is only for the 82575.
+ **/
+STATIC s32 e1000_reset_init_script_82575(struct e1000_hw* hw)
+{
+ DEBUGFUNC("e1000_reset_init_script_82575");
+
+ if (hw->mac.type == e1000_82575) {
+ DEBUGOUT("Running reset init script for 82575\n");
+ /* SerDes configuration via SERDESCTRL */
+ e1000_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x00, 0x0C);
+ e1000_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x01, 0x78);
+ e1000_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x1B, 0x23);
+ e1000_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x23, 0x15);
+
+ /* CCM configuration via CCMCTL register */
+ e1000_write_8bit_ctrl_reg(hw, E1000_CCMCTL, 0x14, 0x00);
+ e1000_write_8bit_ctrl_reg(hw, E1000_CCMCTL, 0x10, 0x00);
+
+ /* PCIe lanes configuration */
+ e1000_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x00, 0xEC);
+ e1000_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x61, 0xDF);
+ e1000_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x34, 0x05);
+ e1000_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x2F, 0x81);
+
+ /* PCIe PLL Configuration */
+ e1000_write_8bit_ctrl_reg(hw, E1000_SCCTL, 0x02, 0x47);
+ e1000_write_8bit_ctrl_reg(hw, E1000_SCCTL, 0x14, 0x00);
+ e1000_write_8bit_ctrl_reg(hw, E1000_SCCTL, 0x10, 0x00);
+ }
+
+ return E1000_SUCCESS;
+}
+
+/**
+ * e1000_read_mac_addr_82575 - Read device MAC address
+ * @hw: pointer to the HW structure
+ **/
+STATIC s32 e1000_read_mac_addr_82575(struct e1000_hw *hw)
+{
+ s32 ret_val = E1000_SUCCESS;
+
+ DEBUGFUNC("e1000_read_mac_addr_82575");
+ if (e1000_check_alt_mac_addr_generic(hw))
+ ret_val = e1000_read_mac_addr_generic(hw);
+
+ return ret_val;
+}
+
+/**
+ * e1000_power_down_phy_copper_82575 - Remove link during PHY power down
+ * @hw: pointer to the HW structure
+ *
+ * In the case of a PHY power down to save power, or to turn off link during a
+ * driver unload, or wake on lan is not enabled, remove the link.
+ **/
+STATIC void e1000_power_down_phy_copper_82575(struct e1000_hw *hw)
+{
+ /* If the management interface is not enabled, then power down */
+ if (!(e1000_check_mng_mode(hw) || e1000_check_reset_block(hw)))
+ e1000_power_down_phy_copper(hw);
+
+ return;
+}
+
+/**
+ * e1000_clear_hw_cntrs_82575 - Clear device specific hardware counters
+ * @hw: pointer to the HW structure
+ *
+ * Clears the hardware counters by reading the counter registers.
+ **/
+STATIC void e1000_clear_hw_cntrs_82575(struct e1000_hw *hw)
+{
+ volatile u32 temp;
+
+ DEBUGFUNC("e1000_clear_hw_cntrs_82575");
+
+ e1000_clear_hw_cntrs_base_generic(hw);
+
+ temp = E1000_READ_REG(hw, E1000_PRC64);
+ temp = E1000_READ_REG(hw, E1000_PRC127);
+ temp = E1000_READ_REG(hw, E1000_PRC255);
+ temp = E1000_READ_REG(hw, E1000_PRC511);
+ temp = E1000_READ_REG(hw, E1000_PRC1023);
+ temp = E1000_READ_REG(hw, E1000_PRC1522);
+ temp = E1000_READ_REG(hw, E1000_PTC64);
+ temp = E1000_READ_REG(hw, E1000_PTC127);
+ temp = E1000_READ_REG(hw, E1000_PTC255);
+ temp = E1000_READ_REG(hw, E1000_PTC511);
+ temp = E1000_READ_REG(hw, E1000_PTC1023);
+ temp = E1000_READ_REG(hw, E1000_PTC1522);
+
+ temp = E1000_READ_REG(hw, E1000_ALGNERRC);
+ temp = E1000_READ_REG(hw, E1000_RXERRC);
+ temp = E1000_READ_REG(hw, E1000_TNCRS);
+ temp = E1000_READ_REG(hw, E1000_CEXTERR);
+ temp = E1000_READ_REG(hw, E1000_TSCTC);
+ temp = E1000_READ_REG(hw, E1000_TSCTFC);
+
+ temp = E1000_READ_REG(hw, E1000_MGTPRC);
+ temp = E1000_READ_REG(hw, E1000_MGTPDC);
+ temp = E1000_READ_REG(hw, E1000_MGTPTC);
+
+ temp = E1000_READ_REG(hw, E1000_IAC);
+ temp = E1000_READ_REG(hw, E1000_ICRXOC);
+
+ temp = E1000_READ_REG(hw, E1000_ICRXPTC);
+ temp = E1000_READ_REG(hw, E1000_ICRXATC);
+ temp = E1000_READ_REG(hw, E1000_ICTXPTC);
+ temp = E1000_READ_REG(hw, E1000_ICTXATC);
+ temp = E1000_READ_REG(hw, E1000_ICTXQEC);
+ temp = E1000_READ_REG(hw, E1000_ICTXQMTC);
+ temp = E1000_READ_REG(hw, E1000_ICRXDMTC);
+
+ temp = E1000_READ_REG(hw, E1000_CBTMPC);
+ temp = E1000_READ_REG(hw, E1000_HTDPMC);
+ temp = E1000_READ_REG(hw, E1000_CBRMPC);
+ temp = E1000_READ_REG(hw, E1000_RPTHC);
+ temp = E1000_READ_REG(hw, E1000_HGPTC);
+ temp = E1000_READ_REG(hw, E1000_HTCBDPC);
+ temp = E1000_READ_REG(hw, E1000_HGORCL);
+ temp = E1000_READ_REG(hw, E1000_HGORCH);
+ temp = E1000_READ_REG(hw, E1000_HGOTCL);
+ temp = E1000_READ_REG(hw, E1000_HGOTCH);
+ temp = E1000_READ_REG(hw, E1000_LENERRS);
+
+ /* This register should not be read in copper configurations */
+ if (hw->phy.media_type == e1000_media_type_internal_serdes)
+ temp = E1000_READ_REG(hw, E1000_SCVPC);
+}
--- /dev/null
+++ sys/dev/em/e1000_82541.c
@@ -0,0 +1,1337 @@
+/*******************************************************************************
+
+ Copyright (c) 2001-2007, Intel Corporation
+ All rights reserved.
+
+ Redistribution and use in source and binary forms, with or without
+ modification, are permitted provided that the following conditions are met:
+
+ 1. Redistributions of source code must retain the above copyright notice,
+ this list of conditions and the following disclaimer.
+
+ 2. Redistributions in binary form must reproduce the above copyright
+ notice, this list of conditions and the following disclaimer in the
+ documentation and/or other materials provided with the distribution.
+
+ 3. Neither the name of the Intel Corporation nor the names of its
+ contributors may be used to endorse or promote products derived from
+ this software without specific prior written permission.
+
+ THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
+ AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+ IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
+ LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
+ CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
+ SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
+ INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
+ CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
+ ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
+ POSSIBILITY OF SUCH DAMAGE.
+
+*******************************************************************************/
+/* $FreeBSD: src/sys/dev/em/e1000_82541.c,v 1.3.4.1 2007/11/28 23:24:37 jfv Exp $ */
+
+
+/* e1000_82541
+ * e1000_82547
+ * e1000_82541_rev_2
+ * e1000_82547_rev_2
+ */
+
+#include "e1000_api.h"
+#include "e1000_82541.h"
+
+void e1000_init_function_pointers_82541(struct e1000_hw *hw);
+
+STATIC s32 e1000_init_phy_params_82541(struct e1000_hw *hw);
+STATIC s32 e1000_init_nvm_params_82541(struct e1000_hw *hw);
+STATIC s32 e1000_init_mac_params_82541(struct e1000_hw *hw);
+STATIC s32 e1000_reset_hw_82541(struct e1000_hw *hw);
+STATIC s32 e1000_init_hw_82541(struct e1000_hw *hw);
+STATIC s32 e1000_get_link_up_info_82541(struct e1000_hw *hw, u16 *speed,
+ u16 *duplex);
+STATIC s32 e1000_phy_hw_reset_82541(struct e1000_hw *hw);
+STATIC s32 e1000_setup_copper_link_82541(struct e1000_hw *hw);
+STATIC s32 e1000_check_for_link_82541(struct e1000_hw *hw);
+STATIC s32 e1000_get_cable_length_igp_82541(struct e1000_hw *hw);
+STATIC s32 e1000_set_d3_lplu_state_82541(struct e1000_hw *hw,
+ bool active);
+STATIC s32 e1000_setup_led_82541(struct e1000_hw *hw);
+STATIC s32 e1000_cleanup_led_82541(struct e1000_hw *hw);
+STATIC void e1000_clear_hw_cntrs_82541(struct e1000_hw *hw);
+static s32 e1000_config_dsp_after_link_change_82541(struct e1000_hw *hw,
+ bool link_up);
+static s32 e1000_phy_init_script_82541(struct e1000_hw *hw);
+STATIC void e1000_power_down_phy_copper_82541(struct e1000_hw *hw);
+
+static const u16 e1000_igp_cable_length_table[] =
+ { 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
+ 5, 10, 10, 10, 10, 10, 10, 10, 20, 20, 20, 20, 20, 25, 25, 25,
+ 25, 25, 25, 25, 30, 30, 30, 30, 40, 40, 40, 40, 40, 40, 40, 40,
+ 40, 50, 50, 50, 50, 50, 50, 50, 60, 60, 60, 60, 60, 60, 60, 60,
+ 60, 70, 70, 70, 70, 70, 70, 80, 80, 80, 80, 80, 80, 90, 90, 90,
+ 90, 90, 90, 90, 90, 90, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100,
+ 100, 100, 100, 100, 110, 110, 110, 110, 110, 110, 110, 110, 110, 110, 110, 110,
+ 110, 110, 110, 110, 110, 110, 120, 120, 120, 120, 120, 120, 120, 120, 120, 120};
+#define IGP01E1000_AGC_LENGTH_TABLE_SIZE \
+ (sizeof(e1000_igp_cable_length_table) / \
+ sizeof(e1000_igp_cable_length_table[0]))
+
+struct e1000_dev_spec_82541 {
+ e1000_dsp_config dsp_config;
+ e1000_ffe_config ffe_config;
+ u16 spd_default;
+ bool phy_init_script;
+};
+
+/**
+ * e1000_init_phy_params_82541 - Init PHY func ptrs.
+ * @hw: pointer to the HW structure
+ *
+ * This is a function pointer entry point called by the api module.
+ **/
+STATIC s32 e1000_init_phy_params_82541(struct e1000_hw *hw)
+{
+ struct e1000_phy_info *phy = &hw->phy;
+ struct e1000_functions *func = &hw->func;
+ s32 ret_val = E1000_SUCCESS;
+
+ DEBUGFUNC("e1000_init_phy_params_82541");
+
+ phy->addr = 1;
+ phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
+ phy->reset_delay_us = 10000;
+ phy->type = e1000_phy_igp;
+
+ /* Function Pointers */
+ func->check_polarity = e1000_check_polarity_igp;
+ func->force_speed_duplex = e1000_phy_force_speed_duplex_igp;
+ func->get_cable_length = e1000_get_cable_length_igp_82541;
+ func->get_cfg_done = e1000_get_cfg_done_generic;
+ func->get_phy_info = e1000_get_phy_info_igp;
+ func->read_phy_reg = e1000_read_phy_reg_igp;
+ func->reset_phy = e1000_phy_hw_reset_82541;
+ func->set_d3_lplu_state = e1000_set_d3_lplu_state_82541;
+ func->write_phy_reg = e1000_write_phy_reg_igp;
+ func->power_up_phy = e1000_power_up_phy_copper;
+ func->power_down_phy = e1000_power_down_phy_copper_82541;
+
+ ret_val = e1000_get_phy_id(hw);
+ if (ret_val)
+ goto out;
+
+ /* Verify phy id */
+ if (phy->id != IGP01E1000_I_PHY_ID) {
+ ret_val = -E1000_ERR_PHY;
+ goto out;
+ }
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_init_nvm_params_82541 - Init NVM func ptrs.
+ * @hw: pointer to the HW structure
+ *
+ * This is a function pointer entry point called by the api module.
+ **/
+STATIC s32 e1000_init_nvm_params_82541(struct e1000_hw *hw)
+{
+ struct e1000_nvm_info *nvm = &hw->nvm;
+ struct e1000_functions *func = &hw->func;
+ s32 ret_val = E1000_SUCCESS;
+ u32 eecd = E1000_READ_REG(hw, E1000_EECD);
+ u16 size;
+
+ DEBUGFUNC("e1000_init_nvm_params_82541");
+
+ switch (nvm->override) {
+ case e1000_nvm_override_spi_large:
+ nvm->type = e1000_nvm_eeprom_spi;
+ eecd |= E1000_EECD_ADDR_BITS;
+ break;
+ case e1000_nvm_override_spi_small:
+ nvm->type = e1000_nvm_eeprom_spi;
+ eecd &= ~E1000_EECD_ADDR_BITS;
+ break;
+ case e1000_nvm_override_microwire_large:
+ nvm->type = e1000_nvm_eeprom_microwire;
+ eecd |= E1000_EECD_SIZE;
+ break;
+ case e1000_nvm_override_microwire_small:
+ nvm->type = e1000_nvm_eeprom_microwire;
+ eecd &= ~E1000_EECD_SIZE;
+ break;
+ default:
+ nvm->type = eecd & E1000_EECD_TYPE
+ ? e1000_nvm_eeprom_spi
+ : e1000_nvm_eeprom_microwire;
+ break;
+ }
+
+ if (nvm->type == e1000_nvm_eeprom_spi) {
+ nvm->address_bits = (eecd & E1000_EECD_ADDR_BITS)
+ ? 16 : 8;
+ nvm->delay_usec = 1;
+ nvm->opcode_bits = 8;
+ nvm->page_size = (eecd & E1000_EECD_ADDR_BITS)
+ ? 32 : 8;
+
+ /* Function Pointers */
+ func->acquire_nvm = e1000_acquire_nvm_generic;
+ func->read_nvm = e1000_read_nvm_spi;
+ func->release_nvm = e1000_release_nvm_generic;
+ func->update_nvm = e1000_update_nvm_checksum_generic;
+ func->valid_led_default = e1000_valid_led_default_generic;
+ func->validate_nvm = e1000_validate_nvm_checksum_generic;
+ func->write_nvm = e1000_write_nvm_spi;
+
+ /*
+ * nvm->word_size must be discovered after the pointers
+ * are set so we can verify the size from the nvm image
+ * itself. Temporarily set it to a dummy value so the
+ * read will work.
+ */
+ nvm->word_size = 64;
+ ret_val = e1000_read_nvm(hw, NVM_CFG, 1, &size);
+ if (ret_val)
+ goto out;
+ size = (size & NVM_SIZE_MASK) >> NVM_SIZE_SHIFT;
+ /*
+ * if size != 0, it can be added to a constant and become
+ * the left-shift value to set the word_size. Otherwise,
+ * word_size stays at 64.
+ */
+ if (size) {
+ size += NVM_WORD_SIZE_BASE_SHIFT_82541;
+ nvm->word_size = 1 << size;
+ }
+ } else {
+ nvm->address_bits = (eecd & E1000_EECD_ADDR_BITS)
+ ? 8 : 6;
+ nvm->delay_usec = 50;
+ nvm->opcode_bits = 3;
+ nvm->word_size = (eecd & E1000_EECD_ADDR_BITS)
+ ? 256 : 64;
+
+ /* Function Pointers */
+ func->acquire_nvm = e1000_acquire_nvm_generic;
+ func->read_nvm = e1000_read_nvm_microwire;
+ func->release_nvm = e1000_release_nvm_generic;
+ func->update_nvm = e1000_update_nvm_checksum_generic;
+ func->valid_led_default = e1000_valid_led_default_generic;
+ func->validate_nvm = e1000_validate_nvm_checksum_generic;
+ func->write_nvm = e1000_write_nvm_microwire;
+ }
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_init_mac_params_82541 - Init MAC func ptrs.
+ * @hw: pointer to the HW structure
+ *
+ * This is a function pointer entry point called by the api module.
+ **/
+STATIC s32 e1000_init_mac_params_82541(struct e1000_hw *hw)
+{
+ struct e1000_mac_info *mac = &hw->mac;
+ struct e1000_functions *func = &hw->func;
+ s32 ret_val;
+
+ DEBUGFUNC("e1000_init_mac_params_82541");
+
+ /* Set media type */
+ hw->phy.media_type = e1000_media_type_copper;
+ /* Set mta register count */
+ mac->mta_reg_count = 128;
+ /* Set rar entry count */
+ mac->rar_entry_count = E1000_RAR_ENTRIES;
+ /* Set if part includes ASF firmware */
+ mac->asf_firmware_present = TRUE;
+
+ /* Function Pointers */
+
+ /* bus type/speed/width */
+ func->get_bus_info = e1000_get_bus_info_pci_generic;
+ /* reset */
+ func->reset_hw = e1000_reset_hw_82541;
+ /* hw initialization */
+ func->init_hw = e1000_init_hw_82541;
+ /* link setup */
+ func->setup_link = e1000_setup_link_generic;
+ /* physical interface link setup */
+ func->setup_physical_interface = e1000_setup_copper_link_82541;
+ /* check for link */
+ func->check_for_link = e1000_check_for_link_82541;
+ /* link info */
+ func->get_link_up_info = e1000_get_link_up_info_82541;
+ /* multicast address update */
+ func->update_mc_addr_list = e1000_update_mc_addr_list_generic;
+ /* writing VFTA */
+ func->write_vfta = e1000_write_vfta_generic;
+ /* clearing VFTA */
+ func->clear_vfta = e1000_clear_vfta_generic;
+ /* setting MTA */
+ func->mta_set = e1000_mta_set_generic;
+ /* setup LED */
+ func->setup_led = e1000_setup_led_82541;
+ /* cleanup LED */
+ func->cleanup_led = e1000_cleanup_led_82541;
+ /* turn on/off LED */
+ func->led_on = e1000_led_on_generic;
+ func->led_off = e1000_led_off_generic;
+ /* remove device */
+ func->remove_device = e1000_remove_device_generic;
+ /* clear hardware counters */
+ func->clear_hw_cntrs = e1000_clear_hw_cntrs_82541;
+
+ hw->dev_spec_size = sizeof(struct e1000_dev_spec_82541);
+
+ /* Device-specific structure allocation */
+ ret_val = e1000_alloc_zeroed_dev_spec_struct(hw, hw->dev_spec_size);
+
+ return ret_val;
+}
+
+/**
+ * e1000_init_function_pointers_82541 - Init func ptrs.
+ * @hw: pointer to the HW structure
+ *
+ * The only function explicitly called by the api module to initialize
+ * all function pointers and parameters.
+ **/
+void e1000_init_function_pointers_82541(struct e1000_hw *hw)
+{
+ DEBUGFUNC("e1000_init_function_pointers_82541");
+
+ hw->func.init_mac_params = e1000_init_mac_params_82541;
+ hw->func.init_nvm_params = e1000_init_nvm_params_82541;
+ hw->func.init_phy_params = e1000_init_phy_params_82541;
+}
+
+/**
+ * e1000_reset_hw_82541 - Reset hardware
+ * @hw: pointer to the HW structure
+ *
+ * This resets the hardware into a known state. This is a
+ * function pointer entry point called by the api module.
+ **/
+STATIC s32 e1000_reset_hw_82541(struct e1000_hw *hw)
+{
+ u32 ledctl, ctrl, icr, manc;
+
+ DEBUGFUNC("e1000_reset_hw_82541");
+
+ DEBUGOUT("Masking off all interrupts\n");
+ E1000_WRITE_REG(hw, E1000_IMC, 0xFFFFFFFF);
+
+ E1000_WRITE_REG(hw, E1000_RCTL, 0);
+ E1000_WRITE_REG(hw, E1000_TCTL, E1000_TCTL_PSP);
+ E1000_WRITE_FLUSH(hw);
+
+ /*
+ * Delay to allow any outstanding PCI transactions to complete
+ * before resetting the device.
+ */
+ msec_delay(10);
+
+ ctrl = E1000_READ_REG(hw, E1000_CTRL);
+
+ /* Must reset the Phy before resetting the MAC */
+ if ((hw->mac.type == e1000_82541) || (hw->mac.type == e1000_82547)) {
+ E1000_WRITE_REG(hw, E1000_CTRL, (ctrl | E1000_CTRL_PHY_RST));
+ msec_delay(5);
+ }
+
+ DEBUGOUT("Issuing a global reset to 82541/82547 MAC\n");
+ switch (hw->mac.type) {
+ case e1000_82541:
+ case e1000_82541_rev_2:
+ /*
+ * These controllers can't ack the 64-bit write when
+ * issuing the reset, so we use IO-mapping as a
+ * workaround to issue the reset.
+ */
+ E1000_WRITE_REG_IO(hw, E1000_CTRL, ctrl | E1000_CTRL_RST);
+ break;
+ default:
+ E1000_WRITE_REG(hw, E1000_CTRL, ctrl | E1000_CTRL_RST);
+ break;
+ }
+
+ /* Wait for NVM reload */
+ msec_delay(20);
+
+ /* Disable HW ARPs on ASF enabled adapters */
+ manc = E1000_READ_REG(hw, E1000_MANC);
+ manc &= ~E1000_MANC_ARP_EN;
+ E1000_WRITE_REG(hw, E1000_MANC, manc);
+
+ if ((hw->mac.type == e1000_82541) || (hw->mac.type == e1000_82547)) {
+ e1000_phy_init_script_82541(hw);
+
+ /* Configure activity LED after Phy reset */
+ ledctl = E1000_READ_REG(hw, E1000_LEDCTL);
+ ledctl &= IGP_ACTIVITY_LED_MASK;
+ ledctl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE);
+ E1000_WRITE_REG(hw, E1000_LEDCTL, ledctl);
+ }
+
+ /* Once again, mask the interrupts */
+ DEBUGOUT("Masking off all interrupts\n");
+ E1000_WRITE_REG(hw, E1000_IMC, 0xFFFFFFFF);
+
+ /* Clear any pending interrupt events. */
+ icr = E1000_READ_REG(hw, E1000_ICR);
+
+ return E1000_SUCCESS;
+}
+
+/**
+ * e1000_init_hw_82541 - Initialize hardware
+ * @hw: pointer to the HW structure
+ *
+ * This inits the hardware readying it for operation. This is a
+ * function pointer entry point called by the api module.
+ **/
+STATIC s32 e1000_init_hw_82541(struct e1000_hw *hw)
+{
+ struct e1000_mac_info *mac = &hw->mac;
+ u32 i, txdctl;
+ s32 ret_val;
+
+ DEBUGFUNC("e1000_init_hw_82541");
+
+ /* Initialize identification LED */
+ ret_val = e1000_id_led_init_generic(hw);
+ if (ret_val) {
+ DEBUGOUT("Error initializing identification LED\n");
+ /* This is not fatal and we should not stop init due to this */
+ }
+
+ /* Disabling VLAN filtering */
+ DEBUGOUT("Initializing the IEEE VLAN\n");
+ e1000_clear_vfta(hw);
+
+ /* Setup the receive address. */
+ e1000_init_rx_addrs_generic(hw, mac->rar_entry_count);
+
+ /* Zero out the Multicast HASH table */
+ DEBUGOUT("Zeroing the MTA\n");
+ for (i = 0; i < mac->mta_reg_count; i++) {
+ E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
+ /*
+ * Avoid back to back register writes by adding the register
+ * read (flush). This is to protect against some strange
+ * bridge configurations that may issue Memory Write Block
+ * (MWB) to our register space.
+ */
+ E1000_WRITE_FLUSH(hw);
+ }
+
+ /* Setup link and flow control */
+ ret_val = e1000_setup_link(hw);
+
+ txdctl = E1000_READ_REG(hw, E1000_TXDCTL(0));
+ txdctl = (txdctl & ~E1000_TXDCTL_WTHRESH) |
+ E1000_TXDCTL_FULL_TX_DESC_WB;
+ E1000_WRITE_REG(hw, E1000_TXDCTL(0), txdctl);
+
+ /*
+ * Clear all of the statistics registers (clear on read). It is
+ * important that we do this after we have tried to establish link
+ * because the symbol error count will increment wildly if there
+ * is no link.
+ */
+ e1000_clear_hw_cntrs_82541(hw);
+
+ return ret_val;
+}
+
+/**
+ * e1000_get_link_up_info_82541 - Report speed and duplex
+ * @hw: pointer to the HW structure
+ * @speed: pointer to speed buffer
+ * @duplex: pointer to duplex buffer
+ *
+ * Retrieve the current speed and duplex configuration.
+ * This is a function pointer entry point called by the api module.
+ **/
+STATIC s32 e1000_get_link_up_info_82541(struct e1000_hw *hw, u16 *speed,
+ u16 *duplex)
+{
+ struct e1000_phy_info *phy = &hw->phy;
+ s32 ret_val;
+ u16 data;
+
+ DEBUGFUNC("e1000_get_link_up_info_82541");
+
+ ret_val = e1000_get_speed_and_duplex_copper_generic(hw, speed, duplex);
+ if (ret_val)
+ goto out;
+
+ if (!phy->speed_downgraded)
+ goto out;
+
+ /*
+ * IGP01 PHY may advertise full duplex operation after speed
+ * downgrade even if it is operating at half duplex.
+ * Here we set the duplex settings to match the duplex in the
+ * link partner's capabilities.
+ */
+ ret_val = e1000_read_phy_reg(hw, PHY_AUTONEG_EXP, &data);
+ if (ret_val)
+ goto out;
+
+ if (!(data & NWAY_ER_LP_NWAY_CAPS)) {
+ *duplex = HALF_DUPLEX;
+ } else {
+ ret_val = e1000_read_phy_reg(hw, PHY_LP_ABILITY, &data);
+ if (ret_val)
+ goto out;
+
+ if (*speed == SPEED_100) {
+ if (!(data & NWAY_LPAR_100TX_FD_CAPS))
+ *duplex = HALF_DUPLEX;
+ } else if (*speed == SPEED_10) {
+ if (!(data & NWAY_LPAR_10T_FD_CAPS))
+ *duplex = HALF_DUPLEX;
+ }
+ }
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_phy_hw_reset_82541 - PHY hardware reset
+ * @hw: pointer to the HW structure
+ *
+ * Verify the reset block is not blocking us from resetting. Acquire
+ * semaphore (if necessary) and read/set/write the device control reset
+ * bit in the PHY. Wait the appropriate delay time for the device to
+ * reset and relase the semaphore (if necessary).
+ * This is a function pointer entry point called by the api module.
+ **/
+STATIC s32 e1000_phy_hw_reset_82541(struct e1000_hw *hw)
+{
+ s32 ret_val;
+ u32 ledctl;
+
+ DEBUGFUNC("e1000_phy_hw_reset_82541");
+
+ ret_val = e1000_phy_hw_reset_generic(hw);
+ if (ret_val)
+ goto out;
+
+ e1000_phy_init_script_82541(hw);
+
+ if ((hw->mac.type == e1000_82541) || (hw->mac.type == e1000_82547)) {
+ /* Configure activity LED after PHY reset */
+ ledctl = E1000_READ_REG(hw, E1000_LEDCTL);
+ ledctl &= IGP_ACTIVITY_LED_MASK;
+ ledctl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE);
+ E1000_WRITE_REG(hw, E1000_LEDCTL, ledctl);
+ }
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_setup_copper_link_82541 - Configure copper link settings
+ * @hw: pointer to the HW structure
+ *
+ * Calls the appropriate function to configure the link for auto-neg or forced
+ * speed and duplex. Then we check for link, once link is established calls
+ * to configure collision distance and flow control are called. If link is
+ * not established, we return -E1000_ERR_PHY (-2). This is a function
+ * pointer entry point called by the api module.
+ **/
+STATIC s32 e1000_setup_copper_link_82541(struct e1000_hw *hw)
+{
+ struct e1000_phy_info *phy = &hw->phy;
+ struct e1000_dev_spec_82541 *dev_spec;
+ s32 ret_val;
+ u32 ctrl, ledctl;
+
+ DEBUGFUNC("e1000_setup_copper_link_82541");
+
+ ctrl = E1000_READ_REG(hw, E1000_CTRL);
+ ctrl |= E1000_CTRL_SLU;
+ ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
+ E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
+
+ hw->phy.reset_disable = FALSE;
+
+ dev_spec = (struct e1000_dev_spec_82541 *)hw->dev_spec;
+
+ /* Earlier revs of the IGP phy require us to force MDI. */
+ if (hw->mac.type == e1000_82541 || hw->mac.type == e1000_82547) {
+ dev_spec->dsp_config = e1000_dsp_config_disabled;
+ phy->mdix = 1;
+ } else {
+ dev_spec->dsp_config = e1000_dsp_config_enabled;
+ }
+
+ ret_val = e1000_copper_link_setup_igp(hw);
+ if (ret_val)
+ goto out;
+
+ if (hw->mac.autoneg) {
+ if (dev_spec->ffe_config == e1000_ffe_config_active)
+ dev_spec->ffe_config = e1000_ffe_config_enabled;
+ }
+
+ /* Configure activity LED after Phy reset */
+ ledctl = E1000_READ_REG(hw, E1000_LEDCTL);
+ ledctl &= IGP_ACTIVITY_LED_MASK;
+ ledctl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE);
+ E1000_WRITE_REG(hw, E1000_LEDCTL, ledctl);
+
+ ret_val = e1000_setup_copper_link_generic(hw);
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_check_for_link_82541 - Check/Store link connection
+ * @hw: pointer to the HW structure
+ *
+ * This checks the link condition of the adapter and stores the
+ * results in the hw->mac structure. This is a function pointer entry
+ * point called by the api module.
+ **/
+STATIC s32 e1000_check_for_link_82541(struct e1000_hw *hw)
+{
+ struct e1000_mac_info *mac = &hw->mac;
+ s32 ret_val;
+ bool link;
+
+ DEBUGFUNC("e1000_check_for_link_82541");
+
+ /*
+ * We only want to go out to the PHY registers to see if Auto-Neg
+ * has completed and/or if our link status has changed. The
+ * get_link_status flag is set upon receiving a Link Status
+ * Change or Rx Sequence Error interrupt.
+ */
+ if (!mac->get_link_status) {
+ ret_val = E1000_SUCCESS;
+ goto out;
+ }
+
+ /*
+ * First we want to see if the MII Status Register reports
+ * link. If so, then we want to get the current speed/duplex
+ * of the PHY.
+ */
+ ret_val = e1000_phy_has_link_generic(hw, 1, 0, &link);
+ if (ret_val)
+ goto out;
+
+ if (!link) {
+ ret_val = e1000_config_dsp_after_link_change_82541(hw, FALSE);
+ goto out; /* No link detected */
+ }
+
+ mac->get_link_status = FALSE;
+
+ /*
+ * Check if there was DownShift, must be checked
+ * immediately after link-up
+ */
+ e1000_check_downshift_generic(hw);
+
+ /*
+ * If we are forcing speed/duplex, then we simply return since
+ * we have already determined whether we have link or not.
+ */
+ if (!mac->autoneg) {
+ ret_val = -E1000_ERR_CONFIG;
+ goto out;
+ }
+
+ ret_val = e1000_config_dsp_after_link_change_82541(hw, TRUE);
+
+ /*
+ * Auto-Neg is enabled. Auto Speed Detection takes care
+ * of MAC speed/duplex configuration. So we only need to
+ * configure Collision Distance in the MAC.
+ */
+ e1000_config_collision_dist_generic(hw);
+
+ /*
+ * Configure Flow Control now that Auto-Neg has completed.
+ * First, we need to restore the desired flow control
+ * settings because we may have had to re-autoneg with a
+ * different link partner.
+ */
+ ret_val = e1000_config_fc_after_link_up_generic(hw);
+ if (ret_val) {
+ DEBUGOUT("Error configuring flow control\n");
+ }
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_config_dsp_after_link_change_82541 - Config DSP after link
+ * @hw: pointer to the HW structure
+ * @link_up: boolean flag for link up status
+ *
+ * Return E1000_ERR_PHY when failing to read/write the PHY, else E1000_SUCCESS
+ * at any other case.
+ *
+ * 82541_rev_2 & 82547_rev_2 have the capability to configure the DSP when a
+ * gigabit link is achieved to improve link quality.
+ * This is a function pointer entry point called by the api module.
+ **/
+static s32 e1000_config_dsp_after_link_change_82541(struct e1000_hw *hw,
+ bool link_up)
+{
+ struct e1000_phy_info *phy = &hw->phy;
+ struct e1000_dev_spec_82541 *dev_spec;
+ s32 ret_val;
+ u32 idle_errs = 0;
+ u16 phy_data, phy_saved_data, speed, duplex, i;
+ u16 ffe_idle_err_timeout = FFE_IDLE_ERR_COUNT_TIMEOUT_20;
+ u16 dsp_reg_array[IGP01E1000_PHY_CHANNEL_NUM] =
+ {IGP01E1000_PHY_AGC_PARAM_A,
+ IGP01E1000_PHY_AGC_PARAM_B,
+ IGP01E1000_PHY_AGC_PARAM_C,
+ IGP01E1000_PHY_AGC_PARAM_D};
+
+ DEBUGFUNC("e1000_config_dsp_after_link_change_82541");
+
+ dev_spec = (struct e1000_dev_spec_82541 *)hw->dev_spec;
+
+ if (link_up) {
+ ret_val = e1000_get_speed_and_duplex(hw, &speed, &duplex);
+ if (ret_val) {
+ DEBUGOUT("Error getting link speed and duplex\n");
+ goto out;
+ }
+
+ if (speed != SPEED_1000) {
+ ret_val = E1000_SUCCESS;
+ goto out;
+ }
+
+ ret_val = e1000_get_cable_length(hw);
+ if (ret_val)
+ goto out;
+
+ if ((dev_spec->dsp_config == e1000_dsp_config_enabled) &&
+ phy->min_cable_length >= 50) {
+
+ for (i = 0; i < IGP01E1000_PHY_CHANNEL_NUM; i++) {
+ ret_val = e1000_read_phy_reg(hw,
+ dsp_reg_array[i],
+ &phy_data);
+ if (ret_val)
+ goto out;
+
+ phy_data &= ~IGP01E1000_PHY_EDAC_MU_INDEX;
+
+ ret_val = e1000_write_phy_reg(hw,
+ dsp_reg_array[i],
+ phy_data);
+ if (ret_val)
+ goto out;
+ }
+ dev_spec->dsp_config = e1000_dsp_config_activated;
+ }
+
+ if ((dev_spec->ffe_config != e1000_ffe_config_enabled) ||
+ (phy->min_cable_length >= 50)) {
+ ret_val = E1000_SUCCESS;
+ goto out;
+ }
+
+ /* clear previous idle error counts */
+ ret_val = e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_data);
+ if (ret_val)
+ goto out;
+
+ for (i = 0; i < ffe_idle_err_timeout; i++) {
+ usec_delay(1000);
+ ret_val = e1000_read_phy_reg(hw,
+ PHY_1000T_STATUS,
+ &phy_data);
+ if (ret_val)
+ goto out;
+
+ idle_errs += (phy_data & SR_1000T_IDLE_ERROR_CNT);
+ if (idle_errs > SR_1000T_PHY_EXCESSIVE_IDLE_ERR_COUNT) {
+ dev_spec->ffe_config = e1000_ffe_config_active;
+
+ ret_val = e1000_write_phy_reg(hw,
+ IGP01E1000_PHY_DSP_FFE,
+ IGP01E1000_PHY_DSP_FFE_CM_CP);
+ if (ret_val)
+ goto out;
+ break;
+ }
+
+ if (idle_errs)
+ ffe_idle_err_timeout =
+ FFE_IDLE_ERR_COUNT_TIMEOUT_100;
+ }
+ } else {
+ if (dev_spec->dsp_config == e1000_dsp_config_activated) {
+ /*
+ * Save off the current value of register 0x2F5B
+ * to be restored at the end of the routines.
+ */
+ ret_val = e1000_read_phy_reg(hw,
+ 0x2F5B,
+ &phy_saved_data);
+ if (ret_val)
+ goto out;
+
+ /* Disable the PHY transmitter */
+ ret_val = e1000_write_phy_reg(hw, 0x2F5B, 0x0003);
+ if (ret_val)
+ goto out;
+
+ msec_delay_irq(20);
+
+ ret_val = e1000_write_phy_reg(hw,
+ 0x0000,
+ IGP01E1000_IEEE_FORCE_GIG);
+ if (ret_val)
+ goto out;
+ for (i = 0; i < IGP01E1000_PHY_CHANNEL_NUM; i++) {
+ ret_val = e1000_read_phy_reg(hw,
+ dsp_reg_array[i],
+ &phy_data);
+ if (ret_val)
+ goto out;
+
+ phy_data &= ~IGP01E1000_PHY_EDAC_MU_INDEX;
+ phy_data |= IGP01E1000_PHY_EDAC_SIGN_EXT_9_BITS;
+
+ ret_val = e1000_write_phy_reg(hw,
+ dsp_reg_array[i],
+ phy_data);
+ if (ret_val)
+ goto out;
+ }
+
+ ret_val = e1000_write_phy_reg(hw,
+ 0x0000,
+ IGP01E1000_IEEE_RESTART_AUTONEG);
+ if (ret_val)
+ goto out;
+
+ msec_delay_irq(20);
+
+ /* Now enable the transmitter */
+ ret_val = e1000_write_phy_reg(hw,
+ 0x2F5B,
+ phy_saved_data);
+ if (ret_val)
+ goto out;
+
+ dev_spec->dsp_config = e1000_dsp_config_enabled;
+ }
+
+ if (dev_spec->ffe_config != e1000_ffe_config_active) {
+ ret_val = E1000_SUCCESS;
+ goto out;
+ }
+
+ /*
+ * Save off the current value of register 0x2F5B
+ * to be restored at the end of the routines.
+ */
+ ret_val = e1000_read_phy_reg(hw, 0x2F5B, &phy_saved_data);
+ if (ret_val)
+ goto out;
+
+ /* Disable the PHY transmitter */
+ ret_val = e1000_write_phy_reg(hw, 0x2F5B, 0x0003);
+ if (ret_val)
+ goto out;
+
+ msec_delay_irq(20);
+
+ ret_val = e1000_write_phy_reg(hw,
+ 0x0000,
+ IGP01E1000_IEEE_FORCE_GIG);
+ if (ret_val)
+ goto out;
+
+ ret_val = e1000_write_phy_reg(hw,
+ IGP01E1000_PHY_DSP_FFE,
+ IGP01E1000_PHY_DSP_FFE_DEFAULT);
+ if (ret_val)
+ goto out;
+
+ ret_val = e1000_write_phy_reg(hw,
+ 0x0000,
+ IGP01E1000_IEEE_RESTART_AUTONEG);
+ if (ret_val)
+ goto out;
+
+ msec_delay_irq(20);
+
+ /* Now enable the transmitter */
+ ret_val = e1000_write_phy_reg(hw, 0x2F5B, phy_saved_data);
+
+ if (ret_val)
+ goto out;
+
+ dev_spec->ffe_config = e1000_ffe_config_enabled;
+ }
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_get_cable_length_igp_82541 - Determine cable length for igp PHY
+ * @hw: pointer to the HW structure
+ *
+ * The automatic gain control (agc) normalizes the amplitude of the
+ * received signal, adjusting for the attenuation produced by the
+ * cable. By reading the AGC registers, which reperesent the
+ * cobination of course and fine gain value, the value can be put
+ * into a lookup table to obtain the approximate cable length
+ * for each channel. This is a function pointer entry point called by the
+ * api module.
+ **/
+STATIC s32 e1000_get_cable_length_igp_82541(struct e1000_hw *hw)
+{
+ struct e1000_phy_info *phy = &hw->phy;
+ s32 ret_val = E1000_SUCCESS;
+ u16 i, data;
+ u16 cur_agc_value, agc_value = 0;
+ u16 min_agc_value = IGP01E1000_AGC_LENGTH_TABLE_SIZE;
+ u16 agc_reg_array[IGP01E1000_PHY_CHANNEL_NUM] =
+ {IGP01E1000_PHY_AGC_A,
+ IGP01E1000_PHY_AGC_B,
+ IGP01E1000_PHY_AGC_C,
+ IGP01E1000_PHY_AGC_D};
+
+ DEBUGFUNC("e1000_get_cable_length_igp_82541");
+
+ /* Read the AGC registers for all channels */
+ for (i = 0; i < IGP01E1000_PHY_CHANNEL_NUM; i++) {
+ ret_val = e1000_read_phy_reg(hw, agc_reg_array[i], &data);
+ if (ret_val)
+ goto out;
+
+ cur_agc_value = data >> IGP01E1000_AGC_LENGTH_SHIFT;
+
+ /* Bounds checking */
+ if ((cur_agc_value >= IGP01E1000_AGC_LENGTH_TABLE_SIZE - 1) ||
+ (cur_agc_value == 0)) {
+ ret_val = -E1000_ERR_PHY;
+ goto out;
+ }
+
+ agc_value += cur_agc_value;
+
+ if (min_agc_value > cur_agc_value)
+ min_agc_value = cur_agc_value;
+ }
+
+ /* Remove the minimal AGC result for length < 50m */
+ if (agc_value < IGP01E1000_PHY_CHANNEL_NUM * 50) {
+ agc_value -= min_agc_value;
+ /* Average the three remaining channels for the length. */
+ agc_value /= (IGP01E1000_PHY_CHANNEL_NUM - 1);
+ } else {
+ /* Average the channels for the length. */
+ agc_value /= IGP01E1000_PHY_CHANNEL_NUM;
+ }
+
+ phy->min_cable_length = (e1000_igp_cable_length_table[agc_value] >
+ IGP01E1000_AGC_RANGE)
+ ? (e1000_igp_cable_length_table[agc_value] -
+ IGP01E1000_AGC_RANGE)
+ : 0;
+ phy->max_cable_length = e1000_igp_cable_length_table[agc_value] +
+ IGP01E1000_AGC_RANGE;
+
+ phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2;
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_set_d3_lplu_state_82541 - Sets low power link up state for D3
+ * @hw: pointer to the HW structure
+ * @active: boolean used to enable/disable lplu
+ *
+ * Success returns 0, Failure returns 1
+ *
+ * The low power link up (lplu) state is set to the power management level D3
+ * and SmartSpeed is disabled when active is true, else clear lplu for D3
+ * and enable Smartspeed. LPLU and Smartspeed are mutually exclusive. LPLU
+ * is used during Dx states where the power conservation is most important.
+ * During driver activity, SmartSpeed should be enabled so performance is
+ * maintained. This is a function pointer entry point called by the
+ * api module.
+ **/
+STATIC s32 e1000_set_d3_lplu_state_82541(struct e1000_hw *hw, bool active)
+{
+ struct e1000_phy_info *phy = &hw->phy;
+ s32 ret_val;
+ u16 data;
+
+ DEBUGFUNC("e1000_set_d3_lplu_state_82541");
+
+ switch (hw->mac.type) {
+ case e1000_82541_rev_2:
+ case e1000_82547_rev_2:
+ break;
+ default:
+ ret_val = e1000_set_d3_lplu_state_generic(hw, active);
+ goto out;
+ break;
+ }
+
+ ret_val = e1000_read_phy_reg(hw, IGP01E1000_GMII_FIFO, &data);
+ if (ret_val)
+ goto out;
+
+ if (!active) {
+ data &= ~IGP01E1000_GMII_FLEX_SPD;
+ ret_val = e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO, data);
+ if (ret_val)
+ goto out;
+
+ /*
+ * LPLU and SmartSpeed are mutually exclusive. LPLU is used
+ * during Dx states where the power conservation is most
+ * important. During driver activity we should enable
+ * SmartSpeed, so performance is maintained.
+ */
+ if (phy->smart_speed == e1000_smart_speed_on) {
+ ret_val = e1000_read_phy_reg(hw,
+ IGP01E1000_PHY_PORT_CONFIG,
+ &data);
+ if (ret_val)
+ goto out;
+
+ data |= IGP01E1000_PSCFR_SMART_SPEED;
+ ret_val = e1000_write_phy_reg(hw,
+ IGP01E1000_PHY_PORT_CONFIG,
+ data);
+ if (ret_val)
+ goto out;
+ } else if (phy->smart_speed == e1000_smart_speed_off) {
+ ret_val = e1000_read_phy_reg(hw,
+ IGP01E1000_PHY_PORT_CONFIG,
+ &data);
+ if (ret_val)
+ goto out;
+
+ data &= ~IGP01E1000_PSCFR_SMART_SPEED;
+ ret_val = e1000_write_phy_reg(hw,
+ IGP01E1000_PHY_PORT_CONFIG,
+ data);
+ if (ret_val)
+ goto out;
+ }
+ } else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
+ (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
+ (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
+ data |= IGP01E1000_GMII_FLEX_SPD;
+ ret_val = e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO, data);
+ if (ret_val)
+ goto out;
+
+ /* When LPLU is enabled, we should disable SmartSpeed */
+ ret_val = e1000_read_phy_reg(hw,
+ IGP01E1000_PHY_PORT_CONFIG,
+ &data);
+ if (ret_val)
+ goto out;
+
+ data &= ~IGP01E1000_PSCFR_SMART_SPEED;
+ ret_val = e1000_write_phy_reg(hw,
+ IGP01E1000_PHY_PORT_CONFIG,
+ data);
+ }
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_setup_led_82541 - Configures SW controllable LED
+ * @hw: pointer to the HW structure
+ *
+ * This prepares the SW controllable LED for use and saves the current state
+ * of the LED so it can be later restored. This is a function pointer entry
+ * point called by the api module.
+ **/
+STATIC s32 e1000_setup_led_82541(struct e1000_hw *hw)
+{
+ struct e1000_dev_spec_82541 *dev_spec;
+ s32 ret_val;
+
+ DEBUGFUNC("e1000_setup_led_82541");
+
+ dev_spec = (struct e1000_dev_spec_82541 *)hw->dev_spec;
+
+ ret_val = e1000_read_phy_reg(hw,
+ IGP01E1000_GMII_FIFO,
+ &dev_spec->spd_default);
+ if (ret_val)
+ goto out;
+
+ ret_val = e1000_write_phy_reg(hw,
+ IGP01E1000_GMII_FIFO,
+ (u16)(dev_spec->spd_default &
+ ~IGP01E1000_GMII_SPD));
+ if (ret_val)
+ goto out;
+
+ E1000_WRITE_REG(hw, E1000_LEDCTL, hw->mac.ledctl_mode1);
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_cleanup_led_82541 - Set LED config to default operation
+ * @hw: pointer to the HW structure
+ *
+ * Remove the current LED configuration and set the LED configuration
+ * to the default value, saved from the EEPROM. This is a function pointer
+ * entry point called by the api module.
+ **/
+STATIC s32 e1000_cleanup_led_82541(struct e1000_hw *hw)
+{
+ struct e1000_dev_spec_82541 *dev_spec;
+ s32 ret_val;
+
+ DEBUGFUNC("e1000_cleanup_led_82541");
+
+ dev_spec = (struct e1000_dev_spec_82541 *)hw->dev_spec;
+
+ ret_val = e1000_write_phy_reg(hw,
+ IGP01E1000_GMII_FIFO,
+ dev_spec->spd_default);
+ if (ret_val)
+ goto out;
+
+ E1000_WRITE_REG(hw, E1000_LEDCTL, hw->mac.ledctl_default);
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_phy_init_script_82541 - Initialize GbE PHY
+ * @hw: pointer to the HW structure
+ *
+ * Initializes the IGP PHY.
+ **/
+static s32 e1000_phy_init_script_82541(struct e1000_hw *hw)
+{
+ struct e1000_dev_spec_82541 *dev_spec;
+ u32 ret_val;
+ u16 phy_saved_data;
+
+ DEBUGFUNC("e1000_phy_init_script_82541");
+
+ dev_spec = (struct e1000_dev_spec_82541 *)hw->dev_spec;
+
+ if (!dev_spec->phy_init_script) {
+ ret_val = E1000_SUCCESS;
+ goto out;
+ }
+
+ /* Delay after phy reset to enable NVM configuration to load */
+ msec_delay(20);
+
+ /*
+ * Save off the current value of register 0x2F5B to be restored at
+ * the end of this routine.
+ */
+ ret_val = e1000_read_phy_reg(hw, 0x2F5B, &phy_saved_data);
+
+ /* Disabled the PHY transmitter */
+ e1000_write_phy_reg(hw, 0x2F5B, 0x0003);
+
+ msec_delay(20);
+
+ e1000_write_phy_reg(hw, 0x0000, 0x0140);
+
+ msec_delay(5);
+
+ switch (hw->mac.type) {
+ case e1000_82541:
+ case e1000_82547:
+ e1000_write_phy_reg(hw, 0x1F95, 0x0001);
+
+ e1000_write_phy_reg(hw, 0x1F71, 0xBD21);
+
+ e1000_write_phy_reg(hw, 0x1F79, 0x0018);
+
+ e1000_write_phy_reg(hw, 0x1F30, 0x1600);
+
+ e1000_write_phy_reg(hw, 0x1F31, 0x0014);
+
+ e1000_write_phy_reg(hw, 0x1F32, 0x161C);
+
+ e1000_write_phy_reg(hw, 0x1F94, 0x0003);
+
+ e1000_write_phy_reg(hw, 0x1F96, 0x003F);
+
+ e1000_write_phy_reg(hw, 0x2010, 0x0008);
+ break;
+ case e1000_82541_rev_2:
+ case e1000_82547_rev_2:
+ e1000_write_phy_reg(hw, 0x1F73, 0x0099);
+ break;
+ default:
+ break;
+ }
+
+ e1000_write_phy_reg(hw, 0x0000, 0x3300);
+
+ msec_delay(20);
+
+ /* Now enable the transmitter */
+ e1000_write_phy_reg(hw, 0x2F5B, phy_saved_data);
+
+ if (hw->mac.type == e1000_82547) {
+ u16 fused, fine, coarse;
+
+ /* Move to analog registers page */
+ e1000_read_phy_reg(hw,
+ IGP01E1000_ANALOG_SPARE_FUSE_STATUS,
+ &fused);
+
+ if (!(fused & IGP01E1000_ANALOG_SPARE_FUSE_ENABLED)) {
+ e1000_read_phy_reg(hw,
+ IGP01E1000_ANALOG_FUSE_STATUS,
+ &fused);
+
+ fine = fused & IGP01E1000_ANALOG_FUSE_FINE_MASK;
+ coarse = fused & IGP01E1000_ANALOG_FUSE_COARSE_MASK;
+
+ if (coarse > IGP01E1000_ANALOG_FUSE_COARSE_THRESH) {
+ coarse -= IGP01E1000_ANALOG_FUSE_COARSE_10;
+ fine -= IGP01E1000_ANALOG_FUSE_FINE_1;
+ } else if (coarse ==
+ IGP01E1000_ANALOG_FUSE_COARSE_THRESH)
+ fine -= IGP01E1000_ANALOG_FUSE_FINE_10;
+
+ fused = (fused & IGP01E1000_ANALOG_FUSE_POLY_MASK) |
+ (fine & IGP01E1000_ANALOG_FUSE_FINE_MASK) |
+ (coarse & IGP01E1000_ANALOG_FUSE_COARSE_MASK);
+
+ e1000_write_phy_reg(hw,
+ IGP01E1000_ANALOG_FUSE_CONTROL,
+ fused);
+ e1000_write_phy_reg(hw,
+ IGP01E1000_ANALOG_FUSE_BYPASS,
+ IGP01E1000_ANALOG_FUSE_ENABLE_SW_CONTROL);
+ }
+ }
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_init_script_state_82541 - Enable/Disable PHY init script
+ * @hw: pointer to the HW structure
+ * @state: boolean value used to enable/disable PHY init script
+ *
+ * Allows the driver to enable/disable the PHY init script, if the PHY is an
+ * IGP PHY. This is a function pointer entry point called by the api module.
+ **/
+void e1000_init_script_state_82541(struct e1000_hw *hw, bool state)
+{
+ struct e1000_dev_spec_82541 *dev_spec;
+
+ DEBUGFUNC("e1000_init_script_state_82541");
+
+ if (hw->phy.type != e1000_phy_igp) {
+ DEBUGOUT("Initialization script not necessary.\n");
+ goto out;
+ }
+
+ dev_spec = (struct e1000_dev_spec_82541 *)hw->dev_spec;
+
+ if (!dev_spec) {
+ DEBUGOUT("dev_spec pointer is set to NULL.\n");
+ goto out;
+ }
+
+ dev_spec->phy_init_script = state;
+
+out:
+ return;
+}
+
+/**
+ * e1000_power_down_phy_copper_82541 - Remove link in case of PHY power down
+ * @hw: pointer to the HW structure
+ *
+ * In the case of a PHY power down to save power, or to turn off link during a
+ * driver unload, or wake on lan is not enabled, remove the link.
+ **/
+STATIC void e1000_power_down_phy_copper_82541(struct e1000_hw *hw)
+{
+ /* If the management interface is not enabled, then power down */
+ if (!(E1000_READ_REG(hw, E1000_MANC) & E1000_MANC_SMBUS_EN))
+ e1000_power_down_phy_copper(hw);
+
+ return;
+}
+
+/**
+ * e1000_clear_hw_cntrs_82541 - Clear device specific hardware counters
+ * @hw: pointer to the HW structure
+ *
+ * Clears the hardware counters by reading the counter registers.
+ **/
+STATIC void e1000_clear_hw_cntrs_82541(struct e1000_hw *hw)
+{
+ volatile u32 temp;
+
+ DEBUGFUNC("e1000_clear_hw_cntrs_82541");
+
+ e1000_clear_hw_cntrs_base_generic(hw);
+
+ temp = E1000_READ_REG(hw, E1000_PRC64);
+ temp = E1000_READ_REG(hw, E1000_PRC127);
+ temp = E1000_READ_REG(hw, E1000_PRC255);
+ temp = E1000_READ_REG(hw, E1000_PRC511);
+ temp = E1000_READ_REG(hw, E1000_PRC1023);
+ temp = E1000_READ_REG(hw, E1000_PRC1522);
+ temp = E1000_READ_REG(hw, E1000_PTC64);
+ temp = E1000_READ_REG(hw, E1000_PTC127);
+ temp = E1000_READ_REG(hw, E1000_PTC255);
+ temp = E1000_READ_REG(hw, E1000_PTC511);
+ temp = E1000_READ_REG(hw, E1000_PTC1023);
+ temp = E1000_READ_REG(hw, E1000_PTC1522);
+
+ temp = E1000_READ_REG(hw, E1000_ALGNERRC);
+ temp = E1000_READ_REG(hw, E1000_RXERRC);
+ temp = E1000_READ_REG(hw, E1000_TNCRS);
+ temp = E1000_READ_REG(hw, E1000_CEXTERR);
+ temp = E1000_READ_REG(hw, E1000_TSCTC);
+ temp = E1000_READ_REG(hw, E1000_TSCTFC);
+
+ temp = E1000_READ_REG(hw, E1000_MGTPRC);
+ temp = E1000_READ_REG(hw, E1000_MGTPDC);
+ temp = E1000_READ_REG(hw, E1000_MGTPTC);
+}
--- /dev/null
+++ sys/dev/em/e1000_mac.c
@@ -0,0 +1,2046 @@
+/*******************************************************************************
+
+ Copyright (c) 2001-2007, Intel Corporation
+ All rights reserved.
+
+ Redistribution and use in source and binary forms, with or without
+ modification, are permitted provided that the following conditions are met:
+
+ 1. Redistributions of source code must retain the above copyright notice,
+ this list of conditions and the following disclaimer.
+
+ 2. Redistributions in binary form must reproduce the above copyright
+ notice, this list of conditions and the following disclaimer in the
+ documentation and/or other materials provided with the distribution.
+
+ 3. Neither the name of the Intel Corporation nor the names of its
+ contributors may be used to endorse or promote products derived from
+ this software without specific prior written permission.
+
+ THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
+ AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+ IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
+ LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
+ CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
+ SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
+ INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
+ CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
+ ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
+ POSSIBILITY OF SUCH DAMAGE.
+
+*******************************************************************************/
+/* $FreeBSD: src/sys/dev/em/e1000_mac.c,v 1.3.4.1 2007/11/28 23:24:38 jfv Exp $ */
+
+
+#include "e1000_api.h"
+#include "e1000_mac.h"
+
+/**
+ * e1000_remove_device_generic - Free device specific structure
+ * @hw: pointer to the HW structure
+ *
+ * If a device specific structure was allocated, this function will
+ * free it.
+ **/
+void e1000_remove_device_generic(struct e1000_hw *hw)
+{
+ DEBUGFUNC("e1000_remove_device_generic");
+
+ /* Freeing the dev_spec member of e1000_hw structure */
+ e1000_free_dev_spec_struct(hw);
+}
+
+/**
+ * e1000_get_bus_info_pci_generic - Get PCI(x) bus information
+ * @hw: pointer to the HW structure
+ *
+ * Determines and stores the system bus information for a particular
+ * network interface. The following bus information is determined and stored:
+ * bus speed, bus width, type (PCI/PCIx), and PCI(-x) function.
+ **/
+s32 e1000_get_bus_info_pci_generic(struct e1000_hw *hw)
+{
+ struct e1000_bus_info *bus = &hw->bus;
+ u32 status = E1000_READ_REG(hw, E1000_STATUS);
+ s32 ret_val = E1000_SUCCESS;
+ u16 pci_header_type;
+
+ DEBUGFUNC("e1000_get_bus_info_pci_generic");
+
+ /* PCI or PCI-X? */
+ bus->type = (status & E1000_STATUS_PCIX_MODE)
+ ? e1000_bus_type_pcix
+ : e1000_bus_type_pci;
+
+ /* Bus speed */
+ if (bus->type == e1000_bus_type_pci) {
+ bus->speed = (status & E1000_STATUS_PCI66)
+ ? e1000_bus_speed_66
+ : e1000_bus_speed_33;
+ } else {
+ switch (status & E1000_STATUS_PCIX_SPEED) {
+ case E1000_STATUS_PCIX_SPEED_66:
+ bus->speed = e1000_bus_speed_66;
+ break;
+ case E1000_STATUS_PCIX_SPEED_100:
+ bus->speed = e1000_bus_speed_100;
+ break;
+ case E1000_STATUS_PCIX_SPEED_133:
+ bus->speed = e1000_bus_speed_133;
+ break;
+ default:
+ bus->speed = e1000_bus_speed_reserved;
+ break;
+ }
+ }
+
+ /* Bus width */
+ bus->width = (status & E1000_STATUS_BUS64)
+ ? e1000_bus_width_64
+ : e1000_bus_width_32;
+
+ /* Which PCI(-X) function? */
+ e1000_read_pci_cfg(hw, PCI_HEADER_TYPE_REGISTER, &pci_header_type);
+ if (pci_header_type & PCI_HEADER_TYPE_MULTIFUNC)
+ bus->func = (status & E1000_STATUS_FUNC_MASK)
+ >> E1000_STATUS_FUNC_SHIFT;
+ else
+ bus->func = 0;
+
+ return ret_val;
+}
+
+/**
+ * e1000_get_bus_info_pcie_generic - Get PCIe bus information
+ * @hw: pointer to the HW structure
+ *
+ * Determines and stores the system bus information for a particular
+ * network interface. The following bus information is determined and stored:
+ * bus speed, bus width, type (PCIe), and PCIe function.
+ **/
+s32 e1000_get_bus_info_pcie_generic(struct e1000_hw *hw)
+{
+ struct e1000_bus_info *bus = &hw->bus;
+ s32 ret_val;
+ u32 status;
+ u16 pcie_link_status, pci_header_type;
+
+ DEBUGFUNC("e1000_get_bus_info_pcie_generic");
+
+ bus->type = e1000_bus_type_pci_express;
+ bus->speed = e1000_bus_speed_2500;
+
+ ret_val = e1000_read_pcie_cap_reg(hw,
+ PCIE_LINK_STATUS,
+ &pcie_link_status);
+ if (ret_val)
+ bus->width = e1000_bus_width_unknown;
+ else
+ bus->width = (e1000_bus_width)((pcie_link_status &
+ PCIE_LINK_WIDTH_MASK) >>
+ PCIE_LINK_WIDTH_SHIFT);
+
+ e1000_read_pci_cfg(hw, PCI_HEADER_TYPE_REGISTER, &pci_header_type);
+ if (pci_header_type & PCI_HEADER_TYPE_MULTIFUNC) {
+ status = E1000_READ_REG(hw, E1000_STATUS);
+ bus->func = (status & E1000_STATUS_FUNC_MASK)
+ >> E1000_STATUS_FUNC_SHIFT;
+ } else {
+ bus->func = 0;
+ }
+
+ return E1000_SUCCESS;
+}
+
+/**
+ * e1000_clear_vfta_generic - Clear VLAN filter table
+ * @hw: pointer to the HW structure
+ *
+ * Clears the register array which contains the VLAN filter table by
+ * setting all the values to 0.
+ **/
+void e1000_clear_vfta_generic(struct e1000_hw *hw)
+{
+ u32 offset;
+
+ DEBUGFUNC("e1000_clear_vfta_generic");
+
+ for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) {
+ E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset, 0);
+ E1000_WRITE_FLUSH(hw);
+ }
+}
+
+/**
+ * e1000_write_vfta_generic - Write value to VLAN filter table
+ * @hw: pointer to the HW structure
+ * @offset: register offset in VLAN filter table
+ * @value: register value written to VLAN filter table
+ *
+ * Writes value at the given offset in the register array which stores
+ * the VLAN filter table.
+ **/
+void e1000_write_vfta_generic(struct e1000_hw *hw, u32 offset, u32 value)
+{
+ DEBUGFUNC("e1000_write_vfta_generic");
+
+ E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset, value);
+ E1000_WRITE_FLUSH(hw);
+}
+
+/**
+ * e1000_init_rx_addrs_generic - Initialize receive address's
+ * @hw: pointer to the HW structure
+ * @rar_count: receive address registers
+ *
+ * Setups the receive address registers by setting the base receive address
+ * register to the devices MAC address and clearing all the other receive
+ * address registers to 0.
+ **/
+void e1000_init_rx_addrs_generic(struct e1000_hw *hw, u16 rar_count)
+{
+ u32 i;
+
+ DEBUGFUNC("e1000_init_rx_addrs_generic");
+
+ /* Setup the receive address */
+ DEBUGOUT("Programming MAC Address into RAR[0]\n");
+
+ e1000_rar_set_generic(hw, hw->mac.addr, 0);
+
+ /* Zero out the other (rar_entry_count - 1) receive addresses */
+ DEBUGOUT1("Clearing RAR[1-%u]\n", rar_count-1);
+ for (i = 1; i < rar_count; i++) {
+ E1000_WRITE_REG_ARRAY(hw, E1000_RA, (i << 1), 0);
+ E1000_WRITE_FLUSH(hw);
+ E1000_WRITE_REG_ARRAY(hw, E1000_RA, ((i << 1) + 1), 0);
+ E1000_WRITE_FLUSH(hw);
+ }
+}
+
+/**
+ * e1000_check_alt_mac_addr_generic - Check for alternate MAC addr
+ * @hw: pointer to the HW structure
+ *
+ * Checks the nvm for an alternate MAC address. An alternate MAC address
+ * can be setup by pre-boot software and must be treated like a permanent
+ * address and must override the actual permanent MAC address. If an
+ * alternate MAC address is found it is saved in the hw struct and
+ * programmed into RAR0 and the function returns success, otherwise the
+ * function returns an error.
+ **/
+s32 e1000_check_alt_mac_addr_generic(struct e1000_hw *hw)
+{
+ u32 i;
+ s32 ret_val = E1000_SUCCESS;
+ u16 offset, nvm_alt_mac_addr_offset, nvm_data;
+ u8 alt_mac_addr[ETH_ADDR_LEN];
+
+ DEBUGFUNC("e1000_check_alt_mac_addr_generic");
+
+ ret_val = e1000_read_nvm(hw, NVM_ALT_MAC_ADDR_PTR, 1, &nvm_alt_mac_addr_offset);
+ if (ret_val) {
+ DEBUGOUT("NVM Read Error\n");
+ goto out;
+ }
+
+ if (nvm_alt_mac_addr_offset == 0xFFFF) {
+ ret_val = -(E1000_NOT_IMPLEMENTED);
+ goto out;
+ }
+
+ if (hw->bus.func == E1000_FUNC_1)
+ nvm_alt_mac_addr_offset += ETH_ADDR_LEN/sizeof(u16);
+
+ for (i = 0; i < ETH_ADDR_LEN; i += 2) {
+ offset = nvm_alt_mac_addr_offset + (i >> 1);
+ ret_val = e1000_read_nvm(hw, offset, 1, &nvm_data);
+ if (ret_val) {
+ DEBUGOUT("NVM Read Error\n");
+ goto out;
+ }
+
+ alt_mac_addr[i] = (u8)(nvm_data & 0xFF);
+ alt_mac_addr[i + 1] = (u8)(nvm_data >> 8);
+ }
+
+ /* if multicast bit is set, the alternate address will not be used */
+ if (alt_mac_addr[0] & 0x01) {
+ ret_val = -(E1000_NOT_IMPLEMENTED);
+ goto out;
+ }
+
+ for (i = 0; i < ETH_ADDR_LEN; i++)
+ hw->mac.addr[i] = hw->mac.perm_addr[i] = alt_mac_addr[i];
+
+ e1000_rar_set(hw, hw->mac.perm_addr, 0);
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_rar_set_generic - Set receive address register
+ * @hw: pointer to the HW structure
+ * @addr: pointer to the receive address
+ * @index: receive address array register
+ *
+ * Sets the receive address array register at index to the address passed
+ * in by addr.
+ **/
+void e1000_rar_set_generic(struct e1000_hw *hw, u8 *addr, u32 index)
+{
+ u32 rar_low, rar_high;
+
+ DEBUGFUNC("e1000_rar_set_generic");
+
+ /*
+ * HW expects these in little endian so we reverse the byte order
+ * from network order (big endian) to little endian
+ */
+ rar_low = ((u32) addr[0] |
+ ((u32) addr[1] << 8) |
+ ((u32) addr[2] << 16) | ((u32) addr[3] << 24));
+
+ rar_high = ((u32) addr[4] | ((u32) addr[5] << 8));
+
+ /* If MAC address zero, no need to set the AV bit */
+ if (rar_low || rar_high) {
+ if (!hw->mac.disable_av)
+ rar_high |= E1000_RAH_AV;
+ }
+
+ E1000_WRITE_REG_ARRAY(hw, E1000_RA, (index << 1), rar_low);
+ E1000_WRITE_REG_ARRAY(hw, E1000_RA, ((index << 1) + 1), rar_high);
+}
+
+/**
+ * e1000_mta_set_generic - Set multicast filter table address
+ * @hw: pointer to the HW structure
+ * @hash_value: determines the MTA register and bit to set
+ *
+ * The multicast table address is a register array of 32-bit registers.
+ * The hash_value is used to determine what register the bit is in, the
+ * current value is read, the new bit is OR'd in and the new value is
+ * written back into the register.
+ **/
+void e1000_mta_set_generic(struct e1000_hw *hw, u32 hash_value)
+{
+ u32 hash_bit, hash_reg, mta;
+
+ DEBUGFUNC("e1000_mta_set_generic");
+ /*
+ * The MTA is a register array of 32-bit registers. It is
+ * treated like an array of (32*mta_reg_count) bits. We want to
+ * set bit BitArray[hash_value]. So we figure out what register
+ * the bit is in, read it, OR in the new bit, then write
+ * back the new value. The (hw->mac.mta_reg_count - 1) serves as a
+ * mask to bits 31:5 of the hash value which gives us the
+ * register we're modifying. The hash bit within that register
+ * is determined by the lower 5 bits of the hash value.
+ */
+ hash_reg = (hash_value >> 5) & (hw->mac.mta_reg_count - 1);
+ hash_bit = hash_value & 0x1F;
+
+ mta = E1000_READ_REG_ARRAY(hw, E1000_MTA, hash_reg);
+
+ mta |= (1 << hash_bit);
+
+ E1000_WRITE_REG_ARRAY(hw, E1000_MTA, hash_reg, mta);
+ E1000_WRITE_FLUSH(hw);
+}
+
+/**
+ * e1000_update_mc_addr_list_generic - Update Multicast addresses
+ * @hw: pointer to the HW structure
+ * @mc_addr_list: array of multicast addresses to program
+ * @mc_addr_count: number of multicast addresses to program
+ * @rar_used_count: the first RAR register free to program
+ * @rar_count: total number of supported Receive Address Registers
+ *
+ * Updates the Receive Address Registers and Multicast Table Array.
+ * The caller must have a packed mc_addr_list of multicast addresses.
+ * The parameter rar_count will usually be hw->mac.rar_entry_count
+ * unless there are workarounds that change this.
+ **/
+void e1000_update_mc_addr_list_generic(struct e1000_hw *hw,
+ u8 *mc_addr_list, u32 mc_addr_count,
+ u32 rar_used_count, u32 rar_count)
+{
+ u32 hash_value;
+ u32 i;
+
+ DEBUGFUNC("e1000_update_mc_addr_list_generic");
+
+ /*
+ * Load the first set of multicast addresses into the exact
+ * filters (RAR). If there are not enough to fill the RAR
+ * array, clear the filters.
+ */
+ for (i = rar_used_count; i < rar_count; i++) {
+ if (mc_addr_count) {
+ e1000_rar_set(hw, mc_addr_list, i);
+ mc_addr_count--;
+ mc_addr_list += ETH_ADDR_LEN;
+ } else {
+ E1000_WRITE_REG_ARRAY(hw, E1000_RA, i << 1, 0);
+ E1000_WRITE_FLUSH(hw);
+ E1000_WRITE_REG_ARRAY(hw, E1000_RA, (i << 1) + 1, 0);
+ E1000_WRITE_FLUSH(hw);
+ }
+ }
+
+ /* Clear the old settings from the MTA */
+ DEBUGOUT("Clearing MTA\n");
+ for (i = 0; i < hw->mac.mta_reg_count; i++) {
+ E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
+ E1000_WRITE_FLUSH(hw);
+ }
+
+ /* Load any remaining multicast addresses into the hash table. */
+ for (; mc_addr_count > 0; mc_addr_count--) {
+ hash_value = e1000_hash_mc_addr(hw, mc_addr_list);
+ DEBUGOUT1("Hash value = 0x%03X\n", hash_value);
+ e1000_mta_set(hw, hash_value);
+ mc_addr_list += ETH_ADDR_LEN;
+ }
+}
+
+/**
+ * e1000_hash_mc_addr_generic - Generate a multicast hash value
+ * @hw: pointer to the HW structure
+ * @mc_addr: pointer to a multicast address
+ *
+ * Generates a multicast address hash value which is used to determine
+ * the multicast filter table array address and new table value. See
+ * e1000_mta_set_generic()
+ **/
+u32 e1000_hash_mc_addr_generic(struct e1000_hw *hw, u8 *mc_addr)
+{
+ u32 hash_value, hash_mask;
+ u8 bit_shift = 0;
+
+ DEBUGFUNC("e1000_hash_mc_addr_generic");
+
+ /* Register count multiplied by bits per register */
+ hash_mask = (hw->mac.mta_reg_count * 32) - 1;
+
+ /*
+ * For a mc_filter_type of 0, bit_shift is the number of left-shifts
+ * where 0xFF would still fall within the hash mask.
+ */
+ while (hash_mask >> bit_shift != 0xFF)
+ bit_shift++;
+
+ /*
+ * The portion of the address that is used for the hash table
+ * is determined by the mc_filter_type setting.
+ * The algorithm is such that there is a total of 8 bits of shifting.
+ * The bit_shift for a mc_filter_type of 0 represents the number of
+ * left-shifts where the MSB of mc_addr[5] would still fall within
+ * the hash_mask. Case 0 does this exactly. Since there are a total
+ * of 8 bits of shifting, then mc_addr[4] will shift right the
+ * remaining number of bits. Thus 8 - bit_shift. The rest of the
+ * cases are a variation of this algorithm...essentially raising the
+ * number of bits to shift mc_addr[5] left, while still keeping the
+ * 8-bit shifting total.
+ *
+ * For example, given the following Destination MAC Address and an
+ * mta register count of 128 (thus a 4096-bit vector and 0xFFF mask),
+ * we can see that the bit_shift for case 0 is 4. These are the hash
+ * values resulting from each mc_filter_type...
+ * [0] [1] [2] [3] [4] [5]
+ * 01 AA 00 12 34 56
+ * LSB MSB
+ *
+ * case 0: hash_value = ((0x34 >> 4) | (0x56 << 4)) & 0xFFF = 0x563
+ * case 1: hash_value = ((0x34 >> 3) | (0x56 << 5)) & 0xFFF = 0xAC6
+ * case 2: hash_value = ((0x34 >> 2) | (0x56 << 6)) & 0xFFF = 0x163
+ * case 3: hash_value = ((0x34 >> 0) | (0x56 << 8)) & 0xFFF = 0x634
+ */
+ switch (hw->mac.mc_filter_type) {
+ default:
+ case 0:
+ break;
+ case 1:
+ bit_shift += 1;
+ break;
+ case 2:
+ bit_shift += 2;
+ break;
+ case 3:
+ bit_shift += 4;
+ break;
+ }
+
+ hash_value = hash_mask & (((mc_addr[4] >> (8 - bit_shift)) |
+ (((u16) mc_addr[5]) << bit_shift)));
+
+ return hash_value;
+}
+
+/**
+ * e1000_pcix_mmrbc_workaround_generic - Fix incorrect MMRBC value
+ * @hw: pointer to the HW structure
+ *
+ * In certain situations, a system BIOS may report that the PCIx maximum
+ * memory read byte count (MMRBC) value is higher than than the actual
+ * value. We check the PCIx command regsiter with the current PCIx status
+ * regsiter.
+ **/
+void e1000_pcix_mmrbc_workaround_generic(struct e1000_hw *hw)
+{
+ u16 cmd_mmrbc;
+ u16 pcix_cmd;
+ u16 pcix_stat_hi_word;
+ u16 stat_mmrbc;
+
+ DEBUGFUNC("e1000_pcix_mmrbc_workaround_generic");
+
+ /* Workaround for PCI-X issue when BIOS sets MMRBC incorrectly */
+ if (hw->bus.type != e1000_bus_type_pcix)
+ return;
+
+ e1000_read_pci_cfg(hw, PCIX_COMMAND_REGISTER, &pcix_cmd);
+ e1000_read_pci_cfg(hw, PCIX_STATUS_REGISTER_HI, &pcix_stat_hi_word);
+ cmd_mmrbc = (pcix_cmd & PCIX_COMMAND_MMRBC_MASK) >>
+ PCIX_COMMAND_MMRBC_SHIFT;
+ stat_mmrbc = (pcix_stat_hi_word & PCIX_STATUS_HI_MMRBC_MASK) >>
+ PCIX_STATUS_HI_MMRBC_SHIFT;
+ if (stat_mmrbc == PCIX_STATUS_HI_MMRBC_4K)
+ stat_mmrbc = PCIX_STATUS_HI_MMRBC_2K;
+ if (cmd_mmrbc > stat_mmrbc) {
+ pcix_cmd &= ~PCIX_COMMAND_MMRBC_MASK;
+ pcix_cmd |= stat_mmrbc << PCIX_COMMAND_MMRBC_SHIFT;
+ e1000_write_pci_cfg(hw, PCIX_COMMAND_REGISTER, &pcix_cmd);
+ }
+}
+
+/**
+ * e1000_clear_hw_cntrs_base_generic - Clear base hardware counters
+ * @hw: pointer to the HW structure
+ *
+ * Clears the base hardware counters by reading the counter registers.
+ **/
+void e1000_clear_hw_cntrs_base_generic(struct e1000_hw *hw)
+{
+ volatile u32 temp;
+
+ DEBUGFUNC("e1000_clear_hw_cntrs_base_generic");
+
+ temp = E1000_READ_REG(hw, E1000_CRCERRS);
+ temp = E1000_READ_REG(hw, E1000_SYMERRS);
+ temp = E1000_READ_REG(hw, E1000_MPC);
+ temp = E1000_READ_REG(hw, E1000_SCC);
+ temp = E1000_READ_REG(hw, E1000_ECOL);
+ temp = E1000_READ_REG(hw, E1000_MCC);
+ temp = E1000_READ_REG(hw, E1000_LATECOL);
+ temp = E1000_READ_REG(hw, E1000_COLC);
+ temp = E1000_READ_REG(hw, E1000_DC);
+ temp = E1000_READ_REG(hw, E1000_SEC);
+ temp = E1000_READ_REG(hw, E1000_RLEC);
+ temp = E1000_READ_REG(hw, E1000_XONRXC);
+ temp = E1000_READ_REG(hw, E1000_XONTXC);
+ temp = E1000_READ_REG(hw, E1000_XOFFRXC);
+ temp = E1000_READ_REG(hw, E1000_XOFFTXC);
+ temp = E1000_READ_REG(hw, E1000_FCRUC);
+ temp = E1000_READ_REG(hw, E1000_GPRC);
+ temp = E1000_READ_REG(hw, E1000_BPRC);
+ temp = E1000_READ_REG(hw, E1000_MPRC);
+ temp = E1000_READ_REG(hw, E1000_GPTC);
+ temp = E1000_READ_REG(hw, E1000_GORCL);
+ temp = E1000_READ_REG(hw, E1000_GORCH);
+ temp = E1000_READ_REG(hw, E1000_GOTCL);
+ temp = E1000_READ_REG(hw, E1000_GOTCH);
+ temp = E1000_READ_REG(hw, E1000_RNBC);
+ temp = E1000_READ_REG(hw, E1000_RUC);
+ temp = E1000_READ_REG(hw, E1000_RFC);
+ temp = E1000_READ_REG(hw, E1000_ROC);
+ temp = E1000_READ_REG(hw, E1000_RJC);
+ temp = E1000_READ_REG(hw, E1000_TORL);
+ temp = E1000_READ_REG(hw, E1000_TORH);
+ temp = E1000_READ_REG(hw, E1000_TOTL);
+ temp = E1000_READ_REG(hw, E1000_TOTH);
+ temp = E1000_READ_REG(hw, E1000_TPR);
+ temp = E1000_READ_REG(hw, E1000_TPT);
+ temp = E1000_READ_REG(hw, E1000_MPTC);
+ temp = E1000_READ_REG(hw, E1000_BPTC);
+}
+
+/**
+ * e1000_check_for_copper_link_generic - Check for link (Copper)
+ * @hw: pointer to the HW structure
+ *
+ * Checks to see of the link status of the hardware has changed. If a
+ * change in link status has been detected, then we read the PHY registers
+ * to get the current speed/duplex if link exists.
+ **/
+s32 e1000_check_for_copper_link_generic(struct e1000_hw *hw)
+{
+ struct e1000_mac_info *mac = &hw->mac;
+ s32 ret_val;
+ bool link;
+
+ DEBUGFUNC("e1000_check_for_copper_link");
+
+ /*
+ * We only want to go out to the PHY registers to see if Auto-Neg
+ * has completed and/or if our link status has changed. The
+ * get_link_status flag is set upon receiving a Link Status
+ * Change or Rx Sequence Error interrupt.
+ */
+ if (!mac->get_link_status) {
+ ret_val = E1000_SUCCESS;
+ goto out;
+ }
+
+ /*
+ * First we want to see if the MII Status Register reports
+ * link. If so, then we want to get the current speed/duplex
+ * of the PHY.
+ */
+ ret_val = e1000_phy_has_link_generic(hw, 1, 0, &link);
+ if (ret_val)
+ goto out;
+
+ if (!link)
+ goto out; /* No link detected */
+
+ mac->get_link_status = FALSE;
+
+ /*
+ * Check if there was DownShift, must be checked
+ * immediately after link-up
+ */
+ e1000_check_downshift_generic(hw);
+
+ /*
+ * If we are forcing speed/duplex, then we simply return since
+ * we have already determined whether we have link or not.
+ */
+ if (!mac->autoneg) {
+ ret_val = -E1000_ERR_CONFIG;
+ goto out;
+ }
+
+ /*
+ * Auto-Neg is enabled. Auto Speed Detection takes care
+ * of MAC speed/duplex configuration. So we only need to
+ * configure Collision Distance in the MAC.
+ */
+ e1000_config_collision_dist_generic(hw);
+
+ /*
+ * Configure Flow Control now that Auto-Neg has completed.
+ * First, we need to restore the desired flow control
+ * settings because we may have had to re-autoneg with a
+ * different link partner.
+ */
+ ret_val = e1000_config_fc_after_link_up_generic(hw);
+ if (ret_val) {
+ DEBUGOUT("Error configuring flow control\n");
+ }
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_check_for_fiber_link_generic - Check for link (Fiber)
+ * @hw: pointer to the HW structure
+ *
+ * Checks for link up on the hardware. If link is not up and we have
+ * a signal, then we need to force link up.
+ **/
+s32 e1000_check_for_fiber_link_generic(struct e1000_hw *hw)
+{
+ struct e1000_mac_info *mac = &hw->mac;
+ u32 rxcw;
+ u32 ctrl;
+ u32 status;
+ s32 ret_val = E1000_SUCCESS;
+
+ DEBUGFUNC("e1000_check_for_fiber_link_generic");
+
+ ctrl = E1000_READ_REG(hw, E1000_CTRL);
+ status = E1000_READ_REG(hw, E1000_STATUS);
+ rxcw = E1000_READ_REG(hw, E1000_RXCW);
+
+ /*
+ * If we don't have link (auto-negotiation failed or link partner
+ * cannot auto-negotiate), the cable is plugged in (we have signal),
+ * and our link partner is not trying to auto-negotiate with us (we
+ * are receiving idles or data), we need to force link up. We also
+ * need to give auto-negotiation time to complete, in case the cable
+ * was just plugged in. The autoneg_failed flag does this.
+ */
+ /* (ctrl & E1000_CTRL_SWDPIN1) == 1 == have signal */
+ if ((ctrl & E1000_CTRL_SWDPIN1) && (!(status & E1000_STATUS_LU)) &&
+ (!(rxcw & E1000_RXCW_C))) {
+ if (mac->autoneg_failed == 0) {
+ mac->autoneg_failed = 1;
+ goto out;
+ }
+ DEBUGOUT("NOT RXing /C/, disable AutoNeg and force link.\n");
+
+ /* Disable auto-negotiation in the TXCW register */
+ E1000_WRITE_REG(hw, E1000_TXCW, (mac->txcw & ~E1000_TXCW_ANE));
+
+ /* Force link-up and also force full-duplex. */
+ ctrl = E1000_READ_REG(hw, E1000_CTRL);
+ ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD);
+ E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
+
+ /* Configure Flow Control after forcing link up. */
+ ret_val = e1000_config_fc_after_link_up_generic(hw);
+ if (ret_val) {
+ DEBUGOUT("Error configuring flow control\n");
+ goto out;
+ }
+ } else if ((ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) {
+ /*
+ * If we are forcing link and we are receiving /C/ ordered
+ * sets, re-enable auto-negotiation in the TXCW register
+ * and disable forced link in the Device Control register
+ * in an attempt to auto-negotiate with our link partner.
+ */
+ DEBUGOUT("RXing /C/, enable AutoNeg and stop forcing link.\n");
+ E1000_WRITE_REG(hw, E1000_TXCW, mac->txcw);
+ E1000_WRITE_REG(hw, E1000_CTRL, (ctrl & ~E1000_CTRL_SLU));
+
+ mac->serdes_has_link = TRUE;
+ }
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_check_for_serdes_link_generic - Check for link (Serdes)
+ * @hw: pointer to the HW structure
+ *
+ * Checks for link up on the hardware. If link is not up and we have
+ * a signal, then we need to force link up.
+ **/
+s32 e1000_check_for_serdes_link_generic(struct e1000_hw *hw)
+{
+ struct e1000_mac_info *mac = &hw->mac;
+ u32 rxcw;
+ u32 ctrl;
+ u32 status;
+ s32 ret_val = E1000_SUCCESS;
+
+ DEBUGFUNC("e1000_check_for_serdes_link_generic");
+
+ ctrl = E1000_READ_REG(hw, E1000_CTRL);
+ status = E1000_READ_REG(hw, E1000_STATUS);
+ rxcw = E1000_READ_REG(hw, E1000_RXCW);
+
+ /*
+ * If we don't have link (auto-negotiation failed or link partner
+ * cannot auto-negotiate), and our link partner is not trying to
+ * auto-negotiate with us (we are receiving idles or data),
+ * we need to force link up. We also need to give auto-negotiation
+ * time to complete.
+ */
+ /* (ctrl & E1000_CTRL_SWDPIN1) == 1 == have signal */
+ if ((!(status & E1000_STATUS_LU)) && (!(rxcw & E1000_RXCW_C))) {
+ if (mac->autoneg_failed == 0) {
+ mac->autoneg_failed = 1;
+ goto out;
+ }
+ DEBUGOUT("NOT RXing /C/, disable AutoNeg and force link.\n");
+
+ /* Disable auto-negotiation in the TXCW register */
+ E1000_WRITE_REG(hw, E1000_TXCW, (mac->txcw & ~E1000_TXCW_ANE));
+
+ /* Force link-up and also force full-duplex. */
+ ctrl = E1000_READ_REG(hw, E1000_CTRL);
+ ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD);
+ E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
+
+ /* Configure Flow Control after forcing link up. */
+ ret_val = e1000_config_fc_after_link_up_generic(hw);
+ if (ret_val) {
+ DEBUGOUT("Error configuring flow control\n");
+ goto out;
+ }
+ } else if ((ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) {
+ /*
+ * If we are forcing link and we are receiving /C/ ordered
+ * sets, re-enable auto-negotiation in the TXCW register
+ * and disable forced link in the Device Control register
+ * in an attempt to auto-negotiate with our link partner.
+ */
+ DEBUGOUT("RXing /C/, enable AutoNeg and stop forcing link.\n");
+ E1000_WRITE_REG(hw, E1000_TXCW, mac->txcw);
+ E1000_WRITE_REG(hw, E1000_CTRL, (ctrl & ~E1000_CTRL_SLU));
+
+ mac->serdes_has_link = TRUE;
+ } else if (!(E1000_TXCW_ANE & E1000_READ_REG(hw, E1000_TXCW))) {
+ /*
+ * If we force link for non-auto-negotiation switch, check
+ * link status based on MAC synchronization for internal
+ * serdes media type.
+ */
+ /* SYNCH bit and IV bit are sticky. */
+ usec_delay(10);
+ if (E1000_RXCW_SYNCH & E1000_READ_REG(hw, E1000_RXCW)) {
+ if (!(rxcw & E1000_RXCW_IV)) {
+ mac->serdes_has_link = TRUE;
+ DEBUGOUT("SERDES: Link is up.\n");
+ }
+ } else {
+ mac->serdes_has_link = FALSE;
+ DEBUGOUT("SERDES: Link is down.\n");
+ }
+ }
+
+ if (E1000_TXCW_ANE & E1000_READ_REG(hw, E1000_TXCW)) {
+ status = E1000_READ_REG(hw, E1000_STATUS);
+ mac->serdes_has_link = (status & E1000_STATUS_LU)
+ ? TRUE
+ : FALSE;
+ }
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_setup_link_generic - Setup flow control and link settings
+ * @hw: pointer to the HW structure
+ *
+ * Determines which flow control settings to use, then configures flow
+ * control. Calls the appropriate media-specific link configuration
+ * function. Assuming the adapter has a valid link partner, a valid link
+ * should be established. Assumes the hardware has previously been reset
+ * and the transmitter and receiver are not enabled.
+ **/
+s32 e1000_setup_link_generic(struct e1000_hw *hw)
+{
+ struct e1000_functions *func = &hw->func;
+ s32 ret_val = E1000_SUCCESS;
+
+ DEBUGFUNC("e1000_setup_link_generic");
+
+ /*
+ * In the case of the phy reset being blocked, we already have a link.
+ * We do not need to set it up again.
+ */
+ if (e1000_check_reset_block(hw))
+ goto out;
+
+ /*
+ * If flow control is set to default, set flow control based on
+ * the EEPROM flow control settings.
+ */
+ if (hw->fc.type == e1000_fc_default) {
+ ret_val = e1000_set_default_fc_generic(hw);
+ if (ret_val)
+ goto out;
+ }
+
+ /*
+ * We want to save off the original Flow Control configuration just
+ * in case we get disconnected and then reconnected into a different
+ * hub or switch with different Flow Control capabilities.
+ */
+ hw->fc.original_type = hw->fc.type;
+
+ DEBUGOUT1("After fix-ups FlowControl is now = %x\n", hw->fc.type);
+
+ /* Call the necessary media_type subroutine to configure the link. */
+ ret_val = func->setup_physical_interface(hw);
+ if (ret_val)
+ goto out;
+
+ /*
+ * Initialize the flow control address, type, and PAUSE timer
+ * registers to their default values. This is done even if flow
+ * control is disabled, because it does not hurt anything to
+ * initialize these registers.
+ */
+ DEBUGOUT("Initializing the Flow Control address, type and timer regs\n");
+ E1000_WRITE_REG(hw, E1000_FCT, FLOW_CONTROL_TYPE);
+ E1000_WRITE_REG(hw, E1000_FCAH, FLOW_CONTROL_ADDRESS_HIGH);
+ E1000_WRITE_REG(hw, E1000_FCAL, FLOW_CONTROL_ADDRESS_LOW);
+
+ E1000_WRITE_REG(hw, E1000_FCTTV, hw->fc.pause_time);
+
+ ret_val = e1000_set_fc_watermarks_generic(hw);
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_setup_fiber_serdes_link_generic - Setup link for fiber/serdes
+ * @hw: pointer to the HW structure
+ *
+ * Configures collision distance and flow control for fiber and serdes
+ * links. Upon successful setup, poll for link.
+ **/
+s32 e1000_setup_fiber_serdes_link_generic(struct e1000_hw *hw)
+{
+ u32 ctrl;
+ s32 ret_val = E1000_SUCCESS;
+
+ DEBUGFUNC("e1000_setup_fiber_serdes_link_generic");
+
+ ctrl = E1000_READ_REG(hw, E1000_CTRL);
+
+ /* Take the link out of reset */
+ ctrl &= ~E1000_CTRL_LRST;
+
+ e1000_config_collision_dist_generic(hw);
+
+ ret_val = e1000_commit_fc_settings_generic(hw);
+ if (ret_val)
+ goto out;
+
+ /*
+ * Since auto-negotiation is enabled, take the link out of reset (the
+ * link will be in reset, because we previously reset the chip). This
+ * will restart auto-negotiation. If auto-negotiation is successful
+ * then the link-up status bit will be set and the flow control enable
+ * bits (RFCE and TFCE) will be set according to their negotiated value.
+ */
+ DEBUGOUT("Auto-negotiation enabled\n");
+
+ E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
+ E1000_WRITE_FLUSH(hw);
+ msec_delay(1);
+
+ /*
+ * For these adapters, the SW defineable pin 1 is set when the optics
+ * detect a signal. If we have a signal, then poll for a "Link-Up"
+ * indication.
+ */
+ if (hw->phy.media_type == e1000_media_type_internal_serdes ||
+ (E1000_READ_REG(hw, E1000_CTRL) & E1000_CTRL_SWDPIN1)) {
+ ret_val = e1000_poll_fiber_serdes_link_generic(hw);
+ } else {
+ DEBUGOUT("No signal detected\n");
+ }
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_config_collision_dist_generic - Configure collision distance
+ * @hw: pointer to the HW structure
+ *
+ * Configures the collision distance to the default value and is used
+ * during link setup. Currently no func pointer exists and all
+ * implementations are handled in the generic version of this function.
+ **/
+void e1000_config_collision_dist_generic(struct e1000_hw *hw)
+{
+ u32 tctl;
+
+ DEBUGFUNC("e1000_config_collision_dist_generic");
+
+ tctl = E1000_READ_REG(hw, E1000_TCTL);
+
+ tctl &= ~E1000_TCTL_COLD;
+ tctl |= E1000_COLLISION_DISTANCE << E1000_COLD_SHIFT;
+
+ E1000_WRITE_REG(hw, E1000_TCTL, tctl);
+ E1000_WRITE_FLUSH(hw);
+}
+
+/**
+ * e1000_poll_fiber_serdes_link_generic - Poll for link up
+ * @hw: pointer to the HW structure
+ *
+ * Polls for link up by reading the status register, if link fails to come
+ * up with auto-negotiation, then the link is forced if a signal is detected.
+ **/
+s32 e1000_poll_fiber_serdes_link_generic(struct e1000_hw *hw)
+{
+ struct e1000_mac_info *mac = &hw->mac;
+ u32 i, status;
+ s32 ret_val = E1000_SUCCESS;
+
+ DEBUGFUNC("e1000_poll_fiber_serdes_link_generic");
+
+ /*
+ * If we have a signal (the cable is plugged in, or assumed true for
+ * serdes media) then poll for a "Link-Up" indication in the Device
+ * Status Register. Time-out if a link isn't seen in 500 milliseconds
+ * seconds (Auto-negotiation should complete in less than 500
+ * milliseconds even if the other end is doing it in SW).
+ */
+ for (i = 0; i < FIBER_LINK_UP_LIMIT; i++) {
+ msec_delay(10);
+ status = E1000_READ_REG(hw, E1000_STATUS);
+ if (status & E1000_STATUS_LU)
+ break;
+ }
+ if (i == FIBER_LINK_UP_LIMIT) {
+ DEBUGOUT("Never got a valid link from auto-neg!!!\n");
+ mac->autoneg_failed = 1;
+ /*
+ * AutoNeg failed to achieve a link, so we'll call
+ * mac->check_for_link. This routine will force the
+ * link up if we detect a signal. This will allow us to
+ * communicate with non-autonegotiating link partners.
+ */
+ ret_val = e1000_check_for_link(hw);
+ if (ret_val) {
+ DEBUGOUT("Error while checking for link\n");
+ goto out;
+ }
+ mac->autoneg_failed = 0;
+ } else {
+ mac->autoneg_failed = 0;
+ DEBUGOUT("Valid Link Found\n");
+ }
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_commit_fc_settings_generic - Configure flow control
+ * @hw: pointer to the HW structure
+ *
+ * Write the flow control settings to the Transmit Config Word Register (TXCW)
+ * base on the flow control settings in e1000_mac_info.
+ **/
+s32 e1000_commit_fc_settings_generic(struct e1000_hw *hw)
+{
+ struct e1000_mac_info *mac = &hw->mac;
+ u32 txcw;
+ s32 ret_val = E1000_SUCCESS;
+
+ DEBUGFUNC("e1000_commit_fc_settings_generic");
+
+ /*
+ * Check for a software override of the flow control settings, and
+ * setup the device accordingly. If auto-negotiation is enabled, then
+ * software will have to set the "PAUSE" bits to the correct value in
+ * the Transmit Config Word Register (TXCW) and re-start auto-
+ * negotiation. However, if auto-negotiation is disabled, then
+ * software will have to manually configure the two flow control enable
+ * bits in the CTRL register.
+ *
+ * The possible values of the "fc" parameter are:
+ * 0: Flow control is completely disabled
+ * 1: Rx flow control is enabled (we can receive pause frames,
+ * but not send pause frames).
+ * 2: Tx flow control is enabled (we can send pause frames but we
+ * do not support receiving pause frames).
+ * 3: Both Rx and Tx flow control (symmetric) are enabled.
+ */
+ switch (hw->fc.type) {
+ case e1000_fc_none:
+ /* Flow control completely disabled by a software over-ride. */
+ txcw = (E1000_TXCW_ANE | E1000_TXCW_FD);
+ break;
+ case e1000_fc_rx_pause:
+ /*
+ * Rx Flow control is enabled and Tx Flow control is disabled
+ * by a software over-ride. Since there really isn't a way to
+ * advertise that we are capable of Rx Pause ONLY, we will
+ * advertise that we support both symmetric and asymmetric RX
+ * PAUSE. Later, we will disable the adapter's ability to send
+ * PAUSE frames.
+ */
+ txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
+ break;
+ case e1000_fc_tx_pause:
+ /*
+ * Tx Flow control is enabled, and Rx Flow control is disabled,
+ * by a software over-ride.
+ */
+ txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_ASM_DIR);
+ break;
+ case e1000_fc_full:
+ /*
+ * Flow control (both Rx and Tx) is enabled by a software
+ * over-ride.
+ */
+ txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
+ break;
+ default:
+ DEBUGOUT("Flow control param set incorrectly\n");
+ ret_val = -E1000_ERR_CONFIG;
+ goto out;
+ break;
+ }
+
+ E1000_WRITE_REG(hw, E1000_TXCW, txcw);
+ mac->txcw = txcw;
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_set_fc_watermarks_generic - Set flow control high/low watermarks
+ * @hw: pointer to the HW structure
+ *
+ * Sets the flow control high/low threshold (watermark) registers. If
+ * flow control XON frame transmission is enabled, then set XON frame
+ * tansmission as well.
+ **/
+s32 e1000_set_fc_watermarks_generic(struct e1000_hw *hw)
+{
+ s32 ret_val = E1000_SUCCESS;
+ u32 fcrtl = 0, fcrth = 0;
+
+ DEBUGFUNC("e1000_set_fc_watermarks_generic");
+
+ /*
+ * Set the flow control receive threshold registers. Normally,
+ * these registers will be set to a default threshold that may be
+ * adjusted later by the driver's runtime code. However, if the
+ * ability to transmit pause frames is not enabled, then these
+ * registers will be set to 0.
+ */
+ if (hw->fc.type & e1000_fc_tx_pause) {
+ /*
+ * We need to set up the Receive Threshold high and low water
+ * marks as well as (optionally) enabling the transmission of
+ * XON frames.
+ */
+ fcrtl = hw->fc.low_water;
+ if (hw->fc.send_xon)
+ fcrtl |= E1000_FCRTL_XONE;
+
+ fcrth = hw->fc.high_water;
+ }
+ E1000_WRITE_REG(hw, E1000_FCRTL, fcrtl);
+ E1000_WRITE_REG(hw, E1000_FCRTH, fcrth);
+
+ return ret_val;
+}
+
+/**
+ * e1000_set_default_fc_generic - Set flow control default values
+ * @hw: pointer to the HW structure
+ *
+ * Read the EEPROM for the default values for flow control and store the
+ * values.
+ **/
+s32 e1000_set_default_fc_generic(struct e1000_hw *hw)
+{
+ s32 ret_val = E1000_SUCCESS;
+ u16 nvm_data;
+
+ DEBUGFUNC("e1000_set_default_fc_generic");
+
+ /*
+ * Read and store word 0x0F of the EEPROM. This word contains bits
+ * that determine the hardware's default PAUSE (flow control) mode,
+ * a bit that determines whether the HW defaults to enabling or
+ * disabling auto-negotiation, and the direction of the
+ * SW defined pins. If there is no SW over-ride of the flow
+ * control setting, then the variable hw->fc will
+ * be initialized based on a value in the EEPROM.
+ */
+ ret_val = e1000_read_nvm(hw, NVM_INIT_CONTROL2_REG, 1, &nvm_data);
+
+ if (ret_val) {
+ DEBUGOUT("NVM Read Error\n");
+ goto out;
+ }
+
+ if ((nvm_data & NVM_WORD0F_PAUSE_MASK) == 0)
+ hw->fc.type = e1000_fc_none;
+ else if ((nvm_data & NVM_WORD0F_PAUSE_MASK) ==
+ NVM_WORD0F_ASM_DIR)
+ hw->fc.type = e1000_fc_tx_pause;
+ else
+ hw->fc.type = e1000_fc_full;
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_force_mac_fc_generic - Force the MAC's flow control settings
+ * @hw: pointer to the HW structure
+ *
+ * Force the MAC's flow control settings. Sets the TFCE and RFCE bits in the
+ * device control register to reflect the adapter settings. TFCE and RFCE
+ * need to be explicitly set by software when a copper PHY is used because
+ * autonegotiation is managed by the PHY rather than the MAC. Software must
+ * also configure these bits when link is forced on a fiber connection.
+ **/
+s32 e1000_force_mac_fc_generic(struct e1000_hw *hw)
+{
+ u32 ctrl;
+ s32 ret_val = E1000_SUCCESS;
+
+ DEBUGFUNC("e1000_force_mac_fc_generic");
+
+ ctrl = E1000_READ_REG(hw, E1000_CTRL);
+
+ /*
+ * Because we didn't get link via the internal auto-negotiation
+ * mechanism (we either forced link or we got link via PHY
+ * auto-neg), we have to manually enable/disable transmit an
+ * receive flow control.
+ *
+ * The "Case" statement below enables/disable flow control
+ * according to the "hw->fc.type" parameter.
+ *
+ * The possible values of the "fc" parameter are:
+ * 0: Flow control is completely disabled
+ * 1: Rx flow control is enabled (we can receive pause
+ * frames but not send pause frames).
+ * 2: Tx flow control is enabled (we can send pause frames
+ * frames but we do not receive pause frames).
+ * 3: Both Rx and Tx flow control (symmetric) is enabled.
+ * other: No other values should be possible at this point.
+ */
+ DEBUGOUT1("hw->fc.type = %u\n", hw->fc.type);
+
+ switch (hw->fc.type) {
+ case e1000_fc_none:
+ ctrl &= (~(E1000_CTRL_TFCE | E1000_CTRL_RFCE));
+ break;
+ case e1000_fc_rx_pause:
+ ctrl &= (~E1000_CTRL_TFCE);
+ ctrl |= E1000_CTRL_RFCE;
+ break;
+ case e1000_fc_tx_pause:
+ ctrl &= (~E1000_CTRL_RFCE);
+ ctrl |= E1000_CTRL_TFCE;
+ break;
+ case e1000_fc_full:
+ ctrl |= (E1000_CTRL_TFCE | E1000_CTRL_RFCE);
+ break;
+ default:
+ DEBUGOUT("Flow control param set incorrectly\n");
+ ret_val = -E1000_ERR_CONFIG;
+ goto out;
+ }
+
+ E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_config_fc_after_link_up_generic - Configures flow control after link
+ * @hw: pointer to the HW structure
+ *
+ * Checks the status of auto-negotiation after link up to ensure that the
+ * speed and duplex were not forced. If the link needed to be forced, then
+ * flow control needs to be forced also. If auto-negotiation is enabled
+ * and did not fail, then we configure flow control based on our link
+ * partner.
+ **/
+s32 e1000_config_fc_after_link_up_generic(struct e1000_hw *hw)
+{
+ struct e1000_mac_info *mac = &hw->mac;
+ s32 ret_val = E1000_SUCCESS;
+ u16 mii_status_reg, mii_nway_adv_reg, mii_nway_lp_ability_reg;
+ u16 speed, duplex;
+
+ DEBUGFUNC("e1000_config_fc_after_link_up_generic");
+
+ /*
+ * Check for the case where we have fiber media and auto-neg failed
+ * so we had to force link. In this case, we need to force the
+ * configuration of the MAC to match the "fc" parameter.
+ */
+ if (mac->autoneg_failed) {
+ if (hw->phy.media_type == e1000_media_type_fiber ||
+ hw->phy.media_type == e1000_media_type_internal_serdes)
+ ret_val = e1000_force_mac_fc_generic(hw);
+ } else {
+ if (hw->phy.media_type == e1000_media_type_copper)
+ ret_val = e1000_force_mac_fc_generic(hw);
+ }
+
+ if (ret_val) {
+ DEBUGOUT("Error forcing flow control settings\n");
+ goto out;
+ }
+
+ /*
+ * Check for the case where we have copper media and auto-neg is
+ * enabled. In this case, we need to check and see if Auto-Neg
+ * has completed, and if so, how the PHY and link partner has
+ * flow control configured.
+ */
+ if ((hw->phy.media_type == e1000_media_type_copper) && mac->autoneg) {
+ /*
+ * Read the MII Status Register and check to see if AutoNeg
+ * has completed. We read this twice because this reg has
+ * some "sticky" (latched) bits.
+ */
+ ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
+ if (ret_val)
+ goto out;
+ ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
+ if (ret_val)
+ goto out;
+
+ if (!(mii_status_reg & MII_SR_AUTONEG_COMPLETE)) {
+ DEBUGOUT("Copper PHY and Auto Neg "
+ "has not completed.\n");
+ goto out;
+ }
+
+ /*
+ * The AutoNeg process has completed, so we now need to
+ * read both the Auto Negotiation Advertisement
+ * Register (Address 4) and the Auto_Negotiation Base
+ * Page Ability Register (Address 5) to determine how
+ * flow control was negotiated.
+ */
+ ret_val = e1000_read_phy_reg(hw, PHY_AUTONEG_ADV,
+ &mii_nway_adv_reg);
+ if (ret_val)
+ goto out;
+ ret_val = e1000_read_phy_reg(hw, PHY_LP_ABILITY,
+ &mii_nway_lp_ability_reg);
+ if (ret_val)
+ goto out;
+
+ /*
+ * Two bits in the Auto Negotiation Advertisement Register
+ * (Address 4) and two bits in the Auto Negotiation Base
+ * Page Ability Register (Address 5) determine flow control
+ * for both the PHY and the link partner. The following
+ * table, taken out of the IEEE 802.3ab/D6.0 dated March 25,
+ * 1999, describes these PAUSE resolution bits and how flow
+ * control is determined based upon these settings.
+ * NOTE: DC = Don't Care
+ *
+ * LOCAL DEVICE | LINK PARTNER
+ * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution
+ *-------|---------|-------|---------|--------------------
+ * 0 | 0 | DC | DC | e1000_fc_none
+ * 0 | 1 | 0 | DC | e1000_fc_none
+ * 0 | 1 | 1 | 0 | e1000_fc_none
+ * 0 | 1 | 1 | 1 | e1000_fc_tx_pause
+ * 1 | 0 | 0 | DC | e1000_fc_none
+ * 1 | DC | 1 | DC | e1000_fc_full
+ * 1 | 1 | 0 | 0 | e1000_fc_none
+ * 1 | 1 | 0 | 1 | e1000_fc_rx_pause
+ *
+ * Are both PAUSE bits set to 1? If so, this implies
+ * Symmetric Flow Control is enabled at both ends. The
+ * ASM_DIR bits are irrelevant per the spec.
+ *
+ * For Symmetric Flow Control:
+ *
+ * LOCAL DEVICE | LINK PARTNER
+ * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
+ *-------|---------|-------|---------|--------------------
+ * 1 | DC | 1 | DC | E1000_fc_full
+ *
+ */
+ if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
+ (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE)) {
+ /*
+ * Now we need to check if the user selected Rx ONLY
+ * of pause frames. In this case, we had to advertise
+ * FULL flow control because we could not advertise RX
+ * ONLY. Hence, we must now check to see if we need to
+ * turn OFF the TRANSMISSION of PAUSE frames.
+ */
+ if (hw->fc.original_type == e1000_fc_full) {
+ hw->fc.type = e1000_fc_full;
+ DEBUGOUT("Flow Control = FULL.\r\n");
+ } else {
+ hw->fc.type = e1000_fc_rx_pause;
+ DEBUGOUT("Flow Control = "
+ "RX PAUSE frames only.\r\n");
+ }
+ }
+ /*
+ * For receiving PAUSE frames ONLY.
+ *
+ * LOCAL DEVICE | LINK PARTNER
+ * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
+ *-------|---------|-------|---------|--------------------
+ * 0 | 1 | 1 | 1 | e1000_fc_tx_pause
+ */
+ else if (!(mii_nway_adv_reg & NWAY_AR_PAUSE) &&
+ (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
+ (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
+ (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) {
+ hw->fc.type = e1000_fc_tx_pause;
+ DEBUGOUT("Flow Control = TX PAUSE frames only.\r\n");
+ }
+ /*
+ * For transmitting PAUSE frames ONLY.
+ *
+ * LOCAL DEVICE | LINK PARTNER
+ * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
+ *-------|---------|-------|---------|--------------------
+ * 1 | 1 | 0 | 1 | e1000_fc_rx_pause
+ */
+ else if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
+ (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
+ !(mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
+ (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) {
+ hw->fc.type = e1000_fc_rx_pause;
+ DEBUGOUT("Flow Control = RX PAUSE frames only.\r\n");
+ } else {
+ /*
+ * Per the IEEE spec, at this point flow control
+ * should be disabled.
+ */
+ hw->fc.type = e1000_fc_none;
+ DEBUGOUT("Flow Control = NONE.\r\n");
+ }
+
+ /*
+ * Now we need to do one last check... If we auto-
+ * negotiated to HALF DUPLEX, flow control should not be
+ * enabled per IEEE 802.3 spec.
+ */
+ ret_val = e1000_get_speed_and_duplex(hw, &speed, &duplex);
+ if (ret_val) {
+ DEBUGOUT("Error getting link speed and duplex\n");
+ goto out;
+ }
+
+ if (duplex == HALF_DUPLEX)
+ hw->fc.type = e1000_fc_none;
+
+ /*
+ * Now we call a subroutine to actually force the MAC
+ * controller to use the correct flow control settings.
+ */
+ ret_val = e1000_force_mac_fc_generic(hw);
+ if (ret_val) {
+ DEBUGOUT("Error forcing flow control settings\n");
+ goto out;
+ }
+ }
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_get_speed_and_duplex_copper_generic - Retreive current speed/duplex
+ * @hw: pointer to the HW structure
+ * @speed: stores the current speed
+ * @duplex: stores the current duplex
+ *
+ * Read the status register for the current speed/duplex and store the current
+ * speed and duplex for copper connections.
+ **/
+s32 e1000_get_speed_and_duplex_copper_generic(struct e1000_hw *hw, u16 *speed,
+ u16 *duplex)
+{
+ u32 status;
+
+ DEBUGFUNC("e1000_get_speed_and_duplex_copper_generic");
+
+ status = E1000_READ_REG(hw, E1000_STATUS);
+ if (status & E1000_STATUS_SPEED_1000) {
+ *speed = SPEED_1000;
+ DEBUGOUT("1000 Mbs, ");
+ } else if (status & E1000_STATUS_SPEED_100) {
+ *speed = SPEED_100;
+ DEBUGOUT("100 Mbs, ");
+ } else {
+ *speed = SPEED_10;
+ DEBUGOUT("10 Mbs, ");
+ }
+
+ if (status & E1000_STATUS_FD) {
+ *duplex = FULL_DUPLEX;
+ DEBUGOUT("Full Duplex\n");
+ } else {
+ *duplex = HALF_DUPLEX;
+ DEBUGOUT("Half Duplex\n");
+ }
+
+ return E1000_SUCCESS;
+}
+
+/**
+ * e1000_get_speed_and_duplex_fiber_generic - Retreive current speed/duplex
+ * @hw: pointer to the HW structure
+ * @speed: stores the current speed
+ * @duplex: stores the current duplex
+ *
+ * Sets the speed and duplex to gigabit full duplex (the only possible option)
+ * for fiber/serdes links.
+ **/
+s32 e1000_get_speed_and_duplex_fiber_serdes_generic(struct e1000_hw *hw,
+ u16 *speed, u16 *duplex)
+{
+ DEBUGFUNC("e1000_get_speed_and_duplex_fiber_serdes_generic");
+ UNREFERENCED_PARAMETER(hw);
+
+ *speed = SPEED_1000;
+ *duplex = FULL_DUPLEX;
+
+ return E1000_SUCCESS;
+}
+
+/**
+ * e1000_get_hw_semaphore_generic - Acquire hardware semaphore
+ * @hw: pointer to the HW structure
+ *
+ * Acquire the HW semaphore to access the PHY or NVM
+ **/
+s32 e1000_get_hw_semaphore_generic(struct e1000_hw *hw)
+{
+ u32 swsm;
+ s32 ret_val = E1000_SUCCESS;
+ s32 timeout = hw->nvm.word_size + 1;
+ s32 i = 0;
+
+ DEBUGFUNC("e1000_get_hw_semaphore_generic");
+
+ /* Get the SW semaphore */
+ while (i < timeout) {
+ swsm = E1000_READ_REG(hw, E1000_SWSM);
+ if (!(swsm & E1000_SWSM_SMBI))
+ break;
+
+ usec_delay(50);
+ i++;
+ }
+
+ if (i == timeout) {
+ DEBUGOUT("Driver can't access device - SMBI bit is set.\n");
+ ret_val = -E1000_ERR_NVM;
+ goto out;
+ }
+
+ /* Get the FW semaphore. */
+ for (i = 0; i < timeout; i++) {
+ swsm = E1000_READ_REG(hw, E1000_SWSM);
+ E1000_WRITE_REG(hw, E1000_SWSM, swsm | E1000_SWSM_SWESMBI);
+
+ /* Semaphore acquired if bit latched */
+ if (E1000_READ_REG(hw, E1000_SWSM) & E1000_SWSM_SWESMBI)
+ break;
+
+ usec_delay(50);
+ }
+
+ if (i == timeout) {
+ /* Release semaphores */
+ e1000_put_hw_semaphore_generic(hw);
+ DEBUGOUT("Driver can't access the NVM\n");
+ ret_val = -E1000_ERR_NVM;
+ goto out;
+ }
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_put_hw_semaphore_generic - Release hardware semaphore
+ * @hw: pointer to the HW structure
+ *
+ * Release hardware semaphore used to access the PHY or NVM
+ **/
+void e1000_put_hw_semaphore_generic(struct e1000_hw *hw)
+{
+ u32 swsm;
+
+ DEBUGFUNC("e1000_put_hw_semaphore_generic");
+
+ swsm = E1000_READ_REG(hw, E1000_SWSM);
+
+ swsm &= ~(E1000_SWSM_SMBI | E1000_SWSM_SWESMBI);
+
+ E1000_WRITE_REG(hw, E1000_SWSM, swsm);
+}
+
+/**
+ * e1000_get_auto_rd_done_generic - Check for auto read completion
+ * @hw: pointer to the HW structure
+ *
+ * Check EEPROM for Auto Read done bit.
+ **/
+s32 e1000_get_auto_rd_done_generic(struct e1000_hw *hw)
+{
+ s32 i = 0;
+ s32 ret_val = E1000_SUCCESS;
+
+ DEBUGFUNC("e1000_get_auto_rd_done_generic");
+
+ while (i < AUTO_READ_DONE_TIMEOUT) {
+ if (E1000_READ_REG(hw, E1000_EECD) & E1000_EECD_AUTO_RD)
+ break;
+ msec_delay(1);
+ i++;
+ }
+
+ if (i == AUTO_READ_DONE_TIMEOUT) {
+ DEBUGOUT("Auto read by HW from NVM has not completed.\n");
+ ret_val = -E1000_ERR_RESET;
+ goto out;
+ }
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_valid_led_default_generic - Verify a valid default LED config
+ * @hw: pointer to the HW structure
+ * @data: pointer to the NVM (EEPROM)
+ *
+ * Read the EEPROM for the current default LED configuration. If the
+ * LED configuration is not valid, set to a valid LED configuration.
+ **/
+s32 e1000_valid_led_default_generic(struct e1000_hw *hw, u16 *data)
+{
+ s32 ret_val;
+
+ DEBUGFUNC("e1000_valid_led_default_generic");
+
+ ret_val = e1000_read_nvm(hw, NVM_ID_LED_SETTINGS, 1, data);
+ if (ret_val) {
+ DEBUGOUT("NVM Read Error\n");
+ goto out;
+ }
+
+ if (*data == ID_LED_RESERVED_0000 || *data == ID_LED_RESERVED_FFFF)
+ *data = ID_LED_DEFAULT;
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_id_led_init_generic -
+ * @hw: pointer to the HW structure
+ *
+ **/
+s32 e1000_id_led_init_generic(struct e1000_hw * hw)
+{
+ struct e1000_mac_info *mac = &hw->mac;
+ s32 ret_val;
+ const u32 ledctl_mask = 0x000000FF;
+ const u32 ledctl_on = E1000_LEDCTL_MODE_LED_ON;
+ const u32 ledctl_off = E1000_LEDCTL_MODE_LED_OFF;
+ u16 data, i, temp;
+ const u16 led_mask = 0x0F;
+
+ DEBUGFUNC("e1000_id_led_init_generic");
+
+ ret_val = hw->func.valid_led_default(hw, &data);
+ if (ret_val)
+ goto out;
+
+ mac->ledctl_default = E1000_READ_REG(hw, E1000_LEDCTL);
+ mac->ledctl_mode1 = mac->ledctl_default;
+ mac->ledctl_mode2 = mac->ledctl_default;
+
+ for (i = 0; i < 4; i++) {
+ temp = (data >> (i << 2)) & led_mask;
+ switch (temp) {
+ case ID_LED_ON1_DEF2:
+ case ID_LED_ON1_ON2:
+ case ID_LED_ON1_OFF2:
+ mac->ledctl_mode1 &= ~(ledctl_mask << (i << 3));
+ mac->ledctl_mode1 |= ledctl_on << (i << 3);
+ break;
+ case ID_LED_OFF1_DEF2:
+ case ID_LED_OFF1_ON2:
+ case ID_LED_OFF1_OFF2:
+ mac->ledctl_mode1 &= ~(ledctl_mask << (i << 3));
+ mac->ledctl_mode1 |= ledctl_off << (i << 3);
+ break;
+ default:
+ /* Do nothing */
+ break;
+ }
+ switch (temp) {
+ case ID_LED_DEF1_ON2:
+ case ID_LED_ON1_ON2:
+ case ID_LED_OFF1_ON2:
+ mac->ledctl_mode2 &= ~(ledctl_mask << (i << 3));
+ mac->ledctl_mode2 |= ledctl_on << (i << 3);
+ break;
+ case ID_LED_DEF1_OFF2:
+ case ID_LED_ON1_OFF2:
+ case ID_LED_OFF1_OFF2:
+ mac->ledctl_mode2 &= ~(ledctl_mask << (i << 3));
+ mac->ledctl_mode2 |= ledctl_off << (i << 3);
+ break;
+ default:
+ /* Do nothing */
+ break;
+ }
+ }
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_setup_led_generic - Configures SW controllable LED
+ * @hw: pointer to the HW structure
+ *
+ * This prepares the SW controllable LED for use and saves the current state
+ * of the LED so it can be later restored.
+ **/
+s32 e1000_setup_led_generic(struct e1000_hw *hw)
+{
+ u32 ledctl;
+ s32 ret_val = E1000_SUCCESS;
+
+ DEBUGFUNC("e1000_setup_led_generic");
+
+ if (hw->func.setup_led != e1000_setup_led_generic) {
+ ret_val = -E1000_ERR_CONFIG;
+ goto out;
+ }
+
+ if (hw->phy.media_type == e1000_media_type_fiber) {
+ ledctl = E1000_READ_REG(hw, E1000_LEDCTL);
+ hw->mac.ledctl_default = ledctl;
+ /* Turn off LED0 */
+ ledctl &= ~(E1000_LEDCTL_LED0_IVRT |
+ E1000_LEDCTL_LED0_BLINK |
+ E1000_LEDCTL_LED0_MODE_MASK);
+ ledctl |= (E1000_LEDCTL_MODE_LED_OFF <<
+ E1000_LEDCTL_LED0_MODE_SHIFT);
+ E1000_WRITE_REG(hw, E1000_LEDCTL, ledctl);
+ } else if (hw->phy.media_type == e1000_media_type_copper) {
+ E1000_WRITE_REG(hw, E1000_LEDCTL, hw->mac.ledctl_mode1);
+ }
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_cleanup_led_generic - Set LED config to default operation
+ * @hw: pointer to the HW structure
+ *
+ * Remove the current LED configuration and set the LED configuration
+ * to the default value, saved from the EEPROM.
+ **/
+s32 e1000_cleanup_led_generic(struct e1000_hw *hw)
+{
+ s32 ret_val = E1000_SUCCESS;
+
+ DEBUGFUNC("e1000_cleanup_led_generic");
+
+ if (hw->func.cleanup_led != e1000_cleanup_led_generic) {
+ ret_val = -E1000_ERR_CONFIG;
+ goto out;
+ }
+
+ E1000_WRITE_REG(hw, E1000_LEDCTL, hw->mac.ledctl_default);
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_blink_led_generic - Blink LED
+ * @hw: pointer to the HW structure
+ *
+ * Blink the led's which are set to be on.
+ **/
+s32 e1000_blink_led_generic(struct e1000_hw *hw)
+{
+ u32 ledctl_blink = 0;
+ u32 i;
+
+ DEBUGFUNC("e1000_blink_led_generic");
+
+ if (hw->phy.media_type == e1000_media_type_fiber) {
+ /* always blink LED0 for PCI-E fiber */
+ ledctl_blink = E1000_LEDCTL_LED0_BLINK |
+ (E1000_LEDCTL_MODE_LED_ON << E1000_LEDCTL_LED0_MODE_SHIFT);
+ } else {
+ /*
+ * set the blink bit for each LED that's "on" (0x0E)
+ * in ledctl_mode2
+ */
+ ledctl_blink = hw->mac.ledctl_mode2;
+ for (i = 0; i < 4; i++)
+ if (((hw->mac.ledctl_mode2 >> (i * 8)) & 0xFF) ==
+ E1000_LEDCTL_MODE_LED_ON)
+ ledctl_blink |= (E1000_LEDCTL_LED0_BLINK <<
+ (i * 8));
+ }
+
+ E1000_WRITE_REG(hw, E1000_LEDCTL, ledctl_blink);
+
+ return E1000_SUCCESS;
+}
+
+/**
+ * e1000_led_on_generic - Turn LED on
+ * @hw: pointer to the HW structure
+ *
+ * Turn LED on.
+ **/
+s32 e1000_led_on_generic(struct e1000_hw *hw)
+{
+ u32 ctrl;
+
+ DEBUGFUNC("e1000_led_on_generic");
+
+ switch (hw->phy.media_type) {
+ case e1000_media_type_fiber:
+ ctrl = E1000_READ_REG(hw, E1000_CTRL);
+ ctrl &= ~E1000_CTRL_SWDPIN0;
+ ctrl |= E1000_CTRL_SWDPIO0;
+ E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
+ break;
+ case e1000_media_type_copper:
+ E1000_WRITE_REG(hw, E1000_LEDCTL, hw->mac.ledctl_mode2);
+ break;
+ default:
+ break;
+ }
+
+ return E1000_SUCCESS;
+}
+
+/**
+ * e1000_led_off_generic - Turn LED off
+ * @hw: pointer to the HW structure
+ *
+ * Turn LED off.
+ **/
+s32 e1000_led_off_generic(struct e1000_hw *hw)
+{
+ u32 ctrl;
+
+ DEBUGFUNC("e1000_led_off_generic");
+
+ switch (hw->phy.media_type) {
+ case e1000_media_type_fiber:
+ ctrl = E1000_READ_REG(hw, E1000_CTRL);
+ ctrl |= E1000_CTRL_SWDPIN0;
+ ctrl |= E1000_CTRL_SWDPIO0;
+ E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
+ break;
+ case e1000_media_type_copper:
+ E1000_WRITE_REG(hw, E1000_LEDCTL, hw->mac.ledctl_mode1);
+ break;
+ default:
+ break;
+ }
+
+ return E1000_SUCCESS;
+}
+
+/**
+ * e1000_set_pcie_no_snoop_generic - Set PCI-express capabilities
+ * @hw: pointer to the HW structure
+ * @no_snoop: bitmap of snoop events
+ *
+ * Set the PCI-express register to snoop for events enabled in 'no_snoop'.
+ **/
+void e1000_set_pcie_no_snoop_generic(struct e1000_hw *hw, u32 no_snoop)
+{
+ u32 gcr;
+
+ DEBUGFUNC("e1000_set_pcie_no_snoop_generic");
+
+ if (hw->bus.type != e1000_bus_type_pci_express)
+ goto out;
+
+ if (no_snoop) {
+ gcr = E1000_READ_REG(hw, E1000_GCR);
+ gcr &= ~(PCIE_NO_SNOOP_ALL);
+ gcr |= no_snoop;
+ E1000_WRITE_REG(hw, E1000_GCR, gcr);
+ }
+out:
+ return;
+}
+
+/**
+ * e1000_disable_pcie_master_generic - Disables PCI-express master access
+ * @hw: pointer to the HW structure
+ *
+ * Returns 0 (E1000_SUCCESS) if successful, else returns -10
+ * (-E1000_ERR_MASTER_REQUESTS_PENDING) if master disable bit has not casued
+ * the master requests to be disabled.
+ *
+ * Disables PCI-Express master access and verifies there are no pending
+ * requests.
+ **/
+s32 e1000_disable_pcie_master_generic(struct e1000_hw *hw)
+{
+ u32 ctrl;
+ s32 timeout = MASTER_DISABLE_TIMEOUT;
+ s32 ret_val = E1000_SUCCESS;
+
+ DEBUGFUNC("e1000_disable_pcie_master_generic");
+
+ if (hw->bus.type != e1000_bus_type_pci_express)
+ goto out;
+
+ ctrl = E1000_READ_REG(hw, E1000_CTRL);
+ ctrl |= E1000_CTRL_GIO_MASTER_DISABLE;
+ E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
+
+ while (timeout) {
+ if (!(E1000_READ_REG(hw, E1000_STATUS) &
+ E1000_STATUS_GIO_MASTER_ENABLE))
+ break;
+ usec_delay(100);
+ timeout--;
+ }
+
+ if (!timeout) {
+ DEBUGOUT("Master requests are pending.\n");
+ ret_val = -E1000_ERR_MASTER_REQUESTS_PENDING;
+ goto out;
+ }
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_reset_adaptive_generic - Reset Adaptive Interframe Spacing
+ * @hw: pointer to the HW structure
+ *
+ * Reset the Adaptive Interframe Spacing throttle to default values.
+ **/
+void e1000_reset_adaptive_generic(struct e1000_hw *hw)
+{
+ struct e1000_mac_info *mac = &hw->mac;
+
+ DEBUGFUNC("e1000_reset_adaptive_generic");
+
+ if (!mac->adaptive_ifs) {
+ DEBUGOUT("Not in Adaptive IFS mode!\n");
+ goto out;
+ }
+
+ if (!mac->ifs_params_forced) {
+ mac->current_ifs_val = 0;
+ mac->ifs_min_val = IFS_MIN;
+ mac->ifs_max_val = IFS_MAX;
+ mac->ifs_step_size = IFS_STEP;
+ mac->ifs_ratio = IFS_RATIO;
+ }
+
+ mac->in_ifs_mode = FALSE;
+ E1000_WRITE_REG(hw, E1000_AIT, 0);
+out:
+ return;
+}
+
+/**
+ * e1000_update_adaptive_generic - Update Adaptive Interframe Spacing
+ * @hw: pointer to the HW structure
+ *
+ * Update the Adaptive Interframe Spacing Throttle value based on the
+ * time between transmitted packets and time between collisions.
+ **/
+void e1000_update_adaptive_generic(struct e1000_hw *hw)
+{
+ struct e1000_mac_info *mac = &hw->mac;
+
+ DEBUGFUNC("e1000_update_adaptive_generic");
+
+ if (!mac->adaptive_ifs) {
+ DEBUGOUT("Not in Adaptive IFS mode!\n");
+ goto out;
+ }
+
+ if ((mac->collision_delta * mac->ifs_ratio) > mac->tx_packet_delta) {
+ if (mac->tx_packet_delta > MIN_NUM_XMITS) {
+ mac->in_ifs_mode = TRUE;
+ if (mac->current_ifs_val < mac->ifs_max_val) {
+ if (!mac->current_ifs_val)
+ mac->current_ifs_val = mac->ifs_min_val;
+ else
+ mac->current_ifs_val +=
+ mac->ifs_step_size;
+ E1000_WRITE_REG(hw, E1000_AIT, mac->current_ifs_val);
+ }
+ }
+ } else {
+ if (mac->in_ifs_mode &&
+ (mac->tx_packet_delta <= MIN_NUM_XMITS)) {
+ mac->current_ifs_val = 0;
+ mac->in_ifs_mode = FALSE;
+ E1000_WRITE_REG(hw, E1000_AIT, 0);
+ }
+ }
+out:
+ return;
+}
+
+/**
+ * e1000_validate_mdi_setting_generic - Verify MDI/MDIx settings
+ * @hw: pointer to the HW structure
+ *
+ * Verify that when not using auto-negotitation that MDI/MDIx is correctly
+ * set, which is forced to MDI mode only.
+ **/
+s32 e1000_validate_mdi_setting_generic(struct e1000_hw *hw)
+{
+ s32 ret_val = E1000_SUCCESS;
+
+ DEBUGFUNC("e1000_validate_mdi_setting_generic");
+
+ if (!hw->mac.autoneg && (hw->phy.mdix == 0 || hw->phy.mdix == 3)) {
+ DEBUGOUT("Invalid MDI setting detected\n");
+ hw->phy.mdix = 1;
+ ret_val = -E1000_ERR_CONFIG;
+ goto out;
+ }
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_write_8bit_ctrl_reg_generic - Write a 8bit CTRL register
+ * @hw: pointer to the HW structure
+ * @reg: 32bit register offset such as E1000_SCTL
+ * @offset: register offset to write to
+ * @data: data to write at register offset
+ *
+ * Writes an address/data control type register. There are several of these
+ * and they all have the format address << 8 | data and bit 31 is polled for
+ * completion.
+ **/
+s32 e1000_write_8bit_ctrl_reg_generic(struct e1000_hw *hw, u32 reg,
+ u32 offset, u8 data)
+{
+ u32 i, regvalue = 0;
+ s32 ret_val = E1000_SUCCESS;
+
+ DEBUGFUNC("e1000_write_8bit_ctrl_reg_generic");
+
+ /* Set up the address and data */
+ regvalue = ((u32)data) | (offset << E1000_GEN_CTL_ADDRESS_SHIFT);
+ E1000_WRITE_REG(hw, reg, regvalue);
+
+ /* Poll the ready bit to see if the MDI read completed */
+ for (i = 0; i < E1000_GEN_POLL_TIMEOUT; i++) {
+ usec_delay(5);
+ regvalue = E1000_READ_REG(hw, reg);
+ if (regvalue & E1000_GEN_CTL_READY)
+ break;
+ }
+ if (!(regvalue & E1000_GEN_CTL_READY)) {
+ DEBUGOUT1("Reg %08x did not indicate ready\n", reg);
+ ret_val = -E1000_ERR_PHY;
+ goto out;
+ }
+
+out:
+ return ret_val;
+}
--- /dev/null
+++ sys/dev/em/e1000_mac.h
@@ -0,0 +1,93 @@
+/*******************************************************************************
+
+ Copyright (c) 2001-2007, Intel Corporation
+ All rights reserved.
+
+ Redistribution and use in source and binary forms, with or without
+ modification, are permitted provided that the following conditions are met:
+
+ 1. Redistributions of source code must retain the above copyright notice,
+ this list of conditions and the following disclaimer.
+
+ 2. Redistributions in binary form must reproduce the above copyright
+ notice, this list of conditions and the following disclaimer in the
+ documentation and/or other materials provided with the distribution.
+
+ 3. Neither the name of the Intel Corporation nor the names of its
+ contributors may be used to endorse or promote products derived from
+ this software without specific prior written permission.
+
+ THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
+ AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+ IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
+ LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
+ CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
+ SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
+ INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
+ CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
+ ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
+ POSSIBILITY OF SUCH DAMAGE.
+
+*******************************************************************************/
+/* $FreeBSD: src/sys/dev/em/e1000_mac.h,v 1.3.4.1 2007/11/28 23:24:38 jfv Exp $ */
+
+
+#ifndef _E1000_MAC_H_
+#define _E1000_MAC_H_
+
+/*
+ * Functions that should not be called directly from drivers but can be used
+ * by other files in this 'shared code'
+ */
+s32 e1000_blink_led_generic(struct e1000_hw *hw);
+s32 e1000_check_for_copper_link_generic(struct e1000_hw *hw);
+s32 e1000_check_for_fiber_link_generic(struct e1000_hw *hw);
+s32 e1000_check_for_serdes_link_generic(struct e1000_hw *hw);
+s32 e1000_cleanup_led_generic(struct e1000_hw *hw);
+s32 e1000_commit_fc_settings_generic(struct e1000_hw *hw);
+s32 e1000_config_fc_after_link_up_generic(struct e1000_hw *hw);
+s32 e1000_disable_pcie_master_generic(struct e1000_hw *hw);
+s32 e1000_force_mac_fc_generic(struct e1000_hw *hw);
+s32 e1000_get_auto_rd_done_generic(struct e1000_hw *hw);
+s32 e1000_get_bus_info_pci_generic(struct e1000_hw *hw);
+s32 e1000_get_bus_info_pcie_generic(struct e1000_hw *hw);
+s32 e1000_get_hw_semaphore_generic(struct e1000_hw *hw);
+s32 e1000_get_speed_and_duplex_copper_generic(struct e1000_hw *hw, u16 *speed,
+ u16 *duplex);
+s32 e1000_get_speed_and_duplex_fiber_serdes_generic(struct e1000_hw *hw,
+ u16 *speed, u16 *duplex);
+s32 e1000_id_led_init_generic(struct e1000_hw *hw);
+s32 e1000_led_on_generic(struct e1000_hw *hw);
+s32 e1000_led_off_generic(struct e1000_hw *hw);
+void e1000_update_mc_addr_list_generic(struct e1000_hw *hw,
+ u8 *mc_addr_list, u32 mc_addr_count,
+ u32 rar_used_count, u32 rar_count);
+s32 e1000_poll_fiber_serdes_link_generic(struct e1000_hw *hw);
+s32 e1000_set_default_fc_generic(struct e1000_hw *hw);
+s32 e1000_set_fc_watermarks_generic(struct e1000_hw *hw);
+s32 e1000_setup_fiber_serdes_link_generic(struct e1000_hw *hw);
+s32 e1000_setup_led_generic(struct e1000_hw *hw);
+s32 e1000_setup_link_generic(struct e1000_hw *hw);
+s32 e1000_validate_mdi_setting_generic(struct e1000_hw *hw);
+s32 e1000_write_8bit_ctrl_reg_generic(struct e1000_hw *hw, u32 reg,
+ u32 offset, u8 data);
+
+u32 e1000_hash_mc_addr_generic(struct e1000_hw *hw, u8 *mc_addr);
+
+void e1000_clear_hw_cntrs_base_generic(struct e1000_hw *hw);
+void e1000_clear_vfta_generic(struct e1000_hw *hw);
+void e1000_config_collision_dist_generic(struct e1000_hw *hw);
+void e1000_init_rx_addrs_generic(struct e1000_hw *hw, u16 rar_count);
+void e1000_mta_set_generic(struct e1000_hw *hw, u32 hash_value);
+void e1000_pcix_mmrbc_workaround_generic(struct e1000_hw *hw);
+void e1000_put_hw_semaphore_generic(struct e1000_hw *hw);
+void e1000_rar_set_generic(struct e1000_hw *hw, u8 *addr, u32 index);
+s32 e1000_check_alt_mac_addr_generic(struct e1000_hw *hw);
+void e1000_remove_device_generic(struct e1000_hw *hw);
+void e1000_reset_adaptive_generic(struct e1000_hw *hw);
+void e1000_set_pcie_no_snoop_generic(struct e1000_hw *hw, u32 no_snoop);
+void e1000_update_adaptive_generic(struct e1000_hw *hw);
+void e1000_write_vfta_generic(struct e1000_hw *hw, u32 offset, u32 value);
+
+#endif
--- /dev/null
+++ sys/dev/em/e1000_defines.h
@@ -0,0 +1,1430 @@
+/*******************************************************************************
+
+ Copyright (c) 2001-2007, Intel Corporation
+ All rights reserved.
+
+ Redistribution and use in source and binary forms, with or without
+ modification, are permitted provided that the following conditions are met:
+
+ 1. Redistributions of source code must retain the above copyright notice,
+ this list of conditions and the following disclaimer.
+
+ 2. Redistributions in binary form must reproduce the above copyright
+ notice, this list of conditions and the following disclaimer in the
+ documentation and/or other materials provided with the distribution.
+
+ 3. Neither the name of the Intel Corporation nor the names of its
+ contributors may be used to endorse or promote products derived from
+ this software without specific prior written permission.
+
+ THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
+ AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+ IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
+ LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
+ CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
+ SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
+ INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
+ CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
+ ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
+ POSSIBILITY OF SUCH DAMAGE.
+
+*******************************************************************************/
+/* $FreeBSD: src/sys/dev/em/e1000_defines.h,v 1.3.4.1 2007/11/28 23:24:37 jfv Exp $ */
+
+
+#ifndef _E1000_DEFINES_H_
+#define _E1000_DEFINES_H_
+
+/* Number of Transmit and Receive Descriptors must be a multiple of 8 */
+#define REQ_TX_DESCRIPTOR_MULTIPLE 8
+#define REQ_RX_DESCRIPTOR_MULTIPLE 8
+
+/* Definitions for power management and wakeup registers */
+/* Wake Up Control */
+#define E1000_WUC_APME 0x00000001 /* APM Enable */
+#define E1000_WUC_PME_EN 0x00000002 /* PME Enable */
+#define E1000_WUC_PME_STATUS 0x00000004 /* PME Status */
+#define E1000_WUC_APMPME 0x00000008 /* Assert PME on APM Wakeup */
+#define E1000_WUC_SPM 0x80000000 /* Enable SPM */
+
+/* Wake Up Filter Control */
+#define E1000_WUFC_LNKC 0x00000001 /* Link Status Change Wakeup Enable */
+#define E1000_WUFC_MAG 0x00000002 /* Magic Packet Wakeup Enable */
+#define E1000_WUFC_EX 0x00000004 /* Directed Exact Wakeup Enable */
+#define E1000_WUFC_MC 0x00000008 /* Directed Multicast Wakeup Enable */
+#define E1000_WUFC_BC 0x00000010 /* Broadcast Wakeup Enable */
+#define E1000_WUFC_ARP 0x00000020 /* ARP Request Packet Wakeup Enable */
+#define E1000_WUFC_IPV4 0x00000040 /* Directed IPv4 Packet Wakeup Enable */
+#define E1000_WUFC_IPV6 0x00000080 /* Directed IPv6 Packet Wakeup Enable */
+#define E1000_WUFC_IGNORE_TCO 0x00008000 /* Ignore WakeOn TCO packets */
+#define E1000_WUFC_FLX0 0x00010000 /* Flexible Filter 0 Enable */
+#define E1000_WUFC_FLX1 0x00020000 /* Flexible Filter 1 Enable */
+#define E1000_WUFC_FLX2 0x00040000 /* Flexible Filter 2 Enable */
+#define E1000_WUFC_FLX3 0x00080000 /* Flexible Filter 3 Enable */
+#define E1000_WUFC_ALL_FILTERS 0x000F00FF /* Mask for all wakeup filters */
+#define E1000_WUFC_FLX_OFFSET 16 /* Offset to the Flexible Filters bits */
+#define E1000_WUFC_FLX_FILTERS 0x000F0000 /* Mask for the 4 flexible filters */
+
+/* Wake Up Status */
+#define E1000_WUS_LNKC E1000_WUFC_LNKC
+#define E1000_WUS_MAG E1000_WUFC_MAG
+#define E1000_WUS_EX E1000_WUFC_EX
+#define E1000_WUS_MC E1000_WUFC_MC
+#define E1000_WUS_BC E1000_WUFC_BC
+#define E1000_WUS_ARP E1000_WUFC_ARP
+#define E1000_WUS_IPV4 E1000_WUFC_IPV4
+#define E1000_WUS_IPV6 E1000_WUFC_IPV6
+#define E1000_WUS_FLX0 E1000_WUFC_FLX0
+#define E1000_WUS_FLX1 E1000_WUFC_FLX1
+#define E1000_WUS_FLX2 E1000_WUFC_FLX2
+#define E1000_WUS_FLX3 E1000_WUFC_FLX3
+#define E1000_WUS_FLX_FILTERS E1000_WUFC_FLX_FILTERS
+
+/* Wake Up Packet Length */
+#define E1000_WUPL_LENGTH_MASK 0x0FFF /* Only the lower 12 bits are valid */
+
+/* Four Flexible Filters are supported */
+#define E1000_FLEXIBLE_FILTER_COUNT_MAX 4
+
+/* Each Flexible Filter is at most 128 (0x80) bytes in length */
+#define E1000_FLEXIBLE_FILTER_SIZE_MAX 128
+
+#define E1000_FFLT_SIZE E1000_FLEXIBLE_FILTER_COUNT_MAX
+#define E1000_FFMT_SIZE E1000_FLEXIBLE_FILTER_SIZE_MAX
+#define E1000_FFVT_SIZE E1000_FLEXIBLE_FILTER_SIZE_MAX
+
+/* Extended Device Control */
+#define E1000_CTRL_EXT_GPI0_EN 0x00000001 /* Maps SDP4 to GPI0 */
+#define E1000_CTRL_EXT_GPI1_EN 0x00000002 /* Maps SDP5 to GPI1 */
+#define E1000_CTRL_EXT_PHYINT_EN E1000_CTRL_EXT_GPI1_EN
+#define E1000_CTRL_EXT_GPI2_EN 0x00000004 /* Maps SDP6 to GPI2 */
+#define E1000_CTRL_EXT_GPI3_EN 0x00000008 /* Maps SDP7 to GPI3 */
+#define E1000_CTRL_EXT_SDP4_DATA 0x00000010 /* Value of SW Defineable Pin 4 */
+#define E1000_CTRL_EXT_SDP5_DATA 0x00000020 /* Value of SW Defineable Pin 5 */
+#define E1000_CTRL_EXT_PHY_INT E1000_CTRL_EXT_SDP5_DATA
+#define E1000_CTRL_EXT_SDP6_DATA 0x00000040 /* Value of SW Defineable Pin 6 */
+#define E1000_CTRL_EXT_SDP7_DATA 0x00000080 /* Value of SW Defineable Pin 7 */
+#define E1000_CTRL_EXT_SDP4_DIR 0x00000100 /* Direction of SDP4 0=in 1=out */
+#define E1000_CTRL_EXT_SDP5_DIR 0x00000200 /* Direction of SDP5 0=in 1=out */
+#define E1000_CTRL_EXT_SDP6_DIR 0x00000400 /* Direction of SDP6 0=in 1=out */
+#define E1000_CTRL_EXT_SDP7_DIR 0x00000800 /* Direction of SDP7 0=in 1=out */
+#define E1000_CTRL_EXT_ASDCHK 0x00001000 /* Initiate an ASD sequence */
+#define E1000_CTRL_EXT_EE_RST 0x00002000 /* Reinitialize from EEPROM */
+#define E1000_CTRL_EXT_IPS 0x00004000 /* Invert Power State */
+#define E1000_CTRL_EXT_SPD_BYPS 0x00008000 /* Speed Select Bypass */
+#define E1000_CTRL_EXT_RO_DIS 0x00020000 /* Relaxed Ordering disable */
+#define E1000_CTRL_EXT_LINK_MODE_MASK 0x00C00000
+#define E1000_CTRL_EXT_LINK_MODE_GMII 0x00000000
+#define E1000_CTRL_EXT_LINK_MODE_TBI 0x00C00000
+#define E1000_CTRL_EXT_LINK_MODE_KMRN 0x00000000
+#define E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES 0x00C00000
+#define E1000_CTRL_EXT_LINK_MODE_PCIX_SERDES 0x00800000
+#define E1000_CTRL_EXT_LINK_MODE_SGMII 0x00800000
+#define E1000_CTRL_EXT_EIAME 0x01000000
+#define E1000_CTRL_EXT_IRCA 0x00000001
+#define E1000_CTRL_EXT_WR_WMARK_MASK 0x03000000
+#define E1000_CTRL_EXT_WR_WMARK_256 0x00000000
+#define E1000_CTRL_EXT_WR_WMARK_320 0x01000000
+#define E1000_CTRL_EXT_WR_WMARK_384 0x02000000
+#define E1000_CTRL_EXT_WR_WMARK_448 0x03000000
+#define E1000_CTRL_EXT_CANC 0x04000000 /* Interrupt delay cancellation */
+#define E1000_CTRL_EXT_DRV_LOAD 0x10000000 /* Driver loaded bit for FW */
+#define E1000_CTRL_EXT_IAME 0x08000000 /* Interrupt acknowledge Auto-mask */
+#define E1000_CTRL_EXT_INT_TIMER_CLR 0x20000000 /* Clear Interrupt timers after IMS clear */
+#define E1000_CRTL_EXT_PB_PAREN 0x01000000 /* packet buffer parity error detection enabled */
+#define E1000_CTRL_EXT_DF_PAREN 0x02000000 /* descriptor FIFO parity error detection enable */
+#define E1000_CTRL_EXT_GHOST_PAREN 0x40000000
+#define E1000_CTRL_EXT_PBA_CLR 0x80000000 /* PBA Clear */
+#define E1000_I2CCMD_REG_ADDR_SHIFT 16
+#define E1000_I2CCMD_REG_ADDR 0x00FF0000
+#define E1000_I2CCMD_PHY_ADDR_SHIFT 24
+#define E1000_I2CCMD_PHY_ADDR 0x07000000
+#define E1000_I2CCMD_OPCODE_READ 0x08000000
+#define E1000_I2CCMD_OPCODE_WRITE 0x00000000
+#define E1000_I2CCMD_RESET 0x10000000
+#define E1000_I2CCMD_READY 0x20000000
+#define E1000_I2CCMD_INTERRUPT_ENA 0x40000000
+#define E1000_I2CCMD_ERROR 0x80000000
+#define E1000_MAX_SGMII_PHY_REG_ADDR 255
+#define E1000_I2CCMD_PHY_TIMEOUT 200
+
+/* Receive Decriptor bit definitions */
+#define E1000_RXD_STAT_DD 0x01 /* Descriptor Done */
+#define E1000_RXD_STAT_EOP 0x02 /* End of Packet */
+#define E1000_RXD_STAT_IXSM 0x04 /* Ignore checksum */
+#define E1000_RXD_STAT_VP 0x08 /* IEEE VLAN Packet */
+#define E1000_RXD_STAT_UDPCS 0x10 /* UDP xsum caculated */
+#define E1000_RXD_STAT_TCPCS 0x20 /* TCP xsum calculated */
+#define E1000_RXD_STAT_IPCS 0x40 /* IP xsum calculated */
+#define E1000_RXD_STAT_PIF 0x80 /* passed in-exact filter */
+#define E1000_RXD_STAT_CRCV 0x100 /* Speculative CRC Valid */
+#define E1000_RXD_STAT_IPIDV 0x200 /* IP identification valid */
+#define E1000_RXD_STAT_UDPV 0x400 /* Valid UDP checksum */
+#define E1000_RXD_STAT_DYNINT 0x800 /* Pkt caused INT via DYNINT */
+#define E1000_RXD_STAT_ACK 0x8000 /* ACK Packet indication */
+#define E1000_RXD_ERR_CE 0x01 /* CRC Error */
+#define E1000_RXD_ERR_SE 0x02 /* Symbol Error */
+#define E1000_RXD_ERR_SEQ 0x04 /* Sequence Error */
+#define E1000_RXD_ERR_CXE 0x10 /* Carrier Extension Error */
+#define E1000_RXD_ERR_TCPE 0x20 /* TCP/UDP Checksum Error */
+#define E1000_RXD_ERR_IPE 0x40 /* IP Checksum Error */
+#define E1000_RXD_ERR_RXE 0x80 /* Rx Data Error */
+#define E1000_RXD_SPC_VLAN_MASK 0x0FFF /* VLAN ID is in lower 12 bits */
+#define E1000_RXD_SPC_PRI_MASK 0xE000 /* Priority is in upper 3 bits */
+#define E1000_RXD_SPC_PRI_SHIFT 13
+#define E1000_RXD_SPC_CFI_MASK 0x1000 /* CFI is bit 12 */
+#define E1000_RXD_SPC_CFI_SHIFT 12
+
+#define E1000_RXDEXT_STATERR_CE 0x01000000
+#define E1000_RXDEXT_STATERR_SE 0x02000000
+#define E1000_RXDEXT_STATERR_SEQ 0x04000000
+#define E1000_RXDEXT_STATERR_CXE 0x10000000
+#define E1000_RXDEXT_STATERR_TCPE 0x20000000
+#define E1000_RXDEXT_STATERR_IPE 0x40000000
+#define E1000_RXDEXT_STATERR_RXE 0x80000000
+
+/* mask to determine if packets should be dropped due to frame errors */
+#define E1000_RXD_ERR_FRAME_ERR_MASK ( \
+ E1000_RXD_ERR_CE | \
+ E1000_RXD_ERR_SE | \
+ E1000_RXD_ERR_SEQ | \
+ E1000_RXD_ERR_CXE | \
+ E1000_RXD_ERR_RXE)
+
+/* Same mask, but for extended and packet split descriptors */
+#define E1000_RXDEXT_ERR_FRAME_ERR_MASK ( \
+ E1000_RXDEXT_STATERR_CE | \
+ E1000_RXDEXT_STATERR_SE | \
+ E1000_RXDEXT_STATERR_SEQ | \
+ E1000_RXDEXT_STATERR_CXE | \
+ E1000_RXDEXT_STATERR_RXE)
+
+#define E1000_MRQC_ENABLE_MASK 0x00000007
+#define E1000_MRQC_ENABLE_RSS_2Q 0x00000001
+#define E1000_MRQC_ENABLE_RSS_INT 0x00000004
+#define E1000_MRQC_RSS_FIELD_MASK 0xFFFF0000
+#define E1000_MRQC_RSS_FIELD_IPV4_TCP 0x00010000
+#define E1000_MRQC_RSS_FIELD_IPV4 0x00020000
+#define E1000_MRQC_RSS_FIELD_IPV6_TCP_EX 0x00040000
+#define E1000_MRQC_RSS_FIELD_IPV6_EX 0x00080000
+#define E1000_MRQC_RSS_FIELD_IPV6 0x00100000
+#define E1000_MRQC_RSS_FIELD_IPV6_TCP 0x00200000
+
+#define E1000_RXDPS_HDRSTAT_HDRSP 0x00008000
+#define E1000_RXDPS_HDRSTAT_HDRLEN_MASK 0x000003FF
+
+/* Management Control */
+#define E1000_MANC_SMBUS_EN 0x00000001 /* SMBus Enabled - RO */
+#define E1000_MANC_ASF_EN 0x00000002 /* ASF Enabled - RO */
+#define E1000_MANC_R_ON_FORCE 0x00000004 /* Reset on Force TCO - RO */
+#define E1000_MANC_RMCP_EN 0x00000100 /* Enable RCMP 026Fh Filtering */
+#define E1000_MANC_0298_EN 0x00000200 /* Enable RCMP 0298h Filtering */
+#define E1000_MANC_IPV4_EN 0x00000400 /* Enable IPv4 */
+#define E1000_MANC_IPV6_EN 0x00000800 /* Enable IPv6 */
+#define E1000_MANC_SNAP_EN 0x00001000 /* Accept LLC/SNAP */
+#define E1000_MANC_ARP_EN 0x00002000 /* Enable ARP Request Filtering */
+/* Enable Neighbor Discovery Filtering */
+#define E1000_MANC_NEIGHBOR_EN 0x00004000
+#define E1000_MANC_ARP_RES_EN 0x00008000 /* Enable ARP response Filtering */
+#define E1000_MANC_TCO_RESET 0x00010000 /* TCO Reset Occurred */
+#define E1000_MANC_RCV_TCO_EN 0x00020000 /* Receive TCO Packets Enabled */
+#define E1000_MANC_REPORT_STATUS 0x00040000 /* Status Reporting Enabled */
+#define E1000_MANC_RCV_ALL 0x00080000 /* Receive All Enabled */
+#define E1000_MANC_BLK_PHY_RST_ON_IDE 0x00040000 /* Block phy resets */
+/* Enable MAC address filtering */
+#define E1000_MANC_EN_MAC_ADDR_FILTER 0x00100000
+/* Enable MNG packets to host memory */
+#define E1000_MANC_EN_MNG2HOST 0x00200000
+/* Enable IP address filtering */
+#define E1000_MANC_EN_IP_ADDR_FILTER 0x00400000
+#define E1000_MANC_EN_XSUM_FILTER 0x00800000 /* Enable checksum filtering */
+#define E1000_MANC_BR_EN 0x01000000 /* Enable broadcast filtering */
+#define E1000_MANC_SMB_REQ 0x01000000 /* SMBus Request */
+#define E1000_MANC_SMB_GNT 0x02000000 /* SMBus Grant */
+#define E1000_MANC_SMB_CLK_IN 0x04000000 /* SMBus Clock In */
+#define E1000_MANC_SMB_DATA_IN 0x08000000 /* SMBus Data In */
+#define E1000_MANC_SMB_DATA_OUT 0x10000000 /* SMBus Data Out */
+#define E1000_MANC_SMB_CLK_OUT 0x20000000 /* SMBus Clock Out */
+
+#define E1000_MANC_SMB_DATA_OUT_SHIFT 28 /* SMBus Data Out Shift */
+#define E1000_MANC_SMB_CLK_OUT_SHIFT 29 /* SMBus Clock Out Shift */
+
+/* Receive Control */
+#define E1000_RCTL_RST 0x00000001 /* Software reset */
+#define E1000_RCTL_EN 0x00000002 /* enable */
+#define E1000_RCTL_SBP 0x00000004 /* store bad packet */
+#define E1000_RCTL_UPE 0x00000008 /* unicast promiscuous enable */
+#define E1000_RCTL_MPE 0x00000010 /* multicast promiscuous enab */
+#define E1000_RCTL_LPE 0x00000020 /* long packet enable */
+#define E1000_RCTL_LBM_NO 0x00000000 /* no loopback mode */
+#define E1000_RCTL_LBM_MAC 0x00000040 /* MAC loopback mode */
+#define E1000_RCTL_LBM_SLP 0x00000080 /* serial link loopback mode */
+#define E1000_RCTL_LBM_TCVR 0x000000C0 /* tcvr loopback mode */
+#define E1000_RCTL_DTYP_MASK 0x00000C00 /* Descriptor type mask */
+#define E1000_RCTL_DTYP_PS 0x00000400 /* Packet Split descriptor */
+#define E1000_RCTL_RDMTS_HALF 0x00000000 /* rx desc min threshold size */
+#define E1000_RCTL_RDMTS_QUAT 0x00000100 /* rx desc min threshold size */
+#define E1000_RCTL_RDMTS_EIGTH 0x00000200 /* rx desc min threshold size */
+#define E1000_RCTL_MO_SHIFT 12 /* multicast offset shift */
+#define E1000_RCTL_MO_0 0x00000000 /* multicast offset 11:0 */
+#define E1000_RCTL_MO_1 0x00001000 /* multicast offset 12:1 */
+#define E1000_RCTL_MO_2 0x00002000 /* multicast offset 13:2 */
+#define E1000_RCTL_MO_3 0x00003000 /* multicast offset 15:4 */
+#define E1000_RCTL_MDR 0x00004000 /* multicast desc ring 0 */
+#define E1000_RCTL_BAM 0x00008000 /* broadcast enable */
+/* these buffer sizes are valid if E1000_RCTL_BSEX is 0 */
+#define E1000_RCTL_SZ_2048 0x00000000 /* rx buffer size 2048 */
+#define E1000_RCTL_SZ_1024 0x00010000 /* rx buffer size 1024 */
+#define E1000_RCTL_SZ_512 0x00020000 /* rx buffer size 512 */
+#define E1000_RCTL_SZ_256 0x00030000 /* rx buffer size 256 */
+/* these buffer sizes are valid if E1000_RCTL_BSEX is 1 */
+#define E1000_RCTL_SZ_16384 0x00010000 /* rx buffer size 16384 */
+#define E1000_RCTL_SZ_8192 0x00020000 /* rx buffer size 8192 */
+#define E1000_RCTL_SZ_4096 0x00030000 /* rx buffer size 4096 */
+#define E1000_RCTL_VFE 0x00040000 /* vlan filter enable */
+#define E1000_RCTL_CFIEN 0x00080000 /* canonical form enable */
+#define E1000_RCTL_CFI 0x00100000 /* canonical form indicator */
+#define E1000_RCTL_DPF 0x00400000 /* discard pause frames */
+#define E1000_RCTL_PMCF 0x00800000 /* pass MAC control frames */
+#define E1000_RCTL_BSEX 0x02000000 /* Buffer size extension */
+#define E1000_RCTL_SECRC 0x04000000 /* Strip Ethernet CRC */
+#define E1000_RCTL_FLXBUF_MASK 0x78000000 /* Flexible buffer size */
+#define E1000_RCTL_FLXBUF_SHIFT 27 /* Flexible buffer shift */
+
+/*
+ * Use byte values for the following shift parameters
+ * Usage:
+ * psrctl |= (((ROUNDUP(value0, 128) >> E1000_PSRCTL_BSIZE0_SHIFT) &
+ * E1000_PSRCTL_BSIZE0_MASK) |
+ * ((ROUNDUP(value1, 1024) >> E1000_PSRCTL_BSIZE1_SHIFT) &
+ * E1000_PSRCTL_BSIZE1_MASK) |
+ * ((ROUNDUP(value2, 1024) << E1000_PSRCTL_BSIZE2_SHIFT) &
+ * E1000_PSRCTL_BSIZE2_MASK) |
+ * ((ROUNDUP(value3, 1024) << E1000_PSRCTL_BSIZE3_SHIFT) |;
+ * E1000_PSRCTL_BSIZE3_MASK))
+ * where value0 = [128..16256], default=256
+ * value1 = [1024..64512], default=4096
+ * value2 = [0..64512], default=4096
+ * value3 = [0..64512], default=0
+ */
+
+#define E1000_PSRCTL_BSIZE0_MASK 0x0000007F
+#define E1000_PSRCTL_BSIZE1_MASK 0x00003F00
+#define E1000_PSRCTL_BSIZE2_MASK 0x003F0000
+#define E1000_PSRCTL_BSIZE3_MASK 0x3F000000
+
+#define E1000_PSRCTL_BSIZE0_SHIFT 7 /* Shift _right_ 7 */
+#define E1000_PSRCTL_BSIZE1_SHIFT 2 /* Shift _right_ 2 */
+#define E1000_PSRCTL_BSIZE2_SHIFT 6 /* Shift _left_ 6 */
+#define E1000_PSRCTL_BSIZE3_SHIFT 14 /* Shift _left_ 14 */
+
+/* SWFW_SYNC Definitions */
+#define E1000_SWFW_EEP_SM 0x1
+#define E1000_SWFW_PHY0_SM 0x2
+#define E1000_SWFW_PHY1_SM 0x4
+
+/* FACTPS Definitions */
+#define E1000_FACTPS_LFS 0x40000000 /* LAN Function Select */
+/* Device Control */
+#define E1000_CTRL_FD 0x00000001 /* Full duplex.0=half; 1=full */
+#define E1000_CTRL_BEM 0x00000002 /* Endian Mode.0=little,1=big */
+#define E1000_CTRL_PRIOR 0x00000004 /* Priority on PCI. 0=rx,1=fair */
+#define E1000_CTRL_GIO_MASTER_DISABLE 0x00000004 /*Blocks new Master requests */
+#define E1000_CTRL_LRST 0x00000008 /* Link reset. 0=normal,1=reset */
+#define E1000_CTRL_TME 0x00000010 /* Test mode. 0=normal,1=test */
+#define E1000_CTRL_SLE 0x00000020 /* Serial Link on 0=dis,1=en */
+#define E1000_CTRL_ASDE 0x00000020 /* Auto-speed detect enable */
+#define E1000_CTRL_SLU 0x00000040 /* Set link up (Force Link) */
+#define E1000_CTRL_ILOS 0x00000080 /* Invert Loss-Of Signal */
+#define E1000_CTRL_SPD_SEL 0x00000300 /* Speed Select Mask */
+#define E1000_CTRL_SPD_10 0x00000000 /* Force 10Mb */
+#define E1000_CTRL_SPD_100 0x00000100 /* Force 100Mb */
+#define E1000_CTRL_SPD_1000 0x00000200 /* Force 1Gb */
+#define E1000_CTRL_BEM32 0x00000400 /* Big Endian 32 mode */
+#define E1000_CTRL_FRCSPD 0x00000800 /* Force Speed */
+#define E1000_CTRL_FRCDPX 0x00001000 /* Force Duplex */
+#define E1000_CTRL_D_UD_EN 0x00002000 /* Dock/Undock enable */
+#define E1000_CTRL_D_UD_POLARITY 0x00004000 /* Defined polarity of Dock/Undock indication in SDP[0] */
+#define E1000_CTRL_FORCE_PHY_RESET 0x00008000 /* Reset both PHY ports, through PHYRST_N pin */
+#define E1000_CTRL_EXT_LINK_EN 0x00010000 /* enable link status from external LINK_0 and LINK_1 pins */
+#define E1000_CTRL_SWDPIN0 0x00040000 /* SWDPIN 0 value */
+#define E1000_CTRL_SWDPIN1 0x00080000 /* SWDPIN 1 value */
+#define E1000_CTRL_SWDPIN2 0x00100000 /* SWDPIN 2 value */
+#define E1000_CTRL_SWDPIN3 0x00200000 /* SWDPIN 3 value */
+#define E1000_CTRL_SWDPIO0 0x00400000 /* SWDPIN 0 Input or output */
+#define E1000_CTRL_SWDPIO1 0x00800000 /* SWDPIN 1 input or output */
+#define E1000_CTRL_SWDPIO2 0x01000000 /* SWDPIN 2 input or output */
+#define E1000_CTRL_SWDPIO3 0x02000000 /* SWDPIN 3 input or output */
+#define E1000_CTRL_RST 0x04000000 /* Global reset */
+#define E1000_CTRL_RFCE 0x08000000 /* Receive Flow Control enable */
+#define E1000_CTRL_TFCE 0x10000000 /* Transmit flow control enable */
+#define E1000_CTRL_RTE 0x20000000 /* Routing tag enable */
+#define E1000_CTRL_VME 0x40000000 /* IEEE VLAN mode enable */
+#define E1000_CTRL_PHY_RST 0x80000000 /* PHY Reset */
+#define E1000_CTRL_SW2FW_INT 0x02000000 /* Initiate an interrupt to manageability engine */
+#define E1000_CTRL_I2C_ENA 0x02000000 /* I2C enable */
+
+/* Bit definitions for the Management Data IO (MDIO) and Management Data
+ * Clock (MDC) pins in the Device Control Register.
+ */
+#define E1000_CTRL_PHY_RESET_DIR E1000_CTRL_SWDPIO0
+#define E1000_CTRL_PHY_RESET E1000_CTRL_SWDPIN0
+#define E1000_CTRL_MDIO_DIR E1000_CTRL_SWDPIO2
+#define E1000_CTRL_MDIO E1000_CTRL_SWDPIN2
+#define E1000_CTRL_MDC_DIR E1000_CTRL_SWDPIO3
+#define E1000_CTRL_MDC E1000_CTRL_SWDPIN3
+#define E1000_CTRL_PHY_RESET_DIR4 E1000_CTRL_EXT_SDP4_DIR
+#define E1000_CTRL_PHY_RESET4 E1000_CTRL_EXT_SDP4_DATA
+
+#define E1000_CONNSW_ENRGSRC 0x4
+#define E1000_PCS_LCTL_FLV_LINK_UP 1
+#define E1000_PCS_LCTL_FSV_10 0
+#define E1000_PCS_LCTL_FSV_100 2
+#define E1000_PCS_LCTL_FSV_1000 4
+#define E1000_PCS_LCTL_FDV_FULL 8
+#define E1000_PCS_LCTL_FSD 0x10
+#define E1000_PCS_LCTL_FORCE_LINK 0x20
+#define E1000_PCS_LCTL_LOW_LINK_LATCH 0x40
+#define E1000_PCS_LCTL_AN_ENABLE 0x10000
+#define E1000_PCS_LCTL_AN_RESTART 0x20000
+#define E1000_PCS_LCTL_AN_TIMEOUT 0x40000
+#define E1000_PCS_LCTL_AN_SGMII_BYPASS 0x80000
+#define E1000_PCS_LCTL_AN_SGMII_TRIGGER 0x100000
+#define E1000_PCS_LCTL_FAST_LINK_TIMER 0x1000000
+#define E1000_PCS_LCTL_LINK_OK_FIX 0x2000000
+#define E1000_PCS_LCTL_CRS_ON_NI 0x4000000
+#define E1000_ENABLE_SERDES_LOOPBACK 0x0410
+
+#define E1000_PCS_LSTS_LINK_OK 1
+#define E1000_PCS_LSTS_SPEED_10 0
+#define E1000_PCS_LSTS_SPEED_100 2
+#define E1000_PCS_LSTS_SPEED_1000 4
+#define E1000_PCS_LSTS_DUPLEX_FULL 8
+#define E1000_PCS_LSTS_SYNK_OK 0x10
+#define E1000_PCS_LSTS_AN_COMPLETE 0x10000
+#define E1000_PCS_LSTS_AN_PAGE_RX 0x20000
+#define E1000_PCS_LSTS_AN_TIMED_OUT 0x40000
+#define E1000_PCS_LSTS_AN_REMOTE_FAULT 0x80000
+#define E1000_PCS_LSTS_AN_ERROR_RWS 0x100000
+
+/* Device Status */
+#define E1000_STATUS_FD 0x00000001 /* Full duplex.0=half,1=full */
+#define E1000_STATUS_LU 0x00000002 /* Link up.0=no,1=link */
+#define E1000_STATUS_FUNC_MASK 0x0000000C /* PCI Function Mask */
+#define E1000_STATUS_FUNC_SHIFT 2
+#define E1000_STATUS_FUNC_0 0x00000000 /* Function 0 */
+#define E1000_STATUS_FUNC_1 0x00000004 /* Function 1 */
+#define E1000_STATUS_TXOFF 0x00000010 /* transmission paused */
+#define E1000_STATUS_TBIMODE 0x00000020 /* TBI mode */
+#define E1000_STATUS_SPEED_MASK 0x000000C0
+#define E1000_STATUS_SPEED_10 0x00000000 /* Speed 10Mb/s */
+#define E1000_STATUS_SPEED_100 0x00000040 /* Speed 100Mb/s */
+#define E1000_STATUS_SPEED_1000 0x00000080 /* Speed 1000Mb/s */
+#define E1000_STATUS_LAN_INIT_DONE 0x00000200 /* Lan Init Completion by NVM */
+#define E1000_STATUS_ASDV 0x00000300 /* Auto speed detect value */
+#define E1000_STATUS_DOCK_CI 0x00000800 /* Change in Dock/Undock state. Clear on write '0'. */
+#define E1000_STATUS_GIO_MASTER_ENABLE 0x00080000 /* Status of Master requests. */
+#define E1000_STATUS_MTXCKOK 0x00000400 /* MTX clock running OK */
+#define E1000_STATUS_PCI66 0x00000800 /* In 66Mhz slot */
+#define E1000_STATUS_BUS64 0x00001000 /* In 64 bit slot */
+#define E1000_STATUS_PCIX_MODE 0x00002000 /* PCI-X mode */
+#define E1000_STATUS_PCIX_SPEED 0x0000C000 /* PCI-X bus speed */
+#define E1000_STATUS_BMC_SKU_0 0x00100000 /* BMC USB redirect disabled */
+#define E1000_STATUS_BMC_SKU_1 0x00200000 /* BMC SRAM disabled */
+#define E1000_STATUS_BMC_SKU_2 0x00400000 /* BMC SDRAM disabled */
+#define E1000_STATUS_BMC_CRYPTO 0x00800000 /* BMC crypto disabled */
+#define E1000_STATUS_BMC_LITE 0x01000000 /* BMC external code execution disabled */
+#define E1000_STATUS_RGMII_ENABLE 0x02000000 /* RGMII disabled */
+#define E1000_STATUS_FUSE_8 0x04000000
+#define E1000_STATUS_FUSE_9 0x08000000
+#define E1000_STATUS_SERDES0_DIS 0x10000000 /* SERDES disabled on port 0 */
+#define E1000_STATUS_SERDES1_DIS 0x20000000 /* SERDES disabled on port 1 */
+
+/* Constants used to intrepret the masked PCI-X bus speed. */
+#define E1000_STATUS_PCIX_SPEED_66 0x00000000 /* PCI-X bus speed 50-66 MHz */
+#define E1000_STATUS_PCIX_SPEED_100 0x00004000 /* PCI-X bus speed 66-100 MHz */
+#define E1000_STATUS_PCIX_SPEED_133 0x00008000 /* PCI-X bus speed 100-133 MHz */
+
+#define SPEED_10 10
+#define SPEED_100 100
+#define SPEED_1000 1000
+#define HALF_DUPLEX 1
+#define FULL_DUPLEX 2
+
+#define PHY_FORCE_TIME 20
+
+#define ADVERTISE_10_HALF 0x0001
+#define ADVERTISE_10_FULL 0x0002
+#define ADVERTISE_100_HALF 0x0004
+#define ADVERTISE_100_FULL 0x0008
+#define ADVERTISE_1000_HALF 0x0010 /* Not used, just FYI */
+#define ADVERTISE_1000_FULL 0x0020
+
+/* 1000/H is not supported, nor spec-compliant. */
+#define E1000_ALL_SPEED_DUPLEX ( ADVERTISE_10_HALF | ADVERTISE_10_FULL | \
+ ADVERTISE_100_HALF | ADVERTISE_100_FULL | \
+ ADVERTISE_1000_FULL)
+#define E1000_ALL_NOT_GIG ( ADVERTISE_10_HALF | ADVERTISE_10_FULL | \
+ ADVERTISE_100_HALF | ADVERTISE_100_FULL)
+#define E1000_ALL_100_SPEED (ADVERTISE_100_HALF | ADVERTISE_100_FULL)
+#define E1000_ALL_10_SPEED (ADVERTISE_10_HALF | ADVERTISE_10_FULL)
+#define E1000_ALL_FULL_DUPLEX (ADVERTISE_10_FULL | ADVERTISE_100_FULL | \
+ ADVERTISE_1000_FULL)
+#define E1000_ALL_HALF_DUPLEX (ADVERTISE_10_HALF | ADVERTISE_100_HALF)
+
+#define AUTONEG_ADVERTISE_SPEED_DEFAULT E1000_ALL_SPEED_DUPLEX
+
+/* LED Control */
+#define E1000_LEDCTL_LED0_MODE_MASK 0x0000000F
+#define E1000_LEDCTL_LED0_MODE_SHIFT 0
+#define E1000_LEDCTL_LED0_BLINK_RATE 0x00000020
+#define E1000_LEDCTL_LED0_IVRT 0x00000040
+#define E1000_LEDCTL_LED0_BLINK 0x00000080
+#define E1000_LEDCTL_LED1_MODE_MASK 0x00000F00
+#define E1000_LEDCTL_LED1_MODE_SHIFT 8
+#define E1000_LEDCTL_LED1_BLINK_RATE 0x00002000
+#define E1000_LEDCTL_LED1_IVRT 0x00004000
+#define E1000_LEDCTL_LED1_BLINK 0x00008000
+#define E1000_LEDCTL_LED2_MODE_MASK 0x000F0000
+#define E1000_LEDCTL_LED2_MODE_SHIFT 16
+#define E1000_LEDCTL_LED2_BLINK_RATE 0x00200000
+#define E1000_LEDCTL_LED2_IVRT 0x00400000
+#define E1000_LEDCTL_LED2_BLINK 0x00800000
+#define E1000_LEDCTL_LED3_MODE_MASK 0x0F000000
+#define E1000_LEDCTL_LED3_MODE_SHIFT 24
+#define E1000_LEDCTL_LED3_BLINK_RATE 0x20000000
+#define E1000_LEDCTL_LED3_IVRT 0x40000000
+#define E1000_LEDCTL_LED3_BLINK 0x80000000
+
+#define E1000_LEDCTL_MODE_LINK_10_1000 0x0
+#define E1000_LEDCTL_MODE_LINK_100_1000 0x1
+#define E1000_LEDCTL_MODE_LINK_UP 0x2
+#define E1000_LEDCTL_MODE_ACTIVITY 0x3
+#define E1000_LEDCTL_MODE_LINK_ACTIVITY 0x4
+#define E1000_LEDCTL_MODE_LINK_10 0x5
+#define E1000_LEDCTL_MODE_LINK_100 0x6
+#define E1000_LEDCTL_MODE_LINK_1000 0x7
+#define E1000_LEDCTL_MODE_PCIX_MODE 0x8
+#define E1000_LEDCTL_MODE_FULL_DUPLEX 0x9
+#define E1000_LEDCTL_MODE_COLLISION 0xA
+#define E1000_LEDCTL_MODE_BUS_SPEED 0xB
+#define E1000_LEDCTL_MODE_BUS_SIZE 0xC
+#define E1000_LEDCTL_MODE_PAUSED 0xD
+#define E1000_LEDCTL_MODE_LED_ON 0xE
+#define E1000_LEDCTL_MODE_LED_OFF 0xF
+
+/* Transmit Descriptor bit definitions */
+#define E1000_TXD_DTYP_D 0x00100000 /* Data Descriptor */
+#define E1000_TXD_DTYP_C 0x00000000 /* Context Descriptor */
+#define E1000_TXD_POPTS_SHIFT 8 /* POPTS shift */
+#define E1000_TXD_POPTS_IXSM 0x01 /* Insert IP checksum */
+#define E1000_TXD_POPTS_TXSM 0x02 /* Insert TCP/UDP checksum */
+#define E1000_TXD_CMD_EOP 0x01000000 /* End of Packet */
+#define E1000_TXD_CMD_IFCS 0x02000000 /* Insert FCS (Ethernet CRC) */
+#define E1000_TXD_CMD_IC 0x04000000 /* Insert Checksum */
+#define E1000_TXD_CMD_RS 0x08000000 /* Report Status */
+#define E1000_TXD_CMD_RPS 0x10000000 /* Report Packet Sent */
+#define E1000_TXD_CMD_DEXT 0x20000000 /* Descriptor extension (0 = legacy) */
+#define E1000_TXD_CMD_VLE 0x40000000 /* Add VLAN tag */
+#define E1000_TXD_CMD_IDE 0x80000000 /* Enable Tidv register */
+#define E1000_TXD_STAT_DD 0x00000001 /* Descriptor Done */
+#define E1000_TXD_STAT_EC 0x00000002 /* Excess Collisions */
+#define E1000_TXD_STAT_LC 0x00000004 /* Late Collisions */
+#define E1000_TXD_STAT_TU 0x00000008 /* Transmit underrun */
+#define E1000_TXD_CMD_TCP 0x01000000 /* TCP packet */
+#define E1000_TXD_CMD_IP 0x02000000 /* IP packet */
+#define E1000_TXD_CMD_TSE 0x04000000 /* TCP Seg enable */
+#define E1000_TXD_STAT_TC 0x00000004 /* Tx Underrun */
+/* Extended desc bits for Linksec and timesync */
+
+/* Transmit Control */
+#define E1000_TCTL_RST 0x00000001 /* software reset */
+#define E1000_TCTL_EN 0x00000002 /* enable tx */
+#define E1000_TCTL_BCE 0x00000004 /* busy check enable */
+#define E1000_TCTL_PSP 0x00000008 /* pad short packets */
+#define E1000_TCTL_CT 0x00000ff0 /* collision threshold */
+#define E1000_TCTL_COLD 0x003ff000 /* collision distance */
+#define E1000_TCTL_SWXOFF 0x00400000 /* SW Xoff transmission */
+#define E1000_TCTL_PBE 0x00800000 /* Packet Burst Enable */
+#define E1000_TCTL_RTLC 0x01000000 /* Re-transmit on late collision */
+#define E1000_TCTL_NRTU 0x02000000 /* No Re-transmit on underrun */
+#define E1000_TCTL_MULR 0x10000000 /* Multiple request support */
+
+/* Transmit Arbitration Count */
+#define E1000_TARC0_ENABLE 0x00000400 /* Enable Tx Queue 0 */
+
+/* SerDes Control */
+#define E1000_SCTL_DISABLE_SERDES_LOOPBACK 0x0400
+
+/* Receive Checksum Control */
+#define E1000_RXCSUM_PCSS_MASK 0x000000FF /* Packet Checksum Start */
+#define E1000_RXCSUM_IPOFL 0x00000100 /* IPv4 checksum offload */
+#define E1000_RXCSUM_TUOFL 0x00000200 /* TCP / UDP checksum offload */
+#define E1000_RXCSUM_IPV6OFL 0x00000400 /* IPv6 checksum offload */
+#define E1000_RXCSUM_CRCOFL 0x00000800 /* CRC32 offload enable */
+#define E1000_RXCSUM_IPPCSE 0x00001000 /* IP payload checksum enable */
+#define E1000_RXCSUM_PCSD 0x00002000 /* packet checksum disabled */
+
+/* Header split receive */
+#define E1000_RFCTL_ISCSI_DIS 0x00000001
+#define E1000_RFCTL_ISCSI_DWC_MASK 0x0000003E
+#define E1000_RFCTL_ISCSI_DWC_SHIFT 1
+#define E1000_RFCTL_NFSW_DIS 0x00000040
+#define E1000_RFCTL_NFSR_DIS 0x00000080
+#define E1000_RFCTL_NFS_VER_MASK 0x00000300
+#define E1000_RFCTL_NFS_VER_SHIFT 8
+#define E1000_RFCTL_IPV6_DIS 0x00000400
+#define E1000_RFCTL_IPV6_XSUM_DIS 0x00000800
+#define E1000_RFCTL_ACK_DIS 0x00001000
+#define E1000_RFCTL_ACKD_DIS 0x00002000
+#define E1000_RFCTL_IPFRSP_DIS 0x00004000
+#define E1000_RFCTL_EXTEN 0x00008000
+#define E1000_RFCTL_IPV6_EX_DIS 0x00010000
+#define E1000_RFCTL_NEW_IPV6_EXT_DIS 0x00020000
+
+/* Collision related configuration parameters */
+#define E1000_COLLISION_THRESHOLD 15
+#define E1000_CT_SHIFT 4
+#define E1000_COLLISION_DISTANCE 63
+#define E1000_COLD_SHIFT 12
+
+/* Default values for the transmit IPG register */
+#ifndef NO_82542_SUPPORT
+#define DEFAULT_82542_TIPG_IPGT 10
+#endif
+#define DEFAULT_82543_TIPG_IPGT_FIBER 9
+#define DEFAULT_82543_TIPG_IPGT_COPPER 8
+
+#define E1000_TIPG_IPGT_MASK 0x000003FF
+#define E1000_TIPG_IPGR1_MASK 0x000FFC00
+#define E1000_TIPG_IPGR2_MASK 0x3FF00000
+
+#ifndef NO_82542_SUPPORT
+#define DEFAULT_82542_TIPG_IPGR1 2
+#endif
+#define DEFAULT_82543_TIPG_IPGR1 8
+#define E1000_TIPG_IPGR1_SHIFT 10
+
+#ifndef NO_82542_SUPPORT
+#define DEFAULT_82542_TIPG_IPGR2 10
+#endif
+#define DEFAULT_82543_TIPG_IPGR2 6
+#define DEFAULT_80003ES2LAN_TIPG_IPGR2 7
+#define E1000_TIPG_IPGR2_SHIFT 20
+
+/* Ethertype field values */
+#define ETHERNET_IEEE_VLAN_TYPE 0x8100 /* 802.3ac packet */
+
+#define ETHERNET_FCS_SIZE 4
+#define MAX_JUMBO_FRAME_SIZE 0x3F00
+
+/* Extended Configuration Control and Size */
+#define E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP 0x00000020
+#define E1000_EXTCNF_CTRL_LCD_WRITE_ENABLE 0x00000001
+#define E1000_EXTCNF_CTRL_SWFLAG 0x00000020
+#define E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_MASK 0x00FF0000
+#define E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_SHIFT 16
+#define E1000_EXTCNF_CTRL_EXT_CNF_POINTER_MASK 0x0FFF0000
+#define E1000_EXTCNF_CTRL_EXT_CNF_POINTER_SHIFT 16
+
+#define E1000_PHY_CTRL_SPD_EN 0x00000001
+#define E1000_PHY_CTRL_D0A_LPLU 0x00000002
+#define E1000_PHY_CTRL_NOND0A_LPLU 0x00000004
+#define E1000_PHY_CTRL_NOND0A_GBE_DISABLE 0x00000008
+#define E1000_PHY_CTRL_GBE_DISABLE 0x00000040
+
+#define E1000_KABGTXD_BGSQLBIAS 0x00050000
+
+/* PBA constants */
+#define E1000_PBA_8K 0x0008 /* 8KB */
+#define E1000_PBA_12K 0x000C /* 12KB */
+#define E1000_PBA_16K 0x0010 /* 16KB */
+#define E1000_PBA_20K 0x0014
+#define E1000_PBA_22K 0x0016
+#define E1000_PBA_24K 0x0018
+#define E1000_PBA_30K 0x001E
+#define E1000_PBA_32K 0x0020
+#define E1000_PBA_34K 0x0022
+#define E1000_PBA_38K 0x0026
+#define E1000_PBA_40K 0x0028
+#define E1000_PBA_48K 0x0030 /* 48KB */
+#define E1000_PBA_64K 0x0040 /* 64KB */
+
+#define E1000_PBS_16K E1000_PBA_16K
+#define E1000_PBS_24K E1000_PBA_24K
+
+#define IFS_MAX 80
+#define IFS_MIN 40
+#define IFS_RATIO 4
+#define IFS_STEP 10
+#define MIN_NUM_XMITS 1000
+
+/* SW Semaphore Register */
+#define E1000_SWSM_SMBI 0x00000001 /* Driver Semaphore bit */
+#define E1000_SWSM_SWESMBI 0x00000002 /* FW Semaphore bit */
+#define E1000_SWSM_WMNG 0x00000004 /* Wake MNG Clock */
+#define E1000_SWSM_DRV_LOAD 0x00000008 /* Driver Loaded Bit */
+
+/* Interrupt Cause Read */
+#define E1000_ICR_TXDW 0x00000001 /* Transmit desc written back */
+#define E1000_ICR_TXQE 0x00000002 /* Transmit Queue empty */
+#define E1000_ICR_LSC 0x00000004 /* Link Status Change */
+#define E1000_ICR_RXSEQ 0x00000008 /* rx sequence error */
+#define E1000_ICR_RXDMT0 0x00000010 /* rx desc min. threshold (0) */
+#define E1000_ICR_RXO 0x00000040 /* rx overrun */
+#define E1000_ICR_RXT0 0x00000080 /* rx timer intr (ring 0) */
+#define E1000_ICR_MDAC 0x00000200 /* MDIO access complete */
+#define E1000_ICR_RXCFG 0x00000400 /* Rx /c/ ordered set */
+#define E1000_ICR_GPI_EN0 0x00000800 /* GP Int 0 */
+#define E1000_ICR_GPI_EN1 0x00001000 /* GP Int 1 */
+#define E1000_ICR_GPI_EN2 0x00002000 /* GP Int 2 */
+#define E1000_ICR_GPI_EN3 0x00004000 /* GP Int 3 */
+#define E1000_ICR_TXD_LOW 0x00008000
+#define E1000_ICR_SRPD 0x00010000
+#define E1000_ICR_ACK 0x00020000 /* Receive Ack frame */
+#define E1000_ICR_MNG 0x00040000 /* Manageability event */
+#define E1000_ICR_DOCK 0x00080000 /* Dock/Undock */
+#define E1000_ICR_INT_ASSERTED 0x80000000 /* If this bit asserted, the driver should claim the interrupt */
+#define E1000_ICR_RXD_FIFO_PAR0 0x00100000 /* queue 0 Rx descriptor FIFO parity error */
+#define E1000_ICR_TXD_FIFO_PAR0 0x00200000 /* queue 0 Tx descriptor FIFO parity error */
+#define E1000_ICR_HOST_ARB_PAR 0x00400000 /* host arb read buffer parity error */
+#define E1000_ICR_PB_PAR 0x00800000 /* packet buffer parity error */
+#define E1000_ICR_RXD_FIFO_PAR1 0x01000000 /* queue 1 Rx descriptor FIFO parity error */
+#define E1000_ICR_TXD_FIFO_PAR1 0x02000000 /* queue 1 Tx descriptor FIFO parity error */
+#define E1000_ICR_ALL_PARITY 0x03F00000 /* all parity error bits */
+#define E1000_ICR_DSW 0x00000020 /* FW changed the status of DISSW bit in the FWSM */
+#define E1000_ICR_PHYINT 0x00001000 /* LAN connected device generates an interrupt */
+#define E1000_ICR_EPRST 0x00100000 /* ME handware reset occurs */
+
+/* Extended Interrupt Cause Read */
+#define E1000_EICR_RX_QUEUE0 0x00000001 /* Rx Queue 0 Interrupt */
+#define E1000_EICR_RX_QUEUE1 0x00000002 /* Rx Queue 1 Interrupt */
+#define E1000_EICR_RX_QUEUE2 0x00000004 /* Rx Queue 2 Interrupt */
+#define E1000_EICR_RX_QUEUE3 0x00000008 /* Rx Queue 3 Interrupt */
+#define E1000_EICR_TX_QUEUE0 0x00000100 /* Tx Queue 0 Interrupt */
+#define E1000_EICR_TX_QUEUE1 0x00000200 /* Tx Queue 1 Interrupt */
+#define E1000_EICR_TX_QUEUE2 0x00000400 /* Tx Queue 2 Interrupt */
+#define E1000_EICR_TX_QUEUE3 0x00000800 /* Tx Queue 3 Interrupt */
+#define E1000_EICR_TCP_TIMER 0x40000000 /* TCP Timer */
+#define E1000_EICR_OTHER 0x80000000 /* Interrupt Cause Active */
+/* TCP Timer */
+#define E1000_TCPTIMER_KS 0x00000100 /* KickStart */
+#define E1000_TCPTIMER_COUNT_ENABLE 0x00000200 /* Count Enable */
+#define E1000_TCPTIMER_COUNT_FINISH 0x00000400 /* Count finish */
+#define E1000_TCPTIMER_LOOP 0x00000800 /* Loop */
+
+/*
+ * This defines the bits that are set in the Interrupt Mask
+ * Set/Read Register. Each bit is documented below:
+ * o RXDMT0 = Receive Descriptor Minimum Threshold hit (ring 0)
+ * o RXSEQ = Receive Sequence Error
+ */
+#define POLL_IMS_ENABLE_MASK ( \
+ E1000_IMS_RXDMT0 | \
+ E1000_IMS_RXSEQ)
+
+/*
+ * This defines the bits that are set in the Interrupt Mask
+ * Set/Read Register. Each bit is documented below:
+ * o RXT0 = Receiver Timer Interrupt (ring 0)
+ * o TXDW = Transmit Descriptor Written Back
+ * o RXDMT0 = Receive Descriptor Minimum Threshold hit (ring 0)
+ * o RXSEQ = Receive Sequence Error
+ * o LSC = Link Status Change
+ */
+#define IMS_ENABLE_MASK ( \
+ E1000_IMS_RXT0 | \
+ E1000_IMS_TXDW | \
+ E1000_IMS_RXDMT0 | \
+ E1000_IMS_RXSEQ | \
+ E1000_IMS_LSC)
+
+/* Interrupt Mask Set */
+#define E1000_IMS_TXDW E1000_ICR_TXDW /* Transmit desc written back */
+#define E1000_IMS_TXQE E1000_ICR_TXQE /* Transmit Queue empty */
+#define E1000_IMS_LSC E1000_ICR_LSC /* Link Status Change */
+#define E1000_IMS_RXSEQ E1000_ICR_RXSEQ /* rx sequence error */
+#define E1000_IMS_RXDMT0 E1000_ICR_RXDMT0 /* rx desc min. threshold */
+#define E1000_IMS_RXO E1000_ICR_RXO /* rx overrun */
+#define E1000_IMS_RXT0 E1000_ICR_RXT0 /* rx timer intr */
+#define E1000_IMS_MDAC E1000_ICR_MDAC /* MDIO access complete */
+#define E1000_IMS_RXCFG E1000_ICR_RXCFG /* Rx /c/ ordered set */
+#define E1000_IMS_GPI_EN0 E1000_ICR_GPI_EN0 /* GP Int 0 */
+#define E1000_IMS_GPI_EN1 E1000_ICR_GPI_EN1 /* GP Int 1 */
+#define E1000_IMS_GPI_EN2 E1000_ICR_GPI_EN2 /* GP Int 2 */
+#define E1000_IMS_GPI_EN3 E1000_ICR_GPI_EN3 /* GP Int 3 */
+#define E1000_IMS_TXD_LOW E1000_ICR_TXD_LOW
+#define E1000_IMS_SRPD E1000_ICR_SRPD
+#define E1000_IMS_ACK E1000_ICR_ACK /* Receive Ack frame */
+#define E1000_IMS_MNG E1000_ICR_MNG /* Manageability event */
+#define E1000_IMS_DOCK E1000_ICR_DOCK /* Dock/Undock */
+#define E1000_IMS_RXD_FIFO_PAR0 E1000_ICR_RXD_FIFO_PAR0 /* queue 0 Rx descriptor FIFO parity error */
+#define E1000_IMS_TXD_FIFO_PAR0 E1000_ICR_TXD_FIFO_PAR0 /* queue 0 Tx descriptor FIFO parity error */
+#define E1000_IMS_HOST_ARB_PAR E1000_ICR_HOST_ARB_PAR /* host arb read buffer parity error */
+#define E1000_IMS_PB_PAR E1000_ICR_PB_PAR /* packet buffer parity error */
+#define E1000_IMS_RXD_FIFO_PAR1 E1000_ICR_RXD_FIFO_PAR1 /* queue 1 Rx descriptor FIFO parity error */
+#define E1000_IMS_TXD_FIFO_PAR1 E1000_ICR_TXD_FIFO_PAR1 /* queue 1 Tx descriptor FIFO parity error */
+#define E1000_IMS_DSW E1000_ICR_DSW
+#define E1000_IMS_PHYINT E1000_ICR_PHYINT
+#define E1000_IMS_EPRST E1000_ICR_EPRST
+
+/* Extended Interrupt Mask Set */
+#define E1000_EIMS_RX_QUEUE0 E1000_EICR_RX_QUEUE0 /* Rx Queue 0 Interrupt */
+#define E1000_EIMS_RX_QUEUE1 E1000_EICR_RX_QUEUE1 /* Rx Queue 1 Interrupt */
+#define E1000_EIMS_RX_QUEUE2 E1000_EICR_RX_QUEUE2 /* Rx Queue 2 Interrupt */
+#define E1000_EIMS_RX_QUEUE3 E1000_EICR_RX_QUEUE3 /* Rx Queue 3 Interrupt */
+#define E1000_EIMS_TX_QUEUE0 E1000_EICR_TX_QUEUE0 /* Tx Queue 0 Interrupt */
+#define E1000_EIMS_TX_QUEUE1 E1000_EICR_TX_QUEUE1 /* Tx Queue 1 Interrupt */
+#define E1000_EIMS_TX_QUEUE2 E1000_EICR_TX_QUEUE2 /* Tx Queue 2 Interrupt */
+#define E1000_EIMS_TX_QUEUE3 E1000_EICR_TX_QUEUE3 /* Tx Queue 3 Interrupt */
+#define E1000_EIMS_TCP_TIMER E1000_EICR_TCP_TIMER /* TCP Timer */
+#define E1000_EIMS_OTHER E1000_EICR_OTHER /* Interrupt Cause Active */
+
+/* Interrupt Cause Set */
+#define E1000_ICS_TXDW E1000_ICR_TXDW /* Transmit desc written back */
+#define E1000_ICS_TXQE E1000_ICR_TXQE /* Transmit Queue empty */
+#define E1000_ICS_LSC E1000_ICR_LSC /* Link Status Change */
+#define E1000_ICS_RXSEQ E1000_ICR_RXSEQ /* rx sequence error */
+#define E1000_ICS_RXDMT0 E1000_ICR_RXDMT0 /* rx desc min. threshold */
+#define E1000_ICS_RXO E1000_ICR_RXO /* rx overrun */
+#define E1000_ICS_RXT0 E1000_ICR_RXT0 /* rx timer intr */
+#define E1000_ICS_MDAC E1000_ICR_MDAC /* MDIO access complete */
+#define E1000_ICS_RXCFG E1000_ICR_RXCFG /* Rx /c/ ordered set */
+#define E1000_ICS_GPI_EN0 E1000_ICR_GPI_EN0 /* GP Int 0 */
+#define E1000_ICS_GPI_EN1 E1000_ICR_GPI_EN1 /* GP Int 1 */
+#define E1000_ICS_GPI_EN2 E1000_ICR_GPI_EN2 /* GP Int 2 */
+#define E1000_ICS_GPI_EN3 E1000_ICR_GPI_EN3 /* GP Int 3 */
+#define E1000_ICS_TXD_LOW E1000_ICR_TXD_LOW
+#define E1000_ICS_SRPD E1000_ICR_SRPD
+#define E1000_ICS_ACK E1000_ICR_ACK /* Receive Ack frame */
+#define E1000_ICS_MNG E1000_ICR_MNG /* Manageability event */
+#define E1000_ICS_DOCK E1000_ICR_DOCK /* Dock/Undock */
+#define E1000_ICS_RXD_FIFO_PAR0 E1000_ICR_RXD_FIFO_PAR0 /* queue 0 Rx descriptor FIFO parity error */
+#define E1000_ICS_TXD_FIFO_PAR0 E1000_ICR_TXD_FIFO_PAR0 /* queue 0 Tx descriptor FIFO parity error */
+#define E1000_ICS_HOST_ARB_PAR E1000_ICR_HOST_ARB_PAR /* host arb read buffer parity error */
+#define E1000_ICS_PB_PAR E1000_ICR_PB_PAR /* packet buffer parity error */
+#define E1000_ICS_RXD_FIFO_PAR1 E1000_ICR_RXD_FIFO_PAR1 /* queue 1 Rx descriptor FIFO parity error */
+#define E1000_ICS_TXD_FIFO_PAR1 E1000_ICR_TXD_FIFO_PAR1 /* queue 1 Tx descriptor FIFO parity error */
+#define E1000_ICS_DSW E1000_ICR_DSW
+#define E1000_ICS_PHYINT E1000_ICR_PHYINT
+#define E1000_ICS_EPRST E1000_ICR_EPRST
+
+/* Extended Interrupt Cause Set */
+#define E1000_EICS_RX_QUEUE0 E1000_EICR_RX_QUEUE0 /* Rx Queue 0 Interrupt */
+#define E1000_EICS_RX_QUEUE1 E1000_EICR_RX_QUEUE1 /* Rx Queue 1 Interrupt */
+#define E1000_EICS_RX_QUEUE2 E1000_EICR_RX_QUEUE2 /* Rx Queue 2 Interrupt */
+#define E1000_EICS_RX_QUEUE3 E1000_EICR_RX_QUEUE3 /* Rx Queue 3 Interrupt */
+#define E1000_EICS_TX_QUEUE0 E1000_EICR_TX_QUEUE0 /* Tx Queue 0 Interrupt */
+#define E1000_EICS_TX_QUEUE1 E1000_EICR_TX_QUEUE1 /* Tx Queue 1 Interrupt */
+#define E1000_EICS_TX_QUEUE2 E1000_EICR_TX_QUEUE2 /* Tx Queue 2 Interrupt */
+#define E1000_EICS_TX_QUEUE3 E1000_EICR_TX_QUEUE3 /* Tx Queue 3 Interrupt */
+#define E1000_EICS_TCP_TIMER E1000_EICR_TCP_TIMER /* TCP Timer */
+#define E1000_EICS_OTHER E1000_EICR_OTHER /* Interrupt Cause Active */
+
+/* Transmit Descriptor Control */
+#define E1000_TXDCTL_PTHRESH 0x0000003F /* TXDCTL Prefetch Threshold */
+#define E1000_TXDCTL_HTHRESH 0x00003F00 /* TXDCTL Host Threshold */
+#define E1000_TXDCTL_WTHRESH 0x003F0000 /* TXDCTL Writeback Threshold */
+#define E1000_TXDCTL_GRAN 0x01000000 /* TXDCTL Granularity */
+#define E1000_TXDCTL_LWTHRESH 0xFE000000 /* TXDCTL Low Threshold */
+#define E1000_TXDCTL_FULL_TX_DESC_WB 0x01010000 /* GRAN=1, WTHRESH=1 */
+#define E1000_TXDCTL_MAX_TX_DESC_PREFETCH 0x0100001F /* GRAN=1, PTHRESH=31 */
+/* Enable the counting of descriptors still to be processed. */
+#define E1000_TXDCTL_COUNT_DESC 0x00400000
+
+/* Flow Control Constants */
+#define FLOW_CONTROL_ADDRESS_LOW 0x00C28001
+#define FLOW_CONTROL_ADDRESS_HIGH 0x00000100
+#define FLOW_CONTROL_TYPE 0x8808
+
+/* 802.1q VLAN Packet Size */
+#define VLAN_TAG_SIZE 4 /* 802.3ac tag (not DMA'd) */
+#define E1000_VLAN_FILTER_TBL_SIZE 128 /* VLAN Filter Table (4096 bits) */
+
+/* Receive Address */
+/*
+ * Number of high/low register pairs in the RAR. The RAR (Receive Address
+ * Registers) holds the directed and multicast addresses that we monitor.
+ * Technically, we have 16 spots. However, we reserve one of these spots
+ * (RAR[15]) for our directed address used by controllers with
+ * manageability enabled, allowing us room for 15 multicast addresses.
+ */
+#define E1000_RAR_ENTRIES 15
+#define E1000_RAH_AV 0x80000000 /* Receive descriptor valid */
+
+/* Error Codes */
+#define E1000_SUCCESS 0
+#define E1000_ERR_NVM 1
+#define E1000_ERR_PHY 2
+#define E1000_ERR_CONFIG 3
+#define E1000_ERR_PARAM 4
+#define E1000_ERR_MAC_INIT 5
+#define E1000_ERR_PHY_TYPE 6
+#define E1000_ERR_RESET 9
+#define E1000_ERR_MASTER_REQUESTS_PENDING 10
+#define E1000_ERR_HOST_INTERFACE_COMMAND 11
+#define E1000_BLK_PHY_RESET 12
+#define E1000_ERR_SWFW_SYNC 13
+#define E1000_NOT_IMPLEMENTED 14
+
+/* Loop limit on how long we wait for auto-negotiation to complete */
+#define FIBER_LINK_UP_LIMIT 50
+#define COPPER_LINK_UP_LIMIT 10
+#define PHY_AUTO_NEG_LIMIT 45
+#define PHY_FORCE_LIMIT 20
+/* Number of 100 microseconds we wait for PCI Express master disable */
+#define MASTER_DISABLE_TIMEOUT 800
+/* Number of milliseconds we wait for PHY configuration done after MAC reset */
+#define PHY_CFG_TIMEOUT 100
+/* Number of 2 milliseconds we wait for acquiring MDIO ownership. */
+#define MDIO_OWNERSHIP_TIMEOUT 10
+/* Number of milliseconds for NVM auto read done after MAC reset. */
+#define AUTO_READ_DONE_TIMEOUT 10
+
+/* Flow Control */
+#define E1000_FCRTH_RTH 0x0000FFF8 /* Mask Bits[15:3] for RTH */
+#define E1000_FCRTH_XFCE 0x80000000 /* External Flow Control Enable */
+#define E1000_FCRTL_RTL 0x0000FFF8 /* Mask Bits[15:3] for RTL */
+#define E1000_FCRTL_XONE 0x80000000 /* Enable XON frame transmission */
+
+/* Transmit Configuration Word */
+#define E1000_TXCW_FD 0x00000020 /* TXCW full duplex */
+#define E1000_TXCW_HD 0x00000040 /* TXCW half duplex */
+#define E1000_TXCW_PAUSE 0x00000080 /* TXCW sym pause request */
+#define E1000_TXCW_ASM_DIR 0x00000100 /* TXCW astm pause direction */
+#define E1000_TXCW_PAUSE_MASK 0x00000180 /* TXCW pause request mask */
+#define E1000_TXCW_RF 0x00003000 /* TXCW remote fault */
+#define E1000_TXCW_NP 0x00008000 /* TXCW next page */
+#define E1000_TXCW_CW 0x0000ffff /* TxConfigWord mask */
+#define E1000_TXCW_TXC 0x40000000 /* Transmit Config control */
+#define E1000_TXCW_ANE 0x80000000 /* Auto-neg enable */
+
+/* Receive Configuration Word */
+#define E1000_RXCW_CW 0x0000ffff /* RxConfigWord mask */
+#define E1000_RXCW_NC 0x04000000 /* Receive config no carrier */
+#define E1000_RXCW_IV 0x08000000 /* Receive config invalid */
+#define E1000_RXCW_CC 0x10000000 /* Receive config change */
+#define E1000_RXCW_C 0x20000000 /* Receive config */
+#define E1000_RXCW_SYNCH 0x40000000 /* Receive config synch */
+#define E1000_RXCW_ANC 0x80000000 /* Auto-neg complete */
+
+/* PCI Express Control */
+#define E1000_GCR_RXD_NO_SNOOP 0x00000001
+#define E1000_GCR_RXDSCW_NO_SNOOP 0x00000002
+#define E1000_GCR_RXDSCR_NO_SNOOP 0x00000004
+#define E1000_GCR_TXD_NO_SNOOP 0x00000008
+#define E1000_GCR_TXDSCW_NO_SNOOP 0x00000010
+#define E1000_GCR_TXDSCR_NO_SNOOP 0x00000020
+
+#define PCIE_NO_SNOOP_ALL (E1000_GCR_RXD_NO_SNOOP | \
+ E1000_GCR_RXDSCW_NO_SNOOP | \
+ E1000_GCR_RXDSCR_NO_SNOOP | \
+ E1000_GCR_TXD_NO_SNOOP | \
+ E1000_GCR_TXDSCW_NO_SNOOP | \
+ E1000_GCR_TXDSCR_NO_SNOOP)
+
+/* PHY Control Register */
+#define MII_CR_SPEED_SELECT_MSB 0x0040 /* bits 6,13: 10=1000, 01=100, 00=10 */
+#define MII_CR_COLL_TEST_ENABLE 0x0080 /* Collision test enable */
+#define MII_CR_FULL_DUPLEX 0x0100 /* FDX =1, half duplex =0 */
+#define MII_CR_RESTART_AUTO_NEG 0x0200 /* Restart auto negotiation */
+#define MII_CR_ISOLATE 0x0400 /* Isolate PHY from MII */
+#define MII_CR_POWER_DOWN 0x0800 /* Power down */
+#define MII_CR_AUTO_NEG_EN 0x1000 /* Auto Neg Enable */
+#define MII_CR_SPEED_SELECT_LSB 0x2000 /* bits 6,13: 10=1000, 01=100, 00=10 */
+#define MII_CR_LOOPBACK 0x4000 /* 0 = normal, 1 = loopback */
+#define MII_CR_RESET 0x8000 /* 0 = normal, 1 = PHY reset */
+#define MII_CR_SPEED_1000 0x0040
+#define MII_CR_SPEED_100 0x2000
+#define MII_CR_SPEED_10 0x0000
+
+/* PHY Status Register */
+#define MII_SR_EXTENDED_CAPS 0x0001 /* Extended register capabilities */
+#define MII_SR_JABBER_DETECT 0x0002 /* Jabber Detected */
+#define MII_SR_LINK_STATUS 0x0004 /* Link Status 1 = link */
+#define MII_SR_AUTONEG_CAPS 0x0008 /* Auto Neg Capable */
+#define MII_SR_REMOTE_FAULT 0x0010 /* Remote Fault Detect */
+#define MII_SR_AUTONEG_COMPLETE 0x0020 /* Auto Neg Complete */
+#define MII_SR_PREAMBLE_SUPPRESS 0x0040 /* Preamble may be suppressed */
+#define MII_SR_EXTENDED_STATUS 0x0100 /* Ext. status info in Reg 0x0F */
+#define MII_SR_100T2_HD_CAPS 0x0200 /* 100T2 Half Duplex Capable */
+#define MII_SR_100T2_FD_CAPS 0x0400 /* 100T2 Full Duplex Capable */
+#define MII_SR_10T_HD_CAPS 0x0800 /* 10T Half Duplex Capable */
+#define MII_SR_10T_FD_CAPS 0x1000 /* 10T Full Duplex Capable */
+#define MII_SR_100X_HD_CAPS 0x2000 /* 100X Half Duplex Capable */
+#define MII_SR_100X_FD_CAPS 0x4000 /* 100X Full Duplex Capable */
+#define MII_SR_100T4_CAPS 0x8000 /* 100T4 Capable */
+
+/* Autoneg Advertisement Register */
+#define NWAY_AR_SELECTOR_FIELD 0x0001 /* indicates IEEE 802.3 CSMA/CD */
+#define NWAY_AR_10T_HD_CAPS 0x0020 /* 10T Half Duplex Capable */
+#define NWAY_AR_10T_FD_CAPS 0x0040 /* 10T Full Duplex Capable */
+#define NWAY_AR_100TX_HD_CAPS 0x0080 /* 100TX Half Duplex Capable */
+#define NWAY_AR_100TX_FD_CAPS 0x0100 /* 100TX Full Duplex Capable */
+#define NWAY_AR_100T4_CAPS 0x0200 /* 100T4 Capable */
+#define NWAY_AR_PAUSE 0x0400 /* Pause operation desired */
+#define NWAY_AR_ASM_DIR 0x0800 /* Asymmetric Pause Direction bit */
+#define NWAY_AR_REMOTE_FAULT 0x2000 /* Remote Fault detected */
+#define NWAY_AR_NEXT_PAGE 0x8000 /* Next Page ability supported */
+
+/* Link Partner Ability Register (Base Page) */
+#define NWAY_LPAR_SELECTOR_FIELD 0x0000 /* LP protocol selector field */
+#define NWAY_LPAR_10T_HD_CAPS 0x0020 /* LP is 10T Half Duplex Capable */
+#define NWAY_LPAR_10T_FD_CAPS 0x0040 /* LP is 10T Full Duplex Capable */
+#define NWAY_LPAR_100TX_HD_CAPS 0x0080 /* LP is 100TX Half Duplex Capable */
+#define NWAY_LPAR_100TX_FD_CAPS 0x0100 /* LP is 100TX Full Duplex Capable */
+#define NWAY_LPAR_100T4_CAPS 0x0200 /* LP is 100T4 Capable */
+#define NWAY_LPAR_PAUSE 0x0400 /* LP Pause operation desired */
+#define NWAY_LPAR_ASM_DIR 0x0800 /* LP Asymmetric Pause Direction bit */
+#define NWAY_LPAR_REMOTE_FAULT 0x2000 /* LP has detected Remote Fault */
+#define NWAY_LPAR_ACKNOWLEDGE 0x4000 /* LP has rx'd link code word */
+#define NWAY_LPAR_NEXT_PAGE 0x8000 /* Next Page ability supported */
+
+/* Autoneg Expansion Register */
+#define NWAY_ER_LP_NWAY_CAPS 0x0001 /* LP has Auto Neg Capability */
+#define NWAY_ER_PAGE_RXD 0x0002 /* LP is 10T Half Duplex Capable */
+#define NWAY_ER_NEXT_PAGE_CAPS 0x0004 /* LP is 10T Full Duplex Capable */
+#define NWAY_ER_LP_NEXT_PAGE_CAPS 0x0008 /* LP is 100TX Half Duplex Capable */
+#define NWAY_ER_PAR_DETECT_FAULT 0x0010 /* LP is 100TX Full Duplex Capable */
+
+/* 1000BASE-T Control Register */
+#define CR_1000T_ASYM_PAUSE 0x0080 /* Advertise asymmetric pause bit */
+#define CR_1000T_HD_CAPS 0x0100 /* Advertise 1000T HD capability */
+#define CR_1000T_FD_CAPS 0x0200 /* Advertise 1000T FD capability */
+#define CR_1000T_REPEATER_DTE 0x0400 /* 1=Repeater/switch device port */
+ /* 0=DTE device */
+#define CR_1000T_MS_VALUE 0x0800 /* 1=Configure PHY as Master */
+ /* 0=Configure PHY as Slave */
+#define CR_1000T_MS_ENABLE 0x1000 /* 1=Master/Slave manual config value */
+ /* 0=Automatic Master/Slave config */
+#define CR_1000T_TEST_MODE_NORMAL 0x0000 /* Normal Operation */
+#define CR_1000T_TEST_MODE_1 0x2000 /* Transmit Waveform test */
+#define CR_1000T_TEST_MODE_2 0x4000 /* Master Transmit Jitter test */
+#define CR_1000T_TEST_MODE_3 0x6000 /* Slave Transmit Jitter test */
+#define CR_1000T_TEST_MODE_4 0x8000 /* Transmitter Distortion test */
+
+/* 1000BASE-T Status Register */
+#define SR_1000T_IDLE_ERROR_CNT 0x00FF /* Num idle errors since last read */
+#define SR_1000T_ASYM_PAUSE_DIR 0x0100 /* LP asymmetric pause direction bit */
+#define SR_1000T_LP_HD_CAPS 0x0400 /* LP is 1000T HD capable */
+#define SR_1000T_LP_FD_CAPS 0x0800 /* LP is 1000T FD capable */
+#define SR_1000T_REMOTE_RX_STATUS 0x1000 /* Remote receiver OK */
+#define SR_1000T_LOCAL_RX_STATUS 0x2000 /* Local receiver OK */
+#define SR_1000T_MS_CONFIG_RES 0x4000 /* 1=Local Tx is Master, 0=Slave */
+#define SR_1000T_MS_CONFIG_FAULT 0x8000 /* Master/Slave config fault */
+
+#define SR_1000T_PHY_EXCESSIVE_IDLE_ERR_COUNT 5
+
+/* PHY 1000 MII Register/Bit Definitions */
+/* PHY Registers defined by IEEE */
+#define PHY_CONTROL 0x00 /* Control Register */
+#define PHY_STATUS 0x01 /* Status Regiser */
+#define PHY_ID1 0x02 /* Phy Id Reg (word 1) */
+#define PHY_ID2 0x03 /* Phy Id Reg (word 2) */
+#define PHY_AUTONEG_ADV 0x04 /* Autoneg Advertisement */
+#define PHY_LP_ABILITY 0x05 /* Link Partner Ability (Base Page) */
+#define PHY_AUTONEG_EXP 0x06 /* Autoneg Expansion Reg */
+#define PHY_NEXT_PAGE_TX 0x07 /* Next Page Tx */
+#define PHY_LP_NEXT_PAGE 0x08 /* Link Partner Next Page */
+#define PHY_1000T_CTRL 0x09 /* 1000Base-T Control Reg */
+#define PHY_1000T_STATUS 0x0A /* 1000Base-T Status Reg */
+#define PHY_EXT_STATUS 0x0F /* Extended Status Reg */
+
+/* NVM Control */
+#define E1000_EECD_SK 0x00000001 /* NVM Clock */
+#define E1000_EECD_CS 0x00000002 /* NVM Chip Select */
+#define E1000_EECD_DI 0x00000004 /* NVM Data In */
+#define E1000_EECD_DO 0x00000008 /* NVM Data Out */
+#define E1000_EECD_FWE_MASK 0x00000030
+#define E1000_EECD_FWE_DIS 0x00000010 /* Disable FLASH writes */
+#define E1000_EECD_FWE_EN 0x00000020 /* Enable FLASH writes */
+#define E1000_EECD_FWE_SHIFT 4
+#define E1000_EECD_REQ 0x00000040 /* NVM Access Request */
+#define E1000_EECD_GNT 0x00000080 /* NVM Access Grant */
+#define E1000_EECD_PRES 0x00000100 /* NVM Present */
+#define E1000_EECD_SIZE 0x00000200 /* NVM Size (0=64 word 1=256 word) */
+/* NVM Addressing bits based on type 0=small, 1=large */
+#define E1000_EECD_ADDR_BITS 0x00000400
+#define E1000_EECD_TYPE 0x00002000 /* NVM Type (1-SPI, 0-Microwire) */
+#ifndef E1000_NVM_GRANT_ATTEMPTS
+#define E1000_NVM_GRANT_ATTEMPTS 1000 /* NVM # attempts to gain grant */
+#endif
+#define E1000_EECD_AUTO_RD 0x00000200 /* NVM Auto Read done */
+#define E1000_EECD_SIZE_EX_MASK 0x00007800 /* NVM Size */
+#define E1000_EECD_SIZE_EX_SHIFT 11
+#define E1000_EECD_NVADDS 0x00018000 /* NVM Address Size */
+#define E1000_EECD_SELSHAD 0x00020000 /* Select Shadow RAM */
+#define E1000_EECD_INITSRAM 0x00040000 /* Initialize Shadow RAM */
+#define E1000_EECD_FLUPD 0x00080000 /* Update FLASH */
+#define E1000_EECD_AUPDEN 0x00100000 /* Enable Autonomous FLASH update */
+#define E1000_EECD_SHADV 0x00200000 /* Shadow RAM Data Valid */
+#define E1000_EECD_SEC1VAL 0x00400000 /* Sector One Valid */
+#define E1000_EECD_SECVAL_SHIFT 22
+
+#define E1000_NVM_SWDPIN0 0x0001 /* SWDPIN 0 NVM Value */
+#define E1000_NVM_LED_LOGIC 0x0020 /* Led Logic Word */
+#define E1000_NVM_RW_REG_DATA 16 /* Offset to data in NVM read/write registers */
+#define E1000_NVM_RW_REG_DONE 2 /* Offset to READ/WRITE done bit */
+#define E1000_NVM_RW_REG_START 1 /* Start operation */
+#define E1000_NVM_RW_ADDR_SHIFT 2 /* Shift to the address bits */
+#define E1000_NVM_POLL_WRITE 1 /* Flag for polling for write complete */
+#define E1000_NVM_POLL_READ 0 /* Flag for polling for read complete */
+#define E1000_FLASH_UPDATES 2000
+
+/* NVM Word Offsets */
+#define NVM_COMPAT 0x0003
+#define NVM_ID_LED_SETTINGS 0x0004
+#define NVM_VERSION 0x0005
+#define NVM_SERDES_AMPLITUDE 0x0006 /* For SERDES output amplitude adjustment. */
+#define NVM_PHY_CLASS_WORD 0x0007
+#define NVM_INIT_CONTROL1_REG 0x000A
+#define NVM_INIT_CONTROL2_REG 0x000F
+#define NVM_SWDEF_PINS_CTRL_PORT_1 0x0010
+#define NVM_INIT_CONTROL3_PORT_B 0x0014
+#define NVM_INIT_3GIO_3 0x001A
+#define NVM_SWDEF_PINS_CTRL_PORT_0 0x0020
+#define NVM_INIT_CONTROL3_PORT_A 0x0024
+#define NVM_CFG 0x0012
+#define NVM_FLASH_VERSION 0x0032
+#define NVM_ALT_MAC_ADDR_PTR 0x0037
+#define NVM_CHECKSUM_REG 0x003F
+
+#define E1000_NVM_CFG_DONE_PORT_0 0x40000 /* MNG config cycle done */
+#define E1000_NVM_CFG_DONE_PORT_1 0x80000 /* ...for second port */
+
+/* Mask bits for fields in Word 0x0f of the NVM */
+#define NVM_WORD0F_PAUSE_MASK 0x3000
+#define NVM_WORD0F_PAUSE 0x1000
+#define NVM_WORD0F_ASM_DIR 0x2000
+#define NVM_WORD0F_ANE 0x0800
+#define NVM_WORD0F_SWPDIO_EXT_MASK 0x00F0
+#define NVM_WORD0F_LPLU 0x0001
+
+/* Mask bits for fields in Word 0x1a of the NVM */
+#define NVM_WORD1A_ASPM_MASK 0x000C
+
+/* For checksumming, the sum of all words in the NVM should equal 0xBABA. */
+#define NVM_SUM 0xBABA
+
+#define NVM_MAC_ADDR_OFFSET 0
+#define NVM_PBA_OFFSET_0 8
+#define NVM_PBA_OFFSET_1 9
+#define NVM_RESERVED_WORD 0xFFFF
+#define NVM_PHY_CLASS_A 0x8000
+#define NVM_SERDES_AMPLITUDE_MASK 0x000F
+#define NVM_SIZE_MASK 0x1C00
+#define NVM_SIZE_SHIFT 10
+#define NVM_WORD_SIZE_BASE_SHIFT 6
+#define NVM_SWDPIO_EXT_SHIFT 4
+
+/* NVM Commands - Microwire */
+#define NVM_READ_OPCODE_MICROWIRE 0x6 /* NVM read opcode */
+#define NVM_WRITE_OPCODE_MICROWIRE 0x5 /* NVM write opcode */
+#define NVM_ERASE_OPCODE_MICROWIRE 0x7 /* NVM erase opcode */
+#define NVM_EWEN_OPCODE_MICROWIRE 0x13 /* NVM erase/write enable */
+#define NVM_EWDS_OPCODE_MICROWIRE 0x10 /* NVM erast/write disable */
+
+/* NVM Commands - SPI */
+#define NVM_MAX_RETRY_SPI 5000 /* Max wait of 5ms, for RDY signal */
+#define NVM_READ_OPCODE_SPI 0x03 /* NVM read opcode */
+#define NVM_WRITE_OPCODE_SPI 0x02 /* NVM write opcode */
+#define NVM_A8_OPCODE_SPI 0x08 /* opcode bit-3 = address bit-8 */
+#define NVM_WREN_OPCODE_SPI 0x06 /* NVM set Write Enable latch */
+#define NVM_WRDI_OPCODE_SPI 0x04 /* NVM reset Write Enable latch */
+#define NVM_RDSR_OPCODE_SPI 0x05 /* NVM read Status register */
+#define NVM_WRSR_OPCODE_SPI 0x01 /* NVM write Status register */
+
+/* SPI NVM Status Register */
+#define NVM_STATUS_RDY_SPI 0x01
+#define NVM_STATUS_WEN_SPI 0x02
+#define NVM_STATUS_BP0_SPI 0x04
+#define NVM_STATUS_BP1_SPI 0x08
+#define NVM_STATUS_WPEN_SPI 0x80
+
+/* Word definitions for ID LED Settings */
+#define ID_LED_RESERVED_0000 0x0000
+#define ID_LED_RESERVED_FFFF 0xFFFF
+#define ID_LED_DEFAULT ((ID_LED_OFF1_ON2 << 12) | \
+ (ID_LED_OFF1_OFF2 << 8) | \
+ (ID_LED_DEF1_DEF2 << 4) | \
+ (ID_LED_DEF1_DEF2))
+#define ID_LED_DEF1_DEF2 0x1
+#define ID_LED_DEF1_ON2 0x2
+#define ID_LED_DEF1_OFF2 0x3
+#define ID_LED_ON1_DEF2 0x4
+#define ID_LED_ON1_ON2 0x5
+#define ID_LED_ON1_OFF2 0x6
+#define ID_LED_OFF1_DEF2 0x7
+#define ID_LED_OFF1_ON2 0x8
+#define ID_LED_OFF1_OFF2 0x9
+
+#define IGP_ACTIVITY_LED_MASK 0xFFFFF0FF
+#define IGP_ACTIVITY_LED_ENABLE 0x0300
+#define IGP_LED3_MODE 0x07000000
+
+/* PCI/PCI-X/PCI-EX Config space */
+#define PCIX_COMMAND_REGISTER 0xE6
+#define PCIX_STATUS_REGISTER_LO 0xE8
+#define PCIX_STATUS_REGISTER_HI 0xEA
+#define PCI_HEADER_TYPE_REGISTER 0x0E
+#define PCIE_LINK_STATUS 0x12
+
+#define PCIX_COMMAND_MMRBC_MASK 0x000C
+#define PCIX_COMMAND_MMRBC_SHIFT 0x2
+#define PCIX_STATUS_HI_MMRBC_MASK 0x0060
+#define PCIX_STATUS_HI_MMRBC_SHIFT 0x5
+#define PCIX_STATUS_HI_MMRBC_4K 0x3
+#define PCIX_STATUS_HI_MMRBC_2K 0x2
+#define PCIX_STATUS_LO_FUNC_MASK 0x7
+#define PCI_HEADER_TYPE_MULTIFUNC 0x80
+#define PCIE_LINK_WIDTH_MASK 0x3F0
+#define PCIE_LINK_WIDTH_SHIFT 4
+
+#ifndef ETH_ADDR_LEN
+#define ETH_ADDR_LEN 6
+#endif
+
+#define PHY_REVISION_MASK 0xFFFFFFF0
+#define MAX_PHY_REG_ADDRESS 0x1F /* 5 bit address bus (0-0x1F) */
+#define MAX_PHY_MULTI_PAGE_REG 0xF
+
+/* Bit definitions for valid PHY IDs. */
+/*
+ * I = Integrated
+ * E = External
+ */
+#define M88E1000_E_PHY_ID 0x01410C50
+#define M88E1000_I_PHY_ID 0x01410C30
+#define M88E1011_I_PHY_ID 0x01410C20
+#define IGP01E1000_I_PHY_ID 0x02A80380
+#define M88E1011_I_REV_4 0x04
+#define M88E1111_I_PHY_ID 0x01410CC0
+#define GG82563_E_PHY_ID 0x01410CA0
+#define IGP03E1000_E_PHY_ID 0x02A80390
+#define IFE_E_PHY_ID 0x02A80330
+#define IFE_PLUS_E_PHY_ID 0x02A80320
+#define IFE_C_E_PHY_ID 0x02A80310
+#define M88_VENDOR 0x0141
+
+/* M88E1000 Specific Registers */
+#define M88E1000_PHY_SPEC_CTRL 0x10 /* PHY Specific Control Register */
+#define M88E1000_PHY_SPEC_STATUS 0x11 /* PHY Specific Status Register */
+#define M88E1000_INT_ENABLE 0x12 /* Interrupt Enable Register */
+#define M88E1000_INT_STATUS 0x13 /* Interrupt Status Register */
+#define M88E1000_EXT_PHY_SPEC_CTRL 0x14 /* Extended PHY Specific Control */
+#define M88E1000_RX_ERR_CNTR 0x15 /* Receive Error Counter */
+
+#define M88E1000_PHY_EXT_CTRL 0x1A /* PHY extend control register */
+#define M88E1000_PHY_PAGE_SELECT 0x1D /* Reg 29 for page number setting */
+#define M88E1000_PHY_GEN_CONTROL 0x1E /* Its meaning depends on reg 29 */
+#define M88E1000_PHY_VCO_REG_BIT8 0x100 /* Bits 8 & 11 are adjusted for */
+#define M88E1000_PHY_VCO_REG_BIT11 0x800 /* improved BER performance */
+
+/* M88E1000 PHY Specific Control Register */
+#define M88E1000_PSCR_JABBER_DISABLE 0x0001 /* 1=Jabber Function disabled */
+#define M88E1000_PSCR_POLARITY_REVERSAL 0x0002 /* 1=Polarity Reversal enabled */
+#define M88E1000_PSCR_SQE_TEST 0x0004 /* 1=SQE Test enabled */
+/* 1=CLK125 low, 0=CLK125 toggling */
+#define M88E1000_PSCR_CLK125_DISABLE 0x0010
+#define M88E1000_PSCR_MDI_MANUAL_MODE 0x0000 /* MDI Crossover Mode bits 6:5 */
+ /* Manual MDI configuration */
+#define M88E1000_PSCR_MDIX_MANUAL_MODE 0x0020 /* Manual MDIX configuration */
+/* 1000BASE-T: Auto crossover, 100BASE-TX/10BASE-T: MDI Mode */
+#define M88E1000_PSCR_AUTO_X_1000T 0x0040
+/* Auto crossover enabled all speeds */
+#define M88E1000_PSCR_AUTO_X_MODE 0x0060
+/*
+ * 1=Enable Extended 10BASE-T distance (Lower 10BASE-T Rx Threshold
+ * 0=Normal 10BASE-T Rx Threshold
+ */
+#define M88E1000_PSCR_EN_10BT_EXT_DIST 0x0080
+/* 1=5-bit interface in 100BASE-TX, 0=MII interface in 100BASE-TX */
+#define M88E1000_PSCR_MII_5BIT_ENABLE 0x0100
+#define M88E1000_PSCR_SCRAMBLER_DISABLE 0x0200 /* 1=Scrambler disable */
+#define M88E1000_PSCR_FORCE_LINK_GOOD 0x0400 /* 1=Force link good */
+#define M88E1000_PSCR_ASSERT_CRS_ON_TX 0x0800 /* 1=Assert CRS on Transmit */
+
+/* M88E1000 PHY Specific Status Register */
+#define M88E1000_PSSR_JABBER 0x0001 /* 1=Jabber */
+#define M88E1000_PSSR_REV_POLARITY 0x0002 /* 1=Polarity reversed */
+#define M88E1000_PSSR_DOWNSHIFT 0x0020 /* 1=Downshifted */
+#define M88E1000_PSSR_MDIX 0x0040 /* 1=MDIX; 0=MDI */
+/*
+ * 0 = <50M
+ * 1 = 50-80M
+ * 2 = 80-110M
+ * 3 = 110-140M
+ * 4 = >140M
+ */
+#define M88E1000_PSSR_CABLE_LENGTH 0x0380
+#define M88E1000_PSSR_LINK 0x0400 /* 1=Link up, 0=Link down */
+#define M88E1000_PSSR_SPD_DPLX_RESOLVED 0x0800 /* 1=Speed & Duplex resolved */
+#define M88E1000_PSSR_PAGE_RCVD 0x1000 /* 1=Page received */
+#define M88E1000_PSSR_DPLX 0x2000 /* 1=Duplex 0=Half Duplex */
+#define M88E1000_PSSR_SPEED 0xC000 /* Speed, bits 14:15 */
+#define M88E1000_PSSR_10MBS 0x0000 /* 00=10Mbs */
+#define M88E1000_PSSR_100MBS 0x4000 /* 01=100Mbs */
+#define M88E1000_PSSR_1000MBS 0x8000 /* 10=1000Mbs */
+
+#define M88E1000_PSSR_CABLE_LENGTH_SHIFT 7
+
+/* M88E1000 Extended PHY Specific Control Register */
+#define M88E1000_EPSCR_FIBER_LOOPBACK 0x4000 /* 1=Fiber loopback */
+/*
+ * 1 = Lost lock detect enabled.
+ * Will assert lost lock and bring
+ * link down if idle not seen
+ * within 1ms in 1000BASE-T
+ */
+#define M88E1000_EPSCR_DOWN_NO_IDLE 0x8000
+/*
+ * Number of times we will attempt to autonegotiate before downshifting if we
+ * are the master
+ */
+#define M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK 0x0C00
+#define M88E1000_EPSCR_MASTER_DOWNSHIFT_1X 0x0000
+#define M88E1000_EPSCR_MASTER_DOWNSHIFT_2X 0x0400
+#define M88E1000_EPSCR_MASTER_DOWNSHIFT_3X 0x0800
+#define M88E1000_EPSCR_MASTER_DOWNSHIFT_4X 0x0C00
+/*
+ * Number of times we will attempt to autonegotiate before downshifting if we
+ * are the slave
+ */
+#define M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK 0x0300
+#define M88E1000_EPSCR_SLAVE_DOWNSHIFT_DIS 0x0000
+#define M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X 0x0100
+#define M88E1000_EPSCR_SLAVE_DOWNSHIFT_2X 0x0200
+#define M88E1000_EPSCR_SLAVE_DOWNSHIFT_3X 0x0300
+#define M88E1000_EPSCR_TX_CLK_2_5 0x0060 /* 2.5 MHz TX_CLK */
+#define M88E1000_EPSCR_TX_CLK_25 0x0070 /* 25 MHz TX_CLK */
+#define M88E1000_EPSCR_TX_CLK_0 0x0000 /* NO TX_CLK */
+
+/* M88EC018 Rev 2 specific DownShift settings */
+#define M88EC018_EPSCR_DOWNSHIFT_COUNTER_MASK 0x0E00
+#define M88EC018_EPSCR_DOWNSHIFT_COUNTER_1X 0x0000
+#define M88EC018_EPSCR_DOWNSHIFT_COUNTER_2X 0x0200
+#define M88EC018_EPSCR_DOWNSHIFT_COUNTER_3X 0x0400
+#define M88EC018_EPSCR_DOWNSHIFT_COUNTER_4X 0x0600
+#define M88EC018_EPSCR_DOWNSHIFT_COUNTER_5X 0x0800
+#define M88EC018_EPSCR_DOWNSHIFT_COUNTER_6X 0x0A00
+#define M88EC018_EPSCR_DOWNSHIFT_COUNTER_7X 0x0C00
+#define M88EC018_EPSCR_DOWNSHIFT_COUNTER_8X 0x0E00
+
+/*
+ * Bits...
+ * 15-5: page
+ * 4-0: register offset
+ */
+#define GG82563_PAGE_SHIFT 5
+#define GG82563_REG(page, reg) \
+ (((page) << GG82563_PAGE_SHIFT) | ((reg) & MAX_PHY_REG_ADDRESS))
+#define GG82563_MIN_ALT_REG 30
+
+/* GG82563 Specific Registers */
+#define GG82563_PHY_SPEC_CTRL \
+ GG82563_REG(0, 16) /* PHY Specific Control */
+#define GG82563_PHY_SPEC_STATUS \
+ GG82563_REG(0, 17) /* PHY Specific Status */
+#define GG82563_PHY_INT_ENABLE \
+ GG82563_REG(0, 18) /* Interrupt Enable */
+#define GG82563_PHY_SPEC_STATUS_2 \
+ GG82563_REG(0, 19) /* PHY Specific Status 2 */
+#define GG82563_PHY_RX_ERR_CNTR \
+ GG82563_REG(0, 21) /* Receive Error Counter */
+#define GG82563_PHY_PAGE_SELECT \
+ GG82563_REG(0, 22) /* Page Select */
+#define GG82563_PHY_SPEC_CTRL_2 \
+ GG82563_REG(0, 26) /* PHY Specific Control 2 */
+#define GG82563_PHY_PAGE_SELECT_ALT \
+ GG82563_REG(0, 29) /* Alternate Page Select */
+#define GG82563_PHY_TEST_CLK_CTRL \
+ GG82563_REG(0, 30) /* Test Clock Control (use reg. 29 to select) */
+
+#define GG82563_PHY_MAC_SPEC_CTRL \
+ GG82563_REG(2, 21) /* MAC Specific Control Register */
+#define GG82563_PHY_MAC_SPEC_CTRL_2 \
+ GG82563_REG(2, 26) /* MAC Specific Control 2 */
+
+#define GG82563_PHY_DSP_DISTANCE \
+ GG82563_REG(5, 26) /* DSP Distance */
+
+/* Page 193 - Port Control Registers */
+#define GG82563_PHY_KMRN_MODE_CTRL \
+ GG82563_REG(193, 16) /* Kumeran Mode Control */
+#define GG82563_PHY_PORT_RESET \
+ GG82563_REG(193, 17) /* Port Reset */
+#define GG82563_PHY_REVISION_ID \
+ GG82563_REG(193, 18) /* Revision ID */
+#define GG82563_PHY_DEVICE_ID \
+ GG82563_REG(193, 19) /* Device ID */
+#define GG82563_PHY_PWR_MGMT_CTRL \
+ GG82563_REG(193, 20) /* Power Management Control */
+#define GG82563_PHY_RATE_ADAPT_CTRL \
+ GG82563_REG(193, 25) /* Rate Adaptation Control */
+
+/* Page 194 - KMRN Registers */
+#define GG82563_PHY_KMRN_FIFO_CTRL_STAT \
+ GG82563_REG(194, 16) /* FIFO's Control/Status */
+#define GG82563_PHY_KMRN_CTRL \
+ GG82563_REG(194, 17) /* Control */
+#define GG82563_PHY_INBAND_CTRL \
+ GG82563_REG(194, 18) /* Inband Control */
+#define GG82563_PHY_KMRN_DIAGNOSTIC \
+ GG82563_REG(194, 19) /* Diagnostic */
+#define GG82563_PHY_ACK_TIMEOUTS \
+ GG82563_REG(194, 20) /* Acknowledge Timeouts */
+#define GG82563_PHY_ADV_ABILITY \
+ GG82563_REG(194, 21) /* Advertised Ability */
+#define GG82563_PHY_LINK_PARTNER_ADV_ABILITY \
+ GG82563_REG(194, 23) /* Link Partner Advertised Ability */
+#define GG82563_PHY_ADV_NEXT_PAGE \
+ GG82563_REG(194, 24) /* Advertised Next Page */
+#define GG82563_PHY_LINK_PARTNER_ADV_NEXT_PAGE \
+ GG82563_REG(194, 25) /* Link Partner Advertised Next page */
+#define GG82563_PHY_KMRN_MISC \
+ GG82563_REG(194, 26) /* Misc. */
+
+/* MDI Control */
+#define E1000_MDIC_DATA_MASK 0x0000FFFF
+#define E1000_MDIC_REG_MASK 0x001F0000
+#define E1000_MDIC_REG_SHIFT 16
+#define E1000_MDIC_PHY_MASK 0x03E00000
+#define E1000_MDIC_PHY_SHIFT 21
+#define E1000_MDIC_OP_WRITE 0x04000000
+#define E1000_MDIC_OP_READ 0x08000000
+#define E1000_MDIC_READY 0x10000000
+#define E1000_MDIC_INT_EN 0x20000000
+#define E1000_MDIC_ERROR 0x40000000
+
+/* SerDes Control */
+#define E1000_GEN_CTL_READY 0x80000000
+#define E1000_GEN_CTL_ADDRESS_SHIFT 8
+#define E1000_GEN_POLL_TIMEOUT 640
+
+/* LinkSec register fields */
+#define E1000_LSECTXCAP_SUM_MASK 0x00FF0000
+#define E1000_LSECTXCAP_SUM_SHIFT 16
+#define E1000_LSECRXCAP_SUM_MASK 0x00FF0000
+#define E1000_LSECRXCAP_SUM_SHIFT 16
+
+#define E1000_LSECTXCTRL_EN_MASK 0x00000003
+#define E1000_LSECTXCTRL_DISABLE 0x0
+#define E1000_LSECTXCTRL_AUTH 0x1
+#define E1000_LSECTXCTRL_AUTH_ENCRYPT 0x2
+#define E1000_LSECTXCTRL_AISCI 0x00000020
+#define E1000_LSECTXCTRL_PNTHRSH_MASK 0xFFFFFF00
+#define E1000_LSECTXCTRL_RSV_MASK 0x000000D8
+
+#define E1000_LSECRXCTRL_EN_MASK 0x0000000C
+#define E1000_LSECRXCTRL_EN_SHIFT 2
+#define E1000_LSECRXCTRL_DISABLE 0x0
+#define E1000_LSECRXCTRL_CHECK 0x1
+#define E1000_LSECRXCTRL_STRICT 0x2
+#define E1000_LSECRXCTRL_DROP 0x3
+#define E1000_LSECRXCTRL_PLSH 0x00000040
+#define E1000_LSECRXCTRL_RP 0x00000080
+#define E1000_LSECRXCTRL_RSV_MASK 0xFFFFFF33
+
+#define UNREFERENCED_PARAMETER(_p)
+#endif
Index: if_em.c
===================================================================
RCS file: /home/cvs/src/sys/dev/em/if_em.c,v
retrieving revision 1.4
retrieving revision 1.5
diff -L sys/dev/em/if_em.c -L sys/dev/em/if_em.c -u -r1.4 -r1.5
--- sys/dev/em/if_em.c
+++ sys/dev/em/if_em.c
@@ -1,6 +1,6 @@
/**************************************************************************
-Copyright (c) 2001-2006, Intel Corporation
+Copyright (c) 2001-2007, Intel Corporation
All rights reserved.
Redistribution and use in source and binary forms, with or without
@@ -30,8 +30,8 @@
POSSIBILITY OF SUCH DAMAGE.
***************************************************************************/
+/* $FreeBSD: src/sys/dev/em/if_em.c,v 1.184.2.1 2007/11/28 23:24:38 jfv Exp $ */
-/*$FreeBSD: /repoman/r/ncvs/src/sys/dev/em/if_em.c,v 1.65.2.18 2006/08/25 12:38:26 glebius Exp $*/
#ifdef HAVE_KERNEL_OPTION_HEADERS
#include "opt_device_polling.h"
@@ -69,13 +69,17 @@
#include <netinet/in.h>
#include <netinet/if_ether.h>
#include <netinet/ip.h>
+#include <netinet/ip6.h>
#include <netinet/tcp.h>
#include <netinet/udp.h>
+#include <machine/in_cksum.h>
#include <dev/pci/pcivar.h>
#include <dev/pci/pcireg.h>
-#include <dev/em/if_em_hw.h>
-#include <dev/em/if_em.h>
+
+#include "e1000_api.h"
+#include "e1000_82575.h"
+#include "if_em.h"
/*********************************************************************
* Set this to one to display debug statistics
@@ -83,17 +87,16 @@
int em_display_debug_stats = 0;
/*********************************************************************
- * Driver version
+ * Driver version:
*********************************************************************/
-
-char em_driver_version[] = "Version - 6.1.4";
+char em_driver_version[] = "Version - 6.7.3";
/*********************************************************************
* PCI Device ID Table
*
* Used by probe to select devices to load on
- * Last field stores an index into em_strings
+ * Last field stores an index into e1000_strings
* Last entry must be all 0s
*
* { Vendor ID, Device ID, SubVendor ID, SubDevice ID, String Index }
@@ -152,7 +155,12 @@
{ 0x8086, E1000_DEV_ID_82571EB_SERDES, PCI_ANY_ID, PCI_ANY_ID, 0},
{ 0x8086, E1000_DEV_ID_82571EB_QUAD_COPPER,
PCI_ANY_ID, PCI_ANY_ID, 0},
-
+ { 0x8086, E1000_DEV_ID_82571EB_QUAD_COPPER_LP,
+ PCI_ANY_ID, PCI_ANY_ID, 0},
+ { 0x8086, E1000_DEV_ID_82571EB_QUAD_FIBER,
+ PCI_ANY_ID, PCI_ANY_ID, 0},
+ { 0x8086, E1000_DEV_ID_82571PT_QUAD_COPPER,
+ PCI_ANY_ID, PCI_ANY_ID, 0},
{ 0x8086, E1000_DEV_ID_82572EI_COPPER, PCI_ANY_ID, PCI_ANY_ID, 0},
{ 0x8086, E1000_DEV_ID_82572EI_FIBER, PCI_ANY_ID, PCI_ANY_ID, 0},
{ 0x8086, E1000_DEV_ID_82572EI_SERDES, PCI_ANY_ID, PCI_ANY_ID, 0},
@@ -169,10 +177,25 @@
PCI_ANY_ID, PCI_ANY_ID, 0},
{ 0x8086, E1000_DEV_ID_80003ES2LAN_SERDES_DPT,
PCI_ANY_ID, PCI_ANY_ID, 0},
+ { 0x8086, E1000_DEV_ID_ICH8_IGP_M_AMT, PCI_ANY_ID, PCI_ANY_ID, 0},
{ 0x8086, E1000_DEV_ID_ICH8_IGP_AMT, PCI_ANY_ID, PCI_ANY_ID, 0},
{ 0x8086, E1000_DEV_ID_ICH8_IGP_C, PCI_ANY_ID, PCI_ANY_ID, 0},
{ 0x8086, E1000_DEV_ID_ICH8_IFE, PCI_ANY_ID, PCI_ANY_ID, 0},
+ { 0x8086, E1000_DEV_ID_ICH8_IFE_GT, PCI_ANY_ID, PCI_ANY_ID, 0},
+ { 0x8086, E1000_DEV_ID_ICH8_IFE_G, PCI_ANY_ID, PCI_ANY_ID, 0},
+ { 0x8086, E1000_DEV_ID_ICH8_IGP_M, PCI_ANY_ID, PCI_ANY_ID, 0},
+
+ { 0x8086, E1000_DEV_ID_ICH9_IGP_AMT, PCI_ANY_ID, PCI_ANY_ID, 0},
+ { 0x8086, E1000_DEV_ID_ICH9_IGP_C, PCI_ANY_ID, PCI_ANY_ID, 0},
+ { 0x8086, E1000_DEV_ID_ICH9_IFE, PCI_ANY_ID, PCI_ANY_ID, 0},
+ { 0x8086, E1000_DEV_ID_ICH9_IFE_GT, PCI_ANY_ID, PCI_ANY_ID, 0},
+ { 0x8086, E1000_DEV_ID_ICH9_IFE_G, PCI_ANY_ID, PCI_ANY_ID, 0},
+ { 0x8086, E1000_DEV_ID_82575EB_COPPER, PCI_ANY_ID, PCI_ANY_ID, 0},
+ { 0x8086, E1000_DEV_ID_82575EB_FIBER_SERDES,
+ PCI_ANY_ID, PCI_ANY_ID, 0},
+ { 0x8086, E1000_DEV_ID_82575GB_QUAD_COPPER,
+ PCI_ANY_ID, PCI_ANY_ID, 0},
/* required last entry */
{ 0, 0, 0, 0, 0}
};
@@ -197,7 +220,7 @@
static void em_start(struct ifnet *);
static void em_start_locked(struct ifnet *ifp);
static int em_ioctl(struct ifnet *, u_long, caddr_t);
-static void em_watchdog(struct ifnet *);
+static void em_watchdog(struct adapter *);
static void em_init(void *);
static void em_init_locked(struct adapter *);
static void em_stop(void *);
@@ -206,12 +229,13 @@
static void em_identify_hardware(struct adapter *);
static int em_allocate_pci_resources(struct adapter *);
static int em_allocate_intr(struct adapter *);
+static bool em_setup_msix(struct adapter *);
static void em_free_intr(struct adapter *);
static void em_free_pci_resources(struct adapter *);
static void em_local_timer(void *);
static int em_hardware_init(struct adapter *);
static void em_setup_interface(device_t, struct adapter *);
-static int em_setup_transmit_structures(struct adapter *);
+static void em_setup_transmit_structures(struct adapter *);
static void em_initialize_transmit_unit(struct adapter *);
static int em_setup_receive_structures(struct adapter *);
static void em_initialize_receive_unit(struct adapter *);
@@ -221,35 +245,42 @@
static void em_free_receive_structures(struct adapter *);
static void em_update_stats_counters(struct adapter *);
static void em_txeof(struct adapter *);
+static void em_tx_purge(struct adapter *);
static int em_allocate_receive_structures(struct adapter *);
static int em_allocate_transmit_structures(struct adapter *);
static int em_rxeof(struct adapter *, int);
#ifndef __NO_STRICT_ALIGNMENT
static int em_fixup_rx(struct adapter *);
#endif
-static void em_receive_checksum(struct adapter *, struct em_rx_desc *,
+static void em_receive_checksum(struct adapter *, struct e1000_rx_desc *,
struct mbuf *);
static void em_transmit_checksum_setup(struct adapter *, struct mbuf *,
uint32_t *, uint32_t *);
+static boolean_t em_tx_adv_ctx_setup(struct adapter *, struct mbuf *);
+#if __FreeBSD_version >= 700000
+static boolean_t em_tso_setup(struct adapter *, struct mbuf *, uint32_t *,
+ uint32_t *);
+static boolean_t em_tso_adv_setup(struct adapter *, struct mbuf *, uint32_t *);
+#endif /* FreeBSD_version >= 700000 */
static void em_set_promisc(struct adapter *);
static void em_disable_promisc(struct adapter *);
static void em_set_multi(struct adapter *);
static void em_print_hw_stats(struct adapter *);
static void em_update_link_status(struct adapter *);
static int em_get_buf(struct adapter *, int);
-static void em_enable_vlans(struct adapter *);
-static void em_disable_vlans(struct adapter *);
+static void em_enable_hw_vlans(struct adapter *);
static int em_encap(struct adapter *, struct mbuf **);
+static int em_adv_encap(struct adapter *, struct mbuf **);
static void em_smartspeed(struct adapter *);
static int em_82547_fifo_workaround(struct adapter *, int);
static void em_82547_update_fifo_head(struct adapter *, int);
static int em_82547_tx_fifo_reset(struct adapter *);
-static void em_82547_move_tail(void *arg);
-static void em_82547_move_tail_locked(struct adapter *);
+static void em_82547_move_tail(void *);
static int em_dma_malloc(struct adapter *, bus_size_t,
- struct em_dma_alloc *, int);
+ struct em_dma_alloc *, int);
static void em_dma_free(struct adapter *, struct em_dma_alloc *);
static void em_print_debug_info(struct adapter *);
+static void em_print_nvm_info(struct adapter *);
static int em_is_valid_ether_addr(uint8_t *);
static int em_sysctl_stats(SYSCTL_HANDLER_ARGS);
static int em_sysctl_debug_info(SYSCTL_HANDLER_ARGS);
@@ -257,22 +288,31 @@
PDESC_ARRAY desc_array);
static int em_sysctl_int_delay(SYSCTL_HANDLER_ARGS);
static void em_add_int_delay_sysctl(struct adapter *, const char *,
- const char *, struct em_int_delay_info *, int, int);
+ const char *, struct em_int_delay_info *, int, int);
+/* Management and WOL Support */
+static void em_init_manageability(struct adapter *);
+static void em_release_manageability(struct adapter *);
+static void em_get_hw_control(struct adapter *);
+static void em_release_hw_control(struct adapter *);
+static void em_enable_wakeup(device_t);
-/*
- * Fast interrupt handler and legacy ithread/polling modes are
- * mutually exclusive.
- */
-#ifdef DEVICE_POLLING
-static poll_handler_t em_poll;
+#ifndef EM_FAST_IRQ
static void em_intr(void *);
-#else
+#else /* FAST IRQ */
+#if __FreeBSD_version < 700000
static void em_intr_fast(void *);
-static void em_add_int_process_limit(struct adapter *, const char *,
- const char *, int *, int);
+#else
+static int em_intr_fast(void *);
+#endif
+static void em_add_rx_process_limit(struct adapter *, const char *,
+ const char *, int *, int);
static void em_handle_rxtx(void *context, int pending);
static void em_handle_link(void *context, int pending);
-#endif
+#endif /* EM_FAST_IRQ */
+
+#ifdef DEVICE_POLLING
+static poll_handler_t em_poll;
+#endif /* POLLING */
/*********************************************************************
* FreeBSD Device Interface Entry Points
@@ -302,13 +342,19 @@
* Tunable default values.
*********************************************************************/
-#define E1000_TICKS_TO_USECS(ticks) ((1024 * (ticks) + 500) / 1000)
-#define E1000_USECS_TO_TICKS(usecs) ((1000 * (usecs) + 512) / 1024)
+#define EM_TICKS_TO_USECS(ticks) ((1024 * (ticks) + 500) / 1000)
+#define EM_USECS_TO_TICKS(usecs) ((1000 * (usecs) + 512) / 1024)
+#define M_TSO_LEN 66
+
+/* Allow common code without TSO */
+#ifndef CSUM_TSO
+#define CSUM_TSO 0
+#endif
-static int em_tx_int_delay_dflt = E1000_TICKS_TO_USECS(EM_TIDV);
-static int em_rx_int_delay_dflt = E1000_TICKS_TO_USECS(EM_RDTR);
-static int em_tx_abs_int_delay_dflt = E1000_TICKS_TO_USECS(EM_TADV);
-static int em_rx_abs_int_delay_dflt = E1000_TICKS_TO_USECS(EM_RADV);
+static int em_tx_int_delay_dflt = EM_TICKS_TO_USECS(EM_TIDV);
+static int em_rx_int_delay_dflt = EM_TICKS_TO_USECS(EM_RDTR);
+static int em_tx_abs_int_delay_dflt = EM_TICKS_TO_USECS(EM_TADV);
+static int em_rx_abs_int_delay_dflt = EM_TICKS_TO_USECS(EM_RADV);
static int em_rxd = EM_DEFAULT_RXD;
static int em_txd = EM_DEFAULT_TXD;
static int em_smart_pwr_down = FALSE;
@@ -320,10 +366,13 @@
TUNABLE_INT("hw.em.rxd", &em_rxd);
TUNABLE_INT("hw.em.txd", &em_txd);
TUNABLE_INT("hw.em.smart_pwr_down", &em_smart_pwr_down);
-#ifndef DEVICE_POLLING
+#ifdef EM_FAST_IRQ
+/* How many packets rxeof tries to clean at a time */
static int em_rx_process_limit = 100;
TUNABLE_INT("hw.em.rx_process_limit", &em_rx_process_limit);
#endif
+/* Global used in WOL setup with multiport cards */
+static int global_quad_port_a = 0;
/*********************************************************************
* Device identification routine
@@ -392,17 +441,19 @@
struct adapter *adapter;
int tsize, rsize;
int error = 0;
+ u16 eeprom_data, device_id;
INIT_DEBUGOUT("em_attach: begin");
adapter = device_get_softc(dev);
adapter->dev = adapter->osdep.dev = dev;
- EM_LOCK_INIT(adapter, device_get_nameunit(dev));
+ EM_CORE_LOCK_INIT(adapter, device_get_nameunit(dev));
+ EM_TX_LOCK_INIT(adapter, device_get_nameunit(dev));
/* SYSCTL stuff */
SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
- OID_AUTO, "debug_info", CTLTYPE_INT|CTLFLAG_RW, adapter, 0,
+ OID_AUTO, "debug", CTLTYPE_INT|CTLFLAG_RW, adapter, 0,
em_sysctl_debug_info, "I", "Debug Information");
SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
@@ -410,35 +461,70 @@
OID_AUTO, "stats", CTLTYPE_INT|CTLFLAG_RW, adapter, 0,
em_sysctl_stats, "I", "Statistics");
- callout_init(&adapter->timer, CALLOUT_MPSAFE);
- callout_init(&adapter->tx_fifo_timer, CALLOUT_MPSAFE);
+ callout_init_mtx(&adapter->timer, &adapter->core_mtx, 0);
+ callout_init_mtx(&adapter->tx_fifo_timer, &adapter->tx_mtx, 0);
- /* Determine hardware revision */
+ /* Determine hardware and mac info */
em_identify_hardware(adapter);
+ /* Setup PCI resources */
+ if (em_allocate_pci_resources(adapter)) {
+ device_printf(dev, "Allocation of PCI resources failed\n");
+ error = ENXIO;
+ goto err_pci;
+ }
+
+ /*
+ ** For ICH8 and family we need to
+ ** map the flash memory, and this
+ ** must happen after the MAC is
+ ** identified
+ */
+ if ((adapter->hw.mac.type == e1000_ich8lan) ||
+ (adapter->hw.mac.type == e1000_ich9lan)) {
+ int rid = EM_BAR_TYPE_FLASH;
+ adapter->flash_mem = bus_alloc_resource_any(dev,
+ SYS_RES_MEMORY, &rid, RF_ACTIVE);
+ /* This is used in the shared code */
+ adapter->hw.flash_address = (u8 *)adapter->flash_mem;
+ adapter->osdep.flash_bus_space_tag =
+ rman_get_bustag(adapter->flash_mem);
+ adapter->osdep.flash_bus_space_handle =
+ rman_get_bushandle(adapter->flash_mem);
+ }
+
+ /* Do Shared Code initialization */
+ if (e1000_setup_init_funcs(&adapter->hw, TRUE)) {
+ device_printf(dev, "Setup of Shared code failed\n");
+ error = ENXIO;
+ goto err_pci;
+ }
+
+ e1000_get_bus_info(&adapter->hw);
+
/* Set up some sysctls for the tunable interrupt delays */
em_add_int_delay_sysctl(adapter, "rx_int_delay",
"receive interrupt delay in usecs", &adapter->rx_int_delay,
- E1000_REG_OFFSET(&adapter->hw, RDTR), em_rx_int_delay_dflt);
+ E1000_REGISTER(&adapter->hw, E1000_RDTR), em_rx_int_delay_dflt);
em_add_int_delay_sysctl(adapter, "tx_int_delay",
"transmit interrupt delay in usecs", &adapter->tx_int_delay,
- E1000_REG_OFFSET(&adapter->hw, TIDV), em_tx_int_delay_dflt);
- if (adapter->hw.mac_type >= em_82540) {
+ E1000_REGISTER(&adapter->hw, E1000_TIDV), em_tx_int_delay_dflt);
+ if (adapter->hw.mac.type >= e1000_82540) {
em_add_int_delay_sysctl(adapter, "rx_abs_int_delay",
"receive interrupt delay limit in usecs",
&adapter->rx_abs_int_delay,
- E1000_REG_OFFSET(&adapter->hw, RADV),
+ E1000_REGISTER(&adapter->hw, E1000_RADV),
em_rx_abs_int_delay_dflt);
em_add_int_delay_sysctl(adapter, "tx_abs_int_delay",
"transmit interrupt delay limit in usecs",
&adapter->tx_abs_int_delay,
- E1000_REG_OFFSET(&adapter->hw, TADV),
+ E1000_REGISTER(&adapter->hw, E1000_TADV),
em_tx_abs_int_delay_dflt);
}
-#ifndef DEVICE_POLLING
+#ifdef EM_FAST_IRQ
/* Sysctls for limiting the amount of work done in the taskqueue */
- em_add_int_process_limit(adapter, "rx_processing_limit",
+ em_add_rx_process_limit(adapter, "rx_processing_limit",
"max number of rx packets to process", &adapter->rx_process_limit,
em_rx_process_limit);
#endif
@@ -446,20 +532,20 @@
/*
* Validate number of transmit and receive descriptors. It
* must not exceed hardware maximum, and must be multiple
- * of EM_DBA_ALIGN.
+ * of E1000_DBA_ALIGN.
*/
- if (((em_txd * sizeof(struct em_tx_desc)) % EM_DBA_ALIGN) != 0 ||
- (adapter->hw.mac_type >= em_82544 && em_txd > EM_MAX_TXD) ||
- (adapter->hw.mac_type < em_82544 && em_txd > EM_MAX_TXD_82543) ||
+ if (((em_txd * sizeof(struct e1000_tx_desc)) % EM_DBA_ALIGN) != 0 ||
+ (adapter->hw.mac.type >= e1000_82544 && em_txd > EM_MAX_TXD) ||
+ (adapter->hw.mac.type < e1000_82544 && em_txd > EM_MAX_TXD_82543) ||
(em_txd < EM_MIN_TXD)) {
device_printf(dev, "Using %d TX descriptors instead of %d!\n",
EM_DEFAULT_TXD, em_txd);
adapter->num_tx_desc = EM_DEFAULT_TXD;
} else
adapter->num_tx_desc = em_txd;
- if (((em_rxd * sizeof(struct em_rx_desc)) % EM_DBA_ALIGN) != 0 ||
- (adapter->hw.mac_type >= em_82544 && em_rxd > EM_MAX_RXD) ||
- (adapter->hw.mac_type < em_82544 && em_rxd > EM_MAX_RXD_82543) ||
+ if (((em_rxd * sizeof(struct e1000_rx_desc)) % EM_DBA_ALIGN) != 0 ||
+ (adapter->hw.mac.type >= e1000_82544 && em_rxd > EM_MAX_RXD) ||
+ (adapter->hw.mac.type < e1000_82544 && em_rxd > EM_MAX_RXD_82543) ||
(em_rxd < EM_MIN_RXD)) {
device_printf(dev, "Using %d RX descriptors instead of %d!\n",
EM_DEFAULT_RXD, em_rxd);
@@ -467,43 +553,35 @@
} else
adapter->num_rx_desc = em_rxd;
- adapter->hw.autoneg = DO_AUTO_NEG;
- adapter->hw.wait_autoneg_complete = WAIT_FOR_AUTO_NEG_DEFAULT;
- adapter->hw.autoneg_advertised = AUTONEG_ADV_DEFAULT;
- adapter->hw.tbi_compatibility_en = TRUE;
- adapter->rx_buffer_len = EM_RXBUFFER_2048;
-
- adapter->hw.phy_init_script = 1;
- adapter->hw.phy_reset_disable = FALSE;
+ adapter->hw.mac.autoneg = DO_AUTO_NEG;
+ adapter->hw.phy.autoneg_wait_to_complete = FALSE;
+ adapter->hw.phy.autoneg_advertised = AUTONEG_ADV_DEFAULT;
+ adapter->rx_buffer_len = 2048;
+
+ e1000_init_script_state_82541(&adapter->hw, TRUE);
+ e1000_set_tbi_compatibility_82543(&adapter->hw, TRUE);
+
+ /* Copper options */
+ if (adapter->hw.phy.media_type == e1000_media_type_copper) {
+ adapter->hw.phy.mdix = AUTO_ALL_MODES;
+ adapter->hw.phy.disable_polarity_correction = FALSE;
+ adapter->hw.phy.ms_type = EM_MASTER_SLAVE;
+ }
-#ifndef EM_MASTER_SLAVE
- adapter->hw.master_slave = em_ms_hw_default;
-#else
- adapter->hw.master_slave = EM_MASTER_SLAVE;
-#endif
/*
- * Set the max frame size assuming standard ethernet
- * sized frames.
+ * Set the frame limits assuming
+ * standard ethernet sized frames.
*/
- adapter->hw.max_frame_size = ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN;
-
- adapter->hw.min_frame_size = MINIMUM_ETHERNET_PACKET_SIZE + ETHER_CRC_LEN;
+ adapter->max_frame_size = ETHERMTU + ETHER_HDR_LEN + ETHERNET_FCS_SIZE;
+ adapter->min_frame_size = ETH_ZLEN + ETHERNET_FCS_SIZE;
/*
* This controls when hardware reports transmit completion
* status.
*/
- adapter->hw.report_tx_early = 1;
- if (em_allocate_pci_resources(adapter)) {
- device_printf(dev, "Allocation of PCI resources failed\n");
- error = ENXIO;
- goto err_pci;
- }
-
- /* Initialize eeprom parameters */
- em_init_eeprom_params(&adapter->hw);
+ adapter->hw.mac.report_tx_early = 1;
- tsize = roundup2(adapter->num_tx_desc * sizeof(struct em_tx_desc),
+ tsize = roundup2(adapter->num_tx_desc * sizeof(struct e1000_tx_desc),
EM_DBA_ALIGN);
/* Allocate Transmit Descriptor ring */
@@ -512,9 +590,10 @@
error = ENOMEM;
goto err_tx_desc;
}
- adapter->tx_desc_base = (struct em_tx_desc *)adapter->txdma.dma_vaddr;
+ adapter->tx_desc_base =
+ (struct e1000_tx_desc *)adapter->txdma.dma_vaddr;
- rsize = roundup2(adapter->num_rx_desc * sizeof(struct em_rx_desc),
+ rsize = roundup2(adapter->num_rx_desc * sizeof(struct e1000_rx_desc),
EM_DBA_ALIGN);
/* Allocate Receive Descriptor ring */
@@ -523,7 +602,23 @@
error = ENOMEM;
goto err_rx_desc;
}
- adapter->rx_desc_base = (struct em_rx_desc *)adapter->rxdma.dma_vaddr;
+ adapter->rx_desc_base =
+ (struct e1000_rx_desc *)adapter->rxdma.dma_vaddr;
+
+ /* Make sure we have a good EEPROM before we read from it */
+ if (e1000_validate_nvm_checksum(&adapter->hw) < 0) {
+ /*
+ ** Some PCI-E parts fail the first check due to
+ ** the link being in sleep state, call it again,
+ ** if it fails a second time its a real issue.
+ */
+ if (e1000_validate_nvm_checksum(&adapter->hw) < 0) {
+ device_printf(dev,
+ "The EEPROM Checksum Is Not Valid\n");
+ error = EIO;
+ goto err_hw_init;
+ }
+ }
/* Initialize the hardware */
if (em_hardware_init(adapter)) {
@@ -533,47 +628,132 @@
}
/* Copy the permanent MAC address out of the EEPROM */
- if (em_read_mac_addr(&adapter->hw) < 0) {
+ if (e1000_read_mac_addr(&adapter->hw) < 0) {
device_printf(dev, "EEPROM read error while reading MAC"
" address\n");
error = EIO;
goto err_hw_init;
}
- if (!em_is_valid_ether_addr(adapter->hw.mac_addr)) {
+ if (!em_is_valid_ether_addr(adapter->hw.mac.addr)) {
device_printf(dev, "Invalid MAC address\n");
error = EIO;
goto err_hw_init;
}
+ /* Allocate transmit descriptors and buffers */
+ if (em_allocate_transmit_structures(adapter)) {
+ device_printf(dev, "Could not setup transmit structures\n");
+ error = ENOMEM;
+ goto err_tx_struct;
+ }
+
+ /* Allocate receive descriptors and buffers */
+ if (em_allocate_receive_structures(adapter)) {
+ device_printf(dev, "Could not setup receive structures\n");
+ error = ENOMEM;
+ goto err_rx_struct;
+ }
+
/* Setup OS specific network interface */
em_setup_interface(dev, adapter);
em_allocate_intr(adapter);
/* Initialize statistics */
- em_clear_hw_cntrs(&adapter->hw);
em_update_stats_counters(adapter);
- adapter->hw.get_link_status = 1;
+
+ adapter->hw.mac.get_link_status = 1;
em_update_link_status(adapter);
/* Indicate SOL/IDER usage */
- if (em_check_phy_reset_block(&adapter->hw))
+ if (e1000_check_reset_block(&adapter->hw))
device_printf(dev,
"PHY reset is blocked due to SOL/IDER session.\n");
- /* Identify 82544 on PCIX */
- em_get_bus_info(&adapter->hw);
- if(adapter->hw.bus_type == em_bus_type_pcix && adapter->hw.mac_type == em_82544)
+ /* Determine if we have to control management hardware */
+ adapter->has_manage = e1000_enable_mng_pass_thru(&adapter->hw);
+
+ /*
+ * Setup Wake-on-Lan
+ */
+ switch (adapter->hw.mac.type) {
+
+ case e1000_82542:
+ case e1000_82543:
+ break;
+ case e1000_82546:
+ case e1000_82546_rev_3:
+ case e1000_82571:
+ case e1000_80003es2lan:
+ if (adapter->hw.bus.func == 1)
+ e1000_read_nvm(&adapter->hw,
+ NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
+ else
+ e1000_read_nvm(&adapter->hw,
+ NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
+ eeprom_data &= EM_EEPROM_APME;
+ break;
+ default:
+ /* APME bit in EEPROM is mapped to WUC.APME */
+ eeprom_data = E1000_READ_REG(&adapter->hw, E1000_WUC) &
+ E1000_WUC_APME;
+ break;
+ }
+ if (eeprom_data)
+ adapter->wol = E1000_WUFC_MAG;
+ /*
+ * We have the eeprom settings, now apply the special cases
+ * where the eeprom may be wrong or the board won't support
+ * wake on lan on a particular port
+ */
+ device_id = pci_get_device(dev);
+ switch (device_id) {
+ case E1000_DEV_ID_82546GB_PCIE:
+ adapter->wol = 0;
+ break;
+ case E1000_DEV_ID_82546EB_FIBER:
+ case E1000_DEV_ID_82546GB_FIBER:
+ case E1000_DEV_ID_82571EB_FIBER:
+ /* Wake events only supported on port A for dual fiber
+ * regardless of eeprom setting */
+ if (E1000_READ_REG(&adapter->hw, E1000_STATUS) &
+ E1000_STATUS_FUNC_1)
+ adapter->wol = 0;
+ break;
+ case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
+ case E1000_DEV_ID_82571EB_QUAD_COPPER:
+ case E1000_DEV_ID_82571EB_QUAD_FIBER:
+ case E1000_DEV_ID_82571EB_QUAD_COPPER_LP:
+ /* if quad port adapter, disable WoL on all but port A */
+ if (global_quad_port_a != 0)
+ adapter->wol = 0;
+ /* Reset for multiple quad port adapters */
+ if (++global_quad_port_a == 4)
+ global_quad_port_a = 0;
+ break;
+ }
+
+ /* Do we need workaround for 82544 PCI-X adapter? */
+ if (adapter->hw.bus.type == e1000_bus_type_pcix &&
+ adapter->hw.mac.type == e1000_82544)
adapter->pcix_82544 = TRUE;
else
adapter->pcix_82544 = FALSE;
+ /* Tell the stack that the interface is not active */
+ adapter->ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
+
INIT_DEBUGOUT("em_attach: end");
return (0);
+err_rx_struct:
+ em_free_transmit_structures(adapter);
+err_tx_struct:
err_hw_init:
+ em_release_hw_control(adapter);
+ e1000_remove_device(&adapter->hw);
em_dma_free(adapter, &adapter->rxdma);
err_rx_desc:
em_dma_free(adapter, &adapter->txdma);
@@ -581,7 +761,8 @@
err_pci:
em_free_intr(adapter);
em_free_pci_resources(adapter);
- EM_LOCK_DESTROY(adapter);
+ EM_TX_LOCK_DESTROY(adapter);
+ EM_CORE_LOCK_DESTROY(adapter);
return (error);
}
@@ -604,23 +785,58 @@
INIT_DEBUGOUT("em_detach: begin");
+ /* Make sure VLANS are not using driver */
+#if __FreeBSD_version >= 700000
+ if (adapter->ifp->if_vlantrunk != NULL) {
+#else
+ if (adapter->ifp->if_nvlans != 0) {
+#endif
+ device_printf(dev,"Vlan in use, detach first\n");
+ return (EBUSY);
+ }
+
#ifdef DEVICE_POLLING
if (ifp->if_capenable & IFCAP_POLLING)
ether_poll_deregister(ifp);
#endif
+ em_disable_intr(adapter);
em_free_intr(adapter);
- EM_LOCK(adapter);
+ EM_CORE_LOCK(adapter);
+ EM_TX_LOCK(adapter);
adapter->in_detach = 1;
em_stop(adapter);
- em_phy_hw_reset(&adapter->hw);
- EM_UNLOCK(adapter);
+ e1000_phy_hw_reset(&adapter->hw);
+
+ em_release_manageability(adapter);
+
+ if (((adapter->hw.mac.type == e1000_82573) ||
+ (adapter->hw.mac.type == e1000_ich8lan) ||
+ (adapter->hw.mac.type == e1000_ich9lan)) &&
+ e1000_check_mng_mode(&adapter->hw))
+ em_release_hw_control(adapter);
+
+ if (adapter->wol) {
+ E1000_WRITE_REG(&adapter->hw, E1000_WUC, E1000_WUC_PME_EN);
+ E1000_WRITE_REG(&adapter->hw, E1000_WUFC, adapter->wol);
+ em_enable_wakeup(dev);
+ }
+
ether_ifdetach(adapter->ifp);
+ callout_drain(&adapter->timer);
+ callout_drain(&adapter->tx_fifo_timer);
+
em_free_pci_resources(adapter);
bus_generic_detach(dev);
if_free(ifp);
+ e1000_remove_device(&adapter->hw);
+ em_free_transmit_structures(adapter);
+ em_free_receive_structures(adapter);
+ EM_TX_UNLOCK(adapter);
+ EM_CORE_UNLOCK(adapter);
+
/* Free Transmit Descriptor ring */
if (adapter->tx_desc_base) {
em_dma_free(adapter, &adapter->txdma);
@@ -633,7 +849,8 @@
adapter->rx_desc_base = NULL;
}
- EM_LOCK_DESTROY(adapter);
+ EM_TX_LOCK_DESTROY(adapter);
+ EM_CORE_LOCK_DESTROY(adapter);
return (0);
}
@@ -647,11 +864,7 @@
static int
em_shutdown(device_t dev)
{
- struct adapter *adapter = device_get_softc(dev);
- EM_LOCK(adapter);
- em_stop(adapter);
- EM_UNLOCK(adapter);
- return (0);
+ return em_suspend(dev);
}
/*
@@ -662,9 +875,27 @@
{
struct adapter *adapter = device_get_softc(dev);
- EM_LOCK(adapter);
+ EM_CORE_LOCK(adapter);
+
+ EM_TX_LOCK(adapter);
em_stop(adapter);
- EM_UNLOCK(adapter);
+ EM_TX_UNLOCK(adapter);
+
+ em_release_manageability(adapter);
+
+ if (((adapter->hw.mac.type == e1000_82573) ||
+ (adapter->hw.mac.type == e1000_ich8lan) ||
+ (adapter->hw.mac.type == e1000_ich9lan)) &&
+ e1000_check_mng_mode(&adapter->hw))
+ em_release_hw_control(adapter);
+
+ if (adapter->wol) {
+ E1000_WRITE_REG(&adapter->hw, E1000_WUC, E1000_WUC_PME_EN);
+ E1000_WRITE_REG(&adapter->hw, E1000_WUFC, adapter->wol);
+ em_enable_wakeup(dev);
+ }
+
+ EM_CORE_UNLOCK(adapter);
return bus_generic_suspend(dev);
}
@@ -675,12 +906,15 @@
struct adapter *adapter = device_get_softc(dev);
struct ifnet *ifp = adapter->ifp;
- EM_LOCK(adapter);
+ EM_CORE_LOCK(adapter);
em_init_locked(adapter);
+ em_init_manageability(adapter);
+
if ((ifp->if_flags & IFF_UP) &&
(ifp->if_drv_flags & IFF_DRV_RUNNING))
em_start_locked(ifp);
- EM_UNLOCK(adapter);
+
+ EM_CORE_UNLOCK(adapter);
return bus_generic_resume(dev);
}
@@ -702,7 +936,7 @@
struct adapter *adapter = ifp->if_softc;
struct mbuf *m_head;
- EM_LOCK_ASSERT(adapter);
+ EM_TX_LOCK_ASSERT(adapter);
if ((ifp->if_drv_flags & (IFF_DRV_RUNNING|IFF_DRV_OACTIVE)) !=
IFF_DRV_RUNNING)
@@ -716,10 +950,13 @@
if (m_head == NULL)
break;
/*
- * em_encap() can modify our pointer, and or make it NULL on
- * failure. In that event, we can't requeue.
+ * Encapsulation can modify our pointer, and or make it
+ * NULL on failure. In that event, we can't requeue.
+ *
+ * We now use a pointer to accomodate legacy and
+ * advanced transmit functions.
*/
- if (em_encap(adapter, &m_head)) {
+ if (adapter->em_xmit(adapter, &m_head)) {
if (m_head == NULL)
break;
ifp->if_drv_flags |= IFF_DRV_OACTIVE;
@@ -728,10 +965,10 @@
}
/* Send a copy of the frame to the BPF listener */
- BPF_MTAP(ifp, m_head);
+ ETHER_BPF_MTAP(ifp, m_head);
/* Set timeout in case hardware has problems transmitting. */
- ifp->if_timer = EM_TX_TIMEOUT;
+ adapter->watchdog_timer = EM_TX_TIMEOUT;
}
}
@@ -740,10 +977,10 @@
{
struct adapter *adapter = ifp->if_softc;
- EM_LOCK(adapter);
+ EM_TX_LOCK(adapter);
if (ifp->if_drv_flags & IFF_DRV_RUNNING)
em_start_locked(ifp);
- EM_UNLOCK(adapter);
+ EM_TX_UNLOCK(adapter);
}
/*********************************************************************
@@ -768,7 +1005,6 @@
switch (command) {
case SIOCSIFADDR:
- case SIOCGIFADDR:
if (ifa->ifa_addr->sa_family == AF_INET) {
/*
* XXX
@@ -779,9 +1015,9 @@
*/
ifp->if_flags |= IFF_UP;
if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
- EM_LOCK(adapter);
+ EM_CORE_LOCK(adapter);
em_init_locked(adapter);
- EM_UNLOCK(adapter);
+ EM_CORE_UNLOCK(adapter);
}
arp_ifinit(ifp, ifa);
} else
@@ -794,27 +1030,30 @@
IOCTL_DEBUGOUT("ioctl rcv'd: SIOCSIFMTU (Set Interface MTU)");
- EM_LOCK(adapter);
- switch (adapter->hw.mac_type) {
- case em_82573:
+ EM_CORE_LOCK(adapter);
+ switch (adapter->hw.mac.type) {
+ case e1000_82573:
/*
* 82573 only supports jumbo frames
* if ASPM is disabled.
*/
- em_read_eeprom(&adapter->hw, EEPROM_INIT_3GIO_3, 1,
- &eeprom_data);
- if (eeprom_data & EEPROM_WORD1A_ASPM_MASK) {
+ e1000_read_nvm(&adapter->hw,
+ NVM_INIT_3GIO_3, 1, &eeprom_data);
+ if (eeprom_data & NVM_WORD1A_ASPM_MASK) {
max_frame_size = ETHER_MAX_LEN;
break;
}
/* Allow Jumbo frames - fall thru */
- case em_82571:
- case em_82572:
- case em_80003es2lan: /* Limit Jumbo Frame size */
+ case e1000_82571:
+ case e1000_82572:
+ case e1000_ich9lan:
+ case e1000_82575:
+ case e1000_80003es2lan: /* Limit Jumbo Frame size */
max_frame_size = 9234;
break;
- case em_ich8lan:
- /* ICH8 does not support jumbo frames */
+ /* Adapters that do not support jumbo frames */
+ case e1000_82542:
+ case e1000_ich8lan:
max_frame_size = ETHER_MAX_LEN;
break;
default:
@@ -822,21 +1061,22 @@
}
if (ifr->ifr_mtu > max_frame_size - ETHER_HDR_LEN -
ETHER_CRC_LEN) {
- EM_UNLOCK(adapter);
+ EM_CORE_UNLOCK(adapter);
error = EINVAL;
break;
}
ifp->if_mtu = ifr->ifr_mtu;
- adapter->hw.max_frame_size =
- ifp->if_mtu + ETHER_HDR_LEN + ETHER_CRC_LEN;
+ adapter->max_frame_size =
+ ifp->if_mtu + ETHER_HDR_LEN + ETHER_CRC_LEN;
em_init_locked(adapter);
- EM_UNLOCK(adapter);
+ EM_CORE_UNLOCK(adapter);
break;
}
case SIOCSIFFLAGS:
- IOCTL_DEBUGOUT("ioctl rcv'd: SIOCSIFFLAGS (Set Interface Flags)");
- EM_LOCK(adapter);
+ IOCTL_DEBUGOUT("ioctl rcv'd:\
+ SIOCSIFFLAGS (Set Interface Flags)");
+ EM_CORE_LOCK(adapter);
if (ifp->if_flags & IFF_UP) {
if ((ifp->if_drv_flags & IFF_DRV_RUNNING)) {
if ((ifp->if_flags ^ adapter->if_flags) &
@@ -846,34 +1086,46 @@
}
} else
em_init_locked(adapter);
- } else {
+ } else
if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
+ EM_TX_LOCK(adapter);
em_stop(adapter);
+ EM_TX_UNLOCK(adapter);
}
- }
adapter->if_flags = ifp->if_flags;
- EM_UNLOCK(adapter);
+ EM_CORE_UNLOCK(adapter);
break;
case SIOCADDMULTI:
case SIOCDELMULTI:
IOCTL_DEBUGOUT("ioctl rcv'd: SIOC(ADD|DEL)MULTI");
if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
- EM_LOCK(adapter);
+ EM_CORE_LOCK(adapter);
em_disable_intr(adapter);
em_set_multi(adapter);
- if (adapter->hw.mac_type == em_82542_rev2_0) {
+ if (adapter->hw.mac.type == e1000_82542 &&
+ adapter->hw.revision_id == E1000_REVISION_2) {
em_initialize_receive_unit(adapter);
}
#ifdef DEVICE_POLLING
if (!(ifp->if_capenable & IFCAP_POLLING))
#endif
em_enable_intr(adapter);
- EM_UNLOCK(adapter);
+ EM_CORE_UNLOCK(adapter);
}
break;
case SIOCSIFMEDIA:
+ /* Check SOL/IDER usage */
+ EM_CORE_LOCK(adapter);
+ if (e1000_check_reset_block(&adapter->hw)) {
+ EM_CORE_UNLOCK(adapter);
+ device_printf(adapter->dev, "Media change is"
+ " blocked due to SOL/IDER session.\n");
+ break;
+ }
+ EM_CORE_UNLOCK(adapter);
case SIOCGIFMEDIA:
- IOCTL_DEBUGOUT("ioctl rcv'd: SIOCxIFMEDIA (Get/Set Interface Media)");
+ IOCTL_DEBUGOUT("ioctl rcv'd: \
+ SIOCxIFMEDIA (Get/Set Interface Media)");
error = ifmedia_ioctl(ifp, ifr, &adapter->media, command);
break;
case SIOCSIFCAP:
@@ -889,17 +1141,17 @@
error = ether_poll_register(em_poll, ifp);
if (error)
return (error);
- EM_LOCK(adapter);
+ EM_CORE_LOCK(adapter);
em_disable_intr(adapter);
ifp->if_capenable |= IFCAP_POLLING;
- EM_UNLOCK(adapter);
+ EM_CORE_UNLOCK(adapter);
} else {
error = ether_poll_deregister(ifp);
/* Enable interrupt even in error case */
- EM_LOCK(adapter);
+ EM_CORE_LOCK(adapter);
em_enable_intr(adapter);
ifp->if_capenable &= ~IFCAP_POLLING;
- EM_UNLOCK(adapter);
+ EM_CORE_UNLOCK(adapter);
}
}
#endif
@@ -907,12 +1159,21 @@
ifp->if_capenable ^= IFCAP_HWCSUM;
reinit = 1;
}
+#if __FreeBSD_version >= 700000
+ if (mask & IFCAP_TSO4) {
+ ifp->if_capenable ^= IFCAP_TSO4;
+ reinit = 1;
+ }
+#endif
if (mask & IFCAP_VLAN_HWTAGGING) {
ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
reinit = 1;
}
if (reinit && (ifp->if_drv_flags & IFF_DRV_RUNNING))
em_init(adapter);
+#if __FreeBSD_version >= 700000
+ VLAN_CAPABILITIES(ifp);
+#endif
break;
}
default:
@@ -924,35 +1185,46 @@
}
/*********************************************************************
- * Watchdog entry point
+ * Watchdog timer:
*
- * This routine is called whenever hardware quits transmitting.
+ * This routine is called from the local timer every second.
+ * As long as transmit descriptors are being cleaned the value
+ * is non-zero and we do nothing. Reaching 0 indicates a tx hang
+ * and we then reset the device.
*
**********************************************************************/
static void
-em_watchdog(struct ifnet *ifp)
+em_watchdog(struct adapter *adapter)
{
- struct adapter *adapter = ifp->if_softc;
- EM_LOCK(adapter);
+ EM_CORE_LOCK_ASSERT(adapter);
+
+ /*
+ ** The timer is set to 5 every time start queues a packet.
+ ** Then txeof keeps resetting it as long as it cleans at
+ ** least one descriptor.
+ ** Finally, anytime all descriptors are clean the timer is
+ ** set to 0.
+ */
+ if ((adapter->watchdog_timer == 0) || (--adapter->watchdog_timer))
+ return;
+
/* If we are in this routine because of pause frames, then
* don't reset the hardware.
*/
- if (E1000_READ_REG(&adapter->hw, STATUS) & E1000_STATUS_TXOFF) {
- ifp->if_timer = EM_TX_TIMEOUT;
- EM_UNLOCK(adapter);
+ if (E1000_READ_REG(&adapter->hw, E1000_STATUS) &
+ E1000_STATUS_TXOFF) {
+ adapter->watchdog_timer = EM_TX_TIMEOUT;
return;
}
- if (em_check_for_link(&adapter->hw) == 0)
+ if (e1000_check_for_link(&adapter->hw) == 0)
device_printf(adapter->dev, "watchdog timeout -- resetting\n");
-
- ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
+ adapter->ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
adapter->watchdog_events++;
em_init_locked(adapter);
- EM_UNLOCK(adapter);
}
/*********************************************************************
@@ -975,9 +1247,11 @@
INIT_DEBUGOUT("em_init: begin");
- EM_LOCK_ASSERT(adapter);
+ EM_CORE_LOCK_ASSERT(adapter);
+ EM_TX_LOCK(adapter);
em_stop(adapter);
+ EM_TX_UNLOCK(adapter);
/*
* Packet Buffer Allocation (PBA)
@@ -990,42 +1264,64 @@
* Default allocation: PBA=30K for Rx, leaving 10K for Tx.
* Note: default does not leave enough room for Jumbo Frame >10k.
*/
- switch (adapter->hw.mac_type) {
- case em_82547:
- case em_82547_rev_2: /* 82547: Total Packet Buffer is 40K */
- if (adapter->hw.max_frame_size > EM_RXBUFFER_8192)
+ switch (adapter->hw.mac.type) {
+ case e1000_82547:
+ case e1000_82547_rev_2: /* 82547: Total Packet Buffer is 40K */
+ if (adapter->max_frame_size > 8192)
pba = E1000_PBA_22K; /* 22K for Rx, 18K for Tx */
else
pba = E1000_PBA_30K; /* 30K for Rx, 10K for Tx */
adapter->tx_fifo_head = 0;
adapter->tx_head_addr = pba << EM_TX_HEAD_ADDR_SHIFT;
- adapter->tx_fifo_size = (E1000_PBA_40K - pba) << EM_PBA_BYTES_SHIFT;
+ adapter->tx_fifo_size =
+ (E1000_PBA_40K - pba) << EM_PBA_BYTES_SHIFT;
break;
- case em_80003es2lan: /* 80003es2lan: Total Packet Buffer is 48K */
- case em_82571: /* 82571: Total Packet Buffer is 48K */
- case em_82572: /* 82572: Total Packet Buffer is 48K */
+ /* Total Packet Buffer on these is 48K */
+ case e1000_82571:
+ case e1000_82572:
+ case e1000_82575:
+ case e1000_80003es2lan:
pba = E1000_PBA_32K; /* 32K for Rx, 16K for Tx */
break;
- case em_82573: /* 82573: Total Packet Buffer is 32K */
- /* Jumbo frames not supported */
+ case e1000_82573: /* 82573: Total Packet Buffer is 32K */
pba = E1000_PBA_12K; /* 12K for Rx, 20K for Tx */
break;
- case em_ich8lan:
+ case e1000_ich9lan:
+#define E1000_PBA_10K 0x000A
+ pba = E1000_PBA_10K;
+ break;
+ case e1000_ich8lan:
pba = E1000_PBA_8K;
break;
default:
/* Devices before 82547 had a Packet Buffer of 64K. */
- if(adapter->hw.max_frame_size > EM_RXBUFFER_8192)
+ if (adapter->max_frame_size > 8192)
pba = E1000_PBA_40K; /* 40K for Rx, 24K for Tx */
else
pba = E1000_PBA_48K; /* 48K for Rx, 16K for Tx */
}
INIT_DEBUGOUT1("em_init: pba=%dK",pba);
- E1000_WRITE_REG(&adapter->hw, PBA, pba);
+ E1000_WRITE_REG(&adapter->hw, E1000_PBA, pba);
/* Get the latest mac address, User can use a LAA */
- bcopy(IF_LLADDR(adapter->ifp), adapter->hw.mac_addr, ETHER_ADDR_LEN);
+ bcopy(IF_LLADDR(adapter->ifp), adapter->hw.mac.addr,
+ ETHER_ADDR_LEN);
+
+ /* Put the address into the Receive Address Array */
+ e1000_rar_set(&adapter->hw, adapter->hw.mac.addr, 0);
+
+ /*
+ * With the 82571 adapter, RAR[0] may be overwritten
+ * when the other port is reset, we make a duplicate
+ * in RAR[14] for that eventuality, this assures
+ * the interface continues to function.
+ */
+ if (adapter->hw.mac.type == e1000_82571) {
+ e1000_set_laa_state_82571(&adapter->hw, TRUE);
+ e1000_rar_set(&adapter->hw, adapter->hw.mac.addr,
+ E1000_RAR_ENTRIES - 1);
+ }
/* Initialize the hardware */
if (em_hardware_init(adapter)) {
@@ -1034,15 +1330,27 @@
}
em_update_link_status(adapter);
+ /* Setup VLAN support, basic and offload if available */
+ E1000_WRITE_REG(&adapter->hw, E1000_VET, ETHERTYPE_VLAN);
if (ifp->if_capenable & IFCAP_VLAN_HWTAGGING)
- em_enable_vlans(adapter);
+ em_enable_hw_vlans(adapter);
- /* Prepare transmit descriptors and buffers */
- if (em_setup_transmit_structures(adapter)) {
- device_printf(dev, "Could not setup transmit structures\n");
- em_stop(adapter);
- return;
+ /* Set hardware offload abilities */
+ ifp->if_hwassist = 0;
+ if (adapter->hw.mac.type >= e1000_82543) {
+ if (ifp->if_capenable & IFCAP_TXCSUM)
+ ifp->if_hwassist |= (CSUM_TCP | CSUM_UDP);
+#if __FreeBSD_version >= 700000
+ if (ifp->if_capenable & IFCAP_TSO4)
+ ifp->if_hwassist |= CSUM_TSO;
+#endif
}
+
+ /* Configure for OS presence */
+ em_init_manageability(adapter);
+
+ /* Prepare transmit descriptors and buffers */
+ em_setup_transmit_structures(adapter);
em_initialize_transmit_unit(adapter);
/* Setup Multicast table */
@@ -1051,7 +1359,9 @@
/* Prepare receive descriptors and buffers */
if (em_setup_receive_structures(adapter)) {
device_printf(dev, "Could not setup receive structures\n");
+ EM_TX_LOCK(adapter);
em_stop(adapter);
+ EM_TX_UNLOCK(adapter);
return;
}
em_initialize_receive_unit(adapter);
@@ -1062,15 +1372,9 @@
ifp->if_drv_flags |= IFF_DRV_RUNNING;
ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
- if (adapter->hw.mac_type >= em_82543) {
- if (ifp->if_capenable & IFCAP_TXCSUM)
- ifp->if_hwassist = EM_CHECKSUM_FEATURES;
- else
- ifp->if_hwassist = 0;
- }
-
callout_reset(&adapter->timer, hz, em_local_timer, adapter);
- em_clear_hw_cntrs(&adapter->hw);
+ e1000_clear_hw_cntrs_base_generic(&adapter->hw);
+
#ifdef DEVICE_POLLING
/*
* Only enable interrupts if we are not polling, make sure
@@ -1083,7 +1387,7 @@
em_enable_intr(adapter);
/* Don't reset the phy next time init gets called */
- adapter->hw.phy_reset_disable = TRUE;
+ adapter->hw.phy.reset_disable = TRUE;
}
static void
@@ -1091,16 +1395,16 @@
{
struct adapter *adapter = arg;
- EM_LOCK(adapter);
+ EM_CORE_LOCK(adapter);
em_init_locked(adapter);
- EM_UNLOCK(adapter);
+ EM_CORE_UNLOCK(adapter);
}
#ifdef DEVICE_POLLING
/*********************************************************************
*
- * Legacy polling routine
+ * Legacy polling routine
*
*********************************************************************/
static void
@@ -1109,35 +1413,42 @@
struct adapter *adapter = ifp->if_softc;
uint32_t reg_icr;
- EM_LOCK(adapter);
+ EM_CORE_LOCK(adapter);
if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
- EM_UNLOCK(adapter);
+ EM_CORE_UNLOCK(adapter);
return;
}
if (cmd == POLL_AND_CHECK_STATUS) {
- reg_icr = E1000_READ_REG(&adapter->hw, ICR);
+ reg_icr = E1000_READ_REG(&adapter->hw, E1000_ICR);
if (reg_icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
callout_stop(&adapter->timer);
- adapter->hw.get_link_status = 1;
- em_check_for_link(&adapter->hw);
+ adapter->hw.mac.get_link_status = 1;
+ e1000_check_for_link(&adapter->hw);
em_update_link_status(adapter);
- callout_reset(&adapter->timer, hz, em_local_timer, adapter);
+ callout_reset(&adapter->timer, hz,
+ em_local_timer, adapter);
}
}
em_rxeof(adapter, count);
+ EM_CORE_UNLOCK(adapter);
+
+ EM_TX_LOCK(adapter);
em_txeof(adapter);
if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
em_start_locked(ifp);
- EM_UNLOCK(adapter);
+ EM_TX_UNLOCK(adapter);
}
+#endif /* DEVICE_POLLING */
+#ifndef EM_FAST_IRQ
/*********************************************************************
*
- * Legacy Interrupt Service routine
+ * Legacy Interrupt Service routine
*
*********************************************************************/
+
static void
em_intr(void *arg)
{
@@ -1145,19 +1456,19 @@
struct ifnet *ifp;
uint32_t reg_icr;
- EM_LOCK(adapter);
-
+ EM_CORE_LOCK(adapter);
ifp = adapter->ifp;
if (ifp->if_capenable & IFCAP_POLLING) {
- EM_UNLOCK(adapter);
+ EM_CORE_UNLOCK(adapter);
return;
}
for (;;) {
- reg_icr = E1000_READ_REG(&adapter->hw, ICR);
- if (adapter->hw.mac_type >= em_82571 &&
- (reg_icr & E1000_ICR_INT_ASSERTED) == 0)
+ reg_icr = E1000_READ_REG(&adapter->hw, E1000_ICR);
+
+ if (adapter->hw.mac.type >= e1000_82571 &&
+ (reg_icr & E1000_ICR_INT_ASSERTED) == 0)
break;
else if (reg_icr == 0)
break;
@@ -1173,30 +1484,34 @@
if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
em_rxeof(adapter, -1);
+ EM_TX_LOCK(adapter);
em_txeof(adapter);
+ EM_TX_UNLOCK(adapter);
}
/* Link status change */
if (reg_icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
callout_stop(&adapter->timer);
- adapter->hw.get_link_status = 1;
- em_check_for_link(&adapter->hw);
+ adapter->hw.mac.get_link_status = 1;
+ e1000_check_for_link(&adapter->hw);
em_update_link_status(adapter);
- callout_reset(&adapter->timer, hz, em_local_timer, adapter);
+ /* Deal with TX cruft when link lost */
+ em_tx_purge(adapter);
+ callout_reset(&adapter->timer, hz,
+ em_local_timer, adapter);
}
if (reg_icr & E1000_ICR_RXO)
adapter->rx_overruns++;
}
+ EM_CORE_UNLOCK(adapter);
if (ifp->if_drv_flags & IFF_DRV_RUNNING &&
!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
- em_start_locked(ifp);
-
- EM_UNLOCK(adapter);
+ em_start(ifp);
}
-#else /* if not DEVICE_POLLING, then fast interrupt routines only */
+#else /* EM_FAST_IRQ, then fast interrupt routines only */
static void
em_handle_link(void *context, int pending)
@@ -1206,16 +1521,29 @@
ifp = adapter->ifp;
- EM_LOCK(adapter);
+ EM_CORE_LOCK(adapter);
+ if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
+ EM_CORE_UNLOCK(adapter);
+ return;
+ }
callout_stop(&adapter->timer);
- adapter->hw.get_link_status = 1;
- em_check_for_link(&adapter->hw);
+ adapter->hw.mac.get_link_status = 1;
+ e1000_check_for_link(&adapter->hw);
em_update_link_status(adapter);
+ /* Deal with TX cruft when link lost */
+ em_tx_purge(adapter);
callout_reset(&adapter->timer, hz, em_local_timer, adapter);
- EM_UNLOCK(adapter);
+ EM_CORE_UNLOCK(adapter);
}
+#if __FreeBSD_version >= 700000
+#if !defined(NET_LOCK_GIANT)
+#define NET_LOCK_GIANT()
+#define NET_UNLOCK_GIANT()
+#endif
+#endif
+
static void
em_handle_rxtx(void *context, int pending)
{
@@ -1232,12 +1560,12 @@
if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
if (em_rxeof(adapter, adapter->rx_process_limit) != 0)
taskqueue_enqueue(adapter->tq, &adapter->rxtx_task);
- EM_LOCK(adapter);
+ EM_TX_LOCK(adapter);
em_txeof(adapter);
if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
em_start_locked(ifp);
- EM_UNLOCK(adapter);
+ EM_TX_UNLOCK(adapter);
}
em_enable_intr(adapter);
@@ -1246,10 +1574,16 @@
/*********************************************************************
*
- * Fast Interrupt Service routine
+ * Fast Interrupt Service routine
*
*********************************************************************/
+#if __FreeBSD_version < 700000
+#define FILTER_STRAY
+#define FILTER_HANDLED
static void
+#else
+static int
+#endif
em_intr_fast(void *arg)
{
struct adapter *adapter = arg;
@@ -1258,23 +1592,23 @@
ifp = adapter->ifp;
- reg_icr = E1000_READ_REG(&adapter->hw, ICR);
+ reg_icr = E1000_READ_REG(&adapter->hw, E1000_ICR);
/* Hot eject? */
if (reg_icr == 0xffffffff)
- return;
+ return FILTER_STRAY;
/* Definitely not our interrupt. */
if (reg_icr == 0x0)
- return;
+ return FILTER_STRAY;
/*
* Starting with the 82571 chip, bit 31 should be used to
* determine whether the interrupt belongs to us.
*/
- if (adapter->hw.mac_type >= em_82571 &&
+ if (adapter->hw.mac.type >= e1000_82571 &&
(reg_icr & E1000_ICR_INT_ASSERTED) == 0)
- return;
+ return FILTER_STRAY;
/*
* Mask interrupts until the taskqueue is finished running. This is
@@ -1290,8 +1624,9 @@
if (reg_icr & E1000_ICR_RXO)
adapter->rx_overruns++;
+ return FILTER_HANDLED;
}
-#endif /* ! DEVICE_POLLING */
+#endif /* EM_FAST_IRQ */
/*********************************************************************
*
@@ -1305,26 +1640,29 @@
em_media_status(struct ifnet *ifp, struct ifmediareq *ifmr)
{
struct adapter *adapter = ifp->if_softc;
+ u_char fiber_type = IFM_1000_SX;
INIT_DEBUGOUT("em_media_status: begin");
- em_check_for_link(&adapter->hw);
+ EM_CORE_LOCK(adapter);
+ e1000_check_for_link(&adapter->hw);
em_update_link_status(adapter);
ifmr->ifm_status = IFM_AVALID;
ifmr->ifm_active = IFM_ETHER;
- if (!adapter->link_active)
+ if (!adapter->link_active) {
+ EM_CORE_UNLOCK(adapter);
return;
+ }
ifmr->ifm_status |= IFM_ACTIVE;
- if ((adapter->hw.media_type == em_media_type_fiber) ||
- (adapter->hw.media_type == em_media_type_internal_serdes)) {
- if (adapter->hw.mac_type == em_82545)
- ifmr->ifm_active |= IFM_1000_LX | IFM_FDX;
- else
- ifmr->ifm_active |= IFM_1000_SX | IFM_FDX;
+ if ((adapter->hw.phy.media_type == e1000_media_type_fiber) ||
+ (adapter->hw.phy.media_type == e1000_media_type_internal_serdes)) {
+ if (adapter->hw.mac.type == e1000_82545)
+ fiber_type = IFM_1000_LX;
+ ifmr->ifm_active |= fiber_type | IFM_FDX;
} else {
switch (adapter->link_speed) {
case 10:
@@ -1342,6 +1680,7 @@
else
ifmr->ifm_active |= IFM_HDX;
}
+ EM_CORE_UNLOCK(adapter);
}
/*********************************************************************
@@ -1363,32 +1702,33 @@
if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
return (EINVAL);
+ EM_CORE_LOCK(adapter);
switch (IFM_SUBTYPE(ifm->ifm_media)) {
case IFM_AUTO:
- adapter->hw.autoneg = DO_AUTO_NEG;
- adapter->hw.autoneg_advertised = AUTONEG_ADV_DEFAULT;
+ adapter->hw.mac.autoneg = DO_AUTO_NEG;
+ adapter->hw.phy.autoneg_advertised = AUTONEG_ADV_DEFAULT;
break;
case IFM_1000_LX:
case IFM_1000_SX:
case IFM_1000_T:
- adapter->hw.autoneg = DO_AUTO_NEG;
- adapter->hw.autoneg_advertised = ADVERTISE_1000_FULL;
+ adapter->hw.mac.autoneg = DO_AUTO_NEG;
+ adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
break;
case IFM_100_TX:
- adapter->hw.autoneg = FALSE;
- adapter->hw.autoneg_advertised = 0;
+ adapter->hw.mac.autoneg = FALSE;
+ adapter->hw.phy.autoneg_advertised = 0;
if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX)
- adapter->hw.forced_speed_duplex = em_100_full;
+ adapter->hw.mac.forced_speed_duplex = ADVERTISE_100_FULL;
else
- adapter->hw.forced_speed_duplex = em_100_half;
+ adapter->hw.mac.forced_speed_duplex = ADVERTISE_100_HALF;
break;
case IFM_10_T:
- adapter->hw.autoneg = FALSE;
- adapter->hw.autoneg_advertised = 0;
+ adapter->hw.mac.autoneg = FALSE;
+ adapter->hw.phy.autoneg_advertised = 0;
if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX)
- adapter->hw.forced_speed_duplex = em_10_full;
+ adapter->hw.mac.forced_speed_duplex = ADVERTISE_10_FULL;
else
- adapter->hw.forced_speed_duplex = em_10_half;
+ adapter->hw.mac.forced_speed_duplex = ADVERTISE_10_HALF;
break;
default:
device_printf(adapter->dev, "Unsupported media type\n");
@@ -1397,9 +1737,10 @@
/* As the speed/duplex settings my have changed we need to
* reset the PHY.
*/
- adapter->hw.phy_reset_disable = FALSE;
+ adapter->hw.phy.reset_disable = FALSE;
- em_init(adapter);
+ em_init_locked(adapter);
+ EM_CORE_UNLOCK(adapter);
return (0);
}
@@ -1410,136 +1751,161 @@
*
* return 0 on success, positive on failure
**********************************************************************/
+
static int
em_encap(struct adapter *adapter, struct mbuf **m_headp)
{
- struct ifnet *ifp = adapter->ifp;
bus_dma_segment_t segs[EM_MAX_SCATTER];
bus_dmamap_t map;
- struct em_buffer *tx_buffer, *tx_buffer_last;
- struct em_tx_desc *current_tx_desc;
+ struct em_buffer *tx_buffer, *tx_buffer_mapped;
+ struct e1000_tx_desc *ctxd = NULL;
struct mbuf *m_head;
- struct m_tag *mtag;
uint32_t txd_upper, txd_lower, txd_used, txd_saved;
- int nsegs, i, j;
- int error;
-
+ int nsegs, i, j, first, last = 0;
+ int error, do_tso, tso_desc = 0;
+#if __FreeBSD_version < 700000
+ struct m_tag *mtag;
+#endif
m_head = *m_headp;
- current_tx_desc = NULL;
- txd_used = txd_saved = 0;
+ txd_upper = txd_lower = txd_used = txd_saved = 0;
- /*
- * Force a cleanup if number of TX descriptors
- * available hits the threshold.
- */
+#if __FreeBSD_version >= 700000
+ do_tso = ((m_head->m_pkthdr.csum_flags & CSUM_TSO) != 0);
+#else
+ do_tso = 0;
+#endif
+
+ /*
+ * Force a cleanup if number of TX descriptors
+ * available hits the threshold
+ */
if (adapter->num_tx_desc_avail <= EM_TX_CLEANUP_THRESHOLD) {
em_txeof(adapter);
- if (adapter->num_tx_desc_avail <= EM_TX_CLEANUP_THRESHOLD) {
+ /* Now do we at least have a minimal? */
+ if (adapter->num_tx_desc_avail <= EM_TX_OP_THRESHOLD) {
adapter->no_tx_desc_avail1++;
return (ENOBUFS);
}
}
- /* Find out if we are in vlan mode. */
- mtag = VLAN_OUTPUT_TAG(ifp, m_head);
/*
- * When operating in promiscuous mode, hardware encapsulation for
- * packets is disabled. This means we have to add the vlan
- * encapsulation in the driver, since it will have come down from the
- * VLAN layer with a tag instead of a VLAN header.
+ * TSO workaround:
+ * If an mbuf is only header we need
+ * to pull 4 bytes of data into it.
*/
- if (mtag != NULL && adapter->em_insert_vlan_header) {
- struct ether_vlan_header *evl;
- struct ether_header eh;
-
- m_head = m_pullup(m_head, sizeof(eh));
- if (m_head == NULL) {
- *m_headp = NULL;
- return (ENOBUFS);
- }
- eh = *mtod(m_head, struct ether_header *);
- M_PREPEND(m_head, sizeof(*evl), M_DONTWAIT);
- if (m_head == NULL) {
- *m_headp = NULL;
- return (ENOBUFS);
- }
- m_head = m_pullup(m_head, sizeof(*evl));
- if (m_head == NULL) {
- *m_headp = NULL;
- return (ENOBUFS);
- }
- evl = mtod(m_head, struct ether_vlan_header *);
- bcopy(&eh, evl, sizeof(*evl));
- evl->evl_proto = evl->evl_encap_proto;
- evl->evl_encap_proto = htons(ETHERTYPE_VLAN);
- evl->evl_tag = htons(VLAN_TAG_VALUE(mtag));
- m_tag_delete(m_head, mtag);
- mtag = NULL;
+ if (do_tso && (m_head->m_len <= M_TSO_LEN)) {
+ m_head = m_pullup(m_head, M_TSO_LEN + 4);
*m_headp = m_head;
+ if (m_head == NULL)
+ return (ENOBUFS);
}
/*
- * Map the packet for DMA.
+ * Map the packet for DMA
+ *
+ * Capture the first descriptor index,
+ * this descriptor will have the index
+ * of the EOP which is the only one that
+ * now gets a DONE bit writeback.
*/
- tx_buffer = &adapter->tx_buffer_area[adapter->next_avail_tx_desc];
- tx_buffer_last = tx_buffer;
+ first = adapter->next_avail_tx_desc;
+ tx_buffer = &adapter->tx_buffer_area[first];
+ tx_buffer_mapped = tx_buffer;
map = tx_buffer->map;
- error = bus_dmamap_load_mbuf_sg(adapter->txtag, map, *m_headp, segs,
- &nsegs, BUS_DMA_NOWAIT);
+
+ error = bus_dmamap_load_mbuf_sg(adapter->txtag, map,
+ *m_headp, segs, &nsegs, BUS_DMA_NOWAIT);
+
+ /*
+ * There are two types of errors we can (try) to handle:
+ * - EFBIG means the mbuf chain was too long and bus_dma ran
+ * out of segments. Defragment the mbuf chain and try again.
+ * - ENOMEM means bus_dma could not obtain enough bounce buffers
+ * at this point in time. Defer sending and try again later.
+ * All other errors, in particular EINVAL, are fatal and prevent the
+ * mbuf chain from ever going through. Drop it and report error.
+ */
if (error == EFBIG) {
struct mbuf *m;
m = m_defrag(*m_headp, M_DONTWAIT);
if (m == NULL) {
- /* Assume m_defrag(9) used only m_get(9). */
adapter->mbuf_alloc_failed++;
m_freem(*m_headp);
*m_headp = NULL;
return (ENOBUFS);
}
*m_headp = m;
- error = bus_dmamap_load_mbuf_sg(adapter->txtag, map, *m_headp,
- segs, &nsegs, BUS_DMA_NOWAIT);
- if (error != 0) {
+
+ /* Try it again */
+ error = bus_dmamap_load_mbuf_sg(adapter->txtag, map,
+ *m_headp, segs, &nsegs, BUS_DMA_NOWAIT);
+
+ if (error == ENOMEM) {
+ adapter->no_tx_dma_setup++;
+ return (error);
+ } else if (error != 0) {
adapter->no_tx_dma_setup++;
m_freem(*m_headp);
*m_headp = NULL;
return (error);
}
- } else if (error != 0) {
+ } else if (error == ENOMEM) {
adapter->no_tx_dma_setup++;
return (error);
- }
- if (nsegs == 0) {
+ } else if (error != 0) {
+ adapter->no_tx_dma_setup++;
m_freem(*m_headp);
*m_headp = NULL;
- return (EIO);
+ return (error);
}
- if (nsegs > adapter->num_tx_desc_avail) {
- adapter->no_tx_desc_avail2++;
- bus_dmamap_unload(adapter->txtag, map);
- return (ENOBUFS);
+ /*
+ * TSO Hardware workaround, if this packet is not
+ * TSO, and is only a single descriptor long, and
+ * it follows a TSO burst, then we need to add a
+ * sentinel descriptor to prevent premature writeback.
+ */
+ if ((do_tso == 0) && (adapter->tx_tso == TRUE)) {
+ if (nsegs == 1)
+ tso_desc = TRUE;
+ adapter->tx_tso = FALSE;
}
+ if (nsegs > (adapter->num_tx_desc_avail - 2)) {
+ adapter->no_tx_desc_avail2++;
+ bus_dmamap_unload(adapter->txtag, map);
+ return (ENOBUFS);
+ }
m_head = *m_headp;
- if (ifp->if_hwassist > 0)
- em_transmit_checksum_setup(adapter, m_head, &txd_upper, &txd_lower);
- else
- txd_upper = txd_lower = 0;
+
+ /* Do hardware assists */
+#if __FreeBSD_version >= 700000
+ if (m_head->m_pkthdr.csum_flags & CSUM_TSO) {
+ error = em_tso_setup(adapter, m_head, &txd_upper, &txd_lower);
+ if (error != TRUE)
+ return (ENXIO); /* something foobar */
+ /* we need to make a final sentinel transmit desc */
+ tso_desc = TRUE;
+ } else
+#endif
+ if (m_head->m_pkthdr.csum_flags & CSUM_OFFLOAD)
+ em_transmit_checksum_setup(adapter, m_head,
+ &txd_upper, &txd_lower);
i = adapter->next_avail_tx_desc;
- if (adapter->pcix_82544) {
+ if (adapter->pcix_82544)
txd_saved = i;
- txd_used = 0;
- }
+
+ /* Set up our transmit descriptors */
for (j = 0; j < nsegs; j++) {
- /* If adapter is 82544 and on PCIX bus. */
+ bus_size_t seg_len;
+ bus_addr_t seg_addr;
+ /* If adapter is 82544 and on PCIX bus */
if(adapter->pcix_82544) {
DESC_ARRAY desc_array;
uint32_t array_elements, counter;
-
/*
* Check the Address and Length combination and
* split the data accordingly
@@ -1554,72 +1920,131 @@
return (ENOBUFS);
}
tx_buffer = &adapter->tx_buffer_area[i];
- current_tx_desc = &adapter->tx_desc_base[i];
- current_tx_desc->buffer_addr = htole64(
- desc_array.descriptor[counter].address);
- current_tx_desc->lower.data = htole32(
- (adapter->txd_cmd | txd_lower |
- (uint16_t)desc_array.descriptor[counter].length));
- current_tx_desc->upper.data = htole32((txd_upper));
+ ctxd = &adapter->tx_desc_base[i];
+ ctxd->buffer_addr = htole64(
+ desc_array.descriptor[counter].address);
+ ctxd->lower.data = htole32(
+ (adapter->txd_cmd | txd_lower | (uint16_t)
+ desc_array.descriptor[counter].length));
+ ctxd->upper.data =
+ htole32((txd_upper));
+ last = i;
if (++i == adapter->num_tx_desc)
- i = 0;
-
+ i = 0;
tx_buffer->m_head = NULL;
+ tx_buffer->next_eop = -1;
txd_used++;
- }
+ }
} else {
tx_buffer = &adapter->tx_buffer_area[i];
- current_tx_desc = &adapter->tx_desc_base[i];
-
- current_tx_desc->buffer_addr = htole64(segs[j].ds_addr);
- current_tx_desc->lower.data = htole32(
- adapter->txd_cmd | txd_lower | segs[j].ds_len);
- current_tx_desc->upper.data = htole32(txd_upper);
-
- if (++i == adapter->num_tx_desc)
- i = 0;
-
+ ctxd = &adapter->tx_desc_base[i];
+ seg_addr = segs[j].ds_addr;
+ seg_len = segs[j].ds_len;
+ /*
+ ** TSO Workaround:
+ ** If this is the last descriptor, we want to
+ ** split it so we have a small final sentinel
+ */
+ if (tso_desc && (j == (nsegs -1)) && (seg_len > 8)) {
+ seg_len -= 4;
+ ctxd->buffer_addr = htole64(seg_addr);
+ ctxd->lower.data = htole32(
+ adapter->txd_cmd | txd_lower | seg_len);
+ ctxd->upper.data =
+ htole32(txd_upper);
+ if (++i == adapter->num_tx_desc)
+ i = 0;
+ /* Now make the sentinel */
+ ++txd_used; /* using an extra txd */
+ ctxd = &adapter->tx_desc_base[i];
+ tx_buffer = &adapter->tx_buffer_area[i];
+ ctxd->buffer_addr =
+ htole64(seg_addr + seg_len);
+ ctxd->lower.data = htole32(
+ adapter->txd_cmd | txd_lower | 4);
+ ctxd->upper.data =
+ htole32(txd_upper);
+ last = i;
+ if (++i == adapter->num_tx_desc)
+ i = 0;
+ } else {
+ ctxd->buffer_addr = htole64(seg_addr);
+ ctxd->lower.data = htole32(
+ adapter->txd_cmd | txd_lower | seg_len);
+ ctxd->upper.data =
+ htole32(txd_upper);
+ last = i;
+ if (++i == adapter->num_tx_desc)
+ i = 0;
+ }
tx_buffer->m_head = NULL;
+ tx_buffer->next_eop = -1;
}
}
adapter->next_avail_tx_desc = i;
if (adapter->pcix_82544)
adapter->num_tx_desc_avail -= txd_used;
- else
+ else {
adapter->num_tx_desc_avail -= nsegs;
+ if (tso_desc) /* TSO used an extra for sentinel */
+ adapter->num_tx_desc_avail -= txd_used;
+ }
- if (mtag != NULL) {
+ /*
+ ** Handle VLAN tag, this is the
+ ** biggest difference between
+ ** 6.x and 7
+ */
+#if __FreeBSD_version < 700000
+ /* Find out if we are in vlan mode. */
+ mtag = VLAN_OUTPUT_TAG(ifp, m_head);
+ if (mtag != NULL) {
+ ctxd->upper.fields.special =
+ htole16(VLAN_TAG_VALUE(mtag));
+#else /* FreeBSD 7 */
+ if (m_head->m_flags & M_VLANTAG) {
/* Set the vlan id. */
- current_tx_desc->upper.fields.special =
- htole16(VLAN_TAG_VALUE(mtag));
-
- /* Tell hardware to add tag. */
- current_tx_desc->lower.data |= htole32(E1000_TXD_CMD_VLE);
- }
+ ctxd->upper.fields.special =
+ htole16(m_head->m_pkthdr.ether_vtag);
+#endif
+ /* Tell hardware to add tag */
+ ctxd->lower.data |= htole32(E1000_TXD_CMD_VLE);
+ }
- tx_buffer->m_head = m_head;
- tx_buffer_last->map = tx_buffer->map;
+ tx_buffer->m_head = m_head;
+ tx_buffer_mapped->map = tx_buffer->map;
tx_buffer->map = map;
- bus_dmamap_sync(adapter->txtag, map, BUS_DMASYNC_PREWRITE);
+ bus_dmamap_sync(adapter->txtag, map, BUS_DMASYNC_PREWRITE);
+ /*
+ * Last Descriptor of Packet
+ * needs End Of Packet (EOP)
+ * and Report Status (RS)
+ */
+ ctxd->lower.data |=
+ htole32(E1000_TXD_CMD_EOP | E1000_TXD_CMD_RS);
/*
- * Last Descriptor of Packet needs End Of Packet (EOP).
+ * Keep track in the first buffer which
+ * descriptor will be written back
*/
- current_tx_desc->lower.data |= htole32(E1000_TXD_CMD_EOP);
+ tx_buffer = &adapter->tx_buffer_area[first];
+ tx_buffer->next_eop = last;
/*
- * Advance the Transmit Descriptor Tail (Tdt), this tells the E1000
+ * Advance the Transmit Descriptor Tail (TDT), this tells the E1000
* that this frame is available to transmit.
*/
bus_dmamap_sync(adapter->txdma.dma_tag, adapter->txdma.dma_map,
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
- if (adapter->hw.mac_type == em_82547 && adapter->link_duplex == HALF_DUPLEX)
- em_82547_move_tail_locked(adapter);
+ if (adapter->hw.mac.type == e1000_82547 &&
+ adapter->link_duplex == HALF_DUPLEX)
+ em_82547_move_tail(adapter);
else {
- E1000_WRITE_REG(&adapter->hw, TDT, i);
- if (adapter->hw.mac_type == em_82547)
- em_82547_update_fifo_head(adapter, m_head->m_pkthdr.len);
+ E1000_WRITE_REG(&adapter->hw, E1000_TDT(0), i);
+ if (adapter->hw.mac.type == e1000_82547)
+ em_82547_update_fifo_head(adapter,
+ m_head->m_pkthdr.len);
}
return (0);
@@ -1627,57 +2052,237 @@
/*********************************************************************
*
- * 82547 workaround to avoid controller hang in half-duplex environment.
- * The workaround is to avoid queuing a large packet that would span
- * the internal Tx FIFO ring boundary. We need to reset the FIFO pointers
- * in this case. We do that only when FIFO is quiescent.
- *
+ * This routine maps the mbufs to Advanced TX descriptors.
+ * used by the 82575 adapter. It also needs no workarounds.
+ *
**********************************************************************/
-static void
-em_82547_move_tail_locked(struct adapter *adapter)
+
+static int
+em_adv_encap(struct adapter *adapter, struct mbuf **m_headp)
{
- uint16_t hw_tdt;
- uint16_t sw_tdt;
- struct em_tx_desc *tx_desc;
- uint16_t length = 0;
- boolean_t eop = 0;
+ bus_dma_segment_t segs[EM_MAX_SCATTER];
+ bus_dmamap_t map;
+ struct em_buffer *tx_buffer, *tx_buffer_mapped;
+ union e1000_adv_tx_desc *txd = NULL;
+ struct mbuf *m_head;
+ u32 olinfo_status = 0, cmd_type_len = 0;
+ int nsegs, i, j, error, first, last = 0;
+#if __FreeBSD_version < 700000
+ struct m_tag *mtag;
+#else
+ u32 hdrlen = 0;
+#endif
- EM_LOCK_ASSERT(adapter);
+ m_head = *m_headp;
- hw_tdt = E1000_READ_REG(&adapter->hw, TDT);
- sw_tdt = adapter->next_avail_tx_desc;
-
- while (hw_tdt != sw_tdt) {
- tx_desc = &adapter->tx_desc_base[hw_tdt];
- length += tx_desc->lower.flags.length;
- eop = tx_desc->lower.data & E1000_TXD_CMD_EOP;
- if(++hw_tdt == adapter->num_tx_desc)
- hw_tdt = 0;
- if (eop) {
+ /* Set basic descriptor constants */
+ cmd_type_len |= E1000_ADVTXD_DTYP_DATA;
+ cmd_type_len |= E1000_ADVTXD_DCMD_IFCS | E1000_ADVTXD_DCMD_DEXT;
+#if __FreeBSD_version < 700000
+ mtag = VLAN_OUTPUT_TAG(ifp, m_head);
+ if (mtag != NULL)
+#else
+ if (m_head->m_flags & M_VLANTAG)
+#endif
+ cmd_type_len |= E1000_ADVTXD_DCMD_VLE;
+
+ /*
+ * Force a cleanup if number of TX descriptors
+ * available hits the threshold
+ */
+ if (adapter->num_tx_desc_avail <= EM_TX_CLEANUP_THRESHOLD) {
+ em_txeof(adapter);
+ /* Now do we at least have a minimal? */
+ if (adapter->num_tx_desc_avail <= EM_TX_OP_THRESHOLD) {
+ adapter->no_tx_desc_avail1++;
+ return (ENOBUFS);
+ }
+ }
+
+ /*
+ * Map the packet for DMA.
+ *
+ * Capture the first descriptor index,
+ * this descriptor will have the index
+ * of the EOP which is the only one that
+ * now gets a DONE bit writeback.
+ */
+ first = adapter->next_avail_tx_desc;
+ tx_buffer = &adapter->tx_buffer_area[first];
+ tx_buffer_mapped = tx_buffer;
+ map = tx_buffer->map;
+
+ error = bus_dmamap_load_mbuf_sg(adapter->txtag, map,
+ *m_headp, segs, &nsegs, BUS_DMA_NOWAIT);
+
+ if (error == EFBIG) {
+ struct mbuf *m;
+
+ m = m_defrag(*m_headp, M_DONTWAIT);
+ if (m == NULL) {
+ adapter->mbuf_alloc_failed++;
+ m_freem(*m_headp);
+ *m_headp = NULL;
+ return (ENOBUFS);
+ }
+ *m_headp = m;
+
+ /* Try it again */
+ error = bus_dmamap_load_mbuf_sg(adapter->txtag, map,
+ *m_headp, segs, &nsegs, BUS_DMA_NOWAIT);
+
+ if (error == ENOMEM) {
+ adapter->no_tx_dma_setup++;
+ return (error);
+ } else if (error != 0) {
+ adapter->no_tx_dma_setup++;
+ m_freem(*m_headp);
+ *m_headp = NULL;
+ return (error);
+ }
+ } else if (error == ENOMEM) {
+ adapter->no_tx_dma_setup++;
+ return (error);
+ } else if (error != 0) {
+ adapter->no_tx_dma_setup++;
+ m_freem(*m_headp);
+ *m_headp = NULL;
+ return (error);
+ }
+
+ /* Check again to be sure we have enough descriptors */
+ if (nsegs > (adapter->num_tx_desc_avail - 2)) {
+ adapter->no_tx_desc_avail2++;
+ bus_dmamap_unload(adapter->txtag, map);
+ return (ENOBUFS);
+ }
+ m_head = *m_headp;
+
+ /*
+ * Set up the context descriptor:
+ * used when any hardware offload is done.
+ * This includes CSUM, VLAN, and TSO. It
+ * will use the first descriptor.
+ */
+#if __FreeBSD_version >= 700000
+ if (m_head->m_pkthdr.csum_flags & CSUM_TSO) {
+ if (em_tso_adv_setup(adapter, m_head, &hdrlen)) {
+ cmd_type_len |= E1000_ADVTXD_DCMD_TSE;
+ olinfo_status |= E1000_TXD_POPTS_IXSM << 8;
+ olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
+ } else
+ return (ENXIO);
+ }
+#endif
+ /* Do all other context descriptor setup */
+ if (em_tx_adv_ctx_setup(adapter, m_head))
+ olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
+
+ /* Calculate payload length */
+ olinfo_status |= ((m_head->m_pkthdr.len - hdrlen)
+ << E1000_ADVTXD_PAYLEN_SHIFT);
+
+ /* Set up our transmit descriptors */
+ i = adapter->next_avail_tx_desc;
+ for (j = 0; j < nsegs; j++) {
+ bus_size_t seg_len;
+ bus_addr_t seg_addr;
+
+ tx_buffer = &adapter->tx_buffer_area[i];
+ txd = (union e1000_adv_tx_desc *)&adapter->tx_desc_base[i];
+ seg_addr = segs[j].ds_addr;
+ seg_len = segs[j].ds_len;
+
+ txd->read.buffer_addr = htole64(seg_addr);
+ txd->read.cmd_type_len = htole32(
+ adapter->txd_cmd | cmd_type_len | seg_len);
+ txd->read.olinfo_status = htole32(olinfo_status);
+ last = i;
+ if (++i == adapter->num_tx_desc)
+ i = 0;
+ tx_buffer->m_head = NULL;
+ tx_buffer->next_eop = -1;
+ }
+
+ adapter->next_avail_tx_desc = i;
+ adapter->num_tx_desc_avail -= nsegs;
+
+ tx_buffer->m_head = m_head;
+ tx_buffer_mapped->map = tx_buffer->map;
+ tx_buffer->map = map;
+ bus_dmamap_sync(adapter->txtag, map, BUS_DMASYNC_PREWRITE);
+
+ /*
+ * Last Descriptor of Packet
+ * needs End Of Packet (EOP)
+ * and Report Status (RS)
+ */
+ txd->read.cmd_type_len |=
+ htole32(E1000_TXD_CMD_EOP | E1000_TXD_CMD_RS);
+ /*
+ * Keep track in the first buffer which
+ * descriptor will be written back
+ */
+ tx_buffer = &adapter->tx_buffer_area[first];
+ tx_buffer->next_eop = last;
+
+ /*
+ * Advance the Transmit Descriptor Tail (TDT), this tells the E1000
+ * that this frame is available to transmit.
+ */
+ bus_dmamap_sync(adapter->txdma.dma_tag, adapter->txdma.dma_map,
+ BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
+ E1000_WRITE_REG(&adapter->hw, E1000_TDT(0), i);
+
+ return (0);
+
+}
+
+/*********************************************************************
+ *
+ * 82547 workaround to avoid controller hang in half-duplex environment.
+ * The workaround is to avoid queuing a large packet that would span
+ * the internal Tx FIFO ring boundary. We need to reset the FIFO pointers
+ * in this case. We do that only when FIFO is quiescent.
+ *
+ **********************************************************************/
+static void
+em_82547_move_tail(void *arg)
+{
+ struct adapter *adapter = arg;
+ uint16_t hw_tdt;
+ uint16_t sw_tdt;
+ struct e1000_tx_desc *tx_desc;
+ uint16_t length = 0;
+ boolean_t eop = 0;
+
+ EM_TX_LOCK_ASSERT(adapter);
+
+ hw_tdt = E1000_READ_REG(&adapter->hw, E1000_TDT(0));
+ sw_tdt = adapter->next_avail_tx_desc;
+
+ while (hw_tdt != sw_tdt) {
+ tx_desc = &adapter->tx_desc_base[hw_tdt];
+ length += tx_desc->lower.flags.length;
+ eop = tx_desc->lower.data & E1000_TXD_CMD_EOP;
+ if (++hw_tdt == adapter->num_tx_desc)
+ hw_tdt = 0;
+
+ if (eop) {
if (em_82547_fifo_workaround(adapter, length)) {
adapter->tx_fifo_wrk_cnt++;
callout_reset(&adapter->tx_fifo_timer, 1,
em_82547_move_tail, adapter);
break;
}
- E1000_WRITE_REG(&adapter->hw, TDT, hw_tdt);
+ E1000_WRITE_REG(&adapter->hw, E1000_TDT(0), hw_tdt);
em_82547_update_fifo_head(adapter, length);
length = 0;
}
}
}
-static void
-em_82547_move_tail(void *arg)
-{
- struct adapter *adapter = arg;
-
- EM_LOCK(adapter);
- em_82547_move_tail_locked(adapter);
- EM_UNLOCK(adapter);
-}
-
static int
em_82547_fifo_workaround(struct adapter *adapter, int len)
{
@@ -1714,26 +2319,33 @@
static int
em_82547_tx_fifo_reset(struct adapter *adapter)
-{
+{
uint32_t tctl;
- if ((E1000_READ_REG(&adapter->hw, TDT) == E1000_READ_REG(&adapter->hw, TDH)) &&
- (E1000_READ_REG(&adapter->hw, TDFT) == E1000_READ_REG(&adapter->hw, TDFH)) &&
- (E1000_READ_REG(&adapter->hw, TDFTS) == E1000_READ_REG(&adapter->hw, TDFHS))&&
- (E1000_READ_REG(&adapter->hw, TDFPC) == 0)) {
-
+ if ((E1000_READ_REG(&adapter->hw, E1000_TDT(0)) ==
+ E1000_READ_REG(&adapter->hw, E1000_TDH(0))) &&
+ (E1000_READ_REG(&adapter->hw, E1000_TDFT) ==
+ E1000_READ_REG(&adapter->hw, E1000_TDFH)) &&
+ (E1000_READ_REG(&adapter->hw, E1000_TDFTS) ==
+ E1000_READ_REG(&adapter->hw, E1000_TDFHS)) &&
+ (E1000_READ_REG(&adapter->hw, E1000_TDFPC) == 0)) {
/* Disable TX unit */
- tctl = E1000_READ_REG(&adapter->hw, TCTL);
- E1000_WRITE_REG(&adapter->hw, TCTL, tctl & ~E1000_TCTL_EN);
+ tctl = E1000_READ_REG(&adapter->hw, E1000_TCTL);
+ E1000_WRITE_REG(&adapter->hw, E1000_TCTL,
+ tctl & ~E1000_TCTL_EN);
/* Reset FIFO pointers */
- E1000_WRITE_REG(&adapter->hw, TDFT, adapter->tx_head_addr);
- E1000_WRITE_REG(&adapter->hw, TDFH, adapter->tx_head_addr);
- E1000_WRITE_REG(&adapter->hw, TDFTS, adapter->tx_head_addr);
- E1000_WRITE_REG(&adapter->hw, TDFHS, adapter->tx_head_addr);
+ E1000_WRITE_REG(&adapter->hw, E1000_TDFT,
+ adapter->tx_head_addr);
+ E1000_WRITE_REG(&adapter->hw, E1000_TDFH,
+ adapter->tx_head_addr);
+ E1000_WRITE_REG(&adapter->hw, E1000_TDFTS,
+ adapter->tx_head_addr);
+ E1000_WRITE_REG(&adapter->hw, E1000_TDFHS,
+ adapter->tx_head_addr);
/* Re-enable TX unit */
- E1000_WRITE_REG(&adapter->hw, TCTL, tctl);
+ E1000_WRITE_REG(&adapter->hw, E1000_TCTL, tctl);
E1000_WRITE_FLUSH(&adapter->hw);
adapter->tx_fifo_head = 0;
@@ -1752,42 +2364,28 @@
struct ifnet *ifp = adapter->ifp;
uint32_t reg_rctl;
- reg_rctl = E1000_READ_REG(&adapter->hw, RCTL);
+ reg_rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL);
if (ifp->if_flags & IFF_PROMISC) {
reg_rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
- E1000_WRITE_REG(&adapter->hw, RCTL, reg_rctl);
- /* Disable VLAN stripping in promiscous mode
- * This enables bridging of vlan tagged frames to occur
- * and also allows vlan tags to be seen in tcpdump
- */
- if (ifp->if_capenable & IFCAP_VLAN_HWTAGGING)
- em_disable_vlans(adapter);
- adapter->em_insert_vlan_header = 1;
+ E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl);
} else if (ifp->if_flags & IFF_ALLMULTI) {
reg_rctl |= E1000_RCTL_MPE;
reg_rctl &= ~E1000_RCTL_UPE;
- E1000_WRITE_REG(&adapter->hw, RCTL, reg_rctl);
- adapter->em_insert_vlan_header = 0;
- } else
- adapter->em_insert_vlan_header = 0;
+ E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl);
+ }
}
static void
em_disable_promisc(struct adapter *adapter)
{
- struct ifnet *ifp = adapter->ifp;
uint32_t reg_rctl;
- reg_rctl = E1000_READ_REG(&adapter->hw, RCTL);
+ reg_rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL);
reg_rctl &= (~E1000_RCTL_UPE);
reg_rctl &= (~E1000_RCTL_MPE);
- E1000_WRITE_REG(&adapter->hw, RCTL, reg_rctl);
-
- if (ifp->if_capenable & IFCAP_VLAN_HWTAGGING)
- em_enable_vlans(adapter);
- adapter->em_insert_vlan_header = 0;
+ E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl);
}
@@ -1804,17 +2402,18 @@
struct ifnet *ifp = adapter->ifp;
struct ifmultiaddr *ifma;
uint32_t reg_rctl = 0;
- uint8_t mta[MAX_NUM_MULTICAST_ADDRESSES * ETH_LENGTH_OF_ADDRESS];
+ uint8_t mta[512]; /* Largest MTS is 4096 bits */
int mcnt = 0;
IOCTL_DEBUGOUT("em_set_multi: begin");
- if (adapter->hw.mac_type == em_82542_rev2_0) {
- reg_rctl = E1000_READ_REG(&adapter->hw, RCTL);
- if (adapter->hw.pci_cmd_word & CMD_MEM_WRT_INVALIDATE)
- em_pci_clear_mwi(&adapter->hw);
+ if (adapter->hw.mac.type == e1000_82542 &&
+ adapter->hw.revision_id == E1000_REVISION_2) {
+ reg_rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL);
+ if (adapter->hw.bus.pci_cmd_word & CMD_MEM_WRT_INVALIDATE)
+ e1000_pci_clear_mwi(&adapter->hw);
reg_rctl |= E1000_RCTL_RST;
- E1000_WRITE_REG(&adapter->hw, RCTL, reg_rctl);
+ E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl);
msec_delay(5);
}
@@ -1827,25 +2426,27 @@
break;
bcopy(LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
- &mta[mcnt*ETH_LENGTH_OF_ADDRESS], ETH_LENGTH_OF_ADDRESS);
+ &mta[mcnt * ETH_ADDR_LEN], ETH_ADDR_LEN);
mcnt++;
}
IF_ADDR_UNLOCK(ifp);
if (mcnt >= MAX_NUM_MULTICAST_ADDRESSES) {
- reg_rctl = E1000_READ_REG(&adapter->hw, RCTL);
+ reg_rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL);
reg_rctl |= E1000_RCTL_MPE;
- E1000_WRITE_REG(&adapter->hw, RCTL, reg_rctl);
+ E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl);
} else
- em_mc_addr_list_update(&adapter->hw, mta, mcnt, 0, 1);
+ e1000_update_mc_addr_list(&adapter->hw, mta,
+ mcnt, 1, adapter->hw.mac.rar_entry_count);
- if (adapter->hw.mac_type == em_82542_rev2_0) {
- reg_rctl = E1000_READ_REG(&adapter->hw, RCTL);
+ if (adapter->hw.mac.type == e1000_82542 &&
+ adapter->hw.revision_id == E1000_REVISION_2) {
+ reg_rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL);
reg_rctl &= ~E1000_RCTL_RST;
- E1000_WRITE_REG(&adapter->hw, RCTL, reg_rctl);
+ E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl);
msec_delay(5);
- if (adapter->hw.pci_cmd_word & CMD_MEM_WRT_INVALIDATE)
- em_pci_set_mwi(&adapter->hw);
+ if (adapter->hw.bus.pci_cmd_word & CMD_MEM_WRT_INVALIDATE)
+ e1000_pci_set_mwi(&adapter->hw);
}
}
@@ -1863,18 +2464,29 @@
struct adapter *adapter = arg;
struct ifnet *ifp = adapter->ifp;
- EM_LOCK(adapter);
+ EM_CORE_LOCK_ASSERT(adapter);
- em_check_for_link(&adapter->hw);
+ e1000_check_for_link(&adapter->hw);
em_update_link_status(adapter);
em_update_stats_counters(adapter);
+
+ /* Reset LAA into RAR[0] on 82571 */
+ if (e1000_get_laa_state_82571(&adapter->hw) == TRUE)
+ e1000_rar_set(&adapter->hw, adapter->hw.mac.addr, 0);
+
if (em_display_debug_stats && ifp->if_drv_flags & IFF_DRV_RUNNING)
em_print_hw_stats(adapter);
+
em_smartspeed(adapter);
+ /*
+ * Each second we check the watchdog to
+ * protect against hardware hangs.
+ */
+ em_watchdog(adapter);
+
callout_reset(&adapter->timer, hz, em_local_timer, adapter);
- EM_UNLOCK(adapter);
}
static void
@@ -1883,19 +2495,22 @@
struct ifnet *ifp = adapter->ifp;
device_t dev = adapter->dev;
- if (E1000_READ_REG(&adapter->hw, STATUS) & E1000_STATUS_LU) {
+ if (E1000_READ_REG(&adapter->hw, E1000_STATUS) &
+ E1000_STATUS_LU) {
if (adapter->link_active == 0) {
- em_get_speed_and_duplex(&adapter->hw, &adapter->link_speed,
- &adapter->link_duplex);
- /* Check if we may set SPEED_MODE bit on PCI-E */
- if ((adapter->link_speed == SPEED_1000) &&
- ((adapter->hw.mac_type == em_82571) ||
- (adapter->hw.mac_type == em_82572))) {
+ e1000_get_speed_and_duplex(&adapter->hw,
+ &adapter->link_speed, &adapter->link_duplex);
+ /* Check if we must disable SPEED_MODE bit on PCI-E */
+ if ((adapter->link_speed != SPEED_1000) &&
+ ((adapter->hw.mac.type == e1000_82571) ||
+ (adapter->hw.mac.type == e1000_82572))) {
int tarc0;
- tarc0 = E1000_READ_REG(&adapter->hw, TARC0);
- tarc0 |= SPEED_MODE_BIT;
- E1000_WRITE_REG(&adapter->hw, TARC0, tarc0);
+ tarc0 = E1000_READ_REG(&adapter->hw,
+ E1000_TARC(0));
+ tarc0 &= ~SPEED_MODE_BIT;
+ E1000_WRITE_REG(&adapter->hw,
+ E1000_TARC(0), tarc0);
}
if (bootverbose)
device_printf(dev, "Link is up %d Mbps %s\n",
@@ -1924,6 +2539,8 @@
* This routine disables all traffic on the adapter by issuing a
* global reset on the MAC and deallocates TX/RX buffers.
*
+ * This routine should always be called with BOTH the CORE
+ * and TX locks.
**********************************************************************/
static void
@@ -1932,19 +2549,21 @@
struct adapter *adapter = arg;
struct ifnet *ifp = adapter->ifp;
- EM_LOCK_ASSERT(adapter);
+ EM_CORE_LOCK_ASSERT(adapter);
+ EM_TX_LOCK_ASSERT(adapter);
INIT_DEBUGOUT("em_stop: begin");
em_disable_intr(adapter);
- em_reset_hw(&adapter->hw);
callout_stop(&adapter->timer);
callout_stop(&adapter->tx_fifo_timer);
- em_free_transmit_structures(adapter);
- em_free_receive_structures(adapter);
/* Tell the stack that the interface is no longer active */
ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
+
+ e1000_reset_hw(&adapter->hw);
+ if (adapter->hw.mac.type >= e1000_82544)
+ E1000_WRITE_REG(&adapter->hw, E1000_WUC, 0);
}
@@ -1959,30 +2578,31 @@
device_t dev = adapter->dev;
/* Make sure our PCI config space has the necessary stuff set */
- adapter->hw.pci_cmd_word = pci_read_config(dev, PCIR_COMMAND, 2);
- if ((adapter->hw.pci_cmd_word & PCIM_CMD_BUSMASTEREN) == 0 &&
- (adapter->hw.pci_cmd_word & PCIM_CMD_MEMEN)) {
+ adapter->hw.bus.pci_cmd_word = pci_read_config(dev, PCIR_COMMAND, 2);
+ if (!((adapter->hw.bus.pci_cmd_word & PCIM_CMD_BUSMASTEREN) &&
+ (adapter->hw.bus.pci_cmd_word & PCIM_CMD_MEMEN))) {
device_printf(dev, "Memory Access and/or Bus Master bits "
"were not set!\n");
- adapter->hw.pci_cmd_word |=
+ adapter->hw.bus.pci_cmd_word |=
(PCIM_CMD_BUSMASTEREN | PCIM_CMD_MEMEN);
- pci_write_config(dev, PCIR_COMMAND, adapter->hw.pci_cmd_word, 2);
+ pci_write_config(dev, PCIR_COMMAND,
+ adapter->hw.bus.pci_cmd_word, 2);
}
/* Save off the information about this board */
adapter->hw.vendor_id = pci_get_vendor(dev);
adapter->hw.device_id = pci_get_device(dev);
adapter->hw.revision_id = pci_read_config(dev, PCIR_REVID, 1);
- adapter->hw.subsystem_vendor_id = pci_read_config(dev, PCIR_SUBVEND_0, 2);
- adapter->hw.subsystem_id = pci_read_config(dev, PCIR_SUBDEV_0, 2);
-
- /* Identify the MAC */
- if (em_set_mac_type(&adapter->hw))
- device_printf(dev, "Unknown MAC Type\n");
-
- if(adapter->hw.mac_type == em_82541 || adapter->hw.mac_type == em_82541_rev_2 ||
- adapter->hw.mac_type == em_82547 || adapter->hw.mac_type == em_82547_rev_2)
- adapter->hw.phy_init_script = TRUE;
+ adapter->hw.subsystem_vendor_id =
+ pci_read_config(dev, PCIR_SUBVEND_0, 2);
+ adapter->hw.subsystem_device_id =
+ pci_read_config(dev, PCIR_SUBDEV_0, 2);
+
+ /* Do Shared Code Init and Setup */
+ if (e1000_set_mac_type(&adapter->hw)) {
+ device_printf(dev, "Setup init failure\n");
+ return;
+ }
}
static int
@@ -1999,54 +2619,60 @@
return (ENXIO);
}
adapter->osdep.mem_bus_space_tag =
- rman_get_bustag(adapter->res_memory);
- adapter->osdep.mem_bus_space_handle = rman_get_bushandle(adapter->res_memory);
+ rman_get_bustag(adapter->res_memory);
+ adapter->osdep.mem_bus_space_handle =
+ rman_get_bushandle(adapter->res_memory);
adapter->hw.hw_addr = (uint8_t *)&adapter->osdep.mem_bus_space_handle;
- if (adapter->hw.mac_type > em_82543) {
+ /* Only older adapters use IO mapping */
+ if ((adapter->hw.mac.type > e1000_82543) &&
+ (adapter->hw.mac.type < e1000_82571)) {
/* Figure our where our IO BAR is ? */
for (rid = PCIR_BAR(0); rid < PCIR_CIS;) {
val = pci_read_config(dev, rid, 4);
- if (E1000_BAR_TYPE(val) == E1000_BAR_TYPE_IO) {
+ if (EM_BAR_TYPE(val) == EM_BAR_TYPE_IO) {
adapter->io_rid = rid;
break;
}
rid += 4;
/* check for 64bit BAR */
- if (E1000_BAR_MEM_TYPE(val) == E1000_BAR_MEM_TYPE_64BIT)
+ if (EM_BAR_MEM_TYPE(val) == EM_BAR_MEM_TYPE_64BIT)
rid += 4;
}
if (rid >= PCIR_CIS) {
device_printf(dev, "Unable to locate IO BAR\n");
return (ENXIO);
}
- adapter->res_ioport = bus_alloc_resource_any(dev, SYS_RES_IOPORT,
- &adapter->io_rid, RF_ACTIVE);
+ adapter->res_ioport = bus_alloc_resource_any(dev,
+ SYS_RES_IOPORT, &adapter->io_rid, RF_ACTIVE);
if (adapter->res_ioport == NULL) {
device_printf(dev, "Unable to allocate bus resource: "
"ioport\n");
return (ENXIO);
}
adapter->hw.io_base = 0;
- adapter->osdep.io_bus_space_tag = rman_get_bustag(adapter->res_ioport);
+ adapter->osdep.io_bus_space_tag =
+ rman_get_bustag(adapter->res_ioport);
adapter->osdep.io_bus_space_handle =
rman_get_bushandle(adapter->res_ioport);
}
- /* For ICH8 we need to find the flash memory. */
- if (adapter->hw.mac_type == em_ich8lan) {
- rid = EM_FLASH;
-
- adapter->flash_mem = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
- &rid, RF_ACTIVE);
- adapter->osdep.flash_bus_space_tag = rman_get_bustag(adapter->flash_mem);
- adapter->osdep.flash_bus_space_handle =
- rman_get_bushandle(adapter->flash_mem);
- }
-
+ /*
+ * Setup MSI/X or MSI if PCI Express
+ * only the latest can use MSI/X and
+ * real support for it is forthcoming
+ */
+ adapter->msi = 0; /* Set defaults */
rid = 0x0;
- adapter->res_interrupt = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
- RF_SHAREABLE | RF_ACTIVE);
+
+#if __FreeBSD_version > 602111 /* MSI support is present */
+ /* This will setup either MSI/X or MSI */
+ if (em_setup_msix(adapter))
+ rid = 1;
+#endif /* FreeBSD_version */
+
+ adapter->res_interrupt = bus_alloc_resource_any(dev,
+ SYS_RES_IRQ, &rid, RF_SHAREABLE | RF_ACTIVE);
if (adapter->res_interrupt == NULL) {
device_printf(dev, "Unable to allocate bus resource: "
"interrupt\n");
@@ -2058,6 +2684,11 @@
return (0);
}
+/*********************************************************************
+ *
+ * Setup the appropriate Interrupt handlers.
+ *
+ **********************************************************************/
int
em_allocate_intr(struct adapter *adapter)
{
@@ -2065,16 +2696,23 @@
int error;
/* Manually turn off all interrupts */
- E1000_WRITE_REG(&adapter->hw, IMC, 0xffffffff);
+ E1000_WRITE_REG(&adapter->hw, E1000_IMC, 0xffffffff);
-#ifdef DEVICE_POLLING
- if (adapter->int_handler_tag == NULL && (error = bus_setup_intr(dev,
- adapter->res_interrupt, INTR_TYPE_NET | INTR_MPSAFE, em_intr, adapter,
+#ifndef EM_FAST_IRQ
+ /* We do Legacy setup */
+ if (adapter->int_handler_tag == NULL &&
+ (error = bus_setup_intr(dev, adapter->res_interrupt,
+#if __FreeBSD_version > 700000
+ INTR_TYPE_NET | INTR_MPSAFE, NULL, em_intr, adapter,
+#else /* 6.X */
+ INTR_TYPE_NET | INTR_MPSAFE, em_intr, adapter,
+#endif
&adapter->int_handler_tag)) != 0) {
device_printf(dev, "Failed to register interrupt handler");
return (error);
}
-#else
+
+#else /* FAST_IRQ */
/*
* Try allocating a fast interrupt and the associated deferred
* processing contexts.
@@ -2085,8 +2723,13 @@
taskqueue_thread_enqueue, &adapter->tq);
taskqueue_start_threads(&adapter->tq, 1, PI_NET, "%s taskq",
device_get_nameunit(adapter->dev));
+#if __FreeBSD_version < 700000
if ((error = bus_setup_intr(dev, adapter->res_interrupt,
- INTR_TYPE_NET | INTR_MPSAFE, em_intr_fast, adapter,
+ INTR_TYPE_NET | INTR_FAST, em_intr_fast, adapter,
+#else
+ if ((error = bus_setup_intr(dev, adapter->res_interrupt,
+ INTR_TYPE_NET, em_intr_fast, NULL, adapter,
+#endif
&adapter->int_handler_tag)) != 0) {
device_printf(dev, "Failed to register fast interrupt "
"handler: %d\n", error);
@@ -2094,7 +2737,7 @@
adapter->tq = NULL;
return (error);
}
-#endif
+#endif /* EM_FAST_IRQ */
em_enable_intr(adapter);
return (0);
@@ -2106,7 +2749,8 @@
device_t dev = adapter->dev;
if (adapter->res_interrupt != NULL) {
- bus_teardown_intr(dev, adapter->res_interrupt, adapter->int_handler_tag);
+ bus_teardown_intr(dev, adapter->res_interrupt,
+ adapter->int_handler_tag);
adapter->int_handler_tag = NULL;
}
if (adapter->tq != NULL) {
@@ -2123,27 +2767,77 @@
device_t dev = adapter->dev;
if (adapter->res_interrupt != NULL)
- bus_release_resource(dev, SYS_RES_IRQ, 0, adapter->res_interrupt);
+ bus_release_resource(dev, SYS_RES_IRQ,
+ adapter->msi ? 1 : 0, adapter->res_interrupt);
+
+#if __FreeBSD_version > 602111 /* MSI support is present */
+ if (adapter->msix_mem != NULL)
+ bus_release_resource(dev, SYS_RES_MEMORY,
+ PCIR_BAR(EM_MSIX_BAR), adapter->msix_mem);
+
+ if (adapter->msi)
+ pci_release_msi(dev);
+#endif /* FreeBSD_version */
if (adapter->res_memory != NULL)
- bus_release_resource(dev, SYS_RES_MEMORY, PCIR_BAR(0),
- adapter->res_memory);
+ bus_release_resource(dev, SYS_RES_MEMORY,
+ PCIR_BAR(0), adapter->res_memory);
if (adapter->flash_mem != NULL)
- bus_release_resource(dev, SYS_RES_MEMORY, EM_FLASH,
- adapter->flash_mem);
+ bus_release_resource(dev, SYS_RES_MEMORY,
+ EM_FLASH, adapter->flash_mem);
if (adapter->res_ioport != NULL)
- bus_release_resource(dev, SYS_RES_IOPORT, adapter->io_rid,
- adapter->res_ioport);
+ bus_release_resource(dev, SYS_RES_IOPORT,
+ adapter->io_rid, adapter->res_ioport);
}
+#if __FreeBSD_version > 602111 /* MSI support is present */
+/*
+ * Setup MSI/X
+ */
+static bool
+em_setup_msix(struct adapter *adapter)
+{
+ device_t dev = adapter->dev;
+ int rid, val;
+
+ if (adapter->hw.mac.type < e1000_82571)
+ return (FALSE);
+
+ /* First try MSI/X if possible */
+ if (adapter->hw.mac.type >= e1000_82575) {
+ rid = PCIR_BAR(EM_MSIX_BAR);
+ adapter->msix_mem = bus_alloc_resource_any(dev,
+ SYS_RES_MEMORY, &rid, RF_ACTIVE);
+ if (!adapter->msix_mem) {
+ /* May not be enabled */
+ device_printf(adapter->dev,
+ "Unable to map MSIX table \n");
+ goto msi;
+ }
+ val = pci_msix_count(dev);
+ if ((val) && pci_alloc_msix(dev, &val) == 0) {
+ adapter->msi = 1;
+ device_printf(adapter->dev,"Using MSIX interrupts\n");
+ return (TRUE);
+ }
+ }
+msi:
+ val = pci_msi_count(dev);
+ if (val == 1 && pci_alloc_msi(dev, &val) == 0) {
+ adapter->msi = 1;
+ device_printf(adapter->dev,"Using MSI interrupt\n");
+ return (TRUE);
+ }
+ return (FALSE);
+}
+#endif /* FreeBSD_version */
+
/*********************************************************************
*
- * Initialize the hardware to a configuration as specified by the
- * adapter structure. The controller is reset, the EEPROM is
- * verified, the MAC address is set, then the shared initialization
- * routines are called.
+ * Initialize the hardware to a configuration
+ * as specified by the adapter structure.
*
**********************************************************************/
static int
@@ -2153,33 +2847,31 @@
uint16_t rx_buffer_size;
INIT_DEBUGOUT("em_hardware_init: begin");
+
/* Issue a global reset */
- em_reset_hw(&adapter->hw);
+ e1000_reset_hw(&adapter->hw);
+
+ /* Get control from any management/hw control */
+ if (((adapter->hw.mac.type == e1000_82573) ||
+ (adapter->hw.mac.type == e1000_ich8lan) ||
+ (adapter->hw.mac.type == e1000_ich9lan)) &&
+ e1000_check_mng_mode(&adapter->hw))
+ em_get_hw_control(adapter);
/* When hardware is reset, fifo_head is also reset */
adapter->tx_fifo_head = 0;
- /* Make sure we have a good EEPROM before we read from it */
- if (em_validate_eeprom_checksum(&adapter->hw) < 0) {
- device_printf(dev, "The EEPROM Checksum Is Not Valid\n");
- return (EIO);
- }
-
- if (em_read_part_num(&adapter->hw, &(adapter->part_num)) < 0) {
- device_printf(dev, "EEPROM read error while reading part "
- "number\n");
- return (EIO);
- }
-
/* Set up smart power down as default off on newer adapters. */
- if (!em_smart_pwr_down &&
- (adapter->hw.mac_type == em_82571 || adapter->hw.mac_type == em_82572)) {
+ if (!em_smart_pwr_down && (adapter->hw.mac.type == e1000_82571 ||
+ adapter->hw.mac.type == e1000_82572)) {
uint16_t phy_tmp = 0;
/* Speed up time to link by disabling smart power down. */
- em_read_phy_reg(&adapter->hw, IGP02E1000_PHY_POWER_MGMT, &phy_tmp);
+ e1000_read_phy_reg(&adapter->hw,
+ IGP02E1000_PHY_POWER_MGMT, &phy_tmp);
phy_tmp &= ~IGP02E1000_PM_SPD;
- em_write_phy_reg(&adapter->hw, IGP02E1000_PHY_POWER_MGMT, phy_tmp);
+ e1000_write_phy_reg(&adapter->hw,
+ IGP02E1000_PHY_POWER_MGMT, phy_tmp);
}
/*
@@ -2196,24 +2888,26 @@
* by 1500.
* - The pause time is fairly large at 1000 x 512ns = 512 usec.
*/
- rx_buffer_size = ((E1000_READ_REG(&adapter->hw, PBA) & 0xffff) << 10 );
+ rx_buffer_size = ((E1000_READ_REG(&adapter->hw, E1000_PBA) &
+ 0xffff) << 10 );
+
+ adapter->hw.fc.high_water = rx_buffer_size -
+ roundup2(adapter->max_frame_size, 1024);
+ adapter->hw.fc.low_water = adapter->hw.fc.high_water - 1500;
- adapter->hw.fc_high_water = rx_buffer_size -
- roundup2(adapter->hw.max_frame_size, 1024);
- adapter->hw.fc_low_water = adapter->hw.fc_high_water - 1500;
- if (adapter->hw.mac_type == em_80003es2lan)
- adapter->hw.fc_pause_time = 0xFFFF;
+ if (adapter->hw.mac.type == e1000_80003es2lan)
+ adapter->hw.fc.pause_time = 0xFFFF;
else
- adapter->hw.fc_pause_time = 0x1000;
- adapter->hw.fc_send_xon = TRUE;
- adapter->hw.fc = em_fc_full;
+ adapter->hw.fc.pause_time = EM_FC_PAUSE_TIME;
+ adapter->hw.fc.send_xon = TRUE;
+ adapter->hw.fc.type = e1000_fc_full;
- if (em_init_hw(&adapter->hw) < 0) {
- device_printf(dev, "Hardware Initialization Failed");
+ if (e1000_init_hw(&adapter->hw) < 0) {
+ device_printf(dev, "Hardware Initialization Failed\n");
return (EIO);
}
- em_check_for_link(&adapter->hw);
+ e1000_check_for_link(&adapter->hw);
return (0);
}
@@ -2227,6 +2921,7 @@
em_setup_interface(device_t dev, struct adapter *adapter)
{
struct ifnet *ifp;
+
INIT_DEBUGOUT("em_setup_interface: begin");
ifp = adapter->ifp = if_alloc(IFT_ETHER);
@@ -2239,26 +2934,44 @@
ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
ifp->if_ioctl = em_ioctl;
ifp->if_start = em_start;
- ifp->if_watchdog = em_watchdog;
IFQ_SET_MAXLEN(&ifp->if_snd, adapter->num_tx_desc - 1);
ifp->if_snd.ifq_drv_maxlen = adapter->num_tx_desc - 1;
IFQ_SET_READY(&ifp->if_snd);
- ether_ifattach(ifp, adapter->hw.mac_addr);
+ ether_ifattach(ifp, adapter->hw.mac.addr);
ifp->if_capabilities = ifp->if_capenable = 0;
- if (adapter->hw.mac_type >= em_82543) {
- ifp->if_capabilities |= IFCAP_HWCSUM;
- ifp->if_capenable |= IFCAP_HWCSUM;
+ if (adapter->hw.mac.type >= e1000_82543) {
+ int version_cap;
+#if __FreeBSD_version < 700000
+ version_cap = IFCAP_HWCSUM;
+#else
+ version_cap = IFCAP_HWCSUM | IFCAP_VLAN_HWCSUM;
+#endif
+ ifp->if_capabilities |= version_cap;
+ ifp->if_capenable |= version_cap;
}
+#if __FreeBSD_version >= 700000
+ /* Identify TSO capable adapters */
+ if ((adapter->hw.mac.type > e1000_82544) &&
+ (adapter->hw.mac.type != e1000_82547))
+ ifp->if_capabilities |= IFCAP_TSO4;
+ /*
+ * By default only enable on PCI-E, this
+ * can be overriden by ifconfig.
+ */
+ if (adapter->hw.mac.type >= e1000_82571)
+ ifp->if_capenable |= IFCAP_TSO4;
+#endif
+
/*
* Tell the upper layer(s) we support long frames.
*/
ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
ifp->if_capabilities |= IFCAP_VLAN_HWTAGGING | IFCAP_VLAN_MTU;
- ifp->if_capenable |= IFCAP_VLAN_MTU;
+ ifp->if_capenable |= IFCAP_VLAN_HWTAGGING | IFCAP_VLAN_MTU;
#ifdef DEVICE_POLLING
ifp->if_capabilities |= IFCAP_POLLING;
@@ -2268,16 +2981,16 @@
* Specify the media types supported by this adapter and register
* callbacks to update media and link information
*/
- ifmedia_init(&adapter->media, IFM_IMASK, em_media_change,
- em_media_status);
- if ((adapter->hw.media_type == em_media_type_fiber) ||
- (adapter->hw.media_type == em_media_type_internal_serdes)) {
- u_char fiber_type = IFM_1000_SX; // default type;
+ ifmedia_init(&adapter->media, IFM_IMASK,
+ em_media_change, em_media_status);
+ if ((adapter->hw.phy.media_type == e1000_media_type_fiber) ||
+ (adapter->hw.phy.media_type == e1000_media_type_internal_serdes)) {
+ u_char fiber_type = IFM_1000_SX; /* default type */
- if (adapter->hw.mac_type == em_82545)
+ if (adapter->hw.mac.type == e1000_82545)
fiber_type = IFM_1000_LX;
- ifmedia_add(&adapter->media, IFM_ETHER | fiber_type | IFM_FDX,
- 0, NULL);
+ ifmedia_add(&adapter->media, IFM_ETHER | fiber_type | IFM_FDX,
+ 0, NULL);
ifmedia_add(&adapter->media, IFM_ETHER | fiber_type, 0, NULL);
} else {
ifmedia_add(&adapter->media, IFM_ETHER | IFM_10_T, 0, NULL);
@@ -2287,7 +3000,7 @@
0, NULL);
ifmedia_add(&adapter->media, IFM_ETHER | IFM_100_TX | IFM_FDX,
0, NULL);
- if (adapter->hw.phy_type != em_phy_ife) {
+ if (adapter->hw.phy.type != e1000_phy_ife) {
ifmedia_add(&adapter->media,
IFM_ETHER | IFM_1000_T | IFM_FDX, 0, NULL);
ifmedia_add(&adapter->media,
@@ -2309,32 +3022,32 @@
{
uint16_t phy_tmp;
- if (adapter->link_active || (adapter->hw.phy_type != em_phy_igp) ||
- adapter->hw.autoneg == 0 ||
- (adapter->hw.autoneg_advertised & ADVERTISE_1000_FULL) == 0)
+ if (adapter->link_active || (adapter->hw.phy.type != e1000_phy_igp) ||
+ adapter->hw.mac.autoneg == 0 ||
+ (adapter->hw.phy.autoneg_advertised & ADVERTISE_1000_FULL) == 0)
return;
if (adapter->smartspeed == 0) {
/* If Master/Slave config fault is asserted twice,
* we assume back-to-back */
- em_read_phy_reg(&adapter->hw, PHY_1000T_STATUS, &phy_tmp);
+ e1000_read_phy_reg(&adapter->hw, PHY_1000T_STATUS, &phy_tmp);
if (!(phy_tmp & SR_1000T_MS_CONFIG_FAULT))
return;
- em_read_phy_reg(&adapter->hw, PHY_1000T_STATUS, &phy_tmp);
+ e1000_read_phy_reg(&adapter->hw, PHY_1000T_STATUS, &phy_tmp);
if (phy_tmp & SR_1000T_MS_CONFIG_FAULT) {
- em_read_phy_reg(&adapter->hw, PHY_1000T_CTRL, &phy_tmp);
+ e1000_read_phy_reg(&adapter->hw, PHY_1000T_CTRL, &phy_tmp);
if(phy_tmp & CR_1000T_MS_ENABLE) {
phy_tmp &= ~CR_1000T_MS_ENABLE;
- em_write_phy_reg(&adapter->hw, PHY_1000T_CTRL,
+ e1000_write_phy_reg(&adapter->hw, PHY_1000T_CTRL,
phy_tmp);
adapter->smartspeed++;
- if(adapter->hw.autoneg &&
- !em_phy_setup_autoneg(&adapter->hw) &&
- !em_read_phy_reg(&adapter->hw, PHY_CTRL,
+ if(adapter->hw.mac.autoneg &&
+ !e1000_phy_setup_autoneg(&adapter->hw) &&
+ !e1000_read_phy_reg(&adapter->hw, PHY_CONTROL,
&phy_tmp)) {
phy_tmp |= (MII_CR_AUTO_NEG_EN |
MII_CR_RESTART_AUTO_NEG);
- em_write_phy_reg(&adapter->hw, PHY_CTRL,
+ e1000_write_phy_reg(&adapter->hw, PHY_CONTROL,
phy_tmp);
}
}
@@ -2342,15 +3055,15 @@
return;
} else if(adapter->smartspeed == EM_SMARTSPEED_DOWNSHIFT) {
/* If still no link, perhaps using 2/3 pair cable */
- em_read_phy_reg(&adapter->hw, PHY_1000T_CTRL, &phy_tmp);
+ e1000_read_phy_reg(&adapter->hw, PHY_1000T_CTRL, &phy_tmp);
phy_tmp |= CR_1000T_MS_ENABLE;
- em_write_phy_reg(&adapter->hw, PHY_1000T_CTRL, phy_tmp);
- if(adapter->hw.autoneg &&
- !em_phy_setup_autoneg(&adapter->hw) &&
- !em_read_phy_reg(&adapter->hw, PHY_CTRL, &phy_tmp)) {
+ e1000_write_phy_reg(&adapter->hw, PHY_1000T_CTRL, phy_tmp);
+ if(adapter->hw.mac.autoneg &&
+ !e1000_phy_setup_autoneg(&adapter->hw) &&
+ !e1000_read_phy_reg(&adapter->hw, PHY_CONTROL, &phy_tmp)) {
phy_tmp |= (MII_CR_AUTO_NEG_EN |
MII_CR_RESTART_AUTO_NEG);
- em_write_phy_reg(&adapter->hw, PHY_CTRL, phy_tmp);
+ e1000_write_phy_reg(&adapter->hw, PHY_CONTROL, phy_tmp);
}
}
/* Restart process after EM_SMARTSPEED_MAX iterations */
@@ -2371,12 +3084,16 @@
}
static int
-em_dma_malloc(struct adapter *adapter, bus_size_t size, struct em_dma_alloc *dma,
- int mapflags)
+em_dma_malloc(struct adapter *adapter, bus_size_t size,
+ struct em_dma_alloc *dma, int mapflags)
{
int error;
- error = bus_dma_tag_create(NULL, /* parent */
+#if __FreeBSD_version >= 700000
+ error = bus_dma_tag_create(bus_get_dma_tag(adapter->dev), /* parent */
+#else
+ error = bus_dma_tag_create(NULL, /* parent */
+#endif
EM_DBA_ALIGN, 0, /* alignment, bounds */
BUS_SPACE_MAXADDR, /* lowaddr */
BUS_SPACE_MAXADDR, /* highaddr */
@@ -2389,15 +3106,17 @@
NULL, /* lockarg */
&dma->dma_tag);
if (error) {
- device_printf(adapter->dev, "%s: bus_dma_tag_create failed: %d\n",
+ device_printf(adapter->dev,
+ "%s: bus_dma_tag_create failed: %d\n",
__func__, error);
goto fail_0;
}
error = bus_dmamem_alloc(dma->dma_tag, (void**) &dma->dma_vaddr,
- BUS_DMA_NOWAIT, &dma->dma_map);
+ BUS_DMA_NOWAIT | BUS_DMA_COHERENT, &dma->dma_map);
if (error) {
- device_printf(adapter->dev, "%s: bus_dmamem_alloc(%ju) failed: %d\n",
+ device_printf(adapter->dev,
+ "%s: bus_dmamem_alloc(%ju) failed: %d\n",
__func__, (uintmax_t)size, error);
goto fail_2;
}
@@ -2406,7 +3125,8 @@
error = bus_dmamap_load(dma->dma_tag, dma->dma_map, dma->dma_vaddr,
size, em_dmamap_cb, &dma->dma_paddr, mapflags | BUS_DMA_NOWAIT);
if (error || dma->dma_paddr == 0) {
- device_printf(adapter->dev, "%s: bus_dmamap_load failed: %d\n",
+ device_printf(adapter->dev,
+ "%s: bus_dmamap_load failed: %d\n",
__func__, error);
goto fail_3;
}
@@ -2451,43 +3171,25 @@
static int
em_allocate_transmit_structures(struct adapter *adapter)
{
- adapter->tx_buffer_area = malloc(sizeof(struct em_buffer) *
- adapter->num_tx_desc, M_DEVBUF, M_NOWAIT);
- if (adapter->tx_buffer_area == NULL) {
- device_printf(adapter->dev, "Unable to allocate tx_buffer memory\n");
- return (ENOMEM);
- }
-
- bzero(adapter->tx_buffer_area, sizeof(struct em_buffer) * adapter->num_tx_desc);
-
- return (0);
-}
-
-/*********************************************************************
- *
- * Allocate and initialize transmit structures.
- *
- **********************************************************************/
-static int
-em_setup_transmit_structures(struct adapter *adapter)
-{
device_t dev = adapter->dev;
struct em_buffer *tx_buffer;
- bus_size_t size;
- int error, i;
+ int error;
/*
- * Setup DMA descriptor areas.
+ * Create DMA tags for tx descriptors
*/
- size = roundup2(adapter->hw.max_frame_size, MCLBYTES);
- if ((error = bus_dma_tag_create(NULL, /* parent */
+#if __FreeBSD_version >= 700000
+ if ((error = bus_dma_tag_create(bus_get_dma_tag(dev), /* parent */
+#else
+ if ((error = bus_dma_tag_create(NULL, /* parent */
+#endif
1, 0, /* alignment, bounds */
BUS_SPACE_MAXADDR, /* lowaddr */
BUS_SPACE_MAXADDR, /* highaddr */
NULL, NULL, /* filter, filterarg */
- size, /* maxsize */
+ EM_TSO_SIZE, /* maxsize */
EM_MAX_SCATTER, /* nsegments */
- size, /* maxsegsize */
+ EM_TSO_SEG_SIZE, /* maxsegsize */
0, /* flags */
NULL, /* lockfunc */
NULL, /* lockarg */
@@ -2496,36 +3198,65 @@
goto fail;
}
- if ((error = em_allocate_transmit_structures(adapter)) != 0)
+ adapter->tx_buffer_area = malloc(sizeof(struct em_buffer) *
+ adapter->num_tx_desc, M_DEVBUF, M_NOWAIT | M_ZERO);
+ if (adapter->tx_buffer_area == NULL) {
+ device_printf(dev, "Unable to allocate tx_buffer memory\n");
+ error = ENOMEM;
goto fail;
+ }
- bzero(adapter->tx_desc_base, (sizeof(struct em_tx_desc)) * adapter->num_tx_desc);
- tx_buffer = adapter->tx_buffer_area;
- for (i = 0; i < adapter->num_tx_desc; i++) {
+ /* Create the descriptor buffer dma maps */
+ for (int i = 0; i < adapter->num_tx_desc; i++) {
+ tx_buffer = &adapter->tx_buffer_area[i];
error = bus_dmamap_create(adapter->txtag, 0, &tx_buffer->map);
if (error != 0) {
device_printf(dev, "Unable to create TX DMA map\n");
goto fail;
}
- tx_buffer++;
+ tx_buffer->next_eop = -1;
}
- adapter->next_avail_tx_desc = 0;
- adapter->oldest_used_tx_desc = 0;
+ return (0);
+fail:
+ em_free_transmit_structures(adapter);
+ return (error);
+}
- /* Set number of descriptors available */
+/*********************************************************************
+ *
+ * (Re)Initialize transmit structures.
+ *
+ **********************************************************************/
+static void
+em_setup_transmit_structures(struct adapter *adapter)
+{
+ struct em_buffer *tx_buffer;
+
+ /* Clear the old ring contents */
+ bzero(adapter->tx_desc_base,
+ (sizeof(struct e1000_tx_desc)) * adapter->num_tx_desc);
+
+ /* Free any existing TX buffers */
+ for (int i = 0; i < adapter->num_tx_desc; i++, tx_buffer++) {
+ tx_buffer = &adapter->tx_buffer_area[i];
+ bus_dmamap_sync(adapter->txtag, tx_buffer->map,
+ BUS_DMASYNC_POSTWRITE);
+ bus_dmamap_unload(adapter->txtag, tx_buffer->map);
+ m_freem(tx_buffer->m_head);
+ tx_buffer->m_head = NULL;
+ tx_buffer->next_eop = -1;
+ }
+
+ /* Reset state */
+ adapter->next_avail_tx_desc = 0;
+ adapter->next_tx_to_clean = 0;
adapter->num_tx_desc_avail = adapter->num_tx_desc;
- /* Set checksum context */
- adapter->active_checksum_context = OFFLOAD_NONE;
bus_dmamap_sync(adapter->txdma.dma_tag, adapter->txdma.dma_map,
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
- return (0);
-
-fail:
- em_free_transmit_structures(adapter);
- return (error);
+ return;
}
/*********************************************************************
@@ -2536,90 +3267,93 @@
static void
em_initialize_transmit_unit(struct adapter *adapter)
{
- uint32_t reg_tctl, reg_tarc;
- uint32_t reg_tipg = 0;
+ uint32_t tctl, tarc, tipg = 0;
uint64_t bus_addr;
INIT_DEBUGOUT("em_initialize_transmit_unit: begin");
/* Setup the Base and Length of the Tx Descriptor Ring */
bus_addr = adapter->txdma.dma_paddr;
- E1000_WRITE_REG(&adapter->hw, TDLEN,
- adapter->num_tx_desc * sizeof(struct em_tx_desc));
- E1000_WRITE_REG(&adapter->hw, TDBAH, (uint32_t)(bus_addr >> 32));
- E1000_WRITE_REG(&adapter->hw, TDBAL, (uint32_t)bus_addr);
-
+ E1000_WRITE_REG(&adapter->hw, E1000_TDLEN(0),
+ adapter->num_tx_desc * sizeof(struct e1000_tx_desc));
+ E1000_WRITE_REG(&adapter->hw, E1000_TDBAH(0),
+ (uint32_t)(bus_addr >> 32));
+ E1000_WRITE_REG(&adapter->hw, E1000_TDBAL(0),
+ (uint32_t)bus_addr);
/* Setup the HW Tx Head and Tail descriptor pointers */
- E1000_WRITE_REG(&adapter->hw, TDT, 0);
- E1000_WRITE_REG(&adapter->hw, TDH, 0);
+ E1000_WRITE_REG(&adapter->hw, E1000_TDT(0), 0);
+ E1000_WRITE_REG(&adapter->hw, E1000_TDH(0), 0);
-
- HW_DEBUGOUT2("Base = %x, Length = %x\n", E1000_READ_REG(&adapter->hw, TDBAL),
- E1000_READ_REG(&adapter->hw, TDLEN));
+ HW_DEBUGOUT2("Base = %x, Length = %x\n",
+ E1000_READ_REG(&adapter->hw, E1000_TDBAL(0)),
+ E1000_READ_REG(&adapter->hw, E1000_TDLEN(0)));
/* Set the default values for the Tx Inter Packet Gap timer */
- switch (adapter->hw.mac_type) {
- case em_82542_rev2_0:
- case em_82542_rev2_1:
- reg_tipg = DEFAULT_82542_TIPG_IPGT;
- reg_tipg |= DEFAULT_82542_TIPG_IPGR1 << E1000_TIPG_IPGR1_SHIFT;
- reg_tipg |= DEFAULT_82542_TIPG_IPGR2 << E1000_TIPG_IPGR2_SHIFT;
- break;
- case em_80003es2lan:
- reg_tipg = DEFAULT_82543_TIPG_IPGR1;
- reg_tipg |= DEFAULT_80003ES2LAN_TIPG_IPGR2 <<
+ switch (adapter->hw.mac.type) {
+ case e1000_82542:
+ tipg = DEFAULT_82542_TIPG_IPGT;
+ tipg |= DEFAULT_82542_TIPG_IPGR1 << E1000_TIPG_IPGR1_SHIFT;
+ tipg |= DEFAULT_82542_TIPG_IPGR2 << E1000_TIPG_IPGR2_SHIFT;
+ break;
+ case e1000_80003es2lan:
+ tipg = DEFAULT_82543_TIPG_IPGR1;
+ tipg |= DEFAULT_80003ES2LAN_TIPG_IPGR2 <<
E1000_TIPG_IPGR2_SHIFT;
break;
default:
- if ((adapter->hw.media_type == em_media_type_fiber) ||
- (adapter->hw.media_type == em_media_type_internal_serdes))
- reg_tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
+ if ((adapter->hw.phy.media_type == e1000_media_type_fiber) ||
+ (adapter->hw.phy.media_type ==
+ e1000_media_type_internal_serdes))
+ tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
else
- reg_tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
- reg_tipg |= DEFAULT_82543_TIPG_IPGR1 << E1000_TIPG_IPGR1_SHIFT;
- reg_tipg |= DEFAULT_82543_TIPG_IPGR2 << E1000_TIPG_IPGR2_SHIFT;
- }
-
- E1000_WRITE_REG(&adapter->hw, TIPG, reg_tipg);
- E1000_WRITE_REG(&adapter->hw, TIDV, adapter->tx_int_delay.value);
- if(adapter->hw.mac_type >= em_82540)
- E1000_WRITE_REG(&adapter->hw, TADV, adapter->tx_abs_int_delay.value);
-
- /* Do adapter specific tweaks before we enable the transmitter. */
- if (adapter->hw.mac_type == em_82571 || adapter->hw.mac_type == em_82572) {
- reg_tarc = E1000_READ_REG(&adapter->hw, TARC0);
- reg_tarc |= (1 << 25);
- E1000_WRITE_REG(&adapter->hw, TARC0, reg_tarc);
- reg_tarc = E1000_READ_REG(&adapter->hw, TARC1);
- reg_tarc |= (1 << 25);
- reg_tarc &= ~(1 << 28);
- E1000_WRITE_REG(&adapter->hw, TARC1, reg_tarc);
- } else if (adapter->hw.mac_type == em_80003es2lan) {
- reg_tarc = E1000_READ_REG(&adapter->hw, TARC0);
- reg_tarc |= 1;
- E1000_WRITE_REG(&adapter->hw, TARC0, reg_tarc);
- reg_tarc = E1000_READ_REG(&adapter->hw, TARC1);
- reg_tarc |= 1;
- E1000_WRITE_REG(&adapter->hw, TARC1, reg_tarc);
+ tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
+ tipg |= DEFAULT_82543_TIPG_IPGR1 << E1000_TIPG_IPGR1_SHIFT;
+ tipg |= DEFAULT_82543_TIPG_IPGR2 << E1000_TIPG_IPGR2_SHIFT;
+ }
+
+ E1000_WRITE_REG(&adapter->hw, E1000_TIPG, tipg);
+ E1000_WRITE_REG(&adapter->hw, E1000_TIDV, adapter->tx_int_delay.value);
+ if(adapter->hw.mac.type >= e1000_82540)
+ E1000_WRITE_REG(&adapter->hw, E1000_TADV,
+ adapter->tx_abs_int_delay.value);
+
+ if ((adapter->hw.mac.type == e1000_82571) ||
+ (adapter->hw.mac.type == e1000_82572)) {
+ tarc = E1000_READ_REG(&adapter->hw, E1000_TARC(0));
+ tarc |= SPEED_MODE_BIT;
+ E1000_WRITE_REG(&adapter->hw, E1000_TARC(0), tarc);
+ } else if (adapter->hw.mac.type == e1000_80003es2lan) {
+ tarc = E1000_READ_REG(&adapter->hw, E1000_TARC(0));
+ tarc |= 1;
+ E1000_WRITE_REG(&adapter->hw, E1000_TARC(0), tarc);
+ tarc = E1000_READ_REG(&adapter->hw, E1000_TARC(1));
+ tarc |= 1;
+ E1000_WRITE_REG(&adapter->hw, E1000_TARC(1), tarc);
}
/* Program the Transmit Control Register */
- reg_tctl = E1000_TCTL_PSP | E1000_TCTL_EN |
- (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
- if (adapter->hw.mac_type >= em_82571)
- reg_tctl |= E1000_TCTL_MULR;
- if (adapter->link_duplex == FULL_DUPLEX) {
- reg_tctl |= E1000_FDX_COLLISION_DISTANCE << E1000_COLD_SHIFT;
- } else {
- reg_tctl |= E1000_HDX_COLLISION_DISTANCE << E1000_COLD_SHIFT;
- }
+ tctl = E1000_READ_REG(&adapter->hw, E1000_TCTL);
+ tctl &= ~E1000_TCTL_CT;
+ tctl |= (E1000_TCTL_PSP | E1000_TCTL_RTLC | E1000_TCTL_EN |
+ (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT));
+
+ if (adapter->hw.mac.type >= e1000_82571)
+ tctl |= E1000_TCTL_MULR;
+
/* This write will effectively turn on the transmit unit. */
- E1000_WRITE_REG(&adapter->hw, TCTL, reg_tctl);
+ E1000_WRITE_REG(&adapter->hw, E1000_TCTL, tctl);
- /* Setup Transmit Descriptor Settings for this adapter */
- adapter->txd_cmd = E1000_TXD_CMD_IFCS | E1000_TXD_CMD_RS;
+ /* Setup Transmit Descriptor Base Settings */
+ adapter->txd_cmd = E1000_TXD_CMD_IFCS;
- if (adapter->tx_int_delay.value > 0)
+ if ((adapter->tx_int_delay.value > 0) &&
+ (adapter->hw.mac.type != e1000_82575))
adapter->txd_cmd |= E1000_TXD_CMD_IDE;
+
+ /* Set the function pointer for the transmit routine */
+ if (adapter->hw.mac.type >= e1000_82575)
+ adapter->em_xmit = em_adv_encap;
+ else
+ adapter->em_xmit = em_encap;
}
/*********************************************************************
@@ -2631,13 +3365,12 @@
em_free_transmit_structures(struct adapter *adapter)
{
struct em_buffer *tx_buffer;
- int i;
INIT_DEBUGOUT("free_transmit_structures: begin");
if (adapter->tx_buffer_area != NULL) {
- tx_buffer = adapter->tx_buffer_area;
- for (i = 0; i < adapter->num_tx_desc; i++, tx_buffer++) {
+ for (int i = 0; i < adapter->num_tx_desc; i++) {
+ tx_buffer = &adapter->tx_buffer_area[i];
if (tx_buffer->m_head != NULL) {
bus_dmamap_sync(adapter->txtag, tx_buffer->map,
BUS_DMASYNC_POSTWRITE);
@@ -2665,88 +3398,516 @@
}
}
-/*********************************************************************
+/*********************************************************************
+ *
+ * The offload context needs to be set when we transfer the first
+ * packet of a particular protocol (TCP/UDP). This routine has been
+ * enhanced to deal with inserted VLAN headers, and IPV6 (not complete)
+ *
+ **********************************************************************/
+static void
+em_transmit_checksum_setup(struct adapter *adapter, struct mbuf *mp,
+ uint32_t *txd_upper, uint32_t *txd_lower)
+{
+ struct e1000_context_desc *TXD;
+ struct em_buffer *tx_buffer;
+ struct ether_vlan_header *eh;
+ struct ip *ip;
+ struct ip6_hdr *ip6;
+ struct tcp_hdr *th;
+ int curr_txd, ehdrlen, hdr_len, ip_hlen;
+ uint32_t cmd = 0;
+ uint16_t etype;
+ uint8_t ipproto;
+
+ /* Setup checksum offload context. */
+ curr_txd = adapter->next_avail_tx_desc;
+ tx_buffer = &adapter->tx_buffer_area[curr_txd];
+ TXD = (struct e1000_context_desc *) &adapter->tx_desc_base[curr_txd];
+
+ *txd_lower = E1000_TXD_CMD_DEXT | /* Extended descr type */
+ E1000_TXD_DTYP_D; /* Data descr */
+
+ /*
+ * Determine where frame payload starts.
+ * Jump over vlan headers if already present,
+ * helpful for QinQ too.
+ */
+ eh = mtod(mp, struct ether_vlan_header *);
+ if (eh->evl_encap_proto == htons(ETHERTYPE_VLAN)) {
+ etype = ntohs(eh->evl_proto);
+ ehdrlen = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
+ } else {
+ etype = ntohs(eh->evl_encap_proto);
+ ehdrlen = ETHER_HDR_LEN;
+ }
+
+ /*
+ * We only support TCP/UDP for IPv4 and IPv6 for the moment.
+ * TODO: Support SCTP too when it hits the tree.
+ */
+ switch (etype) {
+ case ETHERTYPE_IP:
+ ip = (struct ip *)(mp->m_data + ehdrlen);
+ ip_hlen = ip->ip_hl << 2;
+
+ /* Setup of IP header checksum. */
+ if (mp->m_pkthdr.csum_flags & CSUM_IP) {
+ /*
+ * Start offset for header checksum calculation.
+ * End offset for header checksum calculation.
+ * Offset of place to put the checksum.
+ */
+ TXD->lower_setup.ip_fields.ipcss = ehdrlen;
+ TXD->lower_setup.ip_fields.ipcse =
+ htole16(ehdrlen + ip_hlen);
+ TXD->lower_setup.ip_fields.ipcso =
+ ehdrlen + offsetof(struct ip, ip_sum);
+ cmd |= E1000_TXD_CMD_IP;
+ *txd_upper |= E1000_TXD_POPTS_IXSM << 8;
+ }
+
+ if (mp->m_len < ehdrlen + ip_hlen)
+ return; /* failure */
+
+ hdr_len = ehdrlen + ip_hlen;
+ ipproto = ip->ip_p;
+
+ break;
+ case ETHERTYPE_IPV6:
+ ip6 = (struct ip6_hdr *)(mp->m_data + ehdrlen);
+ ip_hlen = sizeof(struct ip6_hdr); /* XXX: No header stacking. */
+
+ if (mp->m_len < ehdrlen + ip_hlen)
+ return; /* failure */
+
+ /* IPv6 doesn't have a header checksum. */
+
+ hdr_len = ehdrlen + ip_hlen;
+ ipproto = ip6->ip6_nxt;
+
+ break;
+ default:
+ *txd_upper = 0;
+ *txd_lower = 0;
+ return;
+ }
+
+ switch (ipproto) {
+ case IPPROTO_TCP:
+ if (mp->m_pkthdr.csum_flags & CSUM_TCP) {
+ /*
+ * Start offset for payload checksum calculation.
+ * End offset for payload checksum calculation.
+ * Offset of place to put the checksum.
+ */
+ th = (struct tcp_hdr *)(mp->m_data + hdr_len);
+ TXD->upper_setup.tcp_fields.tucss = hdr_len;
+ TXD->upper_setup.tcp_fields.tucse = htole16(0);
+ TXD->upper_setup.tcp_fields.tucso =
+ hdr_len + offsetof(struct tcphdr, th_sum);
+ cmd |= E1000_TXD_CMD_TCP;
+ *txd_upper |= E1000_TXD_POPTS_TXSM << 8;
+ }
+ break;
+ case IPPROTO_UDP:
+ if (mp->m_pkthdr.csum_flags & CSUM_UDP) {
+ /*
+ * Start offset for header checksum calculation.
+ * End offset for header checksum calculation.
+ * Offset of place to put the checksum.
+ */
+ TXD->upper_setup.tcp_fields.tucss = hdr_len;
+ TXD->upper_setup.tcp_fields.tucse = htole16(0);
+ TXD->upper_setup.tcp_fields.tucso =
+ hdr_len + offsetof(struct udphdr, uh_sum);
+ *txd_upper |= E1000_TXD_POPTS_TXSM << 8;
+ }
+ break;
+ default:
+ break;
+ }
+
+ TXD->tcp_seg_setup.data = htole32(0);
+ TXD->cmd_and_length =
+ htole32(adapter->txd_cmd | E1000_TXD_CMD_DEXT | cmd);
+ tx_buffer->m_head = NULL;
+ tx_buffer->next_eop = -1;
+
+ if (++curr_txd == adapter->num_tx_desc)
+ curr_txd = 0;
+
+ adapter->num_tx_desc_avail--;
+ adapter->next_avail_tx_desc = curr_txd;
+}
+
+
+#if __FreeBSD_version >= 700000
+/**********************************************************************
+ *
+ * Setup work for hardware segmentation offload (TSO)
+ *
+ **********************************************************************/
+static bool
+em_tso_setup(struct adapter *adapter, struct mbuf *mp, uint32_t *txd_upper,
+ uint32_t *txd_lower)
+{
+ struct e1000_context_desc *TXD;
+ struct em_buffer *tx_buffer;
+ struct ether_vlan_header *eh;
+ struct ip *ip;
+ struct ip6_hdr *ip6;
+ struct tcphdr *th;
+ int curr_txd, ehdrlen, hdr_len, ip_hlen, isip6;
+ uint16_t etype;
+
+ /*
+ * This function could/should be extended to support IP/IPv6
+ * fragmentation as well. But as they say, one step at a time.
+ */
+
+ /*
+ * Determine where frame payload starts.
+ * Jump over vlan headers if already present,
+ * helpful for QinQ too.
+ */
+ eh = mtod(mp, struct ether_vlan_header *);
+ if (eh->evl_encap_proto == htons(ETHERTYPE_VLAN)) {
+ etype = ntohs(eh->evl_proto);
+ ehdrlen = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
+ } else {
+ etype = ntohs(eh->evl_encap_proto);
+ ehdrlen = ETHER_HDR_LEN;
+ }
+
+ /* Ensure we have at least the IP+TCP header in the first mbuf. */
+ if (mp->m_len < ehdrlen + sizeof(struct ip) + sizeof(struct tcphdr))
+ return FALSE; /* -1 */
+
+ /*
+ * We only support TCP for IPv4 and IPv6 (notyet) for the moment.
+ * TODO: Support SCTP too when it hits the tree.
+ */
+ switch (etype) {
+ case ETHERTYPE_IP:
+ isip6 = 0;
+ ip = (struct ip *)(mp->m_data + ehdrlen);
+ if (ip->ip_p != IPPROTO_TCP)
+ return FALSE; /* 0 */
+ ip->ip_len = 0;
+ ip->ip_sum = 0;
+ ip_hlen = ip->ip_hl << 2;
+ if (mp->m_len < ehdrlen + ip_hlen + sizeof(struct tcphdr))
+ return FALSE; /* -1 */
+ th = (struct tcphdr *)((caddr_t)ip + ip_hlen);
+#if 1
+ th->th_sum = in_pseudo(ip->ip_src.s_addr,
+ ip->ip_dst.s_addr, htons(IPPROTO_TCP));
+#else
+ th->th_sum = mp->m_pkthdr.csum_data;
+#endif
+ break;
+ case ETHERTYPE_IPV6:
+ isip6 = 1;
+ return FALSE; /* Not supported yet. */
+ ip6 = (struct ip6_hdr *)(mp->m_data + ehdrlen);
+ if (ip6->ip6_nxt != IPPROTO_TCP)
+ return FALSE; /* 0 */
+ ip6->ip6_plen = 0;
+ ip_hlen = sizeof(struct ip6_hdr); /* XXX: no header stacking. */
+ if (mp->m_len < ehdrlen + ip_hlen + sizeof(struct tcphdr))
+ return FALSE; /* -1 */
+ th = (struct tcphdr *)((caddr_t)ip6 + ip_hlen);
+#if 0
+ th->th_sum = in6_pseudo(ip6->ip6_src, ip->ip6_dst,
+ htons(IPPROTO_TCP)); /* XXX: function notyet. */
+#else
+ th->th_sum = mp->m_pkthdr.csum_data;
+#endif
+ break;
+ default:
+ return FALSE;
+ }
+ hdr_len = ehdrlen + ip_hlen + (th->th_off << 2);
+
+ *txd_lower = (E1000_TXD_CMD_DEXT | /* Extended descr type */
+ E1000_TXD_DTYP_D | /* Data descr type */
+ E1000_TXD_CMD_TSE); /* Do TSE on this packet */
+
+ /* IP and/or TCP header checksum calculation and insertion. */
+ *txd_upper = ((isip6 ? 0 : E1000_TXD_POPTS_IXSM) |
+ E1000_TXD_POPTS_TXSM) << 8;
+
+ curr_txd = adapter->next_avail_tx_desc;
+ tx_buffer = &adapter->tx_buffer_area[curr_txd];
+ TXD = (struct e1000_context_desc *) &adapter->tx_desc_base[curr_txd];
+
+ /* IPv6 doesn't have a header checksum. */
+ if (!isip6) {
+ /*
+ * Start offset for header checksum calculation.
+ * End offset for header checksum calculation.
+ * Offset of place put the checksum.
+ */
+ TXD->lower_setup.ip_fields.ipcss = ehdrlen;
+ TXD->lower_setup.ip_fields.ipcse =
+ htole16(ehdrlen + ip_hlen - 1);
+ TXD->lower_setup.ip_fields.ipcso =
+ ehdrlen + offsetof(struct ip, ip_sum);
+ }
+ /*
+ * Start offset for payload checksum calculation.
+ * End offset for payload checksum calculation.
+ * Offset of place to put the checksum.
+ */
+ TXD->upper_setup.tcp_fields.tucss =
+ ehdrlen + ip_hlen;
+ TXD->upper_setup.tcp_fields.tucse = 0;
+ TXD->upper_setup.tcp_fields.tucso =
+ ehdrlen + ip_hlen + offsetof(struct tcphdr, th_sum);
+ /*
+ * Payload size per packet w/o any headers.
+ * Length of all headers up to payload.
+ */
+ TXD->tcp_seg_setup.fields.mss = htole16(mp->m_pkthdr.tso_segsz);
+ TXD->tcp_seg_setup.fields.hdr_len = hdr_len;
+
+ TXD->cmd_and_length = htole32(adapter->txd_cmd |
+ E1000_TXD_CMD_DEXT | /* Extended descr */
+ E1000_TXD_CMD_TSE | /* TSE context */
+ (isip6 ? 0 : E1000_TXD_CMD_IP) | /* Do IP csum */
+ E1000_TXD_CMD_TCP | /* Do TCP checksum */
+ (mp->m_pkthdr.len - (hdr_len))); /* Total len */
+
+ tx_buffer->m_head = NULL;
+ tx_buffer->next_eop = -1;
+
+ if (++curr_txd == adapter->num_tx_desc)
+ curr_txd = 0;
+
+ adapter->num_tx_desc_avail--;
+ adapter->next_avail_tx_desc = curr_txd;
+ adapter->tx_tso = TRUE;
+
+ return TRUE;
+}
+
+
+/**********************************************************************
*
- * The offload context needs to be set when we transfer the first
- * packet of a particular protocol (TCP/UDP). We change the
- * context only if the protocol type changes.
+ * Setup work for hardware segmentation offload (TSO) on
+ * adapters using advanced tx descriptors (82575)
*
**********************************************************************/
-static void
-em_transmit_checksum_setup(struct adapter *adapter, struct mbuf *mp,
- uint32_t *txd_upper, uint32_t *txd_lower)
+static boolean_t
+em_tso_adv_setup(struct adapter *adapter, struct mbuf *mp, u32 *hdrlen)
{
- struct em_context_desc *TXD;
- struct em_buffer *tx_buffer;
- int curr_txd;
+ struct e1000_adv_tx_context_desc *TXD;
+ struct em_buffer *tx_buffer;
+ u32 vlan_macip_lens = 0, type_tucmd_mlhl = 0;
+ u32 mss_l4len_idx = 0;
+ u16 vtag = 0;
+ int ctxd, ehdrlen, ip_hlen, tcp_hlen;
+ struct ether_vlan_header *eh;
+ struct ip *ip;
+ struct tcphdr *th;
- if (mp->m_pkthdr.csum_flags) {
+ /*
+ * Determine where frame payload starts.
+ * Jump over vlan headers if already present
+ */
+ eh = mtod(mp, struct ether_vlan_header *);
+ if (eh->evl_encap_proto == htons(ETHERTYPE_VLAN))
+ ehdrlen = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
+ else
+ ehdrlen = ETHER_HDR_LEN;
- if (mp->m_pkthdr.csum_flags & CSUM_TCP) {
- *txd_upper = E1000_TXD_POPTS_TXSM << 8;
- *txd_lower = E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
- if (adapter->active_checksum_context == OFFLOAD_TCP_IP)
- return;
- else
- adapter->active_checksum_context = OFFLOAD_TCP_IP;
+ /* Ensure we have at least the IP+TCP header in the first mbuf. */
+ if (mp->m_len < ehdrlen + sizeof(struct ip) + sizeof(struct tcphdr))
+ return FALSE;
+
+ /* Only supports IPV4 for now */
+ ctxd = adapter->next_avail_tx_desc;
+ tx_buffer = &adapter->tx_buffer_area[ctxd];
+ TXD = (struct e1000_adv_tx_context_desc *) &adapter->tx_desc_base[ctxd];
+
+ ip = (struct ip *)(mp->m_data + ehdrlen);
+ if (ip->ip_p != IPPROTO_TCP)
+ return FALSE; /* 0 */
+ ip->ip_len = 0;
+ ip->ip_sum = 0;
+ ip_hlen = ip->ip_hl << 2;
+ th = (struct tcphdr *)((caddr_t)ip + ip_hlen);
+ th->th_sum = in_pseudo(ip->ip_src.s_addr,
+ ip->ip_dst.s_addr, htons(IPPROTO_TCP));
+ tcp_hlen = th->th_off << 2;
+ /*
+ * Calculate header length, this is used
+ * in the transmit desc in igb_encap
+ */
+ *hdrlen = ehdrlen + ip_hlen + tcp_hlen;
- } else if (mp->m_pkthdr.csum_flags & CSUM_UDP) {
- *txd_upper = E1000_TXD_POPTS_TXSM << 8;
- *txd_lower = E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
- if (adapter->active_checksum_context == OFFLOAD_UDP_IP)
- return;
- else
- adapter->active_checksum_context = OFFLOAD_UDP_IP;
- } else {
- *txd_upper = 0;
- *txd_lower = 0;
- return;
- }
+ /* VLAN MACLEN IPLEN */
+ if (mp->m_flags & M_VLANTAG) {
+ vtag = htole16(mp->m_pkthdr.ether_vtag);
+ vlan_macip_lens |= (vtag << E1000_ADVTXD_VLAN_SHIFT);
+ }
+
+ vlan_macip_lens |= (ehdrlen << E1000_ADVTXD_MACLEN_SHIFT);
+ vlan_macip_lens |= ip_hlen;
+ TXD->vlan_macip_lens |= htole32(vlan_macip_lens);
+
+ /* ADV DTYPE TUCMD */
+ type_tucmd_mlhl |= E1000_ADVTXD_DCMD_DEXT | E1000_ADVTXD_DTYP_CTXT;
+ type_tucmd_mlhl |= E1000_ADVTXD_TUCMD_L4T_TCP;
+ type_tucmd_mlhl |= E1000_ADVTXD_TUCMD_IPV4;
+ TXD->type_tucmd_mlhl |= htole32(type_tucmd_mlhl);
+
+ /* MSS L4LEN IDX */
+ mss_l4len_idx |= (mp->m_pkthdr.tso_segsz << E1000_ADVTXD_MSS_SHIFT);
+ mss_l4len_idx |= (tcp_hlen << E1000_ADVTXD_L4LEN_SHIFT);
+ TXD->mss_l4len_idx = htole32(mss_l4len_idx);
+
+ TXD->seqnum_seed = htole32(0);
+ tx_buffer->m_head = NULL;
+ tx_buffer->next_eop = -1;
+
+ if (++ctxd == adapter->num_tx_desc)
+ ctxd = 0;
+
+ adapter->num_tx_desc_avail--;
+ adapter->next_avail_tx_desc = ctxd;
+ return TRUE;
+}
+
+#endif /* FreeBSD_version >= 700000 */
+
+/*********************************************************************
+ *
+ * Advanced Context Descriptor setup for VLAN or CSUM
+ *
+ **********************************************************************/
+
+static boolean_t
+em_tx_adv_ctx_setup(struct adapter *adapter, struct mbuf *mp)
+{
+ struct e1000_adv_tx_context_desc *TXD;
+ struct em_buffer *tx_buffer;
+ uint32_t vlan_macip_lens = 0, type_tucmd_mlhl = 0;
+ struct ether_vlan_header *eh;
+ struct ip *ip;
+ struct ip6_hdr *ip6;
+ int ehdrlen, ip_hlen = 0;
+ u16 etype;
+ u8 ipproto = 0;
+ bool offload = TRUE;
+#if __FreeBSD_version < 700000
+ struct m_tag *mtag;
+#else
+ u16 vtag = 0;
+#endif
+
+ int ctxd = adapter->next_avail_tx_desc;
+ tx_buffer = &adapter->tx_buffer_area[ctxd];
+ TXD = (struct e1000_adv_tx_context_desc *) &adapter->tx_desc_base[ctxd];
+
+ if ((mp->m_pkthdr.csum_flags & CSUM_OFFLOAD) == 0)
+ offload = FALSE; /* Only here to handle VLANs */
+ /*
+ ** In advanced descriptors the vlan tag must
+ ** be placed into the descriptor itself.
+ */
+#if __FreeBSD_version < 700000
+ mtag = VLAN_OUTPUT_TAG(ifp, mp);
+ if (mtag != NULL) {
+ vlan_macip_lens |=
+ htole16(VLAN_TAG_VALUE(mtag)) << E1000_ADVTXD_VLAN_SHIFT;
+ } else if (offload == FALSE)
+ return FALSE; /* No CTX needed */
+#else
+ if (mp->m_flags & M_VLANTAG) {
+ vtag = htole16(mp->m_pkthdr.ether_vtag);
+ vlan_macip_lens |= (vtag << E1000_ADVTXD_VLAN_SHIFT);
+ } else if (offload == FALSE)
+ return FALSE;
+#endif
+ /*
+ * Determine where frame payload starts.
+ * Jump over vlan headers if already present,
+ * helpful for QinQ too.
+ */
+ eh = mtod(mp, struct ether_vlan_header *);
+ if (eh->evl_encap_proto == htons(ETHERTYPE_VLAN)) {
+ etype = ntohs(eh->evl_proto);
+ ehdrlen = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
} else {
- *txd_upper = 0;
- *txd_lower = 0;
- return;
+ etype = ntohs(eh->evl_encap_proto);
+ ehdrlen = ETHER_HDR_LEN;
}
- /* If we reach this point, the checksum offload context
- * needs to be reset.
- */
- curr_txd = adapter->next_avail_tx_desc;
- tx_buffer = &adapter->tx_buffer_area[curr_txd];
- TXD = (struct em_context_desc *) &adapter->tx_desc_base[curr_txd];
+ /* Set the ether header length */
+ vlan_macip_lens |= ehdrlen << E1000_ADVTXD_MACLEN_SHIFT;
- TXD->lower_setup.ip_fields.ipcss = ETHER_HDR_LEN;
- TXD->lower_setup.ip_fields.ipcso =
- ETHER_HDR_LEN + offsetof(struct ip, ip_sum);
- TXD->lower_setup.ip_fields.ipcse =
- htole16(ETHER_HDR_LEN + sizeof(struct ip) - 1);
+ switch (etype) {
+ case ETHERTYPE_IP:
+ ip = (struct ip *)(mp->m_data + ehdrlen);
+ ip_hlen = ip->ip_hl << 2;
+ if (mp->m_len < ehdrlen + ip_hlen) {
+ offload = FALSE;
+ break;
+ }
+ ipproto = ip->ip_p;
+ type_tucmd_mlhl |= E1000_ADVTXD_TUCMD_IPV4;
+ break;
+ case ETHERTYPE_IPV6:
+ ip6 = (struct ip6_hdr *)(mp->m_data + ehdrlen);
+ ip_hlen = sizeof(struct ip6_hdr);
+ if (mp->m_len < ehdrlen + ip_hlen)
+ return FALSE; /* failure */
+ ipproto = ip6->ip6_nxt;
+ type_tucmd_mlhl |= E1000_ADVTXD_TUCMD_IPV6;
+ break;
+ default:
+ offload = FALSE;
+ break;
+ }
- TXD->upper_setup.tcp_fields.tucss =
- ETHER_HDR_LEN + sizeof(struct ip);
- TXD->upper_setup.tcp_fields.tucse = htole16(0);
+ vlan_macip_lens |= ip_hlen;
+ type_tucmd_mlhl |= E1000_ADVTXD_DCMD_DEXT | E1000_ADVTXD_DTYP_CTXT;
- if (adapter->active_checksum_context == OFFLOAD_TCP_IP) {
- TXD->upper_setup.tcp_fields.tucso =
- ETHER_HDR_LEN + sizeof(struct ip) +
- offsetof(struct tcphdr, th_sum);
- } else if (adapter->active_checksum_context == OFFLOAD_UDP_IP) {
- TXD->upper_setup.tcp_fields.tucso =
- ETHER_HDR_LEN + sizeof(struct ip) +
- offsetof(struct udphdr, uh_sum);
+ switch (ipproto) {
+ case IPPROTO_TCP:
+ if (mp->m_pkthdr.csum_flags & CSUM_TCP)
+ type_tucmd_mlhl |= E1000_ADVTXD_TUCMD_L4T_TCP;
+ break;
+ case IPPROTO_UDP:
+ if (mp->m_pkthdr.csum_flags & CSUM_UDP)
+ type_tucmd_mlhl |= E1000_ADVTXD_TUCMD_L4T_UDP;
+ break;
+ default:
+ offload = FALSE;
+ break;
}
- TXD->tcp_seg_setup.data = htole32(0);
- TXD->cmd_and_length = htole32(adapter->txd_cmd | E1000_TXD_CMD_DEXT);
+ /* Now copy bits into descriptor */
+ TXD->vlan_macip_lens |= htole32(vlan_macip_lens);
+ TXD->type_tucmd_mlhl |= htole32(type_tucmd_mlhl);
+ TXD->seqnum_seed = htole32(0);
+ TXD->mss_l4len_idx = htole32(0);
tx_buffer->m_head = NULL;
+ tx_buffer->next_eop = -1;
- if (++curr_txd == adapter->num_tx_desc)
- curr_txd = 0;
+ /* We've consumed the first desc, adjust counters */
+ if (++ctxd == adapter->num_tx_desc)
+ ctxd = 0;
+ adapter->next_avail_tx_desc = ctxd;
+ --adapter->num_tx_desc_avail;
- adapter->num_tx_desc_avail--;
- adapter->next_avail_tx_desc = curr_txd;
+ return (offload);
}
+
/**********************************************************************
*
* Examine each tx_buffer in the used queue. If the hardware is done
@@ -2757,64 +3918,117 @@
static void
em_txeof(struct adapter *adapter)
{
- int i, num_avail;
- struct em_buffer *tx_buffer;
- struct em_tx_desc *tx_desc;
+ int first, last, done, num_avail;
+ struct em_buffer *tx_buffer;
+ struct e1000_tx_desc *tx_desc, *eop_desc;
struct ifnet *ifp = adapter->ifp;
- EM_LOCK_ASSERT(adapter);
+ EM_TX_LOCK_ASSERT(adapter);
- if (adapter->num_tx_desc_avail == adapter->num_tx_desc)
- return;
-
- num_avail = adapter->num_tx_desc_avail;
- i = adapter->oldest_used_tx_desc;
+ if (adapter->num_tx_desc_avail == adapter->num_tx_desc)
+ return;
- tx_buffer = &adapter->tx_buffer_area[i];
- tx_desc = &adapter->tx_desc_base[i];
-
- bus_dmamap_sync(adapter->txdma.dma_tag, adapter->txdma.dma_map,
- BUS_DMASYNC_POSTREAD);
- while (tx_desc->upper.fields.status & E1000_TXD_STAT_DD) {
+ num_avail = adapter->num_tx_desc_avail;
+ first = adapter->next_tx_to_clean;
+ tx_desc = &adapter->tx_desc_base[first];
+ tx_buffer = &adapter->tx_buffer_area[first];
+ last = tx_buffer->next_eop;
+ eop_desc = &adapter->tx_desc_base[last];
- tx_desc->upper.data = 0;
- num_avail++;
+ /*
+ * What this does is get the index of the
+ * first descriptor AFTER the EOP of the
+ * first packet, that way we can do the
+ * simple comparison on the inner while loop.
+ */
+ if (++last == adapter->num_tx_desc)
+ last = 0;
+ done = last;
+
+ bus_dmamap_sync(adapter->txdma.dma_tag, adapter->txdma.dma_map,
+ BUS_DMASYNC_POSTREAD);
+
+ while (eop_desc->upper.fields.status & E1000_TXD_STAT_DD) {
+ /* We clean the range of the packet */
+ while (first != done) {
+ tx_desc->upper.data = 0;
+ tx_desc->lower.data = 0;
+ tx_desc->buffer_addr = 0;
+ num_avail++;
+
+ if (tx_buffer->m_head) {
+ ifp->if_opackets++;
+ bus_dmamap_sync(adapter->txtag,
+ tx_buffer->map,
+ BUS_DMASYNC_POSTWRITE);
+ bus_dmamap_unload(adapter->txtag,
+ tx_buffer->map);
- if (tx_buffer->m_head) {
- ifp->if_opackets++;
- bus_dmamap_sync(adapter->txtag, tx_buffer->map,
- BUS_DMASYNC_POSTWRITE);
- bus_dmamap_unload(adapter->txtag, tx_buffer->map);
+ m_freem(tx_buffer->m_head);
+ tx_buffer->m_head = NULL;
+ }
+ tx_buffer->next_eop = -1;
+
+ if (++first == adapter->num_tx_desc)
+ first = 0;
+
+ tx_buffer = &adapter->tx_buffer_area[first];
+ tx_desc = &adapter->tx_desc_base[first];
+ }
+ /* See if we can continue to the next packet */
+ last = tx_buffer->next_eop;
+ if (last != -1) {
+ eop_desc = &adapter->tx_desc_base[last];
+ /* Get new done point */
+ if (++last == adapter->num_tx_desc) last = 0;
+ done = last;
+ } else
+ break;
+ }
+ bus_dmamap_sync(adapter->txdma.dma_tag, adapter->txdma.dma_map,
+ BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
+
+ adapter->next_tx_to_clean = first;
+
+ /*
+ * If we have enough room, clear IFF_DRV_OACTIVE to tell the stack
+ * that it is OK to send packets.
+ * If there are no pending descriptors, clear the timeout. Otherwise,
+ * if some descriptors have been freed, restart the timeout.
+ */
+ if (num_avail > EM_TX_CLEANUP_THRESHOLD) {
+ ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
+ /* All clean, turn off the timer */
+ if (num_avail == adapter->num_tx_desc)
+ adapter->watchdog_timer = 0;
+ /* Some cleaned, reset the timer */
+ else if (num_avail != adapter->num_tx_desc_avail)
+ adapter->watchdog_timer = EM_TX_TIMEOUT;
+ }
+ adapter->num_tx_desc_avail = num_avail;
+ return;
+}
- m_freem(tx_buffer->m_head);
- tx_buffer->m_head = NULL;
+/*********************************************************************
+ *
+ * When Link is lost sometimes there is work still in the TX ring
+ * which will result in a watchdog, rather than allow that do an
+ * attempted cleanup and then reinit here. Note that this has been
+ * seens mostly with fiber adapters.
+ *
+ **********************************************************************/
+static void
+em_tx_purge(struct adapter *adapter)
+{
+ if ((!adapter->link_active) && (adapter->watchdog_timer)) {
+ EM_TX_LOCK(adapter);
+ em_txeof(adapter);
+ EM_TX_UNLOCK(adapter);
+ if (adapter->watchdog_timer) { /* Still not clean? */
+ adapter->watchdog_timer = 0;
+ em_init_locked(adapter);
}
-
- if (++i == adapter->num_tx_desc)
- i = 0;
-
- tx_buffer = &adapter->tx_buffer_area[i];
- tx_desc = &adapter->tx_desc_base[i];
- }
- bus_dmamap_sync(adapter->txdma.dma_tag, adapter->txdma.dma_map,
- BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
-
- adapter->oldest_used_tx_desc = i;
-
- /*
- * If we have enough room, clear IFF_DRV_OACTIVE to tell the stack
- * that it is OK to send packets.
- * If there are no pending descriptors, clear the timeout. Otherwise,
- * if some descriptors have been freed, restart the timeout.
- */
- if (num_avail > EM_TX_CLEANUP_THRESHOLD) {
- ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
- if (num_avail == adapter->num_tx_desc)
- ifp->if_timer = 0;
- else if (num_avail != adapter->num_tx_desc_avail)
- ifp->if_timer = EM_TX_TIMEOUT;
}
- adapter->num_tx_desc_avail = num_avail;
}
/*********************************************************************
@@ -2837,19 +4051,21 @@
return (ENOBUFS);
}
m->m_len = m->m_pkthdr.len = MCLBYTES;
- if (adapter->hw.max_frame_size <= (MCLBYTES - ETHER_ALIGN))
+
+ if (adapter->max_frame_size <= (MCLBYTES - ETHER_ALIGN))
m_adj(m, ETHER_ALIGN);
/*
* Using memory from the mbuf cluster pool, invoke the
* bus_dma machinery to arrange the memory mapping.
*/
- error = bus_dmamap_load_mbuf_sg(adapter->rxtag, adapter->rx_sparemap,
- m, segs, &nsegs, BUS_DMA_NOWAIT);
+ error = bus_dmamap_load_mbuf_sg(adapter->rxtag,
+ adapter->rx_sparemap, m, segs, &nsegs, BUS_DMA_NOWAIT);
if (error != 0) {
m_free(m);
return (error);
}
+
/* If nsegs is wrong then the stack is corrupt. */
KASSERT(nsegs == 1, ("Too many segments returned!"));
@@ -2864,7 +4080,6 @@
rx_buffer->m_head = m;
adapter->rx_desc_base[i].buffer_addr = htole64(segs[0].ds_addr);
-
return (0);
}
@@ -2883,16 +4098,18 @@
struct em_buffer *rx_buffer;
int i, error;
- adapter->rx_buffer_area = malloc(sizeof(struct em_buffer) * adapter->num_rx_desc,
- M_DEVBUF, M_NOWAIT);
+ adapter->rx_buffer_area = malloc(sizeof(struct em_buffer) *
+ adapter->num_rx_desc, M_DEVBUF, M_NOWAIT | M_ZERO);
if (adapter->rx_buffer_area == NULL) {
device_printf(dev, "Unable to allocate rx_buffer memory\n");
return (ENOMEM);
}
- bzero(adapter->rx_buffer_area, sizeof(struct em_buffer) * adapter->num_rx_desc);
-
- error = bus_dma_tag_create(NULL, /* parent */
+#if __FreeBSD_version >= 700000
+ error = bus_dma_tag_create(bus_get_dma_tag(dev), /* parent */
+#else
+ error = bus_dma_tag_create(NULL, /* parent */
+#endif
1, 0, /* alignment, bounds */
BUS_SPACE_MAXADDR, /* lowaddr */
BUS_SPACE_MAXADDR, /* highaddr */
@@ -2910,13 +4127,15 @@
goto fail;
}
+ /* Create the spare map (used by getbuf) */
error = bus_dmamap_create(adapter->rxtag, BUS_DMA_NOWAIT,
- &adapter->rx_sparemap);
+ &adapter->rx_sparemap);
if (error) {
device_printf(dev, "%s: bus_dmamap_create failed: %d\n",
__func__, error);
goto fail;
}
+
rx_buffer = adapter->rx_buffer_area;
for (i = 0; i < adapter->num_rx_desc; i++, rx_buffer++) {
error = bus_dmamap_create(adapter->rxtag, BUS_DMA_NOWAIT,
@@ -2928,14 +4147,6 @@
}
}
- for (i = 0; i < adapter->num_rx_desc; i++) {
- error = em_get_buf(adapter, i);
- if (error)
- goto fail;
- }
- bus_dmamap_sync(adapter->rxdma.dma_tag, adapter->rxdma.dma_map,
- BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
-
return (0);
fail:
@@ -2945,21 +4156,42 @@
/*********************************************************************
*
- * Allocate and initialize receive structures.
+ * (Re)initialize receive structures.
*
**********************************************************************/
static int
em_setup_receive_structures(struct adapter *adapter)
{
- int error;
+ struct em_buffer *rx_buffer;
+ int i, error;
- bzero(adapter->rx_desc_base, (sizeof(struct em_rx_desc)) * adapter->num_rx_desc);
+ /* Reset descriptor ring */
+ bzero(adapter->rx_desc_base,
+ (sizeof(struct e1000_rx_desc)) * adapter->num_rx_desc);
- if ((error = em_allocate_receive_structures(adapter)) != 0)
- return (error);
+ /* Free current RX buffers. */
+ rx_buffer = adapter->rx_buffer_area;
+ for (i = 0; i < adapter->num_rx_desc; i++, rx_buffer++) {
+ if (rx_buffer->m_head != NULL) {
+ bus_dmamap_sync(adapter->rxtag, rx_buffer->map,
+ BUS_DMASYNC_POSTREAD);
+ bus_dmamap_unload(adapter->rxtag, rx_buffer->map);
+ m_freem(rx_buffer->m_head);
+ rx_buffer->m_head = NULL;
+ }
+ }
+
+ /* Allocate new ones. */
+ for (i = 0; i < adapter->num_rx_desc; i++) {
+ error = em_get_buf(adapter, i);
+ if (error)
+ return (error);
+ }
/* Setup our descriptor pointers */
adapter->next_rx_desc_to_check = 0;
+ bus_dmamap_sync(adapter->rxdma.dma_tag, adapter->rxdma.dma_map,
+ BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
return (0);
}
@@ -2983,72 +4215,97 @@
* Make sure receives are disabled while setting
* up the descriptor ring
*/
- E1000_WRITE_REG(&adapter->hw, RCTL, 0);
-
- /* Set the Receive Delay Timer Register */
- E1000_WRITE_REG(&adapter->hw, RDTR, adapter->rx_int_delay.value | E1000_RDT_FPDB);
-
- if(adapter->hw.mac_type >= em_82540) {
- E1000_WRITE_REG(&adapter->hw, RADV, adapter->rx_abs_int_delay.value);
+ reg_rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL);
+ E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl & ~E1000_RCTL_EN);
+ if(adapter->hw.mac.type >= e1000_82540) {
+ E1000_WRITE_REG(&adapter->hw, E1000_RADV,
+ adapter->rx_abs_int_delay.value);
/*
* Set the interrupt throttling rate. Value is calculated
* as DEFAULT_ITR = 1/(MAX_INTS_PER_SEC * 256ns)
*/
#define MAX_INTS_PER_SEC 8000
#define DEFAULT_ITR 1000000000/(MAX_INTS_PER_SEC * 256)
- E1000_WRITE_REG(&adapter->hw, ITR, DEFAULT_ITR);
+ E1000_WRITE_REG(&adapter->hw, E1000_ITR, DEFAULT_ITR);
}
/* Setup the Base and Length of the Rx Descriptor Ring */
bus_addr = adapter->rxdma.dma_paddr;
- E1000_WRITE_REG(&adapter->hw, RDLEN, adapter->num_rx_desc *
- sizeof(struct em_rx_desc));
- E1000_WRITE_REG(&adapter->hw, RDBAH, (uint32_t)(bus_addr >> 32));
- E1000_WRITE_REG(&adapter->hw, RDBAL, (uint32_t)bus_addr);
-
- /* Setup the HW Rx Head and Tail Descriptor Pointers */
- E1000_WRITE_REG(&adapter->hw, RDT, adapter->num_rx_desc - 1);
- E1000_WRITE_REG(&adapter->hw, RDH, 0);
+ E1000_WRITE_REG(&adapter->hw, E1000_RDLEN(0),
+ adapter->num_rx_desc * sizeof(struct e1000_rx_desc));
+ E1000_WRITE_REG(&adapter->hw, E1000_RDBAH(0),
+ (uint32_t)(bus_addr >> 32));
+ E1000_WRITE_REG(&adapter->hw, E1000_RDBAL(0),
+ (uint32_t)bus_addr);
/* Setup the Receive Control Register */
- reg_rctl = E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_LBM_NO |
+ reg_rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
+ reg_rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_LBM_NO |
E1000_RCTL_RDMTS_HALF |
- (adapter->hw.mc_filter_type << E1000_RCTL_MO_SHIFT);
+ (adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
- if (adapter->hw.tbi_compatibility_on == TRUE)
- reg_rctl |= E1000_RCTL_SBP;
+ /* Make sure VLAN Filters are off */
+ reg_rctl &= ~E1000_RCTL_VFE;
+ if (e1000_tbi_sbp_enabled_82543(&adapter->hw))
+ reg_rctl |= E1000_RCTL_SBP;
+ else
+ reg_rctl &= ~E1000_RCTL_SBP;
switch (adapter->rx_buffer_len) {
default:
- case EM_RXBUFFER_2048:
+ case 2048:
reg_rctl |= E1000_RCTL_SZ_2048;
break;
- case EM_RXBUFFER_4096:
- reg_rctl |= E1000_RCTL_SZ_4096 | E1000_RCTL_BSEX | E1000_RCTL_LPE;
+ case 4096:
+ reg_rctl |= E1000_RCTL_SZ_4096 |
+ E1000_RCTL_BSEX | E1000_RCTL_LPE;
break;
- case EM_RXBUFFER_8192:
- reg_rctl |= E1000_RCTL_SZ_8192 | E1000_RCTL_BSEX | E1000_RCTL_LPE;
+ case 8192:
+ reg_rctl |= E1000_RCTL_SZ_8192 |
+ E1000_RCTL_BSEX | E1000_RCTL_LPE;
break;
- case EM_RXBUFFER_16384:
- reg_rctl |= E1000_RCTL_SZ_16384 | E1000_RCTL_BSEX | E1000_RCTL_LPE;
+ case 16384:
+ reg_rctl |= E1000_RCTL_SZ_16384 |
+ E1000_RCTL_BSEX | E1000_RCTL_LPE;
break;
}
if (ifp->if_mtu > ETHERMTU)
reg_rctl |= E1000_RCTL_LPE;
+ else
+ reg_rctl &= ~E1000_RCTL_LPE;
/* Enable 82543 Receive Checksum Offload for TCP and UDP */
- if ((adapter->hw.mac_type >= em_82543) &&
+ if ((adapter->hw.mac.type >= e1000_82543) &&
(ifp->if_capenable & IFCAP_RXCSUM)) {
- reg_rxcsum = E1000_READ_REG(&adapter->hw, RXCSUM);
+ reg_rxcsum = E1000_READ_REG(&adapter->hw, E1000_RXCSUM);
reg_rxcsum |= (E1000_RXCSUM_IPOFL | E1000_RXCSUM_TUOFL);
- E1000_WRITE_REG(&adapter->hw, RXCSUM, reg_rxcsum);
+ E1000_WRITE_REG(&adapter->hw, E1000_RXCSUM, reg_rxcsum);
}
+ /*
+ ** XXX TEMPORARY WORKAROUND: on some systems with 82573
+ ** long latencies are observed, like Lenovo X60. This
+ ** change eliminates the problem, but since having positive
+ ** values in RDTR is a known source of problems on other
+ ** platforms another solution is being sought.
+ */
+ if (adapter->hw.mac.type == e1000_82573)
+ E1000_WRITE_REG(&adapter->hw, E1000_RDTR, 0x20);
+
/* Enable Receives */
- E1000_WRITE_REG(&adapter->hw, RCTL, reg_rctl);
+ E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl);
+
+ /*
+ * Setup the HW Rx Head and
+ * Tail Descriptor Pointers
+ */
+ E1000_WRITE_REG(&adapter->hw, E1000_RDH(0), 0);
+ E1000_WRITE_REG(&adapter->hw, E1000_RDT(0), adapter->num_rx_desc - 1);
+
+ return;
}
/*********************************************************************
@@ -3068,6 +4325,8 @@
bus_dmamap_destroy(adapter->rxtag, adapter->rx_sparemap);
adapter->rx_sparemap = NULL;
}
+
+ /* Cleanup any existing buffers */
if (adapter->rx_buffer_area != NULL) {
rx_buffer = adapter->rx_buffer_area;
for (i = 0; i < adapter->num_rx_desc; i++, rx_buffer++) {
@@ -3088,10 +4347,12 @@
}
}
}
+
if (adapter->rx_buffer_area != NULL) {
free(adapter->rx_buffer_area, M_DEVBUF);
adapter->rx_buffer_area = NULL;
}
+
if (adapter->rxtag != NULL) {
bus_dma_tag_destroy(adapter->rxtag);
adapter->rxtag = NULL;
@@ -3119,7 +4380,7 @@
int i;
/* Pointer to the receive descriptor being examined. */
- struct em_rx_desc *current_desc;
+ struct e1000_rx_desc *current_desc;
uint8_t status;
ifp = adapter->ifp;
@@ -3170,10 +4431,12 @@
last_byte = *(mtod(mp, caddr_t) + desc_len - 1);
if (TBI_ACCEPT(&adapter->hw, status,
- current_desc->errors, pkt_len, last_byte)) {
- em_tbi_adjust_stats(&adapter->hw,
+ current_desc->errors, pkt_len, last_byte,
+ adapter->min_frame_size, adapter->max_frame_size)) {
+ e1000_tbi_adjust_stats_82543(&adapter->hw,
&adapter->stats, pkt_len,
- adapter->hw.mac_addr);
+ adapter->hw.mac.addr,
+ adapter->max_frame_size);
if (len > 0)
len--;
} else
@@ -3217,15 +4480,23 @@
em_receive_checksum(adapter, current_desc,
adapter->fmp);
#ifndef __NO_STRICT_ALIGNMENT
- if (adapter->hw.max_frame_size >
+ if (adapter->max_frame_size >
(MCLBYTES - ETHER_ALIGN) &&
em_fixup_rx(adapter) != 0)
goto skip;
#endif
- if (status & E1000_RXD_STAT_VP)
+ if (status & E1000_RXD_STAT_VP) {
+#if __FreeBSD_version < 700000
VLAN_INPUT_TAG_NEW(ifp, adapter->fmp,
(le16toh(current_desc->special) &
E1000_RXD_SPC_VLAN_MASK));
+#else
+ adapter->fmp->m_pkthdr.ether_vtag =
+ (le16toh(current_desc->special) &
+ E1000_RXD_SPC_VLAN_MASK);
+ adapter->fmp->m_flags |= M_VLANTAG;
+#endif
+ }
#ifndef __NO_STRICT_ALIGNMENT
skip:
#endif
@@ -3241,7 +4512,8 @@
mp->m_len = mp->m_pkthdr.len = MCLBYTES;
mp->m_data = mp->m_ext.ext_buf;
mp->m_next = NULL;
- if (adapter->hw.max_frame_size <= (MCLBYTES - ETHER_ALIGN))
+ if (adapter->max_frame_size <=
+ (MCLBYTES - ETHER_ALIGN))
m_adj(mp, ETHER_ALIGN);
if (adapter->fmp != NULL) {
m_freem(adapter->fmp);
@@ -3261,11 +4533,12 @@
i = 0;
if (m != NULL) {
adapter->next_rx_desc_to_check = i;
-#ifdef DEVICE_POLLING
- EM_UNLOCK(adapter);
+#ifndef EM_FAST_IRQ
+ EM_CORE_UNLOCK(adapter);
(*ifp->if_input)(ifp, m);
- EM_LOCK(adapter);
+ EM_CORE_LOCK(adapter);
#else
+ /* Already running unlocked */
(*ifp->if_input)(ifp, m);
#endif
i = adapter->next_rx_desc_to_check;
@@ -3277,7 +4550,7 @@
/* Advance the E1000's Receive Queue #0 "Tail Pointer". */
if (--i < 0)
i = adapter->num_rx_desc - 1;
- E1000_WRITE_REG(&adapter->hw, RDT, i);
+ E1000_WRITE_REG(&adapter->hw, E1000_RDT(0), i);
if (!((current_desc->status) & E1000_RXD_STAT_DD))
return (0);
@@ -3321,12 +4594,10 @@
n->m_next = m;
adapter->fmp = n;
} else {
- adapter->ifp->if_iqdrops++;
- adapter->mbuf_alloc_failed++;
+ adapter->dropped_pkts++;
m_freem(adapter->fmp);
adapter->fmp = NULL;
- adapter->lmp = NULL;
- error = ENOBUFS;
+ error = ENOMEM;
}
}
@@ -3342,11 +4613,11 @@
*
*********************************************************************/
static void
-em_receive_checksum(struct adapter *adapter, struct em_rx_desc *rx_desc,
- struct mbuf *mp)
+em_receive_checksum(struct adapter *adapter,
+ struct e1000_rx_desc *rx_desc, struct mbuf *mp)
{
/* 82543 or newer only */
- if ((adapter->hw.mac_type < em_82543) ||
+ if ((adapter->hw.mac.type < e1000_82543) ||
/* Ignore Checksum bit is set */
(rx_desc->status & E1000_RXD_STAT_IXSM)) {
mp->m_pkthdr.csum_flags = 0;
@@ -3375,53 +4646,149 @@
}
}
-
+/*
+ * This turns on the hardware offload of the VLAN
+ * tag insertion and strip
+ */
static void
-em_enable_vlans(struct adapter *adapter)
+em_enable_hw_vlans(struct adapter *adapter)
{
uint32_t ctrl;
- E1000_WRITE_REG(&adapter->hw, VET, ETHERTYPE_VLAN);
-
- ctrl = E1000_READ_REG(&adapter->hw, CTRL);
+ ctrl = E1000_READ_REG(&adapter->hw, E1000_CTRL);
ctrl |= E1000_CTRL_VME;
- E1000_WRITE_REG(&adapter->hw, CTRL, ctrl);
+ E1000_WRITE_REG(&adapter->hw, E1000_CTRL, ctrl);
}
static void
-em_disable_vlans(struct adapter *adapter)
+em_enable_intr(struct adapter *adapter)
{
- uint32_t ctrl;
+ E1000_WRITE_REG(&adapter->hw, E1000_IMS,
+ (IMS_ENABLE_MASK));
+}
+
+static void
+em_disable_intr(struct adapter *adapter)
+{
+ E1000_WRITE_REG(&adapter->hw, E1000_IMC, 0xffffffff);
+}
+
+/*
+ * Bit of a misnomer, what this really means is
+ * to enable OS management of the system... aka
+ * to disable special hardware management features
+ */
+static void
+em_init_manageability(struct adapter *adapter)
+{
+ /* A shared code workaround */
+#define E1000_82542_MANC2H E1000_MANC2H
+ if (adapter->has_manage) {
+ int manc2h = E1000_READ_REG(&adapter->hw, E1000_MANC2H);
+ int manc = E1000_READ_REG(&adapter->hw, E1000_MANC);
+
+ /* disable hardware interception of ARP */
+ manc &= ~(E1000_MANC_ARP_EN);
+
+ /* enable receiving management packets to the host */
+ if (adapter->hw.mac.type >= e1000_82571) {
+ manc |= E1000_MANC_EN_MNG2HOST;
+#define E1000_MNG2HOST_PORT_623 (1 << 5)
+#define E1000_MNG2HOST_PORT_664 (1 << 6)
+ manc2h |= E1000_MNG2HOST_PORT_623;
+ manc2h |= E1000_MNG2HOST_PORT_664;
+ E1000_WRITE_REG(&adapter->hw, E1000_MANC2H, manc2h);
+ }
- ctrl = E1000_READ_REG(&adapter->hw, CTRL);
- ctrl &= ~E1000_CTRL_VME;
- E1000_WRITE_REG(&adapter->hw, CTRL, ctrl);
+ E1000_WRITE_REG(&adapter->hw, E1000_MANC, manc);
+ }
}
+/*
+ * Give control back to hardware management
+ * controller if there is one.
+ */
static void
-em_enable_intr(struct adapter *adapter)
+em_release_manageability(struct adapter *adapter)
{
- E1000_WRITE_REG(&adapter->hw, IMS, (IMS_ENABLE_MASK));
+ if (adapter->has_manage) {
+ int manc = E1000_READ_REG(&adapter->hw, E1000_MANC);
+
+ /* re-enable hardware interception of ARP */
+ manc |= E1000_MANC_ARP_EN;
+
+ if (adapter->hw.mac.type >= e1000_82571)
+ manc &= ~E1000_MANC_EN_MNG2HOST;
+
+ E1000_WRITE_REG(&adapter->hw, E1000_MANC, manc);
+ }
}
+/*
+ * em_get_hw_control sets {CTRL_EXT|FWSM}:DRV_LOAD bit.
+ * For ASF and Pass Through versions of f/w this means that
+ * the driver is loaded. For AMT version (only with 82573)
+ * of the f/w this means that the network i/f is open.
+ *
+ */
static void
-em_disable_intr(struct adapter *adapter)
+em_get_hw_control(struct adapter *adapter)
{
- /*
- * The first version of 82542 had an errata where when link was forced
- * it would stay up even up even if the cable was disconnected.
- * Sequence errors were used to detect the disconnect and then the
- * driver would unforce the link. This code in the in the ISR. For this
- * to work correctly the Sequence error interrupt had to be enabled
- * all the time.
- */
+ u32 ctrl_ext, swsm;
- if (adapter->hw.mac_type == em_82542_rev2_0)
- E1000_WRITE_REG(&adapter->hw, IMC,
- (0xffffffff & ~E1000_IMC_RXSEQ));
- else
- E1000_WRITE_REG(&adapter->hw, IMC,
- 0xffffffff);
+ /* Let firmware know the driver has taken over */
+ switch (adapter->hw.mac.type) {
+ case e1000_82573:
+ swsm = E1000_READ_REG(&adapter->hw, E1000_SWSM);
+ E1000_WRITE_REG(&adapter->hw, E1000_SWSM,
+ swsm | E1000_SWSM_DRV_LOAD);
+ break;
+ case e1000_82571:
+ case e1000_82572:
+ case e1000_80003es2lan:
+ case e1000_ich8lan:
+ case e1000_ich9lan:
+ ctrl_ext = E1000_READ_REG(&adapter->hw, E1000_CTRL_EXT);
+ E1000_WRITE_REG(&adapter->hw, E1000_CTRL_EXT,
+ ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
+ break;
+ default:
+ break;
+ }
+}
+
+/*
+ * em_release_hw_control resets {CTRL_EXT|FWSM}:DRV_LOAD bit.
+ * For ASF and Pass Through versions of f/w this means that the
+ * driver is no longer loaded. For AMT version (only with 82573) i
+ * of the f/w this means that the network i/f is closed.
+ *
+ */
+static void
+em_release_hw_control(struct adapter *adapter)
+{
+ u32 ctrl_ext, swsm;
+
+ /* Let firmware taken over control of h/w */
+ switch (adapter->hw.mac.type) {
+ case e1000_82573:
+ swsm = E1000_READ_REG(&adapter->hw, E1000_SWSM);
+ E1000_WRITE_REG(&adapter->hw, E1000_SWSM,
+ swsm & ~E1000_SWSM_DRV_LOAD);
+ break;
+ case e1000_82571:
+ case e1000_82572:
+ case e1000_80003es2lan:
+ case e1000_ich8lan:
+ case e1000_ich9lan:
+ ctrl_ext = E1000_READ_REG(&adapter->hw, E1000_CTRL_EXT);
+ E1000_WRITE_REG(&adapter->hw, E1000_CTRL_EXT,
+ ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
+ break;
+ default:
+ break;
+
+ }
}
static int
@@ -3436,32 +4803,109 @@
return (TRUE);
}
+/*
+ * NOTE: the following routines using the e1000
+ * naming style are provided to the shared
+ * code which expects that rather than 'em'
+ */
+
+void
+e1000_write_pci_cfg(struct e1000_hw *hw, uint32_t reg, uint16_t *value)
+{
+ pci_write_config(((struct e1000_osdep *)hw->back)->dev, reg, *value, 2);
+}
+
+void
+e1000_read_pci_cfg(struct e1000_hw *hw, uint32_t reg, uint16_t *value)
+{
+ *value = pci_read_config(((struct e1000_osdep *)hw->back)->dev, reg, 2);
+}
+
void
-em_write_pci_cfg(struct em_hw *hw, uint32_t reg, uint16_t *value)
+e1000_pci_set_mwi(struct e1000_hw *hw)
{
- pci_write_config(((struct em_osdep *)hw->back)->dev, reg, *value, 2);
+ pci_write_config(((struct e1000_osdep *)hw->back)->dev, PCIR_COMMAND,
+ (hw->bus.pci_cmd_word | CMD_MEM_WRT_INVALIDATE), 2);
}
void
-em_read_pci_cfg(struct em_hw *hw, uint32_t reg, uint16_t *value)
+e1000_pci_clear_mwi(struct e1000_hw *hw)
+{
+ pci_write_config(((struct e1000_osdep *)hw->back)->dev, PCIR_COMMAND,
+ (hw->bus.pci_cmd_word & ~CMD_MEM_WRT_INVALIDATE), 2);
+}
+
+/*
+ * Read the PCI Express capabilities
+ */
+int32_t
+e1000_read_pcie_cap_reg(struct e1000_hw *hw, uint32_t reg, uint16_t *value)
+{
+ int32_t error = E1000_SUCCESS;
+ uint16_t cap_off;
+
+ switch (hw->mac.type) {
+
+ case e1000_82571:
+ case e1000_82572:
+ case e1000_82573:
+ case e1000_80003es2lan:
+ cap_off = 0xE0;
+ e1000_read_pci_cfg(hw, cap_off + reg, value);
+ break;
+ default:
+ error = ~E1000_NOT_IMPLEMENTED;
+ break;
+ }
+
+ return (error);
+}
+
+int32_t
+e1000_alloc_zeroed_dev_spec_struct(struct e1000_hw *hw, uint32_t size)
{
- *value = pci_read_config(((struct em_osdep *)hw->back)->dev, reg, 2);
+ int32_t error = 0;
+
+ hw->dev_spec = malloc(size, M_DEVBUF, M_NOWAIT | M_ZERO);
+ if (hw->dev_spec == NULL)
+ error = ENOMEM;
+
+ return (error);
}
void
-em_pci_set_mwi(struct em_hw *hw)
+e1000_free_dev_spec_struct(struct e1000_hw *hw)
{
- pci_write_config(((struct em_osdep *)hw->back)->dev, PCIR_COMMAND,
- (hw->pci_cmd_word | CMD_MEM_WRT_INVALIDATE), 2);
+ if (hw->dev_spec != NULL)
+ free(hw->dev_spec, M_DEVBUF);
+ return;
}
+/*
+ * Enable PCI Wake On Lan capability
+ */
void
-em_pci_clear_mwi(struct em_hw *hw)
+em_enable_wakeup(device_t dev)
{
- pci_write_config(((struct em_osdep *)hw->back)->dev, PCIR_COMMAND,
- (hw->pci_cmd_word & ~CMD_MEM_WRT_INVALIDATE), 2);
+ u16 cap, status;
+ u8 id;
+
+ /* First find the capabilities pointer*/
+ cap = pci_read_config(dev, PCIR_CAP_PTR, 2);
+ /* Read the PM Capabilities */
+ id = pci_read_config(dev, cap, 1);
+ if (id != PCIY_PMG) /* Something wrong */
+ return;
+ /* OK, we have the power capabilities, so
+ now get the status register */
+ cap += PCIR_POWER_STATUS;
+ status = pci_read_config(dev, cap, 2);
+ status |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
+ pci_write_config(dev, cap, status, 2);
+ return;
}
+
/*********************************************************************
* 82544 Coexistence issue workaround.
* There are 2 issues.
@@ -3477,9 +4921,10 @@
*
*
* WORKAROUND:
-* Make sure we do not have ending address as 1,2,3,4(Hang) or 9,a,b,c (DAC)
+* Make sure we do not have ending address
+* as 1,2,3,4(Hang) or 9,a,b,c (DAC)
*
-*** *********************************************************************/
+*************************************************************************/
static uint32_t
em_fill_descriptors (bus_addr_t address, uint32_t length,
PDESC_ARRAY desc_array)
@@ -3493,7 +4938,8 @@
desc_array->elements = 1;
return (desc_array->elements);
}
- safe_terminator = (uint32_t)((((uint32_t)address & 0x7) + (length & 0xF)) & 0xF);
+ safe_terminator = (uint32_t)((((uint32_t)address & 0x7) +
+ (length & 0xF)) & 0xF);
/* if it does not fall between 0x1 to 0x4 and 0x9 to 0xC then return */
if (safe_terminator == 0 ||
(safe_terminator > 4 &&
@@ -3524,87 +4970,90 @@
{
struct ifnet *ifp;
- if(adapter->hw.media_type == em_media_type_copper ||
- (E1000_READ_REG(&adapter->hw, STATUS) & E1000_STATUS_LU)) {
- adapter->stats.symerrs += E1000_READ_REG(&adapter->hw, SYMERRS);
- adapter->stats.sec += E1000_READ_REG(&adapter->hw, SEC);
- }
- adapter->stats.crcerrs += E1000_READ_REG(&adapter->hw, CRCERRS);
- adapter->stats.mpc += E1000_READ_REG(&adapter->hw, MPC);
- adapter->stats.scc += E1000_READ_REG(&adapter->hw, SCC);
- adapter->stats.ecol += E1000_READ_REG(&adapter->hw, ECOL);
-
- adapter->stats.mcc += E1000_READ_REG(&adapter->hw, MCC);
- adapter->stats.latecol += E1000_READ_REG(&adapter->hw, LATECOL);
- adapter->stats.colc += E1000_READ_REG(&adapter->hw, COLC);
- adapter->stats.dc += E1000_READ_REG(&adapter->hw, DC);
- adapter->stats.rlec += E1000_READ_REG(&adapter->hw, RLEC);
- adapter->stats.xonrxc += E1000_READ_REG(&adapter->hw, XONRXC);
- adapter->stats.xontxc += E1000_READ_REG(&adapter->hw, XONTXC);
- adapter->stats.xoffrxc += E1000_READ_REG(&adapter->hw, XOFFRXC);
- adapter->stats.xofftxc += E1000_READ_REG(&adapter->hw, XOFFTXC);
- adapter->stats.fcruc += E1000_READ_REG(&adapter->hw, FCRUC);
- adapter->stats.prc64 += E1000_READ_REG(&adapter->hw, PRC64);
- adapter->stats.prc127 += E1000_READ_REG(&adapter->hw, PRC127);
- adapter->stats.prc255 += E1000_READ_REG(&adapter->hw, PRC255);
- adapter->stats.prc511 += E1000_READ_REG(&adapter->hw, PRC511);
- adapter->stats.prc1023 += E1000_READ_REG(&adapter->hw, PRC1023);
- adapter->stats.prc1522 += E1000_READ_REG(&adapter->hw, PRC1522);
- adapter->stats.gprc += E1000_READ_REG(&adapter->hw, GPRC);
- adapter->stats.bprc += E1000_READ_REG(&adapter->hw, BPRC);
- adapter->stats.mprc += E1000_READ_REG(&adapter->hw, MPRC);
- adapter->stats.gptc += E1000_READ_REG(&adapter->hw, GPTC);
+ if(adapter->hw.phy.media_type == e1000_media_type_copper ||
+ (E1000_READ_REG(&adapter->hw, E1000_STATUS) & E1000_STATUS_LU)) {
+ adapter->stats.symerrs += E1000_READ_REG(&adapter->hw, E1000_SYMERRS);
+ adapter->stats.sec += E1000_READ_REG(&adapter->hw, E1000_SEC);
+ }
+ adapter->stats.crcerrs += E1000_READ_REG(&adapter->hw, E1000_CRCERRS);
+ adapter->stats.mpc += E1000_READ_REG(&adapter->hw, E1000_MPC);
+ adapter->stats.scc += E1000_READ_REG(&adapter->hw, E1000_SCC);
+ adapter->stats.ecol += E1000_READ_REG(&adapter->hw, E1000_ECOL);
+
+ adapter->stats.mcc += E1000_READ_REG(&adapter->hw, E1000_MCC);
+ adapter->stats.latecol += E1000_READ_REG(&adapter->hw, E1000_LATECOL);
+ adapter->stats.colc += E1000_READ_REG(&adapter->hw, E1000_COLC);
+ adapter->stats.dc += E1000_READ_REG(&adapter->hw, E1000_DC);
+ adapter->stats.rlec += E1000_READ_REG(&adapter->hw, E1000_RLEC);
+ adapter->stats.xonrxc += E1000_READ_REG(&adapter->hw, E1000_XONRXC);
+ adapter->stats.xontxc += E1000_READ_REG(&adapter->hw, E1000_XONTXC);
+ adapter->stats.xoffrxc += E1000_READ_REG(&adapter->hw, E1000_XOFFRXC);
+ adapter->stats.xofftxc += E1000_READ_REG(&adapter->hw, E1000_XOFFTXC);
+ adapter->stats.fcruc += E1000_READ_REG(&adapter->hw, E1000_FCRUC);
+ adapter->stats.prc64 += E1000_READ_REG(&adapter->hw, E1000_PRC64);
+ adapter->stats.prc127 += E1000_READ_REG(&adapter->hw, E1000_PRC127);
+ adapter->stats.prc255 += E1000_READ_REG(&adapter->hw, E1000_PRC255);
+ adapter->stats.prc511 += E1000_READ_REG(&adapter->hw, E1000_PRC511);
+ adapter->stats.prc1023 += E1000_READ_REG(&adapter->hw, E1000_PRC1023);
+ adapter->stats.prc1522 += E1000_READ_REG(&adapter->hw, E1000_PRC1522);
+ adapter->stats.gprc += E1000_READ_REG(&adapter->hw, E1000_GPRC);
+ adapter->stats.bprc += E1000_READ_REG(&adapter->hw, E1000_BPRC);
+ adapter->stats.mprc += E1000_READ_REG(&adapter->hw, E1000_MPRC);
+ adapter->stats.gptc += E1000_READ_REG(&adapter->hw, E1000_GPTC);
/* For the 64-bit byte counters the low dword must be read first. */
/* Both registers clear on the read of the high dword */
- adapter->stats.gorcl += E1000_READ_REG(&adapter->hw, GORCL);
- adapter->stats.gorch += E1000_READ_REG(&adapter->hw, GORCH);
- adapter->stats.gotcl += E1000_READ_REG(&adapter->hw, GOTCL);
- adapter->stats.gotch += E1000_READ_REG(&adapter->hw, GOTCH);
-
- adapter->stats.rnbc += E1000_READ_REG(&adapter->hw, RNBC);
- adapter->stats.ruc += E1000_READ_REG(&adapter->hw, RUC);
- adapter->stats.rfc += E1000_READ_REG(&adapter->hw, RFC);
- adapter->stats.roc += E1000_READ_REG(&adapter->hw, ROC);
- adapter->stats.rjc += E1000_READ_REG(&adapter->hw, RJC);
-
- adapter->stats.torl += E1000_READ_REG(&adapter->hw, TORL);
- adapter->stats.torh += E1000_READ_REG(&adapter->hw, TORH);
- adapter->stats.totl += E1000_READ_REG(&adapter->hw, TOTL);
- adapter->stats.toth += E1000_READ_REG(&adapter->hw, TOTH);
-
- adapter->stats.tpr += E1000_READ_REG(&adapter->hw, TPR);
- adapter->stats.tpt += E1000_READ_REG(&adapter->hw, TPT);
- adapter->stats.ptc64 += E1000_READ_REG(&adapter->hw, PTC64);
- adapter->stats.ptc127 += E1000_READ_REG(&adapter->hw, PTC127);
- adapter->stats.ptc255 += E1000_READ_REG(&adapter->hw, PTC255);
- adapter->stats.ptc511 += E1000_READ_REG(&adapter->hw, PTC511);
- adapter->stats.ptc1023 += E1000_READ_REG(&adapter->hw, PTC1023);
- adapter->stats.ptc1522 += E1000_READ_REG(&adapter->hw, PTC1522);
- adapter->stats.mptc += E1000_READ_REG(&adapter->hw, MPTC);
- adapter->stats.bptc += E1000_READ_REG(&adapter->hw, BPTC);
-
- if (adapter->hw.mac_type >= em_82543) {
- adapter->stats.algnerrc += E1000_READ_REG(&adapter->hw, ALGNERRC);
- adapter->stats.rxerrc += E1000_READ_REG(&adapter->hw, RXERRC);
- adapter->stats.tncrs += E1000_READ_REG(&adapter->hw, TNCRS);
- adapter->stats.cexterr += E1000_READ_REG(&adapter->hw, CEXTERR);
- adapter->stats.tsctc += E1000_READ_REG(&adapter->hw, TSCTC);
- adapter->stats.tsctfc += E1000_READ_REG(&adapter->hw, TSCTFC);
+ adapter->stats.gorc += E1000_READ_REG(&adapter->hw, E1000_GORCH);
+ adapter->stats.gotc += E1000_READ_REG(&adapter->hw, E1000_GOTCH);
+
+ adapter->stats.rnbc += E1000_READ_REG(&adapter->hw, E1000_RNBC);
+ adapter->stats.ruc += E1000_READ_REG(&adapter->hw, E1000_RUC);
+ adapter->stats.rfc += E1000_READ_REG(&adapter->hw, E1000_RFC);
+ adapter->stats.roc += E1000_READ_REG(&adapter->hw, E1000_ROC);
+ adapter->stats.rjc += E1000_READ_REG(&adapter->hw, E1000_RJC);
+
+ adapter->stats.tor += E1000_READ_REG(&adapter->hw, E1000_TORH);
+ adapter->stats.tot += E1000_READ_REG(&adapter->hw, E1000_TOTH);
+
+ adapter->stats.tpr += E1000_READ_REG(&adapter->hw, E1000_TPR);
+ adapter->stats.tpt += E1000_READ_REG(&adapter->hw, E1000_TPT);
+ adapter->stats.ptc64 += E1000_READ_REG(&adapter->hw, E1000_PTC64);
+ adapter->stats.ptc127 += E1000_READ_REG(&adapter->hw, E1000_PTC127);
+ adapter->stats.ptc255 += E1000_READ_REG(&adapter->hw, E1000_PTC255);
+ adapter->stats.ptc511 += E1000_READ_REG(&adapter->hw, E1000_PTC511);
+ adapter->stats.ptc1023 += E1000_READ_REG(&adapter->hw, E1000_PTC1023);
+ adapter->stats.ptc1522 += E1000_READ_REG(&adapter->hw, E1000_PTC1522);
+ adapter->stats.mptc += E1000_READ_REG(&adapter->hw, E1000_MPTC);
+ adapter->stats.bptc += E1000_READ_REG(&adapter->hw, E1000_BPTC);
+
+ if (adapter->hw.mac.type >= e1000_82543) {
+ adapter->stats.algnerrc +=
+ E1000_READ_REG(&adapter->hw, E1000_ALGNERRC);
+ adapter->stats.rxerrc +=
+ E1000_READ_REG(&adapter->hw, E1000_RXERRC);
+ adapter->stats.tncrs +=
+ E1000_READ_REG(&adapter->hw, E1000_TNCRS);
+ adapter->stats.cexterr +=
+ E1000_READ_REG(&adapter->hw, E1000_CEXTERR);
+ adapter->stats.tsctc +=
+ E1000_READ_REG(&adapter->hw, E1000_TSCTC);
+ adapter->stats.tsctfc +=
+ E1000_READ_REG(&adapter->hw, E1000_TSCTFC);
}
ifp = adapter->ifp;
ifp->if_collisions = adapter->stats.colc;
/* Rx Errors */
- ifp->if_ierrors = adapter->stats.rxerrc + adapter->stats.crcerrs +
- adapter->stats.algnerrc + adapter->stats.ruc + adapter->stats.roc +
+ ifp->if_ierrors = adapter->dropped_pkts + adapter->stats.rxerrc +
+ adapter->stats.crcerrs + adapter->stats.algnerrc +
+ adapter->stats.ruc + adapter->stats.roc +
adapter->stats.mpc + adapter->stats.cexterr;
/* Tx Errors */
- ifp->if_oerrors = adapter->stats.ecol + adapter->stats.latecol +
- adapter->watchdog_events;
+ ifp->if_oerrors = adapter->stats.ecol +
+ adapter->stats.latecol + adapter->watchdog_events;
}
@@ -3623,26 +5072,29 @@
device_printf(dev, "Adapter hardware address = %p \n", hw_addr);
device_printf(dev, "CTRL = 0x%x RCTL = 0x%x \n",
- E1000_READ_REG(&adapter->hw, CTRL),
- E1000_READ_REG(&adapter->hw, RCTL));
+ E1000_READ_REG(&adapter->hw, E1000_CTRL),
+ E1000_READ_REG(&adapter->hw, E1000_RCTL));
device_printf(dev, "Packet buffer = Tx=%dk Rx=%dk \n",
- ((E1000_READ_REG(&adapter->hw, PBA) & 0xffff0000) >> 16),\
- (E1000_READ_REG(&adapter->hw, PBA) & 0xffff) );
+ ((E1000_READ_REG(&adapter->hw, E1000_PBA) & 0xffff0000) >> 16),\
+ (E1000_READ_REG(&adapter->hw, E1000_PBA) & 0xffff) );
device_printf(dev, "Flow control watermarks high = %d low = %d\n",
- adapter->hw.fc_high_water,
- adapter->hw.fc_low_water);
+ adapter->hw.fc.high_water,
+ adapter->hw.fc.low_water);
device_printf(dev, "tx_int_delay = %d, tx_abs_int_delay = %d\n",
- E1000_READ_REG(&adapter->hw, TIDV),
- E1000_READ_REG(&adapter->hw, TADV));
+ E1000_READ_REG(&adapter->hw, E1000_TIDV),
+ E1000_READ_REG(&adapter->hw, E1000_TADV));
device_printf(dev, "rx_int_delay = %d, rx_abs_int_delay = %d\n",
- E1000_READ_REG(&adapter->hw, RDTR),
- E1000_READ_REG(&adapter->hw, RADV));
+ E1000_READ_REG(&adapter->hw, E1000_RDTR),
+ E1000_READ_REG(&adapter->hw, E1000_RADV));
device_printf(dev, "fifo workaround = %lld, fifo_reset_count = %lld\n",
(long long)adapter->tx_fifo_wrk_cnt,
(long long)adapter->tx_fifo_reset_cnt);
device_printf(dev, "hw tdh = %d, hw tdt = %d\n",
- E1000_READ_REG(&adapter->hw, TDH),
- E1000_READ_REG(&adapter->hw, TDT));
+ E1000_READ_REG(&adapter->hw, E1000_TDH(0)),
+ E1000_READ_REG(&adapter->hw, E1000_TDT(0)));
+ device_printf(dev, "hw rdh = %d, hw rdt = %d\n",
+ E1000_READ_REG(&adapter->hw, E1000_RDH(0)),
+ E1000_READ_REG(&adapter->hw, E1000_RDT(0)));
device_printf(dev, "Num Tx descriptors avail = %d\n",
adapter->num_tx_desc_avail);
device_printf(dev, "Tx Descriptors not avail1 = %ld\n",
@@ -3653,6 +5105,10 @@
adapter->mbuf_alloc_failed);
device_printf(dev, "Std mbuf cluster failed = %ld\n",
adapter->mbuf_cluster_failed);
+ device_printf(dev, "Driver dropped packets = %ld\n",
+ adapter->dropped_pkts);
+ device_printf(dev, "Driver tx dma failure in encap = %ld\n",
+ adapter->no_tx_dma_setup);
}
static void
@@ -3662,13 +5118,16 @@
device_printf(dev, "Excessive collisions = %lld\n",
(long long)adapter->stats.ecol);
+#if (DEBUG_HW > 0) /* Dont output these errors normally */
device_printf(dev, "Symbol errors = %lld\n",
(long long)adapter->stats.symerrs);
+#endif
device_printf(dev, "Sequence errors = %lld\n",
(long long)adapter->stats.sec);
- device_printf(dev, "Defer count = %lld\n", (long long)adapter->stats.dc);
-
- device_printf(dev, "Missed Packets = %lld\n", (long long)adapter->stats.mpc);
+ device_printf(dev, "Defer count = %lld\n",
+ (long long)adapter->stats.dc);
+ device_printf(dev, "Missed Packets = %lld\n",
+ (long long)adapter->stats.mpc);
device_printf(dev, "Receive No Buffers = %lld\n",
(long long)adapter->stats.rnbc);
/* RLEC is inaccurate on some hardware, calculate our own. */
@@ -3676,23 +5135,59 @@
((long long)adapter->stats.roc + (long long)adapter->stats.ruc));
device_printf(dev, "Receive errors = %lld\n",
(long long)adapter->stats.rxerrc);
- device_printf(dev, "Crc errors = %lld\n", (long long)adapter->stats.crcerrs);
+ device_printf(dev, "Crc errors = %lld\n",
+ (long long)adapter->stats.crcerrs);
device_printf(dev, "Alignment errors = %lld\n",
(long long)adapter->stats.algnerrc);
- device_printf(dev, "Carrier extension errors = %lld\n",
+ /* On 82575 these are collision counts */
+ device_printf(dev, "Collision/Carrier extension errors = %lld\n",
(long long)adapter->stats.cexterr);
device_printf(dev, "RX overruns = %ld\n", adapter->rx_overruns);
- device_printf(dev, "watchdog timeouts = %ld\n", adapter->watchdog_events);
-
- device_printf(dev, "XON Rcvd = %lld\n", (long long)adapter->stats.xonrxc);
- device_printf(dev, "XON Xmtd = %lld\n", (long long)adapter->stats.xontxc);
- device_printf(dev, "XOFF Rcvd = %lld\n", (long long)adapter->stats.xoffrxc);
- device_printf(dev, "XOFF Xmtd = %lld\n", (long long)adapter->stats.xofftxc);
-
+ device_printf(dev, "watchdog timeouts = %ld\n",
+ adapter->watchdog_events);
+ device_printf(dev, "XON Rcvd = %lld\n",
+ (long long)adapter->stats.xonrxc);
+ device_printf(dev, "XON Xmtd = %lld\n",
+ (long long)adapter->stats.xontxc);
+ device_printf(dev, "XOFF Rcvd = %lld\n",
+ (long long)adapter->stats.xoffrxc);
+ device_printf(dev, "XOFF Xmtd = %lld\n",
+ (long long)adapter->stats.xofftxc);
device_printf(dev, "Good Packets Rcvd = %lld\n",
(long long)adapter->stats.gprc);
device_printf(dev, "Good Packets Xmtd = %lld\n",
(long long)adapter->stats.gptc);
+ device_printf(dev, "TSO Contexts Xmtd = %lld\n",
+ (long long)adapter->stats.tsctc);
+ device_printf(dev, "TSO Contexts Failed = %lld\n",
+ (long long)adapter->stats.tsctfc);
+}
+
+/**********************************************************************
+ *
+ * This routine provides a way to dump out the adapter eeprom,
+ * often a useful debug/service tool. This only dumps the first
+ * 32 words, stuff that matters is in that extent.
+ *
+ **********************************************************************/
+static void
+em_print_nvm_info(struct adapter *adapter)
+{
+ u16 eeprom_data;
+ int i, j, row = 0;
+
+ /* Its a bit crude, but it gets the job done */
+ printf("\nInterface EEPROM Dump:\n");
+ printf("Offset\n0x0000 ");
+ for (i = 0, j = 0; i < 32; i++, j++) {
+ if (j == 8) { /* Make the offset block */
+ j = 0; ++row;
+ printf("\n0x00%x0 ",row);
+ }
+ e1000_read_nvm(&adapter->hw, i, 1, &eeprom_data);
+ printf("%04x ", eeprom_data);
+ }
+ printf("\n");
}
static int
@@ -3712,6 +5207,15 @@
adapter = (struct adapter *)arg1;
em_print_debug_info(adapter);
}
+ /*
+ * This value will cause a hex dump of the
+ * first 32 16-bit words of the EEPROM to
+ * the screen.
+ */
+ if (result == 2) {
+ adapter = (struct adapter *)arg1;
+ em_print_nvm_info(adapter);
+ }
return (error);
}
@@ -3753,34 +5257,32 @@
error = sysctl_handle_int(oidp, &usecs, 0, req);
if (error != 0 || req->newptr == NULL)
return (error);
- if (usecs < 0 || usecs > E1000_TICKS_TO_USECS(65535))
+ if (usecs < 0 || usecs > EM_TICKS_TO_USECS(65535))
return (EINVAL);
info->value = usecs;
- ticks = E1000_USECS_TO_TICKS(usecs);
+ ticks = EM_USECS_TO_TICKS(usecs);
adapter = info->adapter;
- EM_LOCK(adapter);
+ EM_CORE_LOCK(adapter);
regval = E1000_READ_OFFSET(&adapter->hw, info->offset);
regval = (regval & ~0xffff) | (ticks & 0xffff);
/* Handle a few special cases. */
switch (info->offset) {
case E1000_RDTR:
- case E1000_82542_RDTR:
- regval |= E1000_RDT_FPDB;
break;
case E1000_TIDV:
- case E1000_82542_TIDV:
if (ticks == 0) {
adapter->txd_cmd &= ~E1000_TXD_CMD_IDE;
/* Don't write 0 into the TIDV register. */
regval++;
} else
- adapter->txd_cmd |= E1000_TXD_CMD_IDE;
+ if (adapter->hw.mac.type != e1000_82575)
+ adapter->txd_cmd |= E1000_TXD_CMD_IDE;
break;
}
E1000_WRITE_OFFSET(&adapter->hw, info->offset, regval);
- EM_UNLOCK(adapter);
+ EM_CORE_UNLOCK(adapter);
return (0);
}
@@ -3798,9 +5300,9 @@
info, 0, em_sysctl_int_delay, "I", description);
}
-#ifndef DEVICE_POLLING
+#ifdef EM_FAST_IRQ
static void
-em_add_int_process_limit(struct adapter *adapter, const char *name,
+em_add_rx_process_limit(struct adapter *adapter, const char *name,
const char *description, int *limit, int value)
{
*limit = value;
--- /dev/null
+++ sys/dev/em/e1000_api.c
@@ -0,0 +1,1192 @@
+/*******************************************************************************
+
+ Copyright (c) 2001-2007, Intel Corporation
+ All rights reserved.
+
+ Redistribution and use in source and binary forms, with or without
+ modification, are permitted provided that the following conditions are met:
+
+ 1. Redistributions of source code must retain the above copyright notice,
+ this list of conditions and the following disclaimer.
+
+ 2. Redistributions in binary form must reproduce the above copyright
+ notice, this list of conditions and the following disclaimer in the
+ documentation and/or other materials provided with the distribution.
+
+ 3. Neither the name of the Intel Corporation nor the names of its
+ contributors may be used to endorse or promote products derived from
+ this software without specific prior written permission.
+
+ THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
+ AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+ IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
+ LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
+ CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
+ SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
+ INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
+ CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
+ ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
+ POSSIBILITY OF SUCH DAMAGE.
+
+*******************************************************************************/
+/* $FreeBSD: src/sys/dev/em/e1000_api.c,v 1.3.4.1 2007/11/28 23:24:37 jfv Exp $ */
+
+
+#include "e1000_api.h"
+#include "e1000_mac.h"
+#include "e1000_nvm.h"
+#include "e1000_phy.h"
+
+#ifndef NO_82542_SUPPORT
+extern void e1000_init_function_pointers_82542(struct e1000_hw *hw);
+#endif
+extern void e1000_init_function_pointers_82543(struct e1000_hw *hw);
+extern void e1000_init_function_pointers_82540(struct e1000_hw *hw);
+extern void e1000_init_function_pointers_82571(struct e1000_hw *hw);
+extern void e1000_init_function_pointers_82541(struct e1000_hw *hw);
+extern void e1000_init_function_pointers_80003es2lan(struct e1000_hw *hw);
+extern void e1000_init_function_pointers_ich8lan(struct e1000_hw *hw);
+extern void e1000_init_function_pointers_82575(struct e1000_hw *hw);
+
+/**
+ * e1000_init_mac_params - Initialize MAC function pointers
+ * @hw: pointer to the HW structure
+ *
+ * This function initializes the function pointers for the MAC
+ * set of functions. Called by drivers or by e1000_setup_init_funcs.
+ **/
+s32 e1000_init_mac_params(struct e1000_hw *hw)
+{
+ s32 ret_val = E1000_SUCCESS;
+
+ if (hw->func.init_mac_params) {
+ ret_val = hw->func.init_mac_params(hw);
+ if (ret_val) {
+ DEBUGOUT("MAC Initialization Error\n");
+ goto out;
+ }
+ } else {
+ DEBUGOUT("mac.init_mac_params was NULL\n");
+ ret_val = -E1000_ERR_CONFIG;
+ }
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_init_nvm_params - Initialize NVM function pointers
+ * @hw: pointer to the HW structure
+ *
+ * This function initializes the function pointers for the NVM
+ * set of functions. Called by drivers or by e1000_setup_init_funcs.
+ **/
+s32 e1000_init_nvm_params(struct e1000_hw *hw)
+{
+ s32 ret_val = E1000_SUCCESS;
+
+ if (hw->func.init_nvm_params) {
+ ret_val = hw->func.init_nvm_params(hw);
+ if (ret_val) {
+ DEBUGOUT("NVM Initialization Error\n");
+ goto out;
+ }
+ } else {
+ DEBUGOUT("nvm.init_nvm_params was NULL\n");
+ ret_val = -E1000_ERR_CONFIG;
+ }
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_init_phy_params - Initialize PHY function pointers
+ * @hw: pointer to the HW structure
+ *
+ * This function initializes the function pointers for the PHY
+ * set of functions. Called by drivers or by e1000_setup_init_funcs.
+ **/
+s32 e1000_init_phy_params(struct e1000_hw *hw)
+{
+ s32 ret_val = E1000_SUCCESS;
+
+ if (hw->func.init_phy_params) {
+ ret_val = hw->func.init_phy_params(hw);
+ if (ret_val) {
+ DEBUGOUT("PHY Initialization Error\n");
+ goto out;
+ }
+ } else {
+ DEBUGOUT("phy.init_phy_params was NULL\n");
+ ret_val = -E1000_ERR_CONFIG;
+ }
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_set_mac_type - Sets MAC type
+ * @hw: pointer to the HW structure
+ *
+ * This function sets the mac type of the adapter based on the
+ * device ID stored in the hw structure.
+ * MUST BE FIRST FUNCTION CALLED (explicitly or through
+ * e1000_setup_init_funcs()).
+ **/
+s32 e1000_set_mac_type(struct e1000_hw *hw)
+{
+ struct e1000_mac_info *mac = &hw->mac;
+ s32 ret_val = E1000_SUCCESS;
+
+ DEBUGFUNC("e1000_set_mac_type");
+
+ switch (hw->device_id) {
+#ifndef NO_82542_SUPPORT
+ case E1000_DEV_ID_82542:
+ mac->type = e1000_82542;
+ break;
+#endif
+ case E1000_DEV_ID_82543GC_FIBER:
+ case E1000_DEV_ID_82543GC_COPPER:
+ mac->type = e1000_82543;
+ break;
+ case E1000_DEV_ID_82544EI_COPPER:
+ case E1000_DEV_ID_82544EI_FIBER:
+ case E1000_DEV_ID_82544GC_COPPER:
+ case E1000_DEV_ID_82544GC_LOM:
+ mac->type = e1000_82544;
+ break;
+ case E1000_DEV_ID_82540EM:
+ case E1000_DEV_ID_82540EM_LOM:
+ case E1000_DEV_ID_82540EP:
+ case E1000_DEV_ID_82540EP_LOM:
+ case E1000_DEV_ID_82540EP_LP:
+ mac->type = e1000_82540;
+ break;
+ case E1000_DEV_ID_82545EM_COPPER:
+ case E1000_DEV_ID_82545EM_FIBER:
+ mac->type = e1000_82545;
+ break;
+ case E1000_DEV_ID_82545GM_COPPER:
+ case E1000_DEV_ID_82545GM_FIBER:
+ case E1000_DEV_ID_82545GM_SERDES:
+ mac->type = e1000_82545_rev_3;
+ break;
+ case E1000_DEV_ID_82546EB_COPPER:
+ case E1000_DEV_ID_82546EB_FIBER:
+ case E1000_DEV_ID_82546EB_QUAD_COPPER:
+ mac->type = e1000_82546;
+ break;
+ case E1000_DEV_ID_82546GB_COPPER:
+ case E1000_DEV_ID_82546GB_FIBER:
+ case E1000_DEV_ID_82546GB_SERDES:
+ case E1000_DEV_ID_82546GB_PCIE:
+ case E1000_DEV_ID_82546GB_QUAD_COPPER:
+ case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
+ mac->type = e1000_82546_rev_3;
+ break;
+ case E1000_DEV_ID_82541EI:
+ case E1000_DEV_ID_82541EI_MOBILE:
+ case E1000_DEV_ID_82541ER_LOM:
+ mac->type = e1000_82541;
+ break;
+ case E1000_DEV_ID_82541ER:
+ case E1000_DEV_ID_82541GI:
+ case E1000_DEV_ID_82541GI_LF:
+ case E1000_DEV_ID_82541GI_MOBILE:
+ mac->type = e1000_82541_rev_2;
+ break;
+ case E1000_DEV_ID_82547EI:
+ case E1000_DEV_ID_82547EI_MOBILE:
+ mac->type = e1000_82547;
+ break;
+ case E1000_DEV_ID_82547GI:
+ mac->type = e1000_82547_rev_2;
+ break;
+ case E1000_DEV_ID_82571EB_COPPER:
+ case E1000_DEV_ID_82571EB_FIBER:
+ case E1000_DEV_ID_82571EB_SERDES:
+ case E1000_DEV_ID_82571EB_SERDES_DUAL:
+ case E1000_DEV_ID_82571EB_SERDES_QUAD:
+ case E1000_DEV_ID_82571EB_QUAD_COPPER:
+ case E1000_DEV_ID_82571PT_QUAD_COPPER:
+ case E1000_DEV_ID_82571EB_QUAD_FIBER:
+ case E1000_DEV_ID_82571EB_QUAD_COPPER_LP:
+ mac->type = e1000_82571;
+ break;
+ case E1000_DEV_ID_82572EI:
+ case E1000_DEV_ID_82572EI_COPPER:
+ case E1000_DEV_ID_82572EI_FIBER:
+ case E1000_DEV_ID_82572EI_SERDES:
+ mac->type = e1000_82572;
+ break;
+ case E1000_DEV_ID_82573E:
+ case E1000_DEV_ID_82573E_IAMT:
+ case E1000_DEV_ID_82573L:
+ mac->type = e1000_82573;
+ break;
+ case E1000_DEV_ID_80003ES2LAN_COPPER_DPT:
+ case E1000_DEV_ID_80003ES2LAN_SERDES_DPT:
+ case E1000_DEV_ID_80003ES2LAN_COPPER_SPT:
+ case E1000_DEV_ID_80003ES2LAN_SERDES_SPT:
+ mac->type = e1000_80003es2lan;
+ break;
+ case E1000_DEV_ID_ICH8_IFE:
+ case E1000_DEV_ID_ICH8_IFE_GT:
+ case E1000_DEV_ID_ICH8_IFE_G:
+ case E1000_DEV_ID_ICH8_IGP_M:
+ case E1000_DEV_ID_ICH8_IGP_M_AMT:
+ case E1000_DEV_ID_ICH8_IGP_AMT:
+ case E1000_DEV_ID_ICH8_IGP_C:
+ mac->type = e1000_ich8lan;
+ break;
+ case E1000_DEV_ID_ICH9_IFE:
+ case E1000_DEV_ID_ICH9_IFE_GT:
+ case E1000_DEV_ID_ICH9_IFE_G:
+ case E1000_DEV_ID_ICH9_IGP_AMT:
+ case E1000_DEV_ID_ICH9_IGP_C:
+ mac->type = e1000_ich9lan;
+ break;
+ case E1000_DEV_ID_82575EB_COPPER:
+ case E1000_DEV_ID_82575EB_FIBER_SERDES:
+ case E1000_DEV_ID_82575GB_QUAD_COPPER:
+ mac->type = e1000_82575;
+ break;
+ default:
+ /* Should never have loaded on this device */
+ ret_val = -E1000_ERR_MAC_INIT;
+ break;
+ }
+
+ return ret_val;
+}
+
+/**
+ * e1000_setup_init_funcs - Initializes function pointers
+ * @hw: pointer to the HW structure
+ * @init_device: TRUE will initialize the rest of the function pointers
+ * getting the device ready for use. FALSE will only set
+ * MAC type and the function pointers for the other init
+ * functions. Passing FALSE will not generate any hardware
+ * reads or writes.
+ *
+ * This function must be called by a driver in order to use the rest
+ * of the 'shared' code files. Called by drivers only.
+ **/
+s32 e1000_setup_init_funcs(struct e1000_hw *hw, bool init_device)
+{
+ s32 ret_val;
+
+ /* Can't do much good without knowing the MAC type. */
+ ret_val = e1000_set_mac_type(hw);
+ if (ret_val) {
+ DEBUGOUT("ERROR: MAC type could not be set properly.\n");
+ goto out;
+ }
+
+ if (!hw->hw_addr) {
+ DEBUGOUT("ERROR: Registers not mapped\n");
+ ret_val = -E1000_ERR_CONFIG;
+ goto out;
+ }
+
+ /*
+ * Init some generic function pointers that are currently all pointing
+ * to generic implementations. We do this first allowing a driver
+ * module to override it afterwards.
+ */
+ hw->func.config_collision_dist = e1000_config_collision_dist_generic;
+ hw->func.rar_set = e1000_rar_set_generic;
+ hw->func.validate_mdi_setting = e1000_validate_mdi_setting_generic;
+ hw->func.mng_host_if_write = e1000_mng_host_if_write_generic;
+ hw->func.mng_write_cmd_header = e1000_mng_write_cmd_header_generic;
+ hw->func.mng_enable_host_if = e1000_mng_enable_host_if_generic;
+ hw->func.wait_autoneg = e1000_wait_autoneg_generic;
+ hw->func.reload_nvm = e1000_reload_nvm_generic;
+
+ /*
+ * Set up the init function pointers. These are functions within the
+ * adapter family file that sets up function pointers for the rest of
+ * the functions in that family.
+ */
+ switch (hw->mac.type) {
+#ifndef NO_82542_SUPPORT
+ case e1000_82542:
+ e1000_init_function_pointers_82542(hw);
+ break;
+#endif
+ case e1000_82543:
+ case e1000_82544:
+ e1000_init_function_pointers_82543(hw);
+ break;
+ case e1000_82540:
+ case e1000_82545:
+ case e1000_82545_rev_3:
+ case e1000_82546:
+ case e1000_82546_rev_3:
+ e1000_init_function_pointers_82540(hw);
+ break;
+ case e1000_82541:
+ case e1000_82541_rev_2:
+ case e1000_82547:
+ case e1000_82547_rev_2:
+ e1000_init_function_pointers_82541(hw);
+ break;
+ case e1000_82571:
+ case e1000_82572:
+ case e1000_82573:
+ e1000_init_function_pointers_82571(hw);
+ break;
+ case e1000_80003es2lan:
+ e1000_init_function_pointers_80003es2lan(hw);
+ break;
+ case e1000_ich8lan:
+ case e1000_ich9lan:
+ e1000_init_function_pointers_ich8lan(hw);
+ break;
+ case e1000_82575:
+ e1000_init_function_pointers_82575(hw);
+ break;
+ default:
+ DEBUGOUT("Hardware not supported\n");
+ ret_val = -E1000_ERR_CONFIG;
+ break;
+ }
+
+ /*
+ * Initialize the rest of the function pointers. These require some
+ * register reads/writes in some cases.
+ */
+ if (!(ret_val) && init_device) {
+ ret_val = e1000_init_mac_params(hw);
+ if (ret_val)
+ goto out;
+
+ ret_val = e1000_init_nvm_params(hw);
+ if (ret_val)
+ goto out;
+
+ ret_val = e1000_init_phy_params(hw);
+ if (ret_val)
+ goto out;
+
+ }
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_remove_device - Free device specific structure
+ * @hw: pointer to the HW structure
+ *
+ * If a device specific structure was allocated, this function will
+ * free it. This is a function pointer entry point called by drivers.
+ **/
+void e1000_remove_device(struct e1000_hw *hw)
+{
+ if (hw->func.remove_device)
+ hw->func.remove_device(hw);
+}
+
+/**
+ * e1000_get_bus_info - Obtain bus information for adapter
+ * @hw: pointer to the HW structure
+ *
+ * This will obtain information about the HW bus for which the
+ * adaper is attached and stores it in the hw structure. This is a
+ * function pointer entry point called by drivers.
+ **/
+s32 e1000_get_bus_info(struct e1000_hw *hw)
+{
+ if (hw->func.get_bus_info)
+ return hw->func.get_bus_info(hw);
+
+ return E1000_SUCCESS;
+}
+
+/**
+ * e1000_clear_vfta - Clear VLAN filter table
+ * @hw: pointer to the HW structure
+ *
+ * This clears the VLAN filter table on the adapter. This is a function
+ * pointer entry point called by drivers.
+ **/
+void e1000_clear_vfta(struct e1000_hw *hw)
+{
+ if (hw->func.clear_vfta)
+ hw->func.clear_vfta (hw);
+}
+
+/**
+ * e1000_write_vfta - Write value to VLAN filter table
+ * @hw: pointer to the HW structure
+ * @offset: the 32-bit offset in which to write the value to.
+ * @value: the 32-bit value to write at location offset.
+ *
+ * This writes a 32-bit value to a 32-bit offset in the VLAN filter
+ * table. This is a function pointer entry point called by drivers.
+ **/
+void e1000_write_vfta(struct e1000_hw *hw, u32 offset, u32 value)
+{
+ if (hw->func.write_vfta)
+ hw->func.write_vfta(hw, offset, value);
+}
+
+/**
+ * e1000_update_mc_addr_list - Update Multicast addresses
+ * @hw: pointer to the HW structure
+ * @mc_addr_list: array of multicast addresses to program
+ * @mc_addr_count: number of multicast addresses to program
+ * @rar_used_count: the first RAR register free to program
+ * @rar_count: total number of supported Receive Address Registers
+ *
+ * Updates the Receive Address Registers and Multicast Table Array.
+ * The caller must have a packed mc_addr_list of multicast addresses.
+ * The parameter rar_count will usually be hw->mac.rar_entry_count
+ * unless there are workarounds that change this. Currently no func pointer
+ * exists and all implementations are handled in the generic version of this
+ * function.
+ **/
+void e1000_update_mc_addr_list(struct e1000_hw *hw, u8 *mc_addr_list,
+ u32 mc_addr_count, u32 rar_used_count,
+ u32 rar_count)
+{
+ if (hw->func.update_mc_addr_list)
+ hw->func.update_mc_addr_list(hw,
+ mc_addr_list,
+ mc_addr_count,
+ rar_used_count,
+ rar_count);
+}
+
+/**
+ * e1000_force_mac_fc - Force MAC flow control
+ * @hw: pointer to the HW structure
+ *
+ * Force the MAC's flow control settings. Currently no func pointer exists
+ * and all implementations are handled in the generic version of this
+ * function.
+ **/
+s32 e1000_force_mac_fc(struct e1000_hw *hw)
+{
+ return e1000_force_mac_fc_generic(hw);
+}
+
+/**
+ * e1000_check_for_link - Check/Store link connection
+ * @hw: pointer to the HW structure
+ *
+ * This checks the link condition of the adapter and stores the
+ * results in the hw->mac structure. This is a function pointer entry
+ * point called by drivers.
+ **/
+s32 e1000_check_for_link(struct e1000_hw *hw)
+{
+ if (hw->func.check_for_link)
+ return hw->func.check_for_link(hw);
+
+ return -E1000_ERR_CONFIG;
+}
+
+/**
+ * e1000_check_mng_mode - Check management mode
+ * @hw: pointer to the HW structure
+ *
+ * This checks if the adapter has manageability enabled.
+ * This is a function pointer entry point called by drivers.
+ **/
+bool e1000_check_mng_mode(struct e1000_hw *hw)
+{
+ if (hw->func.check_mng_mode)
+ return hw->func.check_mng_mode(hw);
+
+ return FALSE;
+}
+
+/**
+ * e1000_mng_write_dhcp_info - Writes DHCP info to host interface
+ * @hw: pointer to the HW structure
+ * @buffer: pointer to the host interface
+ * @length: size of the buffer
+ *
+ * Writes the DHCP information to the host interface.
+ **/
+s32 e1000_mng_write_dhcp_info(struct e1000_hw *hw, u8 *buffer, u16 length)
+{
+ return e1000_mng_write_dhcp_info_generic(hw, buffer, length);
+}
+
+/**
+ * e1000_reset_hw - Reset hardware
+ * @hw: pointer to the HW structure
+ *
+ * This resets the hardware into a known state. This is a function pointer
+ * entry point called by drivers.
+ **/
+s32 e1000_reset_hw(struct e1000_hw *hw)
+{
+ if (hw->func.reset_hw)
+ return hw->func.reset_hw(hw);
+
+ return -E1000_ERR_CONFIG;
+}
+
+/**
+ * e1000_init_hw - Initialize hardware
+ * @hw: pointer to the HW structure
+ *
+ * This inits the hardware readying it for operation. This is a function
+ * pointer entry point called by drivers.
+ **/
+s32 e1000_init_hw(struct e1000_hw *hw)
+{
+ if (hw->func.init_hw)
+ return hw->func.init_hw(hw);
+
+ return -E1000_ERR_CONFIG;
+}
+
+/**
+ * e1000_setup_link - Configures link and flow control
+ * @hw: pointer to the HW structure
+ *
+ * This configures link and flow control settings for the adapter. This
+ * is a function pointer entry point called by drivers. While modules can
+ * also call this, they probably call their own version of this function.
+ **/
+s32 e1000_setup_link(struct e1000_hw *hw)
+{
+ if (hw->func.setup_link)
+ return hw->func.setup_link(hw);
+
+ return -E1000_ERR_CONFIG;
+}
+
+/**
+ * e1000_get_speed_and_duplex - Returns current speed and duplex
+ * @hw: pointer to the HW structure
+ * @speed: pointer to a 16-bit value to store the speed
+ * @duplex: pointer to a 16-bit value to store the duplex.
+ *
+ * This returns the speed and duplex of the adapter in the two 'out'
+ * variables passed in. This is a function pointer entry point called
+ * by drivers.
+ **/
+s32 e1000_get_speed_and_duplex(struct e1000_hw *hw, u16 *speed, u16 *duplex)
+{
+ if (hw->func.get_link_up_info)
+ return hw->func.get_link_up_info(hw, speed, duplex);
+
+ return -E1000_ERR_CONFIG;
+}
+
+/**
+ * e1000_setup_led - Configures SW controllable LED
+ * @hw: pointer to the HW structure
+ *
+ * This prepares the SW controllable LED for use and saves the current state
+ * of the LED so it can be later restored. This is a function pointer entry
+ * point called by drivers.
+ **/
+s32 e1000_setup_led(struct e1000_hw *hw)
+{
+ if (hw->func.setup_led)
+ return hw->func.setup_led(hw);
+
+ return E1000_SUCCESS;
+}
+
+/**
+ * e1000_cleanup_led - Restores SW controllable LED
+ * @hw: pointer to the HW structure
+ *
+ * This restores the SW controllable LED to the value saved off by
+ * e1000_setup_led. This is a function pointer entry point called by drivers.
+ **/
+s32 e1000_cleanup_led(struct e1000_hw *hw)
+{
+ if (hw->func.cleanup_led)
+ return hw->func.cleanup_led(hw);
+
+ return E1000_SUCCESS;
+}
+
+/**
+ * e1000_blink_led - Blink SW controllable LED
+ * @hw: pointer to the HW structure
+ *
+ * This starts the adapter LED blinking. Request the LED to be setup first
+ * and cleaned up after. This is a function pointer entry point called by
+ * drivers.
+ **/
+s32 e1000_blink_led(struct e1000_hw *hw)
+{
+ if (hw->func.blink_led)
+ return hw->func.blink_led(hw);
+
+ return E1000_SUCCESS;
+}
+
+/**
+ * e1000_led_on - Turn on SW controllable LED
+ * @hw: pointer to the HW structure
+ *
+ * Turns the SW defined LED on. This is a function pointer entry point
+ * called by drivers.
+ **/
+s32 e1000_led_on(struct e1000_hw *hw)
+{
+ if (hw->func.led_on)
+ return hw->func.led_on(hw);
+
+ return E1000_SUCCESS;
+}
+
+/**
+ * e1000_led_off - Turn off SW controllable LED
+ * @hw: pointer to the HW structure
+ *
+ * Turns the SW defined LED off. This is a function pointer entry point
+ * called by drivers.
+ **/
+s32 e1000_led_off(struct e1000_hw *hw)
+{
+ if (hw->func.led_off)
+ return hw->func.led_off(hw);
+
+ return E1000_SUCCESS;
+}
+
+/**
+ * e1000_reset_adaptive - Reset adaptive IFS
+ * @hw: pointer to the HW structure
+ *
+ * Resets the adaptive IFS. Currently no func pointer exists and all
+ * implementations are handled in the generic version of this function.
+ **/
+void e1000_reset_adaptive(struct e1000_hw *hw)
+{
+ e1000_reset_adaptive_generic(hw);
+}
+
+/**
+ * e1000_update_adaptive - Update adaptive IFS
+ * @hw: pointer to the HW structure
+ *
+ * Updates adapter IFS. Currently no func pointer exists and all
+ * implementations are handled in the generic version of this function.
+ **/
+void e1000_update_adaptive(struct e1000_hw *hw)
+{
+ e1000_update_adaptive_generic(hw);
+}
+
+/**
+ * e1000_disable_pcie_master - Disable PCI-Express master access
+ * @hw: pointer to the HW structure
+ *
+ * Disables PCI-Express master access and verifies there are no pending
+ * requests. Currently no func pointer exists and all implementations are
+ * handled in the generic version of this function.
+ **/
+s32 e1000_disable_pcie_master(struct e1000_hw *hw)
+{
+ return e1000_disable_pcie_master_generic(hw);
+}
+
+/**
+ * e1000_config_collision_dist - Configure collision distance
+ * @hw: pointer to the HW structure
+ *
+ * Configures the collision distance to the default value and is used
+ * during link setup.
+ **/
+void e1000_config_collision_dist(struct e1000_hw *hw)
+{
+ if (hw->func.config_collision_dist)
+ hw->func.config_collision_dist(hw);
+}
+
+/**
+ * e1000_rar_set - Sets a receive address register
+ * @hw: pointer to the HW structure
+ * @addr: address to set the RAR to
+ * @index: the RAR to set
+ *
+ * Sets a Receive Address Register (RAR) to the specified address.
+ **/
+void e1000_rar_set(struct e1000_hw *hw, u8 *addr, u32 index)
+{
+ if (hw->func.rar_set)
+ hw->func.rar_set(hw, addr, index);
+}
+
+/**
+ * e1000_validate_mdi_setting - Ensures valid MDI/MDIX SW state
+ * @hw: pointer to the HW structure
+ *
+ * Ensures that the MDI/MDIX SW state is valid.
+ **/
+s32 e1000_validate_mdi_setting(struct e1000_hw *hw)
+{
+ if (hw->func.validate_mdi_setting)
+ return hw->func.validate_mdi_setting(hw);
+
+ return E1000_SUCCESS;
+}
+
+/**
+ * e1000_mta_set - Sets multicast table bit
+ * @hw: pointer to the HW structure
+ * @hash_value: Multicast hash value.
+ *
+ * This sets the bit in the multicast table corresponding to the
+ * hash value. This is a function pointer entry point called by drivers.
+ **/
+void e1000_mta_set(struct e1000_hw *hw, u32 hash_value)
+{
+ if (hw->func.mta_set)
+ hw->func.mta_set(hw, hash_value);
+}
+
+/**
+ * e1000_hash_mc_addr - Determines address location in multicast table
+ * @hw: pointer to the HW structure
+ * @mc_addr: Multicast address to hash.
+ *
+ * This hashes an address to determine its location in the multicast
+ * table. Currently no func pointer exists and all implementations
+ * are handled in the generic version of this function.
+ **/
+u32 e1000_hash_mc_addr(struct e1000_hw *hw, u8 *mc_addr)
+{
+ return e1000_hash_mc_addr_generic(hw, mc_addr);
+}
+
+/**
+ * e1000_enable_tx_pkt_filtering - Enable packet filtering on TX
+ * @hw: pointer to the HW structure
+ *
+ * Enables packet filtering on transmit packets if manageability is enabled
+ * and host interface is enabled.
+ * Currently no func pointer exists and all implementations are handled in the
+ * generic version of this function.
+ **/
+bool e1000_enable_tx_pkt_filtering(struct e1000_hw *hw)
+{
+ return e1000_enable_tx_pkt_filtering_generic(hw);
+}
+
+/**
+ * e1000_mng_host_if_write - Writes to the manageability host interface
+ * @hw: pointer to the HW structure
+ * @buffer: pointer to the host interface buffer
+ * @length: size of the buffer
+ * @offset: location in the buffer to write to
+ * @sum: sum of the data (not checksum)
+ *
+ * This function writes the buffer content at the offset given on the host if.
+ * It also does alignment considerations to do the writes in most efficient
+ * way. Also fills up the sum of the buffer in *buffer parameter.
+ **/
+s32 e1000_mng_host_if_write(struct e1000_hw * hw, u8 *buffer, u16 length,
+ u16 offset, u8 *sum)
+{
+ if (hw->func.mng_host_if_write)
+ return hw->func.mng_host_if_write(hw, buffer, length, offset,
+ sum);
+
+ return E1000_NOT_IMPLEMENTED;
+}
+
+/**
+ * e1000_mng_write_cmd_header - Writes manageability command header
+ * @hw: pointer to the HW structure
+ * @hdr: pointer to the host interface command header
+ *
+ * Writes the command header after does the checksum calculation.
+ **/
+s32 e1000_mng_write_cmd_header(struct e1000_hw *hw,
+ struct e1000_host_mng_command_header *hdr)
+{
+ if (hw->func.mng_write_cmd_header)
+ return hw->func.mng_write_cmd_header(hw, hdr);
+
+ return E1000_NOT_IMPLEMENTED;
+}
+
+/**
+ * e1000_mng_enable_host_if - Checks host interface is enabled
+ * @hw: pointer to the HW structure
+ *
+ * Returns E1000_success upon success, else E1000_ERR_HOST_INTERFACE_COMMAND
+ *
+ * This function checks whether the HOST IF is enabled for command operaton
+ * and also checks whether the previous command is completed. It busy waits
+ * in case of previous command is not completed.
+ **/
+s32 e1000_mng_enable_host_if(struct e1000_hw * hw)
+{
+ if (hw->func.mng_enable_host_if)
+ return hw->func.mng_enable_host_if(hw);
+
+ return E1000_NOT_IMPLEMENTED;
+}
+
+/**
+ * e1000_wait_autoneg - Waits for autonegotiation completion
+ * @hw: pointer to the HW structure
+ *
+ * Waits for autoneg to complete. Currently no func pointer exists and all
+ * implementations are handled in the generic version of this function.
+ **/
+s32 e1000_wait_autoneg(struct e1000_hw *hw)
+{
+ if (hw->func.wait_autoneg)
+ return hw->func.wait_autoneg(hw);
+
+ return E1000_SUCCESS;
+}
+
+/**
+ * e1000_check_reset_block - Verifies PHY can be reset
+ * @hw: pointer to the HW structure
+ *
+ * Checks if the PHY is in a state that can be reset or if manageability
+ * has it tied up. This is a function pointer entry point called by drivers.
+ **/
+s32 e1000_check_reset_block(struct e1000_hw *hw)
+{
+ if (hw->func.check_reset_block)
+ return hw->func.check_reset_block(hw);
+
+ return E1000_SUCCESS;
+}
+
+/**
+ * e1000_read_phy_reg - Reads PHY register
+ * @hw: pointer to the HW structure
+ * @offset: the register to read
+ * @data: the buffer to store the 16-bit read.
+ *
+ * Reads the PHY register and returns the value in data.
+ * This is a function pointer entry point called by drivers.
+ **/
+s32 e1000_read_phy_reg(struct e1000_hw *hw, u32 offset, u16 *data)
+{
+ if (hw->func.read_phy_reg)
+ return hw->func.read_phy_reg(hw, offset, data);
+
+ return E1000_SUCCESS;
+}
+
+/**
+ * e1000_write_phy_reg - Writes PHY register
+ * @hw: pointer to the HW structure
+ * @offset: the register to write
+ * @data: the value to write.
+ *
+ * Writes the PHY register at offset with the value in data.
+ * This is a function pointer entry point called by drivers.
+ **/
+s32 e1000_write_phy_reg(struct e1000_hw *hw, u32 offset, u16 data)
+{
+ if (hw->func.write_phy_reg)
+ return hw->func.write_phy_reg(hw, offset, data);
+
+ return E1000_SUCCESS;
+}
+
+/**
+ * e1000_read_kmrn_reg - Reads register using Kumeran interface
+ * @hw: pointer to the HW structure
+ * @offset: the register to read
+ * @data: the location to store the 16-bit value read.
+ *
+ * Reads a register out of the Kumeran interface. Currently no func pointer
+ * exists and all implementations are handled in the generic version of
+ * this function.
+ **/
+s32 e1000_read_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 *data)
+{
+ return e1000_read_kmrn_reg_generic(hw, offset, data);
+}
+
+/**
+ * e1000_write_kmrn_reg - Writes register using Kumeran interface
+ * @hw: pointer to the HW structure
+ * @offset: the register to write
+ * @data: the value to write.
+ *
+ * Writes a register to the Kumeran interface. Currently no func pointer
+ * exists and all implementations are handled in the generic version of
+ * this function.
+ **/
+s32 e1000_write_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 data)
+{
+ return e1000_write_kmrn_reg_generic(hw, offset, data);
+}
+
+/**
+ * e1000_get_cable_length - Retrieves cable length estimation
+ * @hw: pointer to the HW structure
+ *
+ * This function estimates the cable length and stores them in
+ * hw->phy.min_length and hw->phy.max_length. This is a function pointer
+ * entry point called by drivers.
+ **/
+s32 e1000_get_cable_length(struct e1000_hw *hw)
+{
+ if (hw->func.get_cable_length)
+ return hw->func.get_cable_length(hw);
+
+ return E1000_SUCCESS;
+}
+
+/**
+ * e1000_get_phy_info - Retrieves PHY information from registers
+ * @hw: pointer to the HW structure
+ *
+ * This function gets some information from various PHY registers and
+ * populates hw->phy values with it. This is a function pointer entry
+ * point called by drivers.
+ **/
+s32 e1000_get_phy_info(struct e1000_hw *hw)
+{
+ if (hw->func.get_phy_info)
+ return hw->func.get_phy_info(hw);
+
+ return E1000_SUCCESS;
+}
+
+/**
+ * e1000_phy_hw_reset - Hard PHY reset
+ * @hw: pointer to the HW structure
+ *
+ * Performs a hard PHY reset. This is a function pointer entry point called
+ * by drivers.
+ **/
+s32 e1000_phy_hw_reset(struct e1000_hw *hw)
+{
+ if (hw->func.reset_phy)
+ return hw->func.reset_phy(hw);
+
+ return E1000_SUCCESS;
+}
+
+/**
+ * e1000_phy_commit - Soft PHY reset
+ * @hw: pointer to the HW structure
+ *
+ * Performs a soft PHY reset on those that apply. This is a function pointer
+ * entry point called by drivers.
+ **/
+s32 e1000_phy_commit(struct e1000_hw *hw)
+{
+ if (hw->func.commit_phy)
+ return hw->func.commit_phy(hw);
+
+ return E1000_SUCCESS;
+}
+
+/**
+ * e1000_set_d3_lplu_state - Sets low power link up state for D0
+ * @hw: pointer to the HW structure
+ * @active: boolean used to enable/disable lplu
+ *
+ * Success returns 0, Failure returns 1
+ *
+ * The low power link up (lplu) state is set to the power management level D0
+ * and SmartSpeed is disabled when active is true, else clear lplu for D0
+ * and enable Smartspeed. LPLU and Smartspeed are mutually exclusive. LPLU
+ * is used during Dx states where the power conservation is most important.
+ * During driver activity, SmartSpeed should be enabled so performance is
+ * maintained. This is a function pointer entry point called by drivers.
+ **/
+s32 e1000_set_d0_lplu_state(struct e1000_hw *hw, bool active)
+{
+ if (hw->func.set_d0_lplu_state)
+ return hw->func.set_d0_lplu_state(hw, active);
+
+ return E1000_SUCCESS;
+}
+
+/**
+ * e1000_set_d3_lplu_state - Sets low power link up state for D3
+ * @hw: pointer to the HW structure
+ * @active: boolean used to enable/disable lplu
+ *
+ * Success returns 0, Failure returns 1
+ *
+ * The low power link up (lplu) state is set to the power management level D3
+ * and SmartSpeed is disabled when active is true, else clear lplu for D3
+ * and enable Smartspeed. LPLU and Smartspeed are mutually exclusive. LPLU
+ * is used during Dx states where the power conservation is most important.
+ * During driver activity, SmartSpeed should be enabled so performance is
+ * maintained. This is a function pointer entry point called by drivers.
+ **/
+s32 e1000_set_d3_lplu_state(struct e1000_hw *hw, bool active)
+{
+ if (hw->func.set_d3_lplu_state)
+ return hw->func.set_d3_lplu_state(hw, active);
+
+ return E1000_SUCCESS;
+}
+
+/**
+ * e1000_read_mac_addr - Reads MAC address
+ * @hw: pointer to the HW structure
+ *
+ * Reads the MAC address out of the adapter and stores it in the HW structure.
+ * Currently no func pointer exists and all implementations are handled in the
+ * generic version of this function.
+ **/
+s32 e1000_read_mac_addr(struct e1000_hw *hw)
+{
+ if (hw->func.read_mac_addr)
+ return hw->func.read_mac_addr(hw);
+
+ return e1000_read_mac_addr_generic(hw);
+}
+
+/**
+ * e1000_read_pba_num - Read device part number
+ * @hw: pointer to the HW structure
+ * @pba_num: pointer to device part number
+ *
+ * Reads the product board assembly (PBA) number from the EEPROM and stores
+ * the value in pba_num.
+ * Currently no func pointer exists and all implementations are handled in the
+ * generic version of this function.
+ **/
+s32 e1000_read_pba_num(struct e1000_hw *hw, u32 *pba_num)
+{
+ return e1000_read_pba_num_generic(hw, pba_num);
+}
+
+/**
+ * e1000_validate_nvm_checksum - Verifies NVM (EEPROM) checksum
+ * @hw: pointer to the HW structure
+ *
+ * Validates the NVM checksum is correct. This is a function pointer entry
+ * point called by drivers.
+ **/
+s32 e1000_validate_nvm_checksum(struct e1000_hw *hw)
+{
+ if (hw->func.validate_nvm)
+ return hw->func.validate_nvm(hw);
+
+ return -E1000_ERR_CONFIG;
+}
+
+/**
+ * e1000_update_nvm_checksum - Updates NVM (EEPROM) checksum
+ * @hw: pointer to the HW structure
+ *
+ * Updates the NVM checksum. Currently no func pointer exists and all
+ * implementations are handled in the generic version of this function.
+ **/
+s32 e1000_update_nvm_checksum(struct e1000_hw *hw)
+{
+ if (hw->func.update_nvm)
+ return hw->func.update_nvm(hw);
+
+ return -E1000_ERR_CONFIG;
+}
+
+/**
+ * e1000_reload_nvm - Reloads EEPROM
+ * @hw: pointer to the HW structure
+ *
+ * Reloads the EEPROM by setting the "Reinitialize from EEPROM" bit in the
+ * extended control register.
+ **/
+void e1000_reload_nvm(struct e1000_hw *hw)
+{
+ if (hw->func.reload_nvm)
+ hw->func.reload_nvm(hw);
+}
+
+/**
+ * e1000_read_nvm - Reads NVM (EEPROM)
+ * @hw: pointer to the HW structure
+ * @offset: the word offset to read
+ * @words: number of 16-bit words to read
+ * @data: pointer to the properly sized buffer for the data.
+ *
+ * Reads 16-bit chunks of data from the NVM (EEPROM). This is a function
+ * pointer entry point called by drivers.
+ **/
+s32 e1000_read_nvm(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
+{
+ if (hw->func.read_nvm)
+ return hw->func.read_nvm(hw, offset, words, data);
+
+ return -E1000_ERR_CONFIG;
+}
+
+/**
+ * e1000_write_nvm - Writes to NVM (EEPROM)
+ * @hw: pointer to the HW structure
+ * @offset: the word offset to read
+ * @words: number of 16-bit words to write
+ * @data: pointer to the properly sized buffer for the data.
+ *
+ * Writes 16-bit chunks of data to the NVM (EEPROM). This is a function
+ * pointer entry point called by drivers.
+ **/
+s32 e1000_write_nvm(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
+{
+ if (hw->func.write_nvm)
+ return hw->func.write_nvm(hw, offset, words, data);
+
+ return E1000_SUCCESS;
+}
+
+/**
+ * e1000_write_8bit_ctrl_reg - Writes 8bit Control register
+ * @hw: pointer to the HW structure
+ * @reg: 32bit register offset
+ * @offset: the register to write
+ * @data: the value to write.
+ *
+ * Writes the PHY register at offset with the value in data.
+ * This is a function pointer entry point called by drivers.
+ **/
+s32 e1000_write_8bit_ctrl_reg(struct e1000_hw *hw, u32 reg, u32 offset, u8 data)
+{
+ return e1000_write_8bit_ctrl_reg_generic(hw, reg, offset, data);
+}
+
+/**
+ * e1000_power_up_phy - Restores link in case of PHY power down
+ * @hw: pointer to the HW structure
+ *
+ * The phy may be powered down to save power, to turn off link when the
+ * driver is unloaded, or wake on lan is not enabled (among others).
+ **/
+void e1000_power_up_phy(struct e1000_hw *hw)
+{
+ if (hw->func.power_up_phy)
+ hw->func.power_up_phy(hw);
+
+ e1000_setup_link(hw);
+}
+
+/**
+ * e1000_power_down_phy - Power down PHY
+ * @hw: pointer to the HW structure
+ *
+ * The phy may be powered down to save power, to turn off link when the
+ * driver is unloaded, or wake on lan is not enabled (among others).
+ **/
+void e1000_power_down_phy(struct e1000_hw *hw)
+{
+ if (hw->func.power_down_phy)
+ hw->func.power_down_phy(hw);
+}
+
--- /dev/null
+++ sys/dev/em/e1000_api.h
@@ -0,0 +1,167 @@
+/*******************************************************************************
+
+ Copyright (c) 2001-2007, Intel Corporation
+ All rights reserved.
+
+ Redistribution and use in source and binary forms, with or without
+ modification, are permitted provided that the following conditions are met:
+
+ 1. Redistributions of source code must retain the above copyright notice,
+ this list of conditions and the following disclaimer.
+
+ 2. Redistributions in binary form must reproduce the above copyright
+ notice, this list of conditions and the following disclaimer in the
+ documentation and/or other materials provided with the distribution.
+
+ 3. Neither the name of the Intel Corporation nor the names of its
+ contributors may be used to endorse or promote products derived from
+ this software without specific prior written permission.
+
+ THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
+ AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+ IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
+ LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
+ CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
+ SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
+ INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
+ CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
+ ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
+ POSSIBILITY OF SUCH DAMAGE.
+
+*******************************************************************************/
+/* $FreeBSD: src/sys/dev/em/e1000_api.h,v 1.3.4.1 2007/11/28 23:24:37 jfv Exp $ */
+
+
+#ifndef _E1000_API_H_
+#define _E1000_API_H_
+
+#include "e1000_hw.h"
+
+s32 e1000_set_mac_type(struct e1000_hw *hw);
+s32 e1000_setup_init_funcs(struct e1000_hw *hw, bool init_device);
+s32 e1000_init_mac_params(struct e1000_hw *hw);
+s32 e1000_init_nvm_params(struct e1000_hw *hw);
+s32 e1000_init_phy_params(struct e1000_hw *hw);
+void e1000_remove_device(struct e1000_hw *hw);
+s32 e1000_get_bus_info(struct e1000_hw *hw);
+void e1000_clear_vfta(struct e1000_hw *hw);
+void e1000_write_vfta(struct e1000_hw *hw, u32 offset, u32 value);
+s32 e1000_force_mac_fc(struct e1000_hw *hw);
+s32 e1000_check_for_link(struct e1000_hw *hw);
+s32 e1000_reset_hw(struct e1000_hw *hw);
+s32 e1000_init_hw(struct e1000_hw *hw);
+s32 e1000_setup_link(struct e1000_hw *hw);
+s32 e1000_get_speed_and_duplex(struct e1000_hw *hw, u16 *speed,
+ u16 *duplex);
+s32 e1000_disable_pcie_master(struct e1000_hw *hw);
+void e1000_config_collision_dist(struct e1000_hw *hw);
+void e1000_rar_set(struct e1000_hw *hw, u8 *addr, u32 index);
+void e1000_mta_set(struct e1000_hw *hw, u32 hash_value);
+u32 e1000_hash_mc_addr(struct e1000_hw *hw, u8 *mc_addr);
+void e1000_update_mc_addr_list(struct e1000_hw *hw,
+ u8 *mc_addr_list, u32 mc_addr_count,
+ u32 rar_used_count, u32 rar_count);
+s32 e1000_setup_led(struct e1000_hw *hw);
+s32 e1000_cleanup_led(struct e1000_hw *hw);
+s32 e1000_check_reset_block(struct e1000_hw *hw);
+s32 e1000_blink_led(struct e1000_hw *hw);
+s32 e1000_led_on(struct e1000_hw *hw);
+s32 e1000_led_off(struct e1000_hw *hw);
+void e1000_reset_adaptive(struct e1000_hw *hw);
+void e1000_update_adaptive(struct e1000_hw *hw);
+s32 e1000_get_cable_length(struct e1000_hw *hw);
+s32 e1000_validate_mdi_setting(struct e1000_hw *hw);
+s32 e1000_read_phy_reg(struct e1000_hw *hw, u32 offset, u16 *data);
+s32 e1000_write_phy_reg(struct e1000_hw *hw, u32 offset, u16 data);
+s32 e1000_write_8bit_ctrl_reg(struct e1000_hw *hw, u32 reg,
+ u32 offset, u8 data);
+s32 e1000_get_phy_info(struct e1000_hw *hw);
+s32 e1000_phy_hw_reset(struct e1000_hw *hw);
+s32 e1000_phy_commit(struct e1000_hw *hw);
+void e1000_power_up_phy(struct e1000_hw *hw);
+void e1000_power_down_phy(struct e1000_hw *hw);
+s32 e1000_read_mac_addr(struct e1000_hw *hw);
+s32 e1000_read_pba_num(struct e1000_hw *hw, u32 *part_num);
+void e1000_reload_nvm(struct e1000_hw *hw);
+s32 e1000_update_nvm_checksum(struct e1000_hw *hw);
+s32 e1000_validate_nvm_checksum(struct e1000_hw *hw);
+s32 e1000_read_nvm(struct e1000_hw *hw, u16 offset, u16 words, u16 *data);
+s32 e1000_read_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 *data);
+s32 e1000_write_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 data);
+s32 e1000_write_nvm(struct e1000_hw *hw, u16 offset, u16 words,
+ u16 *data);
+s32 e1000_wait_autoneg(struct e1000_hw *hw);
+s32 e1000_set_d3_lplu_state(struct e1000_hw *hw, bool active);
+s32 e1000_set_d0_lplu_state(struct e1000_hw *hw, bool active);
+bool e1000_check_mng_mode(struct e1000_hw *hw);
+bool e1000_enable_mng_pass_thru(struct e1000_hw *hw);
+bool e1000_enable_tx_pkt_filtering(struct e1000_hw *hw);
+s32 e1000_mng_enable_host_if(struct e1000_hw *hw);
+s32 e1000_mng_host_if_write(struct e1000_hw *hw,
+ u8 *buffer, u16 length, u16 offset, u8 *sum);
+s32 e1000_mng_write_cmd_header(struct e1000_hw *hw,
+ struct e1000_host_mng_command_header *hdr);
+s32 e1000_mng_write_dhcp_info(struct e1000_hw * hw,
+ u8 *buffer, u16 length);
+void e1000_tbi_adjust_stats_82543(struct e1000_hw *hw,
+ struct e1000_hw_stats *stats,
+ u32 frame_len, u8 *mac_addr,
+ u32 max_frame_size);
+void e1000_set_tbi_compatibility_82543(struct e1000_hw *hw,
+ bool state);
+bool e1000_tbi_sbp_enabled_82543(struct e1000_hw *hw);
+#ifndef NO_82542_SUPPORT
+u32 e1000_translate_register_82542(u32 reg);
+#endif
+void e1000_init_script_state_82541(struct e1000_hw *hw, bool state);
+bool e1000_get_laa_state_82571(struct e1000_hw *hw);
+void e1000_set_laa_state_82571(struct e1000_hw *hw, bool state);
+void e1000_set_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw,
+ bool state);
+void e1000_igp3_phy_powerdown_workaround_ich8lan(struct e1000_hw *hw);
+void e1000_gig_downshift_workaround_ich8lan(struct e1000_hw *hw);
+
+
+/*
+ * TBI_ACCEPT macro definition:
+ *
+ * This macro requires:
+ * adapter = a pointer to struct e1000_hw
+ * status = the 8 bit status field of the Rx descriptor with EOP set
+ * error = the 8 bit error field of the Rx descriptor with EOP set
+ * length = the sum of all the length fields of the Rx descriptors that
+ * make up the current frame
+ * last_byte = the last byte of the frame DMAed by the hardware
+ * max_frame_length = the maximum frame length we want to accept.
+ * min_frame_length = the minimum frame length we want to accept.
+ *
+ * This macro is a conditional that should be used in the interrupt
+ * handler's Rx processing routine when RxErrors have been detected.
+ *
+ * Typical use:
+ * ...
+ * if (TBI_ACCEPT) {
+ * accept_frame = TRUE;
+ * e1000_tbi_adjust_stats(adapter, MacAddress);
+ * frame_length--;
+ * } else {
+ * accept_frame = FALSE;
+ * }
+ * ...
+ */
+
+/* The carrier extension symbol, as received by the NIC. */
+#define CARRIER_EXTENSION 0x0F
+
+#define TBI_ACCEPT(a, status, errors, length, last_byte, min_frame_size, max_frame_size) \
+ (e1000_tbi_sbp_enabled_82543(a) && \
+ (((errors) & E1000_RXD_ERR_FRAME_ERR_MASK) == E1000_RXD_ERR_CE) && \
+ ((last_byte) == CARRIER_EXTENSION) && \
+ (((status) & E1000_RXD_STAT_VP) ? \
+ (((length) > (min_frame_size - VLAN_TAG_SIZE)) && \
+ ((length) <= (max_frame_size + 1))) : \
+ (((length) > min_frame_size) && \
+ ((length) <= (max_frame_size + VLAN_TAG_SIZE + 1)))))
+
+#endif
--- sys/dev/em/if_em_hw.h
+++ /dev/null
@@ -1,3430 +0,0 @@
-/*******************************************************************************
-
- Copyright (c) 2001-2005, Intel Corporation
- All rights reserved.
-
- Redistribution and use in source and binary forms, with or without
- modification, are permitted provided that the following conditions are met:
-
- 1. Redistributions of source code must retain the above copyright notice,
- this list of conditions and the following disclaimer.
-
- 2. Redistributions in binary form must reproduce the above copyright
- notice, this list of conditions and the following disclaimer in the
- documentation and/or other materials provided with the distribution.
-
- 3. Neither the name of the Intel Corporation nor the names of its
- contributors may be used to endorse or promote products derived from
- this software without specific prior written permission.
-
- THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
- AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
- IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
- ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
- LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
- CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
- SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
- INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
- CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
- ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
- POSSIBILITY OF SUCH DAMAGE.
-
-*******************************************************************************/
-
-/*$FreeBSD: /repoman/r/ncvs/src/sys/dev/em/if_em_hw.h,v 1.15.2.3 2006/08/08 09:20:26 glebius Exp $*/
-/* if_em_hw.h
- * Structures, enums, and macros for the MAC
- */
-
-#ifndef _EM_HW_H_
-#define _EM_HW_H_
-
-#ifdef LM
-#include "if_em_osdep.h"
-#else
-#include <dev/em/if_em_osdep.h>
-#endif
-
-
-/* Forward declarations of structures used by the shared code */
-struct em_hw;
-struct em_hw_stats;
-
-/* Enumerated types specific to the e1000 hardware */
-/* Media Access Controlers */
-typedef enum {
- em_undefined = 0,
- em_82542_rev2_0,
- em_82542_rev2_1,
- em_82543,
- em_82544,
- em_82540,
- em_82545,
- em_82545_rev_3,
- em_82546,
- em_82546_rev_3,
- em_82541,
- em_82541_rev_2,
- em_82547,
- em_82547_rev_2,
- em_82571,
- em_82572,
- em_82573,
- em_80003es2lan,
- em_ich8lan,
- em_num_macs
-} em_mac_type;
-
-typedef enum {
- em_eeprom_uninitialized = 0,
- em_eeprom_spi,
- em_eeprom_microwire,
- em_eeprom_flash,
- em_eeprom_ich8,
- em_eeprom_none, /* No NVM support */
- em_num_eeprom_types
-} em_eeprom_type;
-
-/* Media Types */
-typedef enum {
- em_media_type_copper = 0,
- em_media_type_fiber = 1,
- em_media_type_internal_serdes = 2,
- em_num_media_types
-} em_media_type;
-
-typedef enum {
- em_10_half = 0,
- em_10_full = 1,
- em_100_half = 2,
- em_100_full = 3
-} em_speed_duplex_type;
-
-/* Flow Control Settings */
-typedef enum {
- em_fc_none = 0,
- em_fc_rx_pause = 1,
- em_fc_tx_pause = 2,
- em_fc_full = 3,
- em_fc_default = 0xFF
-} em_fc_type;
-
-struct em_shadow_ram {
- uint16_t eeprom_word;
- boolean_t modified;
-};
-
-/* PCI bus types */
-typedef enum {
- em_bus_type_unknown = 0,
- em_bus_type_pci,
- em_bus_type_pcix,
- em_bus_type_pci_express,
- em_bus_type_reserved
-} em_bus_type;
-
-/* PCI bus speeds */
-typedef enum {
- em_bus_speed_unknown = 0,
- em_bus_speed_33,
- em_bus_speed_66,
- em_bus_speed_100,
- em_bus_speed_120,
- em_bus_speed_133,
- em_bus_speed_2500,
- em_bus_speed_reserved
-} em_bus_speed;
-
-/* PCI bus widths */
-typedef enum {
- em_bus_width_unknown = 0,
- em_bus_width_32,
- em_bus_width_64,
- em_bus_width_pciex_1,
- em_bus_width_pciex_2,
- em_bus_width_pciex_4,
- em_bus_width_reserved
-} em_bus_width;
-
-/* PHY status info structure and supporting enums */
-typedef enum {
- em_cable_length_50 = 0,
- em_cable_length_50_80,
- em_cable_length_80_110,
- em_cable_length_110_140,
- em_cable_length_140,
- em_cable_length_undefined = 0xFF
-} em_cable_length;
-
-typedef enum {
- em_gg_cable_length_60 = 0,
- em_gg_cable_length_60_115 = 1,
- em_gg_cable_length_115_150 = 2,
- em_gg_cable_length_150 = 4
-} em_gg_cable_length;
-
-typedef enum {
- em_igp_cable_length_10 = 10,
- em_igp_cable_length_20 = 20,
- em_igp_cable_length_30 = 30,
- em_igp_cable_length_40 = 40,
- em_igp_cable_length_50 = 50,
- em_igp_cable_length_60 = 60,
- em_igp_cable_length_70 = 70,
- em_igp_cable_length_80 = 80,
- em_igp_cable_length_90 = 90,
- em_igp_cable_length_100 = 100,
- em_igp_cable_length_110 = 110,
- em_igp_cable_length_115 = 115,
- em_igp_cable_length_120 = 120,
- em_igp_cable_length_130 = 130,
- em_igp_cable_length_140 = 140,
- em_igp_cable_length_150 = 150,
- em_igp_cable_length_160 = 160,
- em_igp_cable_length_170 = 170,
- em_igp_cable_length_180 = 180
-} em_igp_cable_length;
-
-typedef enum {
- em_10bt_ext_dist_enable_normal = 0,
- em_10bt_ext_dist_enable_lower,
- em_10bt_ext_dist_enable_undefined = 0xFF
-} em_10bt_ext_dist_enable;
-
-typedef enum {
- em_rev_polarity_normal = 0,
- em_rev_polarity_reversed,
- em_rev_polarity_undefined = 0xFF
-} em_rev_polarity;
-
-typedef enum {
- em_downshift_normal = 0,
- em_downshift_activated,
- em_downshift_undefined = 0xFF
-} em_downshift;
-
-typedef enum {
- em_smart_speed_default = 0,
- em_smart_speed_on,
- em_smart_speed_off
-} em_smart_speed;
-
-typedef enum {
- em_polarity_reversal_enabled = 0,
- em_polarity_reversal_disabled,
- em_polarity_reversal_undefined = 0xFF
-} em_polarity_reversal;
-
-typedef enum {
- em_auto_x_mode_manual_mdi = 0,
- em_auto_x_mode_manual_mdix,
- em_auto_x_mode_auto1,
- em_auto_x_mode_auto2,
- em_auto_x_mode_undefined = 0xFF
-} em_auto_x_mode;
-
-typedef enum {
- em_1000t_rx_status_not_ok = 0,
- em_1000t_rx_status_ok,
- em_1000t_rx_status_undefined = 0xFF
-} em_1000t_rx_status;
-
-typedef enum {
- em_phy_m88 = 0,
- em_phy_igp,
- em_phy_igp_2,
- em_phy_gg82563,
- em_phy_igp_3,
- em_phy_ife,
- em_phy_undefined = 0xFF
-} em_phy_type;
-
-typedef enum {
- em_ms_hw_default = 0,
- em_ms_force_master,
- em_ms_force_slave,
- em_ms_auto
-} em_ms_type;
-
-typedef enum {
- em_ffe_config_enabled = 0,
- em_ffe_config_active,
- em_ffe_config_blocked
-} em_ffe_config;
-
-typedef enum {
- em_dsp_config_disabled = 0,
- em_dsp_config_enabled,
- em_dsp_config_activated,
- em_dsp_config_undefined = 0xFF
-} em_dsp_config;
-
-struct em_phy_info {
- em_cable_length cable_length;
- em_10bt_ext_dist_enable extended_10bt_distance;
- em_rev_polarity cable_polarity;
- em_downshift downshift;
- em_polarity_reversal polarity_correction;
- em_auto_x_mode mdix_mode;
- em_1000t_rx_status local_rx;
- em_1000t_rx_status remote_rx;
-};
-
-struct em_phy_stats {
- uint32_t idle_errors;
- uint32_t receive_errors;
-};
-
-struct em_eeprom_info {
- em_eeprom_type type;
- uint16_t word_size;
- uint16_t opcode_bits;
- uint16_t address_bits;
- uint16_t delay_usec;
- uint16_t page_size;
- boolean_t use_eerd;
- boolean_t use_eewr;
-};
-
-/* Flex ASF Information */
-#define E1000_HOST_IF_MAX_SIZE 2048
-
-typedef enum {
- em_byte_align = 0,
- em_word_align = 1,
- em_dword_align = 2
-} em_align_type;
-
-
-
-/* Error Codes */
-#define E1000_SUCCESS 0
-#define E1000_ERR_EEPROM 1
-#define E1000_ERR_PHY 2
-#define E1000_ERR_CONFIG 3
-#define E1000_ERR_PARAM 4
-#define E1000_ERR_MAC_TYPE 5
-#define E1000_ERR_PHY_TYPE 6
-#define E1000_ERR_RESET 9
-#define E1000_ERR_MASTER_REQUESTS_PENDING 10
-#define E1000_ERR_HOST_INTERFACE_COMMAND 11
-#define E1000_BLK_PHY_RESET 12
-#define E1000_ERR_SWFW_SYNC 13
-
-/* Function prototypes */
-/* Initialization */
-int32_t em_reset_hw(struct em_hw *hw);
-int32_t em_init_hw(struct em_hw *hw);
-int32_t em_id_led_init(struct em_hw * hw);
-int32_t em_set_mac_type(struct em_hw *hw);
-void em_set_media_type(struct em_hw *hw);
-
-/* Link Configuration */
-int32_t em_setup_link(struct em_hw *hw);
-int32_t em_phy_setup_autoneg(struct em_hw *hw);
-void em_config_collision_dist(struct em_hw *hw);
-int32_t em_config_fc_after_link_up(struct em_hw *hw);
-int32_t em_check_for_link(struct em_hw *hw);
-int32_t em_get_speed_and_duplex(struct em_hw *hw, uint16_t * speed, uint16_t * duplex);
-int32_t em_wait_autoneg(struct em_hw *hw);
-int32_t em_force_mac_fc(struct em_hw *hw);
-
-/* PHY */
-int32_t em_read_phy_reg(struct em_hw *hw, uint32_t reg_addr, uint16_t *phy_data);
-int32_t em_write_phy_reg(struct em_hw *hw, uint32_t reg_addr, uint16_t data);
-int32_t em_phy_hw_reset(struct em_hw *hw);
-int32_t em_phy_reset(struct em_hw *hw);
-void em_phy_powerdown_workaround(struct em_hw *hw);
-int32_t em_kumeran_lock_loss_workaround(struct em_hw *hw);
-int32_t em_duplex_reversal(struct em_hw *hw);
-int32_t em_init_lcd_from_nvm_config_region(struct em_hw *hw, uint32_t cnf_base_addr, uint32_t cnf_size);
-int32_t em_init_lcd_from_nvm(struct em_hw *hw);
-int32_t em_detect_gig_phy(struct em_hw *hw);
-int32_t em_phy_get_info(struct em_hw *hw, struct em_phy_info *phy_info);
-int32_t em_phy_m88_get_info(struct em_hw *hw, struct em_phy_info *phy_info);
-int32_t em_phy_igp_get_info(struct em_hw *hw, struct em_phy_info *phy_info);
-int32_t em_get_cable_length(struct em_hw *hw, uint16_t *min_length, uint16_t *max_length);
-int32_t em_check_polarity(struct em_hw *hw, uint16_t *polarity);
-int32_t em_check_downshift(struct em_hw *hw);
-int32_t em_validate_mdi_setting(struct em_hw *hw);
-int32_t em_read_kmrn_reg(struct em_hw *hw, uint32_t reg_addr, uint16_t *data);
-int32_t em_write_kmrn_reg(struct em_hw *hw, uint32_t reg_addr, uint16_t data);
-
-/* EEPROM Functions */
-int32_t em_init_eeprom_params(struct em_hw *hw);
-boolean_t em_is_onboard_nvm_eeprom(struct em_hw *hw);
-int32_t em_read_eeprom_eerd(struct em_hw *hw, uint16_t offset, uint16_t words, uint16_t *data);
-int32_t em_write_eeprom_eewr(struct em_hw *hw, uint16_t offset, uint16_t words, uint16_t *data);
-int32_t em_poll_eerd_eewr_done(struct em_hw *hw, int eerd);
-
-/* MNG HOST IF functions */
-uint32_t em_enable_mng_pass_thru(struct em_hw *hw);
-
-#define E1000_MNG_DHCP_TX_PAYLOAD_CMD 64
-#define E1000_HI_MAX_MNG_DATA_LENGTH 0x6F8 /* Host Interface data length */
-
-#define E1000_MNG_DHCP_COMMAND_TIMEOUT 10 /* Time in ms to process MNG command */
-#define E1000_MNG_DHCP_COOKIE_OFFSET 0x6F0 /* Cookie offset */
-#define E1000_MNG_DHCP_COOKIE_LENGTH 0x10 /* Cookie length */
-#define E1000_MNG_IAMT_MODE 0x3
-#define E1000_MNG_ICH_IAMT_MODE 0x2
-#define E1000_IAMT_SIGNATURE 0x544D4149 /* Intel(R) Active Management Technology signature */
-
-#define E1000_MNG_DHCP_COOKIE_STATUS_PARSING_SUPPORT 0x1 /* DHCP parsing enabled */
-#define E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT 0x2 /* DHCP parsing enabled */
-#define E1000_VFTA_ENTRY_SHIFT 0x5
-#define E1000_VFTA_ENTRY_MASK 0x7F
-#define E1000_VFTA_ENTRY_BIT_SHIFT_MASK 0x1F
-
-struct em_host_mng_command_header {
- uint8_t command_id;
- uint8_t checksum;
- uint16_t reserved1;
- uint16_t reserved2;
- uint16_t command_length;
-};
-
-struct em_host_mng_command_info {
- struct em_host_mng_command_header command_header; /* Command Head/Command Result Head has 4 bytes */
- uint8_t command_data[E1000_HI_MAX_MNG_DATA_LENGTH]; /* Command data can length 0..0x658*/
-};
-struct em_host_mng_dhcp_cookie{
- uint32_t signature;
- uint8_t status;
- uint8_t reserved0;
- uint16_t vlan_id;
- uint32_t reserved1;
- uint16_t reserved2;
- uint8_t reserved3;
- uint8_t checksum;
-};
-
-int32_t em_mng_write_dhcp_info(struct em_hw *hw, uint8_t *buffer,
- uint16_t length);
-boolean_t em_check_mng_mode(struct em_hw *hw);
-boolean_t em_enable_tx_pkt_filtering(struct em_hw *hw);
-int32_t em_mng_enable_host_if(struct em_hw *hw);
-int32_t em_mng_host_if_write(struct em_hw *hw, uint8_t *buffer,
- uint16_t length, uint16_t offset, uint8_t *sum);
-int32_t em_mng_write_cmd_header(struct em_hw* hw,
- struct em_host_mng_command_header* hdr);
-
-int32_t em_mng_write_commit(struct em_hw *hw);
-
-int32_t em_read_eeprom(struct em_hw *hw, uint16_t reg, uint16_t words, uint16_t *data);
-int32_t em_validate_eeprom_checksum(struct em_hw *hw);
-int32_t em_update_eeprom_checksum(struct em_hw *hw);
-int32_t em_write_eeprom(struct em_hw *hw, uint16_t reg, uint16_t words, uint16_t *data);
-int32_t em_read_part_num(struct em_hw *hw, uint32_t * part_num);
-int32_t em_read_mac_addr(struct em_hw * hw);
-int32_t em_swfw_sync_acquire(struct em_hw *hw, uint16_t mask);
-void em_swfw_sync_release(struct em_hw *hw, uint16_t mask);
-void em_release_software_flag(struct em_hw *hw);
-int32_t em_get_software_flag(struct em_hw *hw);
-
-/* Filters (multicast, vlan, receive) */
-void em_init_rx_addrs(struct em_hw *hw);
-void em_mc_addr_list_update(struct em_hw *hw, uint8_t * mc_addr_list, uint32_t mc_addr_count, uint32_t pad, uint32_t rar_used_count);
-uint32_t em_hash_mc_addr(struct em_hw *hw, uint8_t * mc_addr);
-void em_mta_set(struct em_hw *hw, uint32_t hash_value);
-void em_rar_set(struct em_hw *hw, uint8_t * mc_addr, uint32_t rar_index);
-void em_write_vfta(struct em_hw *hw, uint32_t offset, uint32_t value);
-void em_clear_vfta(struct em_hw *hw);
-
-/* LED functions */
-int32_t em_setup_led(struct em_hw *hw);
-int32_t em_cleanup_led(struct em_hw *hw);
-int32_t em_led_on(struct em_hw *hw);
-int32_t em_led_off(struct em_hw *hw);
-int32_t em_blink_led_start(struct em_hw *hw);
-
-/* Adaptive IFS Functions */
-
-/* Everything else */
-void em_clear_hw_cntrs(struct em_hw *hw);
-void em_reset_adaptive(struct em_hw *hw);
-void em_update_adaptive(struct em_hw *hw);
-void em_tbi_adjust_stats(struct em_hw *hw, struct em_hw_stats *stats, uint32_t frame_len, uint8_t * mac_addr);
-void em_get_bus_info(struct em_hw *hw);
-void em_pci_set_mwi(struct em_hw *hw);
-void em_pci_clear_mwi(struct em_hw *hw);
-void em_read_pci_cfg(struct em_hw *hw, uint32_t reg, uint16_t * value);
-void em_write_pci_cfg(struct em_hw *hw, uint32_t reg, uint16_t * value);
-/* Port I/O is only supported on 82544 and newer */
-uint32_t em_read_reg_io(struct em_hw *hw, uint32_t offset);
-void em_write_reg_io(struct em_hw *hw, uint32_t offset, uint32_t value);
-int32_t em_config_dsp_after_link_change(struct em_hw *hw, boolean_t link_up);
-int32_t em_set_d3_lplu_state(struct em_hw *hw, boolean_t active);
-int32_t em_set_d0_lplu_state(struct em_hw *hw, boolean_t active);
-void em_set_pci_express_master_disable(struct em_hw *hw);
-void em_enable_pciex_master(struct em_hw *hw);
-int32_t em_disable_pciex_master(struct em_hw *hw);
-int32_t em_get_auto_rd_done(struct em_hw *hw);
-int32_t em_get_phy_cfg_done(struct em_hw *hw);
-int32_t em_get_software_semaphore(struct em_hw *hw);
-void em_release_software_semaphore(struct em_hw *hw);
-int32_t em_check_phy_reset_block(struct em_hw *hw);
-int32_t em_get_hw_eeprom_semaphore(struct em_hw *hw);
-void em_put_hw_eeprom_semaphore(struct em_hw *hw);
-int32_t em_commit_shadow_ram(struct em_hw *hw);
-uint8_t em_arc_subsystem_valid(struct em_hw *hw);
-int32_t em_set_pci_ex_no_snoop(struct em_hw *hw, uint32_t no_snoop);
-
-int32_t em_read_ich8_byte(struct em_hw *hw, uint32_t index,
- uint8_t *data);
-int32_t em_verify_write_ich8_byte(struct em_hw *hw, uint32_t index,
- uint8_t byte);
-int32_t em_write_ich8_byte(struct em_hw *hw, uint32_t index,
- uint8_t byte);
-int32_t em_read_ich8_word(struct em_hw *hw, uint32_t index,
- uint16_t *data);
-int32_t em_write_ich8_word(struct em_hw *hw, uint32_t index,
- uint16_t word);
-int32_t em_read_ich8_data(struct em_hw *hw, uint32_t index,
- uint32_t size, uint16_t *data);
-int32_t em_write_ich8_data(struct em_hw *hw, uint32_t index,
- uint32_t size, uint16_t data);
-int32_t em_read_eeprom_ich8(struct em_hw *hw, uint16_t offset,
- uint16_t words, uint16_t *data);
-int32_t em_write_eeprom_ich8(struct em_hw *hw, uint16_t offset,
- uint16_t words, uint16_t *data);
-int32_t em_erase_ich8_4k_segment(struct em_hw *hw, uint32_t segment);
-int32_t em_ich8_cycle_init(struct em_hw *hw);
-int32_t em_ich8_flash_cycle(struct em_hw *hw, uint32_t timeout);
-int32_t em_phy_ife_get_info(struct em_hw *hw,
- struct em_phy_info *phy_info);
-int32_t em_ife_disable_dynamic_power_down(struct em_hw *hw);
-int32_t em_ife_enable_dynamic_power_down(struct em_hw *hw);
-
-#define E1000_BAR_TYPE(v) ((v) & E1000_BAR_TYPE_MASK)
-#define E1000_BAR_TYPE_MASK 0x00000001
-#define E1000_BAR_TYPE_MEM 0x00000000
-#define E1000_BAR_TYPE_IO 0x00000001
-#define E1000_BAR_MEM_TYPE(v) ((v) & E1000_BAR_MEM_TYPE_MASK)
-#define E1000_BAR_MEM_TYPE_MASK 0x00000006
-#define E1000_BAR_MEM_TYPE_32BIT 0x00000000
-#define E1000_BAR_MEM_TYPE_64BIT 0x00000004
-
-#ifndef E1000_READ_REG_IO
-#define E1000_READ_REG_IO(a, reg) \
- em_read_reg_io((a), E1000_##reg)
-#define E1000_WRITE_REG_IO(a, reg, val) \
- em_write_reg_io((a), E1000_##reg, val)
-#endif
-
-/* PCI Device IDs */
-#define E1000_DEV_ID_82542 0x1000
-#define E1000_DEV_ID_82543GC_FIBER 0x1001
-#define E1000_DEV_ID_82543GC_COPPER 0x1004
-#define E1000_DEV_ID_82544EI_COPPER 0x1008
-#define E1000_DEV_ID_82544EI_FIBER 0x1009
-#define E1000_DEV_ID_82544GC_COPPER 0x100C
-#define E1000_DEV_ID_82544GC_LOM 0x100D
-#define E1000_DEV_ID_82540EM 0x100E
-#define E1000_DEV_ID_82540EM_LOM 0x1015
-#define E1000_DEV_ID_82540EP_LOM 0x1016
-#define E1000_DEV_ID_82540EP 0x1017
-#define E1000_DEV_ID_82540EP_LP 0x101E
-#define E1000_DEV_ID_82545EM_COPPER 0x100F
-#define E1000_DEV_ID_82545EM_FIBER 0x1011
-#define E1000_DEV_ID_82545GM_COPPER 0x1026
-#define E1000_DEV_ID_82545GM_FIBER 0x1027
-#define E1000_DEV_ID_82545GM_SERDES 0x1028
-#define E1000_DEV_ID_82546EB_COPPER 0x1010
-#define E1000_DEV_ID_82546EB_FIBER 0x1012
-#define E1000_DEV_ID_82546EB_QUAD_COPPER 0x101D
-#define E1000_DEV_ID_82541EI 0x1013
-#define E1000_DEV_ID_82541EI_MOBILE 0x1018
-#define E1000_DEV_ID_82541ER_LOM 0x1014
-#define E1000_DEV_ID_82541ER 0x1078
-#define E1000_DEV_ID_82547GI 0x1075
-#define E1000_DEV_ID_82541GI 0x1076
-#define E1000_DEV_ID_82541GI_MOBILE 0x1077
-#define E1000_DEV_ID_82541GI_LF 0x107C
-#define E1000_DEV_ID_82546GB_COPPER 0x1079
-#define E1000_DEV_ID_82546GB_FIBER 0x107A
-#define E1000_DEV_ID_82546GB_SERDES 0x107B
-#define E1000_DEV_ID_82546GB_PCIE 0x108A
-#define E1000_DEV_ID_82546GB_QUAD_COPPER 0x1099
-#define E1000_DEV_ID_82547EI 0x1019
-#define E1000_DEV_ID_82547EI_MOBILE 0x101A
-#define E1000_DEV_ID_82571EB_COPPER 0x105E
-#define E1000_DEV_ID_82571EB_FIBER 0x105F
-#define E1000_DEV_ID_82571EB_SERDES 0x1060
-#define E1000_DEV_ID_82571EB_QUAD_COPPER 0x10A4
-#define E1000_DEV_ID_82572EI_COPPER 0x107D
-#define E1000_DEV_ID_82572EI_FIBER 0x107E
-#define E1000_DEV_ID_82572EI_SERDES 0x107F
-#define E1000_DEV_ID_82572EI 0x10B9
-#define E1000_DEV_ID_82573E 0x108B
-#define E1000_DEV_ID_82573E_IAMT 0x108C
-#define E1000_DEV_ID_82573L 0x109A
-#define E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3 0x10B5
-#define E1000_DEV_ID_80003ES2LAN_COPPER_DPT 0x1096
-#define E1000_DEV_ID_80003ES2LAN_SERDES_DPT 0x1098
-#define E1000_DEV_ID_80003ES2LAN_COPPER_SPT 0x10BA
-#define E1000_DEV_ID_80003ES2LAN_SERDES_SPT 0x10BB
-
-#define E1000_DEV_ID_ICH8_IGP_M_AMT 0x1049
-#define E1000_DEV_ID_ICH8_IGP_AMT 0x104A
-#define E1000_DEV_ID_ICH8_IGP_C 0x104B
-#define E1000_DEV_ID_ICH8_IFE 0x104C
-#define E1000_DEV_ID_ICH8_IGP_M 0x104D
-
-
-#define NODE_ADDRESS_SIZE 6
-#define ETH_LENGTH_OF_ADDRESS 6
-
-/* MAC decode size is 128K - This is the size of BAR0 */
-#define MAC_DECODE_SIZE (128 * 1024)
-
-#define E1000_82542_2_0_REV_ID 2
-#define E1000_82542_2_1_REV_ID 3
-#define E1000_REVISION_0 0
-#define E1000_REVISION_1 1
-#define E1000_REVISION_2 2
-#define E1000_REVISION_3 3
-
-#define SPEED_10 10
-#define SPEED_100 100
-#define SPEED_1000 1000
-#define HALF_DUPLEX 1
-#define FULL_DUPLEX 2
-
-/* The sizes (in bytes) of a ethernet packet */
-#define ENET_HEADER_SIZE 14
-#define MAXIMUM_ETHERNET_FRAME_SIZE 1518 /* With FCS */
-#define MINIMUM_ETHERNET_FRAME_SIZE 64 /* With FCS */
-#define ETHERNET_FCS_SIZE 4
-#define MAXIMUM_ETHERNET_PACKET_SIZE \
- (MAXIMUM_ETHERNET_FRAME_SIZE - ETHERNET_FCS_SIZE)
-#define MINIMUM_ETHERNET_PACKET_SIZE \
- (MINIMUM_ETHERNET_FRAME_SIZE - ETHERNET_FCS_SIZE)
-#define CRC_LENGTH ETHERNET_FCS_SIZE
-#define MAX_JUMBO_FRAME_SIZE 0x3F00
-
-
-/* 802.1q VLAN Packet Sizes */
-#define VLAN_TAG_SIZE 4 /* 802.3ac tag (not DMAed) */
-
-/* Ethertype field values */
-#define ETHERNET_IEEE_VLAN_TYPE 0x8100 /* 802.3ac packet */
-#define ETHERNET_IP_TYPE 0x0800 /* IP packets */
-#define ETHERNET_ARP_TYPE 0x0806 /* Address Resolution Protocol (ARP) */
-
-/* Packet Header defines */
-#define IP_PROTOCOL_TCP 6
-#define IP_PROTOCOL_UDP 0x11
-
-/* This defines the bits that are set in the Interrupt Mask
- * Set/Read Register. Each bit is documented below:
- * o RXDMT0 = Receive Descriptor Minimum Threshold hit (ring 0)
- * o RXSEQ = Receive Sequence Error
- */
-#define POLL_IMS_ENABLE_MASK ( \
- E1000_IMS_RXDMT0 | \
- E1000_IMS_RXSEQ)
-
-/* This defines the bits that are set in the Interrupt Mask
- * Set/Read Register. Each bit is documented below:
- * o RXT0 = Receiver Timer Interrupt (ring 0)
- * o TXDW = Transmit Descriptor Written Back
- * o RXDMT0 = Receive Descriptor Minimum Threshold hit (ring 0)
- * o RXSEQ = Receive Sequence Error
- * o LSC = Link Status Change
- */
-#define IMS_ENABLE_MASK ( \
- E1000_IMS_RXT0 | \
- E1000_IMS_TXDW | \
- E1000_IMS_RXDMT0 | \
- E1000_IMS_RXSEQ | \
- E1000_IMS_RXO | \
- E1000_IMS_LSC)
-
-/* Additional interrupts need to be handled for em_ich8lan:
- DSW = The FW changed the status of the DISSW bit in FWSM
- PHYINT = The LAN connected device generates an interrupt
- EPRST = Manageability reset event */
-#define IMS_ICH8LAN_ENABLE_MASK (\
- E1000_IMS_DSW | \
- E1000_IMS_PHYINT | \
- E1000_IMS_EPRST)
-
-/* Number of high/low register pairs in the RAR. The RAR (Receive Address
- * Registers) holds the directed and multicast addresses that we monitor. We
- * reserve one of these spots for our directed address, allowing us room for
- * E1000_RAR_ENTRIES - 1 multicast addresses.
- */
-#define E1000_RAR_ENTRIES 15
-#define E1000_RAR_ENTRIES_ICH8LAN 7
-
-#define MIN_NUMBER_OF_DESCRIPTORS 8
-#define MAX_NUMBER_OF_DESCRIPTORS 0xFFF8
-
-/* Receive Descriptor */
-struct em_rx_desc {
- uint64_t buffer_addr; /* Address of the descriptor's data buffer */
- uint16_t length; /* Length of data DMAed into data buffer */
- uint16_t csum; /* Packet checksum */
- uint8_t status; /* Descriptor status */
- uint8_t errors; /* Descriptor Errors */
- uint16_t special;
-};
-
-/* Receive Descriptor - Extended */
-union em_rx_desc_extended {
- struct {
- uint64_t buffer_addr;
- uint64_t reserved;
- } read;
- struct {
- struct {
- uint32_t mrq; /* Multiple Rx Queues */
- union {
- uint32_t rss; /* RSS Hash */
- struct {
- uint16_t ip_id; /* IP id */
- uint16_t csum; /* Packet Checksum */
- } csum_ip;
- } hi_dword;
- } lower;
- struct {
- uint32_t status_error; /* ext status/error */
- uint16_t length;
- uint16_t vlan; /* VLAN tag */
- } upper;
- } wb; /* writeback */
-};
-
-#define MAX_PS_BUFFERS 4
-/* Receive Descriptor - Packet Split */
-union em_rx_desc_packet_split {
- struct {
- /* one buffer for protocol header(s), three data buffers */
- uint64_t buffer_addr[MAX_PS_BUFFERS];
- } read;
- struct {
- struct {
- uint32_t mrq; /* Multiple Rx Queues */
- union {
- uint32_t rss; /* RSS Hash */
- struct {
- uint16_t ip_id; /* IP id */
- uint16_t csum; /* Packet Checksum */
- } csum_ip;
- } hi_dword;
- } lower;
- struct {
- uint32_t status_error; /* ext status/error */
- uint16_t length0; /* length of buffer 0 */
- uint16_t vlan; /* VLAN tag */
- } middle;
- struct {
- uint16_t header_status;
- uint16_t length[3]; /* length of buffers 1-3 */
- } upper;
- uint64_t reserved;
- } wb; /* writeback */
-};
-
-/* Receive Decriptor bit definitions */
-#define E1000_RXD_STAT_DD 0x01 /* Descriptor Done */
-#define E1000_RXD_STAT_EOP 0x02 /* End of Packet */
-#define E1000_RXD_STAT_IXSM 0x04 /* Ignore checksum */
-#define E1000_RXD_STAT_VP 0x08 /* IEEE VLAN Packet */
-#define E1000_RXD_STAT_UDPCS 0x10 /* UDP xsum caculated */
-#define E1000_RXD_STAT_TCPCS 0x20 /* TCP xsum calculated */
-#define E1000_RXD_STAT_IPCS 0x40 /* IP xsum calculated */
-#define E1000_RXD_STAT_PIF 0x80 /* passed in-exact filter */
-#define E1000_RXD_STAT_IPIDV 0x200 /* IP identification valid */
-#define E1000_RXD_STAT_UDPV 0x400 /* Valid UDP checksum */
-#define E1000_RXD_STAT_ACK 0x8000 /* ACK Packet indication */
-#define E1000_RXD_ERR_CE 0x01 /* CRC Error */
-#define E1000_RXD_ERR_SE 0x02 /* Symbol Error */
-#define E1000_RXD_ERR_SEQ 0x04 /* Sequence Error */
-#define E1000_RXD_ERR_CXE 0x10 /* Carrier Extension Error */
-#define E1000_RXD_ERR_TCPE 0x20 /* TCP/UDP Checksum Error */
-#define E1000_RXD_ERR_IPE 0x40 /* IP Checksum Error */
-#define E1000_RXD_ERR_RXE 0x80 /* Rx Data Error */
-#define E1000_RXD_SPC_VLAN_MASK 0x0FFF /* VLAN ID is in lower 12 bits */
-#define E1000_RXD_SPC_PRI_MASK 0xE000 /* Priority is in upper 3 bits */
-#define E1000_RXD_SPC_PRI_SHIFT 13
-#define E1000_RXD_SPC_CFI_MASK 0x1000 /* CFI is bit 12 */
-#define E1000_RXD_SPC_CFI_SHIFT 12
-
-#define E1000_RXDEXT_STATERR_CE 0x01000000
-#define E1000_RXDEXT_STATERR_SE 0x02000000
-#define E1000_RXDEXT_STATERR_SEQ 0x04000000
-#define E1000_RXDEXT_STATERR_CXE 0x10000000
-#define E1000_RXDEXT_STATERR_TCPE 0x20000000
-#define E1000_RXDEXT_STATERR_IPE 0x40000000
-#define E1000_RXDEXT_STATERR_RXE 0x80000000
-
-#define E1000_RXDPS_HDRSTAT_HDRSP 0x00008000
-#define E1000_RXDPS_HDRSTAT_HDRLEN_MASK 0x000003FF
-
-/* mask to determine if packets should be dropped due to frame errors */
-#define E1000_RXD_ERR_FRAME_ERR_MASK ( \
- E1000_RXD_ERR_CE | \
- E1000_RXD_ERR_SE | \
- E1000_RXD_ERR_SEQ | \
- E1000_RXD_ERR_CXE | \
- E1000_RXD_ERR_RXE)
-
-
-/* Same mask, but for extended and packet split descriptors */
-#define E1000_RXDEXT_ERR_FRAME_ERR_MASK ( \
- E1000_RXDEXT_STATERR_CE | \
- E1000_RXDEXT_STATERR_SE | \
- E1000_RXDEXT_STATERR_SEQ | \
- E1000_RXDEXT_STATERR_CXE | \
- E1000_RXDEXT_STATERR_RXE)
-
-/* Transmit Descriptor */
-struct em_tx_desc {
- uint64_t buffer_addr; /* Address of the descriptor's data buffer */
- union {
- uint32_t data;
- struct {
- uint16_t length; /* Data buffer length */
- uint8_t cso; /* Checksum offset */
- uint8_t cmd; /* Descriptor control */
- } flags;
- } lower;
- union {
- uint32_t data;
- struct {
- uint8_t status; /* Descriptor status */
- uint8_t css; /* Checksum start */
- uint16_t special;
- } fields;
- } upper;
-};
-
-/* Transmit Descriptor bit definitions */
-#define E1000_TXD_DTYP_D 0x00100000 /* Data Descriptor */
-#define E1000_TXD_DTYP_C 0x00000000 /* Context Descriptor */
-#define E1000_TXD_POPTS_IXSM 0x01 /* Insert IP checksum */
-#define E1000_TXD_POPTS_TXSM 0x02 /* Insert TCP/UDP checksum */
-#define E1000_TXD_CMD_EOP 0x01000000 /* End of Packet */
-#define E1000_TXD_CMD_IFCS 0x02000000 /* Insert FCS (Ethernet CRC) */
-#define E1000_TXD_CMD_IC 0x04000000 /* Insert Checksum */
-#define E1000_TXD_CMD_RS 0x08000000 /* Report Status */
-#define E1000_TXD_CMD_RPS 0x10000000 /* Report Packet Sent */
-#define E1000_TXD_CMD_DEXT 0x20000000 /* Descriptor extension (0 = legacy) */
-#define E1000_TXD_CMD_VLE 0x40000000 /* Add VLAN tag */
-#define E1000_TXD_CMD_IDE 0x80000000 /* Enable Tidv register */
-#define E1000_TXD_STAT_DD 0x00000001 /* Descriptor Done */
-#define E1000_TXD_STAT_EC 0x00000002 /* Excess Collisions */
-#define E1000_TXD_STAT_LC 0x00000004 /* Late Collisions */
-#define E1000_TXD_STAT_TU 0x00000008 /* Transmit underrun */
-#define E1000_TXD_CMD_TCP 0x01000000 /* TCP packet */
-#define E1000_TXD_CMD_IP 0x02000000 /* IP packet */
-#define E1000_TXD_CMD_TSE 0x04000000 /* TCP Seg enable */
-#define E1000_TXD_STAT_TC 0x00000004 /* Tx Underrun */
-
-/* Offload Context Descriptor */
-struct em_context_desc {
- union {
- uint32_t ip_config;
- struct {
- uint8_t ipcss; /* IP checksum start */
- uint8_t ipcso; /* IP checksum offset */
- uint16_t ipcse; /* IP checksum end */
- } ip_fields;
- } lower_setup;
- union {
- uint32_t tcp_config;
- struct {
- uint8_t tucss; /* TCP checksum start */
- uint8_t tucso; /* TCP checksum offset */
- uint16_t tucse; /* TCP checksum end */
- } tcp_fields;
- } upper_setup;
- uint32_t cmd_and_length; /* */
- union {
- uint32_t data;
- struct {
- uint8_t status; /* Descriptor status */
- uint8_t hdr_len; /* Header length */
- uint16_t mss; /* Maximum segment size */
- } fields;
- } tcp_seg_setup;
-};
-
-/* Offload data descriptor */
-struct em_data_desc {
- uint64_t buffer_addr; /* Address of the descriptor's buffer address */
- union {
- uint32_t data;
- struct {
- uint16_t length; /* Data buffer length */
- uint8_t typ_len_ext; /* */
- uint8_t cmd; /* */
- } flags;
- } lower;
- union {
- uint32_t data;
- struct {
- uint8_t status; /* Descriptor status */
- uint8_t popts; /* Packet Options */
- uint16_t special; /* */
- } fields;
- } upper;
-};
-
-/* Filters */
-#define E1000_NUM_UNICAST 16 /* Unicast filter entries */
-#define E1000_MC_TBL_SIZE 128 /* Multicast Filter Table (4096 bits) */
-#define E1000_VLAN_FILTER_TBL_SIZE 128 /* VLAN Filter Table (4096 bits) */
-
-#define E1000_NUM_UNICAST_ICH8LAN 7
-#define E1000_MC_TBL_SIZE_ICH8LAN 32
-
-
-/* Receive Address Register */
-struct em_rar {
- volatile uint32_t low; /* receive address low */
- volatile uint32_t high; /* receive address high */
-};
-
-/* Number of entries in the Multicast Table Array (MTA). */
-#define E1000_NUM_MTA_REGISTERS 128
-#define E1000_NUM_MTA_REGISTERS_ICH8LAN 32
-
-/* IPv4 Address Table Entry */
-struct em_ipv4_at_entry {
- volatile uint32_t ipv4_addr; /* IP Address (RW) */
- volatile uint32_t reserved;
-};
-
-/* Four wakeup IP addresses are supported */
-#define E1000_WAKEUP_IP_ADDRESS_COUNT_MAX 4
-#define E1000_IP4AT_SIZE E1000_WAKEUP_IP_ADDRESS_COUNT_MAX
-#define E1000_IP4AT_SIZE_ICH8LAN 3
-#define E1000_IP6AT_SIZE 1
-
-/* IPv6 Address Table Entry */
-struct em_ipv6_at_entry {
- volatile uint8_t ipv6_addr[16];
-};
-
-/* Flexible Filter Length Table Entry */
-struct em_fflt_entry {
- volatile uint32_t length; /* Flexible Filter Length (RW) */
- volatile uint32_t reserved;
-};
-
-/* Flexible Filter Mask Table Entry */
-struct em_ffmt_entry {
- volatile uint32_t mask; /* Flexible Filter Mask (RW) */
- volatile uint32_t reserved;
-};
-
-/* Flexible Filter Value Table Entry */
-struct em_ffvt_entry {
- volatile uint32_t value; /* Flexible Filter Value (RW) */
- volatile uint32_t reserved;
-};
-
-/* Four Flexible Filters are supported */
-#define E1000_FLEXIBLE_FILTER_COUNT_MAX 4
-
-/* Each Flexible Filter is at most 128 (0x80) bytes in length */
-#define E1000_FLEXIBLE_FILTER_SIZE_MAX 128
-
-#define E1000_FFLT_SIZE E1000_FLEXIBLE_FILTER_COUNT_MAX
-#define E1000_FFMT_SIZE E1000_FLEXIBLE_FILTER_SIZE_MAX
-#define E1000_FFVT_SIZE E1000_FLEXIBLE_FILTER_SIZE_MAX
-
-#define E1000_DISABLE_SERDES_LOOPBACK 0x0400
-
-/* Register Set. (82543, 82544)
- *
- * Registers are defined to be 32 bits and should be accessed as 32 bit values.
- * These registers are physically located on the NIC, but are mapped into the
- * host memory address space.
- *
- * RW - register is both readable and writable
- * RO - register is read only
- * WO - register is write only
- * R/clr - register is read only and is cleared when read
- * A - register array
- */
-#define E1000_CTRL 0x00000 /* Device Control - RW */
-#define E1000_CTRL_DUP 0x00004 /* Device Control Duplicate (Shadow) - RW */
-#define E1000_STATUS 0x00008 /* Device Status - RO */
-#define E1000_EECD 0x00010 /* EEPROM/Flash Control - RW */
-#define E1000_EERD 0x00014 /* EEPROM Read - RW */
-#define E1000_CTRL_EXT 0x00018 /* Extended Device Control - RW */
-#define E1000_FLA 0x0001C /* Flash Access - RW */
-#define E1000_MDIC 0x00020 /* MDI Control - RW */
-#define E1000_SCTL 0x00024 /* SerDes Control - RW */
-#define E1000_FEXTNVM 0x00028 /* Future Extended NVM register */
-#define E1000_FCAL 0x00028 /* Flow Control Address Low - RW */
-#define E1000_FCAH 0x0002C /* Flow Control Address High -RW */
-#define E1000_FCT 0x00030 /* Flow Control Type - RW */
-#define E1000_VET 0x00038 /* VLAN Ether Type - RW */
-#define E1000_ICR 0x000C0 /* Interrupt Cause Read - R/clr */
-#define E1000_ITR 0x000C4 /* Interrupt Throttling Rate - RW */
-#define E1000_ICS 0x000C8 /* Interrupt Cause Set - WO */
-#define E1000_IMS 0x000D0 /* Interrupt Mask Set - RW */
-#define E1000_IMC 0x000D8 /* Interrupt Mask Clear - WO */
-#define E1000_IAM 0x000E0 /* Interrupt Acknowledge Auto Mask */
-#define E1000_RCTL 0x00100 /* RX Control - RW */
-#define E1000_RDTR1 0x02820 /* RX Delay Timer (1) - RW */
-#define E1000_RDBAL1 0x02900 /* RX Descriptor Base Address Low (1) - RW */
-#define E1000_RDBAH1 0x02904 /* RX Descriptor Base Address High (1) - RW */
-#define E1000_RDLEN1 0x02908 /* RX Descriptor Length (1) - RW */
-#define E1000_RDH1 0x02910 /* RX Descriptor Head (1) - RW */
-#define E1000_RDT1 0x02918 /* RX Descriptor Tail (1) - RW */
-#define E1000_FCTTV 0x00170 /* Flow Control Transmit Timer Value - RW */
-#define E1000_TXCW 0x00178 /* TX Configuration Word - RW */
-#define E1000_RXCW 0x00180 /* RX Configuration Word - RO */
-#define E1000_TCTL 0x00400 /* TX Control - RW */
-#define E1000_TCTL_EXT 0x00404 /* Extended TX Control - RW */
-#define E1000_TIPG 0x00410 /* TX Inter-packet gap -RW */
-#define E1000_TBT 0x00448 /* TX Burst Timer - RW */
-#define E1000_AIT 0x00458 /* Adaptive Interframe Spacing Throttle - RW */
-#define E1000_LEDCTL 0x00E00 /* LED Control - RW */
-#define E1000_EXTCNF_CTRL 0x00F00 /* Extended Configuration Control */
-#define E1000_EXTCNF_SIZE 0x00F08 /* Extended Configuration Size */
-#define E1000_PHY_CTRL 0x00F10 /* PHY Control Register in CSR */
-#define FEXTNVM_SW_CONFIG 0x0001
-#define E1000_PBA 0x01000 /* Packet Buffer Allocation - RW */
-#define E1000_PBS 0x01008 /* Packet Buffer Size */
-#define E1000_EEMNGCTL 0x01010 /* MNG EEprom Control */
-#define E1000_FLASH_UPDATES 1000
-#define E1000_EEARBC 0x01024 /* EEPROM Auto Read Bus Control */
-#define E1000_FLASHT 0x01028 /* FLASH Timer Register */
-#define E1000_EEWR 0x0102C /* EEPROM Write Register - RW */
-#define E1000_FLSWCTL 0x01030 /* FLASH control register */
-#define E1000_FLSWDATA 0x01034 /* FLASH data register */
-#define E1000_FLSWCNT 0x01038 /* FLASH Access Counter */
-#define E1000_FLOP 0x0103C /* FLASH Opcode Register */
-#define E1000_ERT 0x02008 /* Early Rx Threshold - RW */
-#define E1000_FCRTL 0x02160 /* Flow Control Receive Threshold Low - RW */
-#define E1000_FCRTH 0x02168 /* Flow Control Receive Threshold High - RW */
-#define E1000_PSRCTL 0x02170 /* Packet Split Receive Control - RW */
-#define E1000_RDBAL 0x02800 /* RX Descriptor Base Address Low - RW */
-#define E1000_RDBAH 0x02804 /* RX Descriptor Base Address High - RW */
-#define E1000_RDLEN 0x02808 /* RX Descriptor Length - RW */
-#define E1000_RDH 0x02810 /* RX Descriptor Head - RW */
-#define E1000_RDT 0x02818 /* RX Descriptor Tail - RW */
-#define E1000_RDTR 0x02820 /* RX Delay Timer - RW */
-#define E1000_RDBAL0 E1000_RDBAL /* RX Desc Base Address Low (0) - RW */
-#define E1000_RDBAH0 E1000_RDBAH /* RX Desc Base Address High (0) - RW */
-#define E1000_RDLEN0 E1000_RDLEN /* RX Desc Length (0) - RW */
-#define E1000_RDH0 E1000_RDH /* RX Desc Head (0) - RW */
-#define E1000_RDT0 E1000_RDT /* RX Desc Tail (0) - RW */
-#define E1000_RDTR0 E1000_RDTR /* RX Delay Timer (0) - RW */
-#define E1000_RXDCTL 0x02828 /* RX Descriptor Control queue 0 - RW */
-#define E1000_RXDCTL1 0x02928 /* RX Descriptor Control queue 1 - RW */
-#define E1000_RADV 0x0282C /* RX Interrupt Absolute Delay Timer - RW */
-#define E1000_RSRPD 0x02C00 /* RX Small Packet Detect - RW */
-#define E1000_RAID 0x02C08 /* Receive Ack Interrupt Delay - RW */
-#define E1000_TXDMAC 0x03000 /* TX DMA Control - RW */
-#define E1000_KABGTXD 0x03004 /* AFE Band Gap Transmit Ref Data */
-#define E1000_TDFH 0x03410 /* TX Data FIFO Head - RW */
-#define E1000_TDFT 0x03418 /* TX Data FIFO Tail - RW */
-#define E1000_TDFHS 0x03420 /* TX Data FIFO Head Saved - RW */
-#define E1000_TDFTS 0x03428 /* TX Data FIFO Tail Saved - RW */
-#define E1000_TDFPC 0x03430 /* TX Data FIFO Packet Count - RW */
-#define E1000_TDBAL 0x03800 /* TX Descriptor Base Address Low - RW */
-#define E1000_TDBAH 0x03804 /* TX Descriptor Base Address High - RW */
-#define E1000_TDLEN 0x03808 /* TX Descriptor Length - RW */
-#define E1000_TDH 0x03810 /* TX Descriptor Head - RW */
-#define E1000_TDT 0x03818 /* TX Descripotr Tail - RW */
-#define E1000_TIDV 0x03820 /* TX Interrupt Delay Value - RW */
-#define E1000_TXDCTL 0x03828 /* TX Descriptor Control - RW */
-#define E1000_TADV 0x0382C /* TX Interrupt Absolute Delay Val - RW */
-#define E1000_TSPMT 0x03830 /* TCP Segmentation PAD & Min Threshold - RW */
-#define E1000_TARC0 0x03840 /* TX Arbitration Count (0) */
-#define E1000_TDBAL1 0x03900 /* TX Desc Base Address Low (1) - RW */
-#define E1000_TDBAH1 0x03904 /* TX Desc Base Address High (1) - RW */
-#define E1000_TDLEN1 0x03908 /* TX Desc Length (1) - RW */
-#define E1000_TDH1 0x03910 /* TX Desc Head (1) - RW */
-#define E1000_TDT1 0x03918 /* TX Desc Tail (1) - RW */
-#define E1000_TXDCTL1 0x03928 /* TX Descriptor Control (1) - RW */
-#define E1000_TARC1 0x03940 /* TX Arbitration Count (1) */
-#define E1000_CRCERRS 0x04000 /* CRC Error Count - R/clr */
-#define E1000_ALGNERRC 0x04004 /* Alignment Error Count - R/clr */
-#define E1000_SYMERRS 0x04008 /* Symbol Error Count - R/clr */
-#define E1000_RXERRC 0x0400C /* Receive Error Count - R/clr */
-#define E1000_MPC 0x04010 /* Missed Packet Count - R/clr */
-#define E1000_SCC 0x04014 /* Single Collision Count - R/clr */
-#define E1000_ECOL 0x04018 /* Excessive Collision Count - R/clr */
-#define E1000_MCC 0x0401C /* Multiple Collision Count - R/clr */
-#define E1000_LATECOL 0x04020 /* Late Collision Count - R/clr */
-#define E1000_COLC 0x04028 /* Collision Count - R/clr */
-#define E1000_DC 0x04030 /* Defer Count - R/clr */
-#define E1000_TNCRS 0x04034 /* TX-No CRS - R/clr */
-#define E1000_SEC 0x04038 /* Sequence Error Count - R/clr */
-#define E1000_CEXTERR 0x0403C /* Carrier Extension Error Count - R/clr */
-#define E1000_RLEC 0x04040 /* Receive Length Error Count - R/clr */
-#define E1000_XONRXC 0x04048 /* XON RX Count - R/clr */
-#define E1000_XONTXC 0x0404C /* XON TX Count - R/clr */
-#define E1000_XOFFRXC 0x04050 /* XOFF RX Count - R/clr */
-#define E1000_XOFFTXC 0x04054 /* XOFF TX Count - R/clr */
-#define E1000_FCRUC 0x04058 /* Flow Control RX Unsupported Count- R/clr */
-#define E1000_PRC64 0x0405C /* Packets RX (64 bytes) - R/clr */
-#define E1000_PRC127 0x04060 /* Packets RX (65-127 bytes) - R/clr */
-#define E1000_PRC255 0x04064 /* Packets RX (128-255 bytes) - R/clr */
-#define E1000_PRC511 0x04068 /* Packets RX (255-511 bytes) - R/clr */
-#define E1000_PRC1023 0x0406C /* Packets RX (512-1023 bytes) - R/clr */
-#define E1000_PRC1522 0x04070 /* Packets RX (1024-1522 bytes) - R/clr */
-#define E1000_GPRC 0x04074 /* Good Packets RX Count - R/clr */
-#define E1000_BPRC 0x04078 /* Broadcast Packets RX Count - R/clr */
-#define E1000_MPRC 0x0407C /* Multicast Packets RX Count - R/clr */
-#define E1000_GPTC 0x04080 /* Good Packets TX Count - R/clr */
-#define E1000_GORCL 0x04088 /* Good Octets RX Count Low - R/clr */
-#define E1000_GORCH 0x0408C /* Good Octets RX Count High - R/clr */
-#define E1000_GOTCL 0x04090 /* Good Octets TX Count Low - R/clr */
-#define E1000_GOTCH 0x04094 /* Good Octets TX Count High - R/clr */
-#define E1000_RNBC 0x040A0 /* RX No Buffers Count - R/clr */
-#define E1000_RUC 0x040A4 /* RX Undersize Count - R/clr */
-#define E1000_RFC 0x040A8 /* RX Fragment Count - R/clr */
-#define E1000_ROC 0x040AC /* RX Oversize Count - R/clr */
-#define E1000_RJC 0x040B0 /* RX Jabber Count - R/clr */
-#define E1000_MGTPRC 0x040B4 /* Management Packets RX Count - R/clr */
-#define E1000_MGTPDC 0x040B8 /* Management Packets Dropped Count - R/clr */
-#define E1000_MGTPTC 0x040BC /* Management Packets TX Count - R/clr */
-#define E1000_TORL 0x040C0 /* Total Octets RX Low - R/clr */
-#define E1000_TORH 0x040C4 /* Total Octets RX High - R/clr */
-#define E1000_TOTL 0x040C8 /* Total Octets TX Low - R/clr */
-#define E1000_TOTH 0x040CC /* Total Octets TX High - R/clr */
-#define E1000_TPR 0x040D0 /* Total Packets RX - R/clr */
-#define E1000_TPT 0x040D4 /* Total Packets TX - R/clr */
-#define E1000_PTC64 0x040D8 /* Packets TX (64 bytes) - R/clr */
-#define E1000_PTC127 0x040DC /* Packets TX (65-127 bytes) - R/clr */
-#define E1000_PTC255 0x040E0 /* Packets TX (128-255 bytes) - R/clr */
-#define E1000_PTC511 0x040E4 /* Packets TX (256-511 bytes) - R/clr */
-#define E1000_PTC1023 0x040E8 /* Packets TX (512-1023 bytes) - R/clr */
-#define E1000_PTC1522 0x040EC /* Packets TX (1024-1522 Bytes) - R/clr */
-#define E1000_MPTC 0x040F0 /* Multicast Packets TX Count - R/clr */
-#define E1000_BPTC 0x040F4 /* Broadcast Packets TX Count - R/clr */
-#define E1000_TSCTC 0x040F8 /* TCP Segmentation Context TX - R/clr */
-#define E1000_TSCTFC 0x040FC /* TCP Segmentation Context TX Fail - R/clr */
-#define E1000_IAC 0x04100 /* Interrupt Assertion Count */
-#define E1000_ICRXPTC 0x04104 /* Interrupt Cause Rx Packet Timer Expire Count */
-#define E1000_ICRXATC 0x04108 /* Interrupt Cause Rx Absolute Timer Expire Count */
-#define E1000_ICTXPTC 0x0410C /* Interrupt Cause Tx Packet Timer Expire Count */
-#define E1000_ICTXATC 0x04110 /* Interrupt Cause Tx Absolute Timer Expire Count */
-#define E1000_ICTXQEC 0x04118 /* Interrupt Cause Tx Queue Empty Count */
-#define E1000_ICTXQMTC 0x0411C /* Interrupt Cause Tx Queue Minimum Threshold Count */
-#define E1000_ICRXDMTC 0x04120 /* Interrupt Cause Rx Descriptor Minimum Threshold Count */
-#define E1000_ICRXOC 0x04124 /* Interrupt Cause Receiver Overrun Count */
-#define E1000_RXCSUM 0x05000 /* RX Checksum Control - RW */
-#define E1000_RFCTL 0x05008 /* Receive Filter Control*/
-#define E1000_MTA 0x05200 /* Multicast Table Array - RW Array */
-#define E1000_RA 0x05400 /* Receive Address - RW Array */
-#define E1000_VFTA 0x05600 /* VLAN Filter Table Array - RW Array */
-#define E1000_WUC 0x05800 /* Wakeup Control - RW */
-#define E1000_WUFC 0x05808 /* Wakeup Filter Control - RW */
-#define E1000_WUS 0x05810 /* Wakeup Status - RO */
-#define E1000_MANC 0x05820 /* Management Control - RW */
-#define E1000_IPAV 0x05838 /* IP Address Valid - RW */
-#define E1000_IP4AT 0x05840 /* IPv4 Address Table - RW Array */
-#define E1000_IP6AT 0x05880 /* IPv6 Address Table - RW Array */
-#define E1000_WUPL 0x05900 /* Wakeup Packet Length - RW */
-#define E1000_WUPM 0x05A00 /* Wakeup Packet Memory - RO A */
-#define E1000_FFLT 0x05F00 /* Flexible Filter Length Table - RW Array */
-#define E1000_HOST_IF 0x08800 /* Host Interface */
-#define E1000_FFMT 0x09000 /* Flexible Filter Mask Table - RW Array */
-#define E1000_FFVT 0x09800 /* Flexible Filter Value Table - RW Array */
-
-#define E1000_KUMCTRLSTA 0x00034 /* MAC-PHY interface - RW */
-#define E1000_MDPHYA 0x0003C /* PHY address - RW */
-#define E1000_MANC2H 0x05860 /* Managment Control To Host - RW */
-#define E1000_SW_FW_SYNC 0x05B5C /* Software-Firmware Synchronization - RW */
-
-#define E1000_GCR 0x05B00 /* PCI-Ex Control */
-#define E1000_GSCL_1 0x05B10 /* PCI-Ex Statistic Control #1 */
-#define E1000_GSCL_2 0x05B14 /* PCI-Ex Statistic Control #2 */
-#define E1000_GSCL_3 0x05B18 /* PCI-Ex Statistic Control #3 */
-#define E1000_GSCL_4 0x05B1C /* PCI-Ex Statistic Control #4 */
-#define E1000_FACTPS 0x05B30 /* Function Active and Power State to MNG */
-#define E1000_SWSM 0x05B50 /* SW Semaphore */
-#define E1000_FWSM 0x05B54 /* FW Semaphore */
-#define E1000_FFLT_DBG 0x05F04 /* Debug Register */
-#define E1000_HICR 0x08F00 /* Host Inteface Control */
-
-/* RSS registers */
-#define E1000_CPUVEC 0x02C10 /* CPU Vector Register - RW */
-#define E1000_MRQC 0x05818 /* Multiple Receive Control - RW */
-#define E1000_RETA 0x05C00 /* Redirection Table - RW Array */
-#define E1000_RSSRK 0x05C80 /* RSS Random Key - RW Array */
-#define E1000_RSSIM 0x05864 /* RSS Interrupt Mask */
-#define E1000_RSSIR 0x05868 /* RSS Interrupt Request */
-/* Register Set (82542)
- *
- * Some of the 82542 registers are located at different offsets than they are
- * in more current versions of the 8254x. Despite the difference in location,
- * the registers function in the same manner.
- */
-#define E1000_82542_CTRL E1000_CTRL
-#define E1000_82542_CTRL_DUP E1000_CTRL_DUP
-#define E1000_82542_STATUS E1000_STATUS
-#define E1000_82542_EECD E1000_EECD
-#define E1000_82542_EERD E1000_EERD
-#define E1000_82542_CTRL_EXT E1000_CTRL_EXT
-#define E1000_82542_FLA E1000_FLA
-#define E1000_82542_MDIC E1000_MDIC
-#define E1000_82542_SCTL E1000_SCTL
-#define E1000_82542_FEXTNVM E1000_FEXTNVM
-#define E1000_82542_FCAL E1000_FCAL
-#define E1000_82542_FCAH E1000_FCAH
-#define E1000_82542_FCT E1000_FCT
-#define E1000_82542_VET E1000_VET
-#define E1000_82542_RA 0x00040
-#define E1000_82542_ICR E1000_ICR
-#define E1000_82542_ITR E1000_ITR
-#define E1000_82542_ICS E1000_ICS
-#define E1000_82542_IMS E1000_IMS
-#define E1000_82542_IMC E1000_IMC
-#define E1000_82542_RCTL E1000_RCTL
-#define E1000_82542_RDTR 0x00108
-#define E1000_82542_RDBAL 0x00110
-#define E1000_82542_RDBAH 0x00114
-#define E1000_82542_RDLEN 0x00118
-#define E1000_82542_RDH 0x00120
-#define E1000_82542_RDT 0x00128
-#define E1000_82542_RDTR0 E1000_82542_RDTR
-#define E1000_82542_RDBAL0 E1000_82542_RDBAL
-#define E1000_82542_RDBAH0 E1000_82542_RDBAH
-#define E1000_82542_RDLEN0 E1000_82542_RDLEN
-#define E1000_82542_RDH0 E1000_82542_RDH
-#define E1000_82542_RDT0 E1000_82542_RDT
-#define E1000_82542_SRRCTL(_n) (0x280C + ((_n) << 8)) /* Split and Replication
- * RX Control - RW */
-#define E1000_82542_DCA_RXCTRL(_n) (0x02814 + ((_n) << 8))
-#define E1000_82542_RDBAH3 0x02B04 /* RX Desc Base High Queue 3 - RW */
-#define E1000_82542_RDBAL3 0x02B00 /* RX Desc Low Queue 3 - RW */
-#define E1000_82542_RDLEN3 0x02B08 /* RX Desc Length Queue 3 - RW */
-#define E1000_82542_RDH3 0x02B10 /* RX Desc Head Queue 3 - RW */
-#define E1000_82542_RDT3 0x02B18 /* RX Desc Tail Queue 3 - RW */
-#define E1000_82542_RDBAL2 0x02A00 /* RX Desc Base Low Queue 2 - RW */
-#define E1000_82542_RDBAH2 0x02A04 /* RX Desc Base High Queue 2 - RW */
-#define E1000_82542_RDLEN2 0x02A08 /* RX Desc Length Queue 2 - RW */
-#define E1000_82542_RDH2 0x02A10 /* RX Desc Head Queue 2 - RW */
-#define E1000_82542_RDT2 0x02A18 /* RX Desc Tail Queue 2 - RW */
-#define E1000_82542_RDTR1 0x00130
-#define E1000_82542_RDBAL1 0x00138
-#define E1000_82542_RDBAH1 0x0013C
-#define E1000_82542_RDLEN1 0x00140
-#define E1000_82542_RDH1 0x00148
-#define E1000_82542_RDT1 0x00150
-#define E1000_82542_FCRTH 0x00160
-#define E1000_82542_FCRTL 0x00168
-#define E1000_82542_FCTTV E1000_FCTTV
-#define E1000_82542_TXCW E1000_TXCW
-#define E1000_82542_RXCW E1000_RXCW
-#define E1000_82542_MTA 0x00200
-#define E1000_82542_TCTL E1000_TCTL
-#define E1000_82542_TCTL_EXT E1000_TCTL_EXT
-#define E1000_82542_TIPG E1000_TIPG
-#define E1000_82542_TDBAL 0x00420
-#define E1000_82542_TDBAH 0x00424
-#define E1000_82542_TDLEN 0x00428
-#define E1000_82542_TDH 0x00430
-#define E1000_82542_TDT 0x00438
-#define E1000_82542_TIDV 0x00440
-#define E1000_82542_TBT E1000_TBT
-#define E1000_82542_AIT E1000_AIT
-#define E1000_82542_VFTA 0x00600
-#define E1000_82542_LEDCTL E1000_LEDCTL
-#define E1000_82542_PBA E1000_PBA
-#define E1000_82542_PBS E1000_PBS
-#define E1000_82542_EEMNGCTL E1000_EEMNGCTL
-#define E1000_82542_EEARBC E1000_EEARBC
-#define E1000_82542_FLASHT E1000_FLASHT
-#define E1000_82542_EEWR E1000_EEWR
-#define E1000_82542_FLSWCTL E1000_FLSWCTL
-#define E1000_82542_FLSWDATA E1000_FLSWDATA
-#define E1000_82542_FLSWCNT E1000_FLSWCNT
-#define E1000_82542_FLOP E1000_FLOP
-#define E1000_82542_EXTCNF_CTRL E1000_EXTCNF_CTRL
-#define E1000_82542_EXTCNF_SIZE E1000_EXTCNF_SIZE
-#define E1000_82542_PHY_CTRL E1000_PHY_CTRL
-#define E1000_82542_ERT E1000_ERT
-#define E1000_82542_RXDCTL E1000_RXDCTL
-#define E1000_82542_RXDCTL1 E1000_RXDCTL1
-#define E1000_82542_RADV E1000_RADV
-#define E1000_82542_RSRPD E1000_RSRPD
-#define E1000_82542_TXDMAC E1000_TXDMAC
-#define E1000_82542_KABGTXD E1000_KABGTXD
-#define E1000_82542_TDFHS E1000_TDFHS
-#define E1000_82542_TDFTS E1000_TDFTS
-#define E1000_82542_TDFPC E1000_TDFPC
-#define E1000_82542_TXDCTL E1000_TXDCTL
-#define E1000_82542_TADV E1000_TADV
-#define E1000_82542_TSPMT E1000_TSPMT
-#define E1000_82542_CRCERRS E1000_CRCERRS
-#define E1000_82542_ALGNERRC E1000_ALGNERRC
-#define E1000_82542_SYMERRS E1000_SYMERRS
-#define E1000_82542_RXERRC E1000_RXERRC
-#define E1000_82542_MPC E1000_MPC
-#define E1000_82542_SCC E1000_SCC
-#define E1000_82542_ECOL E1000_ECOL
-#define E1000_82542_MCC E1000_MCC
-#define E1000_82542_LATECOL E1000_LATECOL
-#define E1000_82542_COLC E1000_COLC
-#define E1000_82542_DC E1000_DC
-#define E1000_82542_TNCRS E1000_TNCRS
-#define E1000_82542_SEC E1000_SEC
-#define E1000_82542_CEXTERR E1000_CEXTERR
-#define E1000_82542_RLEC E1000_RLEC
-#define E1000_82542_XONRXC E1000_XONRXC
-#define E1000_82542_XONTXC E1000_XONTXC
-#define E1000_82542_XOFFRXC E1000_XOFFRXC
-#define E1000_82542_XOFFTXC E1000_XOFFTXC
-#define E1000_82542_FCRUC E1000_FCRUC
-#define E1000_82542_PRC64 E1000_PRC64
-#define E1000_82542_PRC127 E1000_PRC127
-#define E1000_82542_PRC255 E1000_PRC255
-#define E1000_82542_PRC511 E1000_PRC511
-#define E1000_82542_PRC1023 E1000_PRC1023
-#define E1000_82542_PRC1522 E1000_PRC1522
-#define E1000_82542_GPRC E1000_GPRC
-#define E1000_82542_BPRC E1000_BPRC
-#define E1000_82542_MPRC E1000_MPRC
-#define E1000_82542_GPTC E1000_GPTC
-#define E1000_82542_GORCL E1000_GORCL
-#define E1000_82542_GORCH E1000_GORCH
-#define E1000_82542_GOTCL E1000_GOTCL
-#define E1000_82542_GOTCH E1000_GOTCH
-#define E1000_82542_RNBC E1000_RNBC
-#define E1000_82542_RUC E1000_RUC
-#define E1000_82542_RFC E1000_RFC
-#define E1000_82542_ROC E1000_ROC
-#define E1000_82542_RJC E1000_RJC
-#define E1000_82542_MGTPRC E1000_MGTPRC
-#define E1000_82542_MGTPDC E1000_MGTPDC
-#define E1000_82542_MGTPTC E1000_MGTPTC
-#define E1000_82542_TORL E1000_TORL
-#define E1000_82542_TORH E1000_TORH
-#define E1000_82542_TOTL E1000_TOTL
-#define E1000_82542_TOTH E1000_TOTH
-#define E1000_82542_TPR E1000_TPR
-#define E1000_82542_TPT E1000_TPT
-#define E1000_82542_PTC64 E1000_PTC64
-#define E1000_82542_PTC127 E1000_PTC127
-#define E1000_82542_PTC255 E1000_PTC255
-#define E1000_82542_PTC511 E1000_PTC511
-#define E1000_82542_PTC1023 E1000_PTC1023
-#define E1000_82542_PTC1522 E1000_PTC1522
-#define E1000_82542_MPTC E1000_MPTC
-#define E1000_82542_BPTC E1000_BPTC
-#define E1000_82542_TSCTC E1000_TSCTC
-#define E1000_82542_TSCTFC E1000_TSCTFC
-#define E1000_82542_RXCSUM E1000_RXCSUM
-#define E1000_82542_WUC E1000_WUC
-#define E1000_82542_WUFC E1000_WUFC
-#define E1000_82542_WUS E1000_WUS
-#define E1000_82542_MANC E1000_MANC
-#define E1000_82542_IPAV E1000_IPAV
-#define E1000_82542_IP4AT E1000_IP4AT
-#define E1000_82542_IP6AT E1000_IP6AT
-#define E1000_82542_WUPL E1000_WUPL
-#define E1000_82542_WUPM E1000_WUPM
-#define E1000_82542_FFLT E1000_FFLT
-#define E1000_82542_TDFH 0x08010
-#define E1000_82542_TDFT 0x08018
-#define E1000_82542_FFMT E1000_FFMT
-#define E1000_82542_FFVT E1000_FFVT
-#define E1000_82542_HOST_IF E1000_HOST_IF
-#define E1000_82542_IAM E1000_IAM
-#define E1000_82542_EEMNGCTL E1000_EEMNGCTL
-#define E1000_82542_PSRCTL E1000_PSRCTL
-#define E1000_82542_RAID E1000_RAID
-#define E1000_82542_TARC0 E1000_TARC0
-#define E1000_82542_TDBAL1 E1000_TDBAL1
-#define E1000_82542_TDBAH1 E1000_TDBAH1
-#define E1000_82542_TDLEN1 E1000_TDLEN1
-#define E1000_82542_TDH1 E1000_TDH1
-#define E1000_82542_TDT1 E1000_TDT1
-#define E1000_82542_TXDCTL1 E1000_TXDCTL1
-#define E1000_82542_TARC1 E1000_TARC1
-#define E1000_82542_RFCTL E1000_RFCTL
-#define E1000_82542_GCR E1000_GCR
-#define E1000_82542_GSCL_1 E1000_GSCL_1
-#define E1000_82542_GSCL_2 E1000_GSCL_2
-#define E1000_82542_GSCL_3 E1000_GSCL_3
-#define E1000_82542_GSCL_4 E1000_GSCL_4
-#define E1000_82542_FACTPS E1000_FACTPS
-#define E1000_82542_SWSM E1000_SWSM
-#define E1000_82542_FWSM E1000_FWSM
-#define E1000_82542_FFLT_DBG E1000_FFLT_DBG
-#define E1000_82542_IAC E1000_IAC
-#define E1000_82542_ICRXPTC E1000_ICRXPTC
-#define E1000_82542_ICRXATC E1000_ICRXATC
-#define E1000_82542_ICTXPTC E1000_ICTXPTC
-#define E1000_82542_ICTXATC E1000_ICTXATC
-#define E1000_82542_ICTXQEC E1000_ICTXQEC
-#define E1000_82542_ICTXQMTC E1000_ICTXQMTC
-#define E1000_82542_ICRXDMTC E1000_ICRXDMTC
-#define E1000_82542_ICRXOC E1000_ICRXOC
-#define E1000_82542_HICR E1000_HICR
-
-#define E1000_82542_CPUVEC E1000_CPUVEC
-#define E1000_82542_MRQC E1000_MRQC
-#define E1000_82542_RETA E1000_RETA
-#define E1000_82542_RSSRK E1000_RSSRK
-#define E1000_82542_RSSIM E1000_RSSIM
-#define E1000_82542_RSSIR E1000_RSSIR
-#define E1000_82542_KUMCTRLSTA E1000_KUMCTRLSTA
-#define E1000_82542_SW_FW_SYNC E1000_SW_FW_SYNC
-
-/* Statistics counters collected by the MAC */
-struct em_hw_stats {
- uint64_t crcerrs;
- uint64_t algnerrc;
- uint64_t symerrs;
- uint64_t rxerrc;
- uint64_t mpc;
- uint64_t scc;
- uint64_t ecol;
- uint64_t mcc;
- uint64_t latecol;
- uint64_t colc;
- uint64_t dc;
- uint64_t tncrs;
- uint64_t sec;
- uint64_t cexterr;
- uint64_t rlec;
- uint64_t xonrxc;
- uint64_t xontxc;
- uint64_t xoffrxc;
- uint64_t xofftxc;
- uint64_t fcruc;
- uint64_t prc64;
- uint64_t prc127;
- uint64_t prc255;
- uint64_t prc511;
- uint64_t prc1023;
- uint64_t prc1522;
- uint64_t gprc;
- uint64_t bprc;
- uint64_t mprc;
- uint64_t gptc;
- uint64_t gorcl;
- uint64_t gorch;
- uint64_t gotcl;
- uint64_t gotch;
- uint64_t rnbc;
- uint64_t ruc;
- uint64_t rfc;
- uint64_t roc;
- uint64_t rjc;
- uint64_t mgprc;
- uint64_t mgpdc;
- uint64_t mgptc;
- uint64_t torl;
- uint64_t torh;
- uint64_t totl;
- uint64_t toth;
- uint64_t tpr;
- uint64_t tpt;
- uint64_t ptc64;
- uint64_t ptc127;
- uint64_t ptc255;
- uint64_t ptc511;
- uint64_t ptc1023;
- uint64_t ptc1522;
- uint64_t mptc;
- uint64_t bptc;
- uint64_t tsctc;
- uint64_t tsctfc;
- uint64_t iac;
- uint64_t icrxptc;
- uint64_t icrxatc;
- uint64_t ictxptc;
- uint64_t ictxatc;
- uint64_t ictxqec;
- uint64_t ictxqmtc;
- uint64_t icrxdmtc;
- uint64_t icrxoc;
-};
-
-/* Structure containing variables used by the shared code (em_hw.c) */
-struct em_hw {
- uint8_t *hw_addr;
- uint8_t *flash_address;
- em_mac_type mac_type;
- em_phy_type phy_type;
- uint32_t phy_init_script;
- em_media_type media_type;
- void *back;
- struct em_shadow_ram *eeprom_shadow_ram;
- uint32_t flash_bank_size;
- uint32_t flash_base_addr;
- em_fc_type fc;
- em_bus_speed bus_speed;
- em_bus_width bus_width;
- em_bus_type bus_type;
- struct em_eeprom_info eeprom;
- em_ms_type master_slave;
- em_ms_type original_master_slave;
- em_ffe_config ffe_config_state;
- uint32_t asf_firmware_present;
- uint32_t eeprom_semaphore_present;
- uint32_t swfw_sync_present;
- uint32_t swfwhw_semaphore_present;
- unsigned long io_base;
- uint32_t phy_id;
- uint32_t phy_revision;
- uint32_t phy_addr;
- uint32_t original_fc;
- uint32_t txcw;
- uint32_t autoneg_failed;
- uint32_t max_frame_size;
- uint32_t min_frame_size;
- uint32_t mc_filter_type;
- uint32_t num_mc_addrs;
- uint32_t collision_delta;
- uint32_t tx_packet_delta;
- uint32_t ledctl_default;
- uint32_t ledctl_mode1;
- uint32_t ledctl_mode2;
- boolean_t tx_pkt_filtering;
- struct em_host_mng_dhcp_cookie mng_cookie;
- uint16_t phy_spd_default;
- uint16_t autoneg_advertised;
- uint16_t pci_cmd_word;
- uint16_t fc_high_water;
- uint16_t fc_low_water;
- uint16_t fc_pause_time;
- uint16_t current_ifs_val;
- uint16_t ifs_min_val;
- uint16_t ifs_max_val;
- uint16_t ifs_step_size;
- uint16_t ifs_ratio;
- uint16_t device_id;
- uint16_t vendor_id;
- uint16_t subsystem_id;
- uint16_t subsystem_vendor_id;
- uint8_t revision_id;
- uint8_t autoneg;
- uint8_t mdix;
- uint8_t forced_speed_duplex;
- uint8_t wait_autoneg_complete;
- uint8_t dma_fairness;
- uint8_t mac_addr[NODE_ADDRESS_SIZE];
- uint8_t perm_mac_addr[NODE_ADDRESS_SIZE];
- boolean_t disable_polarity_correction;
- boolean_t speed_downgraded;
- em_smart_speed smart_speed;
- em_dsp_config dsp_config_state;
- boolean_t get_link_status;
- boolean_t serdes_link_down;
- boolean_t tbi_compatibility_en;
- boolean_t tbi_compatibility_on;
- boolean_t laa_is_present;
- boolean_t phy_reset_disable;
- boolean_t fc_send_xon;
- boolean_t fc_strict_ieee;
- boolean_t report_tx_early;
- boolean_t adaptive_ifs;
- boolean_t ifs_params_forced;
- boolean_t in_ifs_mode;
- boolean_t mng_reg_access_disabled;
- boolean_t leave_av_bit_off;
- boolean_t kmrn_lock_loss_workaround_disabled;
-};
-
-
-#define E1000_EEPROM_SWDPIN0 0x0001 /* SWDPIN 0 EEPROM Value */
-#define E1000_EEPROM_LED_LOGIC 0x0020 /* Led Logic Word */
-#define E1000_EEPROM_RW_REG_DATA 16 /* Offset to data in EEPROM read/write registers */
-#define E1000_EEPROM_RW_REG_DONE 2 /* Offset to READ/WRITE done bit */
-#define E1000_EEPROM_RW_REG_START 1 /* First bit for telling part to start operation */
-#define E1000_EEPROM_RW_ADDR_SHIFT 2 /* Shift to the address bits */
-#define E1000_EEPROM_POLL_WRITE 1 /* Flag for polling for write complete */
-#define E1000_EEPROM_POLL_READ 0 /* Flag for polling for read complete */
-/* Register Bit Masks */
-/* Device Control */
-#define E1000_CTRL_FD 0x00000001 /* Full duplex.0=half; 1=full */
-#define E1000_CTRL_BEM 0x00000002 /* Endian Mode.0=little,1=big */
-#define E1000_CTRL_PRIOR 0x00000004 /* Priority on PCI. 0=rx,1=fair */
-#define E1000_CTRL_GIO_MASTER_DISABLE 0x00000004 /*Blocks new Master requests */
-#define E1000_CTRL_LRST 0x00000008 /* Link reset. 0=normal,1=reset */
-#define E1000_CTRL_TME 0x00000010 /* Test mode. 0=normal,1=test */
-#define E1000_CTRL_SLE 0x00000020 /* Serial Link on 0=dis,1=en */
-#define E1000_CTRL_ASDE 0x00000020 /* Auto-speed detect enable */
-#define E1000_CTRL_SLU 0x00000040 /* Set link up (Force Link) */
-#define E1000_CTRL_ILOS 0x00000080 /* Invert Loss-Of Signal */
-#define E1000_CTRL_SPD_SEL 0x00000300 /* Speed Select Mask */
-#define E1000_CTRL_SPD_10 0x00000000 /* Force 10Mb */
-#define E1000_CTRL_SPD_100 0x00000100 /* Force 100Mb */
-#define E1000_CTRL_SPD_1000 0x00000200 /* Force 1Gb */
-#define E1000_CTRL_BEM32 0x00000400 /* Big Endian 32 mode */
-#define E1000_CTRL_FRCSPD 0x00000800 /* Force Speed */
-#define E1000_CTRL_FRCDPX 0x00001000 /* Force Duplex */
-#define E1000_CTRL_D_UD_EN 0x00002000 /* Dock/Undock enable */
-#define E1000_CTRL_D_UD_POLARITY 0x00004000 /* Defined polarity of Dock/Undock indication in SDP[0] */
-#define E1000_CTRL_FORCE_PHY_RESET 0x00008000 /* Reset both PHY ports, through PHYRST_N pin */
-#define E1000_CTRL_EXT_LINK_EN 0x00010000 /* enable link status from external LINK_0 and LINK_1 pins */
-#define E1000_CTRL_SWDPIN0 0x00040000 /* SWDPIN 0 value */
-#define E1000_CTRL_SWDPIN1 0x00080000 /* SWDPIN 1 value */
-#define E1000_CTRL_SWDPIN2 0x00100000 /* SWDPIN 2 value */
-#define E1000_CTRL_SWDPIN3 0x00200000 /* SWDPIN 3 value */
-#define E1000_CTRL_SWDPIO0 0x00400000 /* SWDPIN 0 Input or output */
-#define E1000_CTRL_SWDPIO1 0x00800000 /* SWDPIN 1 input or output */
-#define E1000_CTRL_SWDPIO2 0x01000000 /* SWDPIN 2 input or output */
-#define E1000_CTRL_SWDPIO3 0x02000000 /* SWDPIN 3 input or output */
-#define E1000_CTRL_RST 0x04000000 /* Global reset */
-#define E1000_CTRL_RFCE 0x08000000 /* Receive Flow Control enable */
-#define E1000_CTRL_TFCE 0x10000000 /* Transmit flow control enable */
-#define E1000_CTRL_RTE 0x20000000 /* Routing tag enable */
-#define E1000_CTRL_VME 0x40000000 /* IEEE VLAN mode enable */
-#define E1000_CTRL_PHY_RST 0x80000000 /* PHY Reset */
-#define E1000_CTRL_SW2FW_INT 0x02000000 /* Initiate an interrupt to manageability engine */
-
-/* Device Status */
-#define E1000_STATUS_FD 0x00000001 /* Full duplex.0=half,1=full */
-#define E1000_STATUS_LU 0x00000002 /* Link up.0=no,1=link */
-#define E1000_STATUS_FUNC_MASK 0x0000000C /* PCI Function Mask */
-#define E1000_STATUS_FUNC_SHIFT 2
-#define E1000_STATUS_FUNC_0 0x00000000 /* Function 0 */
-#define E1000_STATUS_FUNC_1 0x00000004 /* Function 1 */
-#define E1000_STATUS_TXOFF 0x00000010 /* transmission paused */
-#define E1000_STATUS_TBIMODE 0x00000020 /* TBI mode */
-#define E1000_STATUS_SPEED_MASK 0x000000C0
-#define E1000_STATUS_SPEED_10 0x00000000 /* Speed 10Mb/s */
-#define E1000_STATUS_SPEED_100 0x00000040 /* Speed 100Mb/s */
-#define E1000_STATUS_SPEED_1000 0x00000080 /* Speed 1000Mb/s */
-#define E1000_STATUS_LAN_INIT_DONE 0x00000200 /* Lan Init Completion
- by EEPROM/Flash */
-#define E1000_STATUS_ASDV 0x00000300 /* Auto speed detect value */
-#define E1000_STATUS_DOCK_CI 0x00000800 /* Change in Dock/Undock state. Clear on write '0'. */
-#define E1000_STATUS_GIO_MASTER_ENABLE 0x00080000 /* Status of Master requests. */
-#define E1000_STATUS_MTXCKOK 0x00000400 /* MTX clock running OK */
-#define E1000_STATUS_PCI66 0x00000800 /* In 66Mhz slot */
-#define E1000_STATUS_BUS64 0x00001000 /* In 64 bit slot */
-#define E1000_STATUS_PCIX_MODE 0x00002000 /* PCI-X mode */
-#define E1000_STATUS_PCIX_SPEED 0x0000C000 /* PCI-X bus speed */
-#define E1000_STATUS_BMC_SKU_0 0x00100000 /* BMC USB redirect disabled */
-#define E1000_STATUS_BMC_SKU_1 0x00200000 /* BMC SRAM disabled */
-#define E1000_STATUS_BMC_SKU_2 0x00400000 /* BMC SDRAM disabled */
-#define E1000_STATUS_BMC_CRYPTO 0x00800000 /* BMC crypto disabled */
-#define E1000_STATUS_BMC_LITE 0x01000000 /* BMC external code execution disabled */
-#define E1000_STATUS_RGMII_ENABLE 0x02000000 /* RGMII disabled */
-#define E1000_STATUS_FUSE_8 0x04000000
-#define E1000_STATUS_FUSE_9 0x08000000
-#define E1000_STATUS_SERDES0_DIS 0x10000000 /* SERDES disabled on port 0 */
-#define E1000_STATUS_SERDES1_DIS 0x20000000 /* SERDES disabled on port 1 */
-
-/* Constants used to intrepret the masked PCI-X bus speed. */
-#define E1000_STATUS_PCIX_SPEED_66 0x00000000 /* PCI-X bus speed 50-66 MHz */
-#define E1000_STATUS_PCIX_SPEED_100 0x00004000 /* PCI-X bus speed 66-100 MHz */
-#define E1000_STATUS_PCIX_SPEED_133 0x00008000 /* PCI-X bus speed 100-133 MHz */
-
-/* EEPROM/Flash Control */
-#define E1000_EECD_SK 0x00000001 /* EEPROM Clock */
-#define E1000_EECD_CS 0x00000002 /* EEPROM Chip Select */
-#define E1000_EECD_DI 0x00000004 /* EEPROM Data In */
-#define E1000_EECD_DO 0x00000008 /* EEPROM Data Out */
-#define E1000_EECD_FWE_MASK 0x00000030
-#define E1000_EECD_FWE_DIS 0x00000010 /* Disable FLASH writes */
-#define E1000_EECD_FWE_EN 0x00000020 /* Enable FLASH writes */
-#define E1000_EECD_FWE_SHIFT 4
-#define E1000_EECD_REQ 0x00000040 /* EEPROM Access Request */
-#define E1000_EECD_GNT 0x00000080 /* EEPROM Access Grant */
-#define E1000_EECD_PRES 0x00000100 /* EEPROM Present */
-#define E1000_EECD_SIZE 0x00000200 /* EEPROM Size (0=64 word 1=256 word) */
-#define E1000_EECD_ADDR_BITS 0x00000400 /* EEPROM Addressing bits based on type
- * (0-small, 1-large) */
-#define E1000_EECD_TYPE 0x00002000 /* EEPROM Type (1-SPI, 0-Microwire) */
-#ifndef E1000_EEPROM_GRANT_ATTEMPTS
-#define E1000_EEPROM_GRANT_ATTEMPTS 1000 /* EEPROM # attempts to gain grant */
-#endif
-#define E1000_EECD_AUTO_RD 0x00000200 /* EEPROM Auto Read done */
-#define E1000_EECD_SIZE_EX_MASK 0x00007800 /* EEprom Size */
-#define E1000_EECD_SIZE_EX_SHIFT 11
-#define E1000_EECD_NVADDS 0x00018000 /* NVM Address Size */
-#define E1000_EECD_SELSHAD 0x00020000 /* Select Shadow RAM */
-#define E1000_EECD_INITSRAM 0x00040000 /* Initialize Shadow RAM */
-#define E1000_EECD_FLUPD 0x00080000 /* Update FLASH */
-#define E1000_EECD_AUPDEN 0x00100000 /* Enable Autonomous FLASH update */
-#define E1000_EECD_SHADV 0x00200000 /* Shadow RAM Data Valid */
-#define E1000_EECD_SEC1VAL 0x00400000 /* Sector One Valid */
-#define E1000_EECD_SECVAL_SHIFT 22
-#define E1000_STM_OPCODE 0xDB00
-#define E1000_HICR_FW_RESET 0xC0
-
-#define E1000_SHADOW_RAM_WORDS 2048
-#define E1000_ICH8_NVM_SIG_WORD 0x13
-#define E1000_ICH8_NVM_SIG_MASK 0xC0
-
-/* EEPROM Read */
-#define E1000_EERD_START 0x00000001 /* Start Read */
-#define E1000_EERD_DONE 0x00000010 /* Read Done */
-#define E1000_EERD_ADDR_SHIFT 8
-#define E1000_EERD_ADDR_MASK 0x0000FF00 /* Read Address */
-#define E1000_EERD_DATA_SHIFT 16
-#define E1000_EERD_DATA_MASK 0xFFFF0000 /* Read Data */
-
-/* SPI EEPROM Status Register */
-#define EEPROM_STATUS_RDY_SPI 0x01
-#define EEPROM_STATUS_WEN_SPI 0x02
-#define EEPROM_STATUS_BP0_SPI 0x04
-#define EEPROM_STATUS_BP1_SPI 0x08
-#define EEPROM_STATUS_WPEN_SPI 0x80
-
-/* Extended Device Control */
-#define E1000_CTRL_EXT_GPI0_EN 0x00000001 /* Maps SDP4 to GPI0 */
-#define E1000_CTRL_EXT_GPI1_EN 0x00000002 /* Maps SDP5 to GPI1 */
-#define E1000_CTRL_EXT_PHYINT_EN E1000_CTRL_EXT_GPI1_EN
-#define E1000_CTRL_EXT_GPI2_EN 0x00000004 /* Maps SDP6 to GPI2 */
-#define E1000_CTRL_EXT_GPI3_EN 0x00000008 /* Maps SDP7 to GPI3 */
-#define E1000_CTRL_EXT_SDP4_DATA 0x00000010 /* Value of SW Defineable Pin 4 */
-#define E1000_CTRL_EXT_SDP5_DATA 0x00000020 /* Value of SW Defineable Pin 5 */
-#define E1000_CTRL_EXT_PHY_INT E1000_CTRL_EXT_SDP5_DATA
-#define E1000_CTRL_EXT_SDP6_DATA 0x00000040 /* Value of SW Defineable Pin 6 */
-#define E1000_CTRL_EXT_SDP7_DATA 0x00000080 /* Value of SW Defineable Pin 7 */
-#define E1000_CTRL_EXT_SDP4_DIR 0x00000100 /* Direction of SDP4 0=in 1=out */
-#define E1000_CTRL_EXT_SDP5_DIR 0x00000200 /* Direction of SDP5 0=in 1=out */
-#define E1000_CTRL_EXT_SDP6_DIR 0x00000400 /* Direction of SDP6 0=in 1=out */
-#define E1000_CTRL_EXT_SDP7_DIR 0x00000800 /* Direction of SDP7 0=in 1=out */
-#define E1000_CTRL_EXT_ASDCHK 0x00001000 /* Initiate an ASD sequence */
-#define E1000_CTRL_EXT_EE_RST 0x00002000 /* Reinitialize from EEPROM */
-#define E1000_CTRL_EXT_IPS 0x00004000 /* Invert Power State */
-#define E1000_CTRL_EXT_SPD_BYPS 0x00008000 /* Speed Select Bypass */
-#define E1000_CTRL_EXT_RO_DIS 0x00020000 /* Relaxed Ordering disable */
-#define E1000_CTRL_EXT_LINK_MODE_MASK 0x00C00000
-#define E1000_CTRL_EXT_LINK_MODE_GMII 0x00000000
-#define E1000_CTRL_EXT_LINK_MODE_TBI 0x00C00000
-#define E1000_CTRL_EXT_LINK_MODE_KMRN 0x00000000
-#define E1000_CTRL_EXT_LINK_MODE_SERDES 0x00C00000
-#define E1000_CTRL_EXT_WR_WMARK_MASK 0x03000000
-#define E1000_CTRL_EXT_WR_WMARK_256 0x00000000
-#define E1000_CTRL_EXT_WR_WMARK_320 0x01000000
-#define E1000_CTRL_EXT_WR_WMARK_384 0x02000000
-#define E1000_CTRL_EXT_WR_WMARK_448 0x03000000
-#define E1000_CTRL_EXT_DRV_LOAD 0x10000000 /* Driver loaded bit for FW */
-#define E1000_CTRL_EXT_IAME 0x08000000 /* Interrupt acknowledge Auto-mask */
-#define E1000_CTRL_EXT_INT_TIMER_CLR 0x20000000 /* Clear Interrupt timers after IMS clear */
-#define E1000_CRTL_EXT_PB_PAREN 0x01000000 /* packet buffer parity error detection enabled */
-#define E1000_CTRL_EXT_DF_PAREN 0x02000000 /* descriptor FIFO parity error detection enable */
-#define E1000_CTRL_EXT_GHOST_PAREN 0x40000000
-
-/* MDI Control */
-#define E1000_MDIC_DATA_MASK 0x0000FFFF
-#define E1000_MDIC_REG_MASK 0x001F0000
-#define E1000_MDIC_REG_SHIFT 16
-#define E1000_MDIC_PHY_MASK 0x03E00000
-#define E1000_MDIC_PHY_SHIFT 21
-#define E1000_MDIC_OP_WRITE 0x04000000
-#define E1000_MDIC_OP_READ 0x08000000
-#define E1000_MDIC_READY 0x10000000
-#define E1000_MDIC_INT_EN 0x20000000
-#define E1000_MDIC_ERROR 0x40000000
-
-#define E1000_KUMCTRLSTA_MASK 0x0000FFFF
-#define E1000_KUMCTRLSTA_OFFSET 0x001F0000
-#define E1000_KUMCTRLSTA_OFFSET_SHIFT 16
-#define E1000_KUMCTRLSTA_REN 0x00200000
-
-#define E1000_KUMCTRLSTA_OFFSET_FIFO_CTRL 0x00000000
-#define E1000_KUMCTRLSTA_OFFSET_CTRL 0x00000001
-#define E1000_KUMCTRLSTA_OFFSET_INB_CTRL 0x00000002
-#define E1000_KUMCTRLSTA_OFFSET_DIAG 0x00000003
-#define E1000_KUMCTRLSTA_OFFSET_TIMEOUTS 0x00000004
-#define E1000_KUMCTRLSTA_OFFSET_INB_PARAM 0x00000009
-#define E1000_KUMCTRLSTA_OFFSET_HD_CTRL 0x00000010
-#define E1000_KUMCTRLSTA_OFFSET_M2P_SERDES 0x0000001E
-#define E1000_KUMCTRLSTA_OFFSET_M2P_MODES 0x0000001F
-
-/* FIFO Control */
-#define E1000_KUMCTRLSTA_FIFO_CTRL_RX_BYPASS 0x00000008
-#define E1000_KUMCTRLSTA_FIFO_CTRL_TX_BYPASS 0x00000800
-
-/* In-Band Control */
-#define E1000_KUMCTRLSTA_INB_CTRL_LINK_STATUS_TX_TIMEOUT_DEFAULT 0x00000500
-#define E1000_KUMCTRLSTA_INB_CTRL_DIS_PADDING 0x00000010
-
-/* Half-Duplex Control */
-#define E1000_KUMCTRLSTA_HD_CTRL_10_100_DEFAULT 0x00000004
-#define E1000_KUMCTRLSTA_HD_CTRL_1000_DEFAULT 0x00000000
-
-#define E1000_KUMCTRLSTA_OFFSET_K0S_CTRL 0x0000001E
-
-#define E1000_KUMCTRLSTA_DIAG_FELPBK 0x2000
-#define E1000_KUMCTRLSTA_DIAG_NELPBK 0x1000
-
-#define E1000_KUMCTRLSTA_K0S_100_EN 0x2000
-#define E1000_KUMCTRLSTA_K0S_GBE_EN 0x1000
-#define E1000_KUMCTRLSTA_K0S_ENTRY_LATENCY_MASK 0x0003
-
-#define E1000_KABGTXD_BGSQLBIAS 0x00050000
-
-#define E1000_PHY_CTRL_SPD_EN 0x00000001
-#define E1000_PHY_CTRL_D0A_LPLU 0x00000002
-#define E1000_PHY_CTRL_NOND0A_LPLU 0x00000004
-#define E1000_PHY_CTRL_NOND0A_GBE_DISABLE 0x00000008
-#define E1000_PHY_CTRL_GBE_DISABLE 0x00000040
-#define E1000_PHY_CTRL_B2B_EN 0x00000080
-
-/* LED Control */
-#define E1000_LEDCTL_LED0_MODE_MASK 0x0000000F
-#define E1000_LEDCTL_LED0_MODE_SHIFT 0
-#define E1000_LEDCTL_LED0_BLINK_RATE 0x0000020
-#define E1000_LEDCTL_LED0_IVRT 0x00000040
-#define E1000_LEDCTL_LED0_BLINK 0x00000080
-#define E1000_LEDCTL_LED1_MODE_MASK 0x00000F00
-#define E1000_LEDCTL_LED1_MODE_SHIFT 8
-#define E1000_LEDCTL_LED1_BLINK_RATE 0x0002000
-#define E1000_LEDCTL_LED1_IVRT 0x00004000
-#define E1000_LEDCTL_LED1_BLINK 0x00008000
-#define E1000_LEDCTL_LED2_MODE_MASK 0x000F0000
-#define E1000_LEDCTL_LED2_MODE_SHIFT 16
-#define E1000_LEDCTL_LED2_BLINK_RATE 0x00200000
-#define E1000_LEDCTL_LED2_IVRT 0x00400000
-#define E1000_LEDCTL_LED2_BLINK 0x00800000
-#define E1000_LEDCTL_LED3_MODE_MASK 0x0F000000
-#define E1000_LEDCTL_LED3_MODE_SHIFT 24
-#define E1000_LEDCTL_LED3_BLINK_RATE 0x20000000
-#define E1000_LEDCTL_LED3_IVRT 0x40000000
-#define E1000_LEDCTL_LED3_BLINK 0x80000000
-
-#define E1000_LEDCTL_MODE_LINK_10_1000 0x0
-#define E1000_LEDCTL_MODE_LINK_100_1000 0x1
-#define E1000_LEDCTL_MODE_LINK_UP 0x2
-#define E1000_LEDCTL_MODE_ACTIVITY 0x3
-#define E1000_LEDCTL_MODE_LINK_ACTIVITY 0x4
-#define E1000_LEDCTL_MODE_LINK_10 0x5
-#define E1000_LEDCTL_MODE_LINK_100 0x6
-#define E1000_LEDCTL_MODE_LINK_1000 0x7
-#define E1000_LEDCTL_MODE_PCIX_MODE 0x8
-#define E1000_LEDCTL_MODE_FULL_DUPLEX 0x9
-#define E1000_LEDCTL_MODE_COLLISION 0xA
-#define E1000_LEDCTL_MODE_BUS_SPEED 0xB
-#define E1000_LEDCTL_MODE_BUS_SIZE 0xC
-#define E1000_LEDCTL_MODE_PAUSED 0xD
-#define E1000_LEDCTL_MODE_LED_ON 0xE
-#define E1000_LEDCTL_MODE_LED_OFF 0xF
-
-/* Receive Address */
-#define E1000_RAH_AV 0x80000000 /* Receive descriptor valid */
-
-/* Interrupt Cause Read */
-#define E1000_ICR_TXDW 0x00000001 /* Transmit desc written back */
-#define E1000_ICR_TXQE 0x00000002 /* Transmit Queue empty */
-#define E1000_ICR_LSC 0x00000004 /* Link Status Change */
-#define E1000_ICR_RXSEQ 0x00000008 /* rx sequence error */
-#define E1000_ICR_RXDMT0 0x00000010 /* rx desc min. threshold (0) */
-#define E1000_ICR_RXO 0x00000040 /* rx overrun */
-#define E1000_ICR_RXT0 0x00000080 /* rx timer intr (ring 0) */
-#define E1000_ICR_MDAC 0x00000200 /* MDIO access complete */
-#define E1000_ICR_RXCFG 0x00000400 /* RX /c/ ordered set */
-#define E1000_ICR_GPI_EN0 0x00000800 /* GP Int 0 */
-#define E1000_ICR_GPI_EN1 0x00001000 /* GP Int 1 */
-#define E1000_ICR_GPI_EN2 0x00002000 /* GP Int 2 */
-#define E1000_ICR_GPI_EN3 0x00004000 /* GP Int 3 */
-#define E1000_ICR_TXD_LOW 0x00008000
-#define E1000_ICR_SRPD 0x00010000
-#define E1000_ICR_ACK 0x00020000 /* Receive Ack frame */
-#define E1000_ICR_MNG 0x00040000 /* Manageability event */
-#define E1000_ICR_DOCK 0x00080000 /* Dock/Undock */
-#define E1000_ICR_INT_ASSERTED 0x80000000 /* If this bit asserted, the driver should claim the interrupt */
-#define E1000_ICR_RXD_FIFO_PAR0 0x00100000 /* queue 0 Rx descriptor FIFO parity error */
-#define E1000_ICR_TXD_FIFO_PAR0 0x00200000 /* queue 0 Tx descriptor FIFO parity error */
-#define E1000_ICR_HOST_ARB_PAR 0x00400000 /* host arb read buffer parity error */
-#define E1000_ICR_PB_PAR 0x00800000 /* packet buffer parity error */
-#define E1000_ICR_RXD_FIFO_PAR1 0x01000000 /* queue 1 Rx descriptor FIFO parity error */
-#define E1000_ICR_TXD_FIFO_PAR1 0x02000000 /* queue 1 Tx descriptor FIFO parity error */
-#define E1000_ICR_ALL_PARITY 0x03F00000 /* all parity error bits */
-#define E1000_ICR_DSW 0x00000020 /* FW changed the status of DISSW bit in the FWSM */
-#define E1000_ICR_PHYINT 0x00001000 /* LAN connected device generates an interrupt */
-#define E1000_ICR_EPRST 0x00100000 /* ME handware reset occurs */
-
-/* Interrupt Cause Set */
-#define E1000_ICS_TXDW E1000_ICR_TXDW /* Transmit desc written back */
-#define E1000_ICS_TXQE E1000_ICR_TXQE /* Transmit Queue empty */
-#define E1000_ICS_LSC E1000_ICR_LSC /* Link Status Change */
-#define E1000_ICS_RXSEQ E1000_ICR_RXSEQ /* rx sequence error */
-#define E1000_ICS_RXDMT0 E1000_ICR_RXDMT0 /* rx desc min. threshold */
-#define E1000_ICS_RXO E1000_ICR_RXO /* rx overrun */
-#define E1000_ICS_RXT0 E1000_ICR_RXT0 /* rx timer intr */
-#define E1000_ICS_MDAC E1000_ICR_MDAC /* MDIO access complete */
-#define E1000_ICS_RXCFG E1000_ICR_RXCFG /* RX /c/ ordered set */
-#define E1000_ICS_GPI_EN0 E1000_ICR_GPI_EN0 /* GP Int 0 */
-#define E1000_ICS_GPI_EN1 E1000_ICR_GPI_EN1 /* GP Int 1 */
-#define E1000_ICS_GPI_EN2 E1000_ICR_GPI_EN2 /* GP Int 2 */
-#define E1000_ICS_GPI_EN3 E1000_ICR_GPI_EN3 /* GP Int 3 */
-#define E1000_ICS_TXD_LOW E1000_ICR_TXD_LOW
-#define E1000_ICS_SRPD E1000_ICR_SRPD
-#define E1000_ICS_ACK E1000_ICR_ACK /* Receive Ack frame */
-#define E1000_ICS_MNG E1000_ICR_MNG /* Manageability event */
-#define E1000_ICS_DOCK E1000_ICR_DOCK /* Dock/Undock */
-#define E1000_ICS_RXD_FIFO_PAR0 E1000_ICR_RXD_FIFO_PAR0 /* queue 0 Rx descriptor FIFO parity error */
-#define E1000_ICS_TXD_FIFO_PAR0 E1000_ICR_TXD_FIFO_PAR0 /* queue 0 Tx descriptor FIFO parity error */
-#define E1000_ICS_HOST_ARB_PAR E1000_ICR_HOST_ARB_PAR /* host arb read buffer parity error */
-#define E1000_ICS_PB_PAR E1000_ICR_PB_PAR /* packet buffer parity error */
-#define E1000_ICS_RXD_FIFO_PAR1 E1000_ICR_RXD_FIFO_PAR1 /* queue 1 Rx descriptor FIFO parity error */
-#define E1000_ICS_TXD_FIFO_PAR1 E1000_ICR_TXD_FIFO_PAR1 /* queue 1 Tx descriptor FIFO parity error */
-#define E1000_ICS_DSW E1000_ICR_DSW
-#define E1000_ICS_PHYINT E1000_ICR_PHYINT
-#define E1000_ICS_EPRST E1000_ICR_EPRST
-
-/* Interrupt Mask Set */
-#define E1000_IMS_TXDW E1000_ICR_TXDW /* Transmit desc written back */
-#define E1000_IMS_TXQE E1000_ICR_TXQE /* Transmit Queue empty */
-#define E1000_IMS_LSC E1000_ICR_LSC /* Link Status Change */
-#define E1000_IMS_RXSEQ E1000_ICR_RXSEQ /* rx sequence error */
-#define E1000_IMS_RXDMT0 E1000_ICR_RXDMT0 /* rx desc min. threshold */
-#define E1000_IMS_RXO E1000_ICR_RXO /* rx overrun */
-#define E1000_IMS_RXT0 E1000_ICR_RXT0 /* rx timer intr */
-#define E1000_IMS_MDAC E1000_ICR_MDAC /* MDIO access complete */
-#define E1000_IMS_RXCFG E1000_ICR_RXCFG /* RX /c/ ordered set */
-#define E1000_IMS_GPI_EN0 E1000_ICR_GPI_EN0 /* GP Int 0 */
-#define E1000_IMS_GPI_EN1 E1000_ICR_GPI_EN1 /* GP Int 1 */
-#define E1000_IMS_GPI_EN2 E1000_ICR_GPI_EN2 /* GP Int 2 */
-#define E1000_IMS_GPI_EN3 E1000_ICR_GPI_EN3 /* GP Int 3 */
-#define E1000_IMS_TXD_LOW E1000_ICR_TXD_LOW
-#define E1000_IMS_SRPD E1000_ICR_SRPD
-#define E1000_IMS_ACK E1000_ICR_ACK /* Receive Ack frame */
-#define E1000_IMS_MNG E1000_ICR_MNG /* Manageability event */
-#define E1000_IMS_DOCK E1000_ICR_DOCK /* Dock/Undock */
-#define E1000_IMS_RXD_FIFO_PAR0 E1000_ICR_RXD_FIFO_PAR0 /* queue 0 Rx descriptor FIFO parity error */
-#define E1000_IMS_TXD_FIFO_PAR0 E1000_ICR_TXD_FIFO_PAR0 /* queue 0 Tx descriptor FIFO parity error */
-#define E1000_IMS_HOST_ARB_PAR E1000_ICR_HOST_ARB_PAR /* host arb read buffer parity error */
-#define E1000_IMS_PB_PAR E1000_ICR_PB_PAR /* packet buffer parity error */
-#define E1000_IMS_RXD_FIFO_PAR1 E1000_ICR_RXD_FIFO_PAR1 /* queue 1 Rx descriptor FIFO parity error */
-#define E1000_IMS_TXD_FIFO_PAR1 E1000_ICR_TXD_FIFO_PAR1 /* queue 1 Tx descriptor FIFO parity error */
-#define E1000_IMS_DSW E1000_ICR_DSW
-#define E1000_IMS_PHYINT E1000_ICR_PHYINT
-#define E1000_IMS_EPRST E1000_ICR_EPRST
-
-/* Interrupt Mask Clear */
-#define E1000_IMC_TXDW E1000_ICR_TXDW /* Transmit desc written back */
-#define E1000_IMC_TXQE E1000_ICR_TXQE /* Transmit Queue empty */
-#define E1000_IMC_LSC E1000_ICR_LSC /* Link Status Change */
-#define E1000_IMC_RXSEQ E1000_ICR_RXSEQ /* rx sequence error */
-#define E1000_IMC_RXDMT0 E1000_ICR_RXDMT0 /* rx desc min. threshold */
-#define E1000_IMC_RXO E1000_ICR_RXO /* rx overrun */
-#define E1000_IMC_RXT0 E1000_ICR_RXT0 /* rx timer intr */
-#define E1000_IMC_MDAC E1000_ICR_MDAC /* MDIO access complete */
-#define E1000_IMC_RXCFG E1000_ICR_RXCFG /* RX /c/ ordered set */
-#define E1000_IMC_GPI_EN0 E1000_ICR_GPI_EN0 /* GP Int 0 */
-#define E1000_IMC_GPI_EN1 E1000_ICR_GPI_EN1 /* GP Int 1 */
-#define E1000_IMC_GPI_EN2 E1000_ICR_GPI_EN2 /* GP Int 2 */
-#define E1000_IMC_GPI_EN3 E1000_ICR_GPI_EN3 /* GP Int 3 */
-#define E1000_IMC_TXD_LOW E1000_ICR_TXD_LOW
-#define E1000_IMC_SRPD E1000_ICR_SRPD
-#define E1000_IMC_ACK E1000_ICR_ACK /* Receive Ack frame */
-#define E1000_IMC_MNG E1000_ICR_MNG /* Manageability event */
-#define E1000_IMC_DOCK E1000_ICR_DOCK /* Dock/Undock */
-#define E1000_IMC_RXD_FIFO_PAR0 E1000_ICR_RXD_FIFO_PAR0 /* queue 0 Rx descriptor FIFO parity error */
-#define E1000_IMC_TXD_FIFO_PAR0 E1000_ICR_TXD_FIFO_PAR0 /* queue 0 Tx descriptor FIFO parity error */
-#define E1000_IMC_HOST_ARB_PAR E1000_ICR_HOST_ARB_PAR /* host arb read buffer parity error */
-#define E1000_IMC_PB_PAR E1000_ICR_PB_PAR /* packet buffer parity error */
-#define E1000_IMC_RXD_FIFO_PAR1 E1000_ICR_RXD_FIFO_PAR1 /* queue 1 Rx descriptor FIFO parity error */
-#define E1000_IMC_TXD_FIFO_PAR1 E1000_ICR_TXD_FIFO_PAR1 /* queue 1 Tx descriptor FIFO parity error */
-#define E1000_IMC_DSW E1000_ICR_DSW
-#define E1000_IMC_PHYINT E1000_ICR_PHYINT
-#define E1000_IMC_EPRST E1000_ICR_EPRST
-
-/* Receive Control */
-#define E1000_RCTL_RST 0x00000001 /* Software reset */
-#define E1000_RCTL_EN 0x00000002 /* enable */
-#define E1000_RCTL_SBP 0x00000004 /* store bad packet */
-#define E1000_RCTL_UPE 0x00000008 /* unicast promiscuous enable */
-#define E1000_RCTL_MPE 0x00000010 /* multicast promiscuous enab */
-#define E1000_RCTL_LPE 0x00000020 /* long packet enable */
-#define E1000_RCTL_LBM_NO 0x00000000 /* no loopback mode */
-#define E1000_RCTL_LBM_MAC 0x00000040 /* MAC loopback mode */
-#define E1000_RCTL_LBM_SLP 0x00000080 /* serial link loopback mode */
-#define E1000_RCTL_LBM_TCVR 0x000000C0 /* tcvr loopback mode */
-#define E1000_RCTL_DTYP_MASK 0x00000C00 /* Descriptor type mask */
-#define E1000_RCTL_DTYP_PS 0x00000400 /* Packet Split descriptor */
-#define E1000_RCTL_RDMTS_HALF 0x00000000 /* rx desc min threshold size */
-#define E1000_RCTL_RDMTS_QUAT 0x00000100 /* rx desc min threshold size */
-#define E1000_RCTL_RDMTS_EIGTH 0x00000200 /* rx desc min threshold size */
-#define E1000_RCTL_MO_SHIFT 12 /* multicast offset shift */
-#define E1000_RCTL_MO_0 0x00000000 /* multicast offset 11:0 */
-#define E1000_RCTL_MO_1 0x00001000 /* multicast offset 12:1 */
-#define E1000_RCTL_MO_2 0x00002000 /* multicast offset 13:2 */
-#define E1000_RCTL_MO_3 0x00003000 /* multicast offset 15:4 */
-#define E1000_RCTL_MDR 0x00004000 /* multicast desc ring 0 */
-#define E1000_RCTL_BAM 0x00008000 /* broadcast enable */
-/* these buffer sizes are valid if E1000_RCTL_BSEX is 0 */
-#define E1000_RCTL_SZ_2048 0x00000000 /* rx buffer size 2048 */
-#define E1000_RCTL_SZ_1024 0x00010000 /* rx buffer size 1024 */
-#define E1000_RCTL_SZ_512 0x00020000 /* rx buffer size 512 */
-#define E1000_RCTL_SZ_256 0x00030000 /* rx buffer size 256 */
-/* these buffer sizes are valid if E1000_RCTL_BSEX is 1 */
-#define E1000_RCTL_SZ_16384 0x00010000 /* rx buffer size 16384 */
-#define E1000_RCTL_SZ_8192 0x00020000 /* rx buffer size 8192 */
-#define E1000_RCTL_SZ_4096 0x00030000 /* rx buffer size 4096 */
-#define E1000_RCTL_VFE 0x00040000 /* vlan filter enable */
-#define E1000_RCTL_CFIEN 0x00080000 /* canonical form enable */
-#define E1000_RCTL_CFI 0x00100000 /* canonical form indicator */
-#define E1000_RCTL_DPF 0x00400000 /* discard pause frames */
-#define E1000_RCTL_PMCF 0x00800000 /* pass MAC control frames */
-#define E1000_RCTL_BSEX 0x02000000 /* Buffer size extension */
-#define E1000_RCTL_SECRC 0x04000000 /* Strip Ethernet CRC */
-#define E1000_RCTL_FLXBUF_MASK 0x78000000 /* Flexible buffer size */
-#define E1000_RCTL_FLXBUF_SHIFT 27 /* Flexible buffer shift */
-
-/* Use byte values for the following shift parameters
- * Usage:
- * psrctl |= (((ROUNDUP(value0, 128) >> E1000_PSRCTL_BSIZE0_SHIFT) &
- * E1000_PSRCTL_BSIZE0_MASK) |
- * ((ROUNDUP(value1, 1024) >> E1000_PSRCTL_BSIZE1_SHIFT) &
- * E1000_PSRCTL_BSIZE1_MASK) |
- * ((ROUNDUP(value2, 1024) << E1000_PSRCTL_BSIZE2_SHIFT) &
- * E1000_PSRCTL_BSIZE2_MASK) |
- * ((ROUNDUP(value3, 1024) << E1000_PSRCTL_BSIZE3_SHIFT) |;
- * E1000_PSRCTL_BSIZE3_MASK))
- * where value0 = [128..16256], default=256
- * value1 = [1024..64512], default=4096
- * value2 = [0..64512], default=4096
- * value3 = [0..64512], default=0
- */
-
-#define E1000_PSRCTL_BSIZE0_MASK 0x0000007F
-#define E1000_PSRCTL_BSIZE1_MASK 0x00003F00
-#define E1000_PSRCTL_BSIZE2_MASK 0x003F0000
-#define E1000_PSRCTL_BSIZE3_MASK 0x3F000000
-
-#define E1000_PSRCTL_BSIZE0_SHIFT 7 /* Shift _right_ 7 */
-#define E1000_PSRCTL_BSIZE1_SHIFT 2 /* Shift _right_ 2 */
-#define E1000_PSRCTL_BSIZE2_SHIFT 6 /* Shift _left_ 6 */
-#define E1000_PSRCTL_BSIZE3_SHIFT 14 /* Shift _left_ 14 */
-
-/* SW_W_SYNC definitions */
-#define E1000_SWFW_EEP_SM 0x0001
-#define E1000_SWFW_PHY0_SM 0x0002
-#define E1000_SWFW_PHY1_SM 0x0004
-#define E1000_SWFW_MAC_CSR_SM 0x0008
-
-/* Receive Descriptor */
-#define E1000_RDT_DELAY 0x0000ffff /* Delay timer (1=1024us) */
-#define E1000_RDT_FPDB 0x80000000 /* Flush descriptor block */
-#define E1000_RDLEN_LEN 0x0007ff80 /* descriptor length */
-#define E1000_RDH_RDH 0x0000ffff /* receive descriptor head */
-#define E1000_RDT_RDT 0x0000ffff /* receive descriptor tail */
-
-/* Flow Control */
-#define E1000_FCRTH_RTH 0x0000FFF8 /* Mask Bits[15:3] for RTH */
-#define E1000_FCRTH_XFCE 0x80000000 /* External Flow Control Enable */
-#define E1000_FCRTL_RTL 0x0000FFF8 /* Mask Bits[15:3] for RTL */
-#define E1000_FCRTL_XONE 0x80000000 /* Enable XON frame transmission */
-
-/* Header split receive */
-#define E1000_RFCTL_ISCSI_DIS 0x00000001
-#define E1000_RFCTL_ISCSI_DWC_MASK 0x0000003E
-#define E1000_RFCTL_ISCSI_DWC_SHIFT 1
-#define E1000_RFCTL_NFSW_DIS 0x00000040
-#define E1000_RFCTL_NFSR_DIS 0x00000080
-#define E1000_RFCTL_NFS_VER_MASK 0x00000300
-#define E1000_RFCTL_NFS_VER_SHIFT 8
-#define E1000_RFCTL_IPV6_DIS 0x00000400
-#define E1000_RFCTL_IPV6_XSUM_DIS 0x00000800
-#define E1000_RFCTL_ACK_DIS 0x00001000
-#define E1000_RFCTL_ACKD_DIS 0x00002000
-#define E1000_RFCTL_IPFRSP_DIS 0x00004000
-#define E1000_RFCTL_EXTEN 0x00008000
-#define E1000_RFCTL_IPV6_EX_DIS 0x00010000
-#define E1000_RFCTL_NEW_IPV6_EXT_DIS 0x00020000
-
-/* Receive Descriptor Control */
-#define E1000_RXDCTL_PTHRESH 0x0000003F /* RXDCTL Prefetch Threshold */
-#define E1000_RXDCTL_HTHRESH 0x00003F00 /* RXDCTL Host Threshold */
-#define E1000_RXDCTL_WTHRESH 0x003F0000 /* RXDCTL Writeback Threshold */
-#define E1000_RXDCTL_GRAN 0x01000000 /* RXDCTL Granularity */
-
-/* Transmit Descriptor Control */
-#define E1000_TXDCTL_PTHRESH 0x000000FF /* TXDCTL Prefetch Threshold */
-#define E1000_TXDCTL_HTHRESH 0x0000FF00 /* TXDCTL Host Threshold */
-#define E1000_TXDCTL_WTHRESH 0x00FF0000 /* TXDCTL Writeback Threshold */
-#define E1000_TXDCTL_GRAN 0x01000000 /* TXDCTL Granularity */
-#define E1000_TXDCTL_LWTHRESH 0xFE000000 /* TXDCTL Low Threshold */
-#define E1000_TXDCTL_FULL_TX_DESC_WB 0x01010000 /* GRAN=1, WTHRESH=1 */
-#define E1000_TXDCTL_COUNT_DESC 0x00400000 /* Enable the counting of desc.
- still to be processed. */
-/* Transmit Configuration Word */
-#define E1000_TXCW_FD 0x00000020 /* TXCW full duplex */
-#define E1000_TXCW_HD 0x00000040 /* TXCW half duplex */
-#define E1000_TXCW_PAUSE 0x00000080 /* TXCW sym pause request */
-#define E1000_TXCW_ASM_DIR 0x00000100 /* TXCW astm pause direction */
-#define E1000_TXCW_PAUSE_MASK 0x00000180 /* TXCW pause request mask */
-#define E1000_TXCW_RF 0x00003000 /* TXCW remote fault */
-#define E1000_TXCW_NP 0x00008000 /* TXCW next page */
-#define E1000_TXCW_CW 0x0000ffff /* TxConfigWord mask */
-#define E1000_TXCW_TXC 0x40000000 /* Transmit Config control */
-#define E1000_TXCW_ANE 0x80000000 /* Auto-neg enable */
-
-/* Receive Configuration Word */
-#define E1000_RXCW_CW 0x0000ffff /* RxConfigWord mask */
-#define E1000_RXCW_NC 0x04000000 /* Receive config no carrier */
-#define E1000_RXCW_IV 0x08000000 /* Receive config invalid */
-#define E1000_RXCW_CC 0x10000000 /* Receive config change */
-#define E1000_RXCW_C 0x20000000 /* Receive config */
-#define E1000_RXCW_SYNCH 0x40000000 /* Receive config synch */
-#define E1000_RXCW_ANC 0x80000000 /* Auto-neg complete */
-
-/* Transmit Control */
-#define E1000_TCTL_RST 0x00000001 /* software reset */
-#define E1000_TCTL_EN 0x00000002 /* enable tx */
-#define E1000_TCTL_BCE 0x00000004 /* busy check enable */
-#define E1000_TCTL_PSP 0x00000008 /* pad short packets */
-#define E1000_TCTL_CT 0x00000ff0 /* collision threshold */
-#define E1000_TCTL_COLD 0x003ff000 /* collision distance */
-#define E1000_TCTL_SWXOFF 0x00400000 /* SW Xoff transmission */
-#define E1000_TCTL_PBE 0x00800000 /* Packet Burst Enable */
-#define E1000_TCTL_RTLC 0x01000000 /* Re-transmit on late collision */
-#define E1000_TCTL_NRTU 0x02000000 /* No Re-transmit on underrun */
-#define E1000_TCTL_MULR 0x10000000 /* Multiple request support */
-/* Extended Transmit Control */
-#define E1000_TCTL_EXT_BST_MASK 0x000003FF /* Backoff Slot Time */
-#define E1000_TCTL_EXT_GCEX_MASK 0x000FFC00 /* Gigabit Carry Extend Padding */
-
-#define DEFAULT_80003ES2LAN_TCTL_EXT_GCEX 0x00010000
-
-/* Receive Checksum Control */
-#define E1000_RXCSUM_PCSS_MASK 0x000000FF /* Packet Checksum Start */
-#define E1000_RXCSUM_IPOFL 0x00000100 /* IPv4 checksum offload */
-#define E1000_RXCSUM_TUOFL 0x00000200 /* TCP / UDP checksum offload */
-#define E1000_RXCSUM_IPV6OFL 0x00000400 /* IPv6 checksum offload */
-#define E1000_RXCSUM_IPPCSE 0x00001000 /* IP payload checksum enable */
-#define E1000_RXCSUM_PCSD 0x00002000 /* packet checksum disabled */
-
-/* Multiple Receive Queue Control */
-#define E1000_MRQC_ENABLE_MASK 0x00000003
-#define E1000_MRQC_ENABLE_RSS_2Q 0x00000001
-#define E1000_MRQC_ENABLE_RSS_INT 0x00000004
-#define E1000_MRQC_RSS_FIELD_MASK 0xFFFF0000
-#define E1000_MRQC_RSS_FIELD_IPV4_TCP 0x00010000
-#define E1000_MRQC_RSS_FIELD_IPV4 0x00020000
-#define E1000_MRQC_RSS_FIELD_IPV6_TCP_EX 0x00040000
-#define E1000_MRQC_RSS_FIELD_IPV6_EX 0x00080000
-#define E1000_MRQC_RSS_FIELD_IPV6 0x00100000
-#define E1000_MRQC_RSS_FIELD_IPV6_TCP 0x00200000
-
-/* Definitions for power management and wakeup registers */
-/* Wake Up Control */
-#define E1000_WUC_APME 0x00000001 /* APM Enable */
-#define E1000_WUC_PME_EN 0x00000002 /* PME Enable */
-#define E1000_WUC_PME_STATUS 0x00000004 /* PME Status */
-#define E1000_WUC_APMPME 0x00000008 /* Assert PME on APM Wakeup */
-#define E1000_WUC_SPM 0x80000000 /* Enable SPM */
-
-/* Wake Up Filter Control */
-#define E1000_WUFC_LNKC 0x00000001 /* Link Status Change Wakeup Enable */
-#define E1000_WUFC_MAG 0x00000002 /* Magic Packet Wakeup Enable */
-#define E1000_WUFC_EX 0x00000004 /* Directed Exact Wakeup Enable */
-#define E1000_WUFC_MC 0x00000008 /* Directed Multicast Wakeup Enable */
-#define E1000_WUFC_BC 0x00000010 /* Broadcast Wakeup Enable */
-#define E1000_WUFC_ARP 0x00000020 /* ARP Request Packet Wakeup Enable */
-#define E1000_WUFC_IPV4 0x00000040 /* Directed IPv4 Packet Wakeup Enable */
-#define E1000_WUFC_IPV6 0x00000080 /* Directed IPv6 Packet Wakeup Enable */
-#define E1000_WUFC_IGNORE_TCO 0x00008000 /* Ignore WakeOn TCO packets */
-#define E1000_WUFC_FLX0 0x00010000 /* Flexible Filter 0 Enable */
-#define E1000_WUFC_FLX1 0x00020000 /* Flexible Filter 1 Enable */
-#define E1000_WUFC_FLX2 0x00040000 /* Flexible Filter 2 Enable */
-#define E1000_WUFC_FLX3 0x00080000 /* Flexible Filter 3 Enable */
-#define E1000_WUFC_ALL_FILTERS 0x000F00FF /* Mask for all wakeup filters */
-#define E1000_WUFC_FLX_OFFSET 16 /* Offset to the Flexible Filters bits */
-#define E1000_WUFC_FLX_FILTERS 0x000F0000 /* Mask for the 4 flexible filters */
-
-/* Wake Up Status */
-#define E1000_WUS_LNKC 0x00000001 /* Link Status Changed */
-#define E1000_WUS_MAG 0x00000002 /* Magic Packet Received */
-#define E1000_WUS_EX 0x00000004 /* Directed Exact Received */
-#define E1000_WUS_MC 0x00000008 /* Directed Multicast Received */
-#define E1000_WUS_BC 0x00000010 /* Broadcast Received */
-#define E1000_WUS_ARP 0x00000020 /* ARP Request Packet Received */
-#define E1000_WUS_IPV4 0x00000040 /* Directed IPv4 Packet Wakeup Received */
-#define E1000_WUS_IPV6 0x00000080 /* Directed IPv6 Packet Wakeup Received */
-#define E1000_WUS_FLX0 0x00010000 /* Flexible Filter 0 Match */
-#define E1000_WUS_FLX1 0x00020000 /* Flexible Filter 1 Match */
-#define E1000_WUS_FLX2 0x00040000 /* Flexible Filter 2 Match */
-#define E1000_WUS_FLX3 0x00080000 /* Flexible Filter 3 Match */
-#define E1000_WUS_FLX_FILTERS 0x000F0000 /* Mask for the 4 flexible filters */
-
-/* Management Control */
-#define E1000_MANC_SMBUS_EN 0x00000001 /* SMBus Enabled - RO */
-#define E1000_MANC_ASF_EN 0x00000002 /* ASF Enabled - RO */
-#define E1000_MANC_R_ON_FORCE 0x00000004 /* Reset on Force TCO - RO */
-#define E1000_MANC_RMCP_EN 0x00000100 /* Enable RCMP 026Fh Filtering */
-#define E1000_MANC_0298_EN 0x00000200 /* Enable RCMP 0298h Filtering */
-#define E1000_MANC_IPV4_EN 0x00000400 /* Enable IPv4 */
-#define E1000_MANC_IPV6_EN 0x00000800 /* Enable IPv6 */
-#define E1000_MANC_SNAP_EN 0x00001000 /* Accept LLC/SNAP */
-#define E1000_MANC_ARP_EN 0x00002000 /* Enable ARP Request Filtering */
-#define E1000_MANC_NEIGHBOR_EN 0x00004000 /* Enable Neighbor Discovery
- * Filtering */
-#define E1000_MANC_ARP_RES_EN 0x00008000 /* Enable ARP response Filtering */
-#define E1000_MANC_TCO_RESET 0x00010000 /* TCO Reset Occurred */
-#define E1000_MANC_RCV_TCO_EN 0x00020000 /* Receive TCO Packets Enabled */
-#define E1000_MANC_REPORT_STATUS 0x00040000 /* Status Reporting Enabled */
-#define E1000_MANC_RCV_ALL 0x00080000 /* Receive All Enabled */
-#define E1000_MANC_BLK_PHY_RST_ON_IDE 0x00040000 /* Block phy resets */
-#define E1000_MANC_EN_MAC_ADDR_FILTER 0x00100000 /* Enable MAC address
- * filtering */
-#define E1000_MANC_EN_MNG2HOST 0x00200000 /* Enable MNG packets to host
- * memory */
-#define E1000_MANC_EN_IP_ADDR_FILTER 0x00400000 /* Enable IP address
- * filtering */
-#define E1000_MANC_EN_XSUM_FILTER 0x00800000 /* Enable checksum filtering */
-#define E1000_MANC_BR_EN 0x01000000 /* Enable broadcast filtering */
-#define E1000_MANC_SMB_REQ 0x01000000 /* SMBus Request */
-#define E1000_MANC_SMB_GNT 0x02000000 /* SMBus Grant */
-#define E1000_MANC_SMB_CLK_IN 0x04000000 /* SMBus Clock In */
-#define E1000_MANC_SMB_DATA_IN 0x08000000 /* SMBus Data In */
-#define E1000_MANC_SMB_DATA_OUT 0x10000000 /* SMBus Data Out */
-#define E1000_MANC_SMB_CLK_OUT 0x20000000 /* SMBus Clock Out */
-
-#define E1000_MANC_SMB_DATA_OUT_SHIFT 28 /* SMBus Data Out Shift */
-#define E1000_MANC_SMB_CLK_OUT_SHIFT 29 /* SMBus Clock Out Shift */
-
-/* SW Semaphore Register */
-#define E1000_SWSM_SMBI 0x00000001 /* Driver Semaphore bit */
-#define E1000_SWSM_SWESMBI 0x00000002 /* FW Semaphore bit */
-#define E1000_SWSM_WMNG 0x00000004 /* Wake MNG Clock */
-#define E1000_SWSM_DRV_LOAD 0x00000008 /* Driver Loaded Bit */
-
-/* FW Semaphore Register */
-#define E1000_FWSM_MODE_MASK 0x0000000E /* FW mode */
-#define E1000_FWSM_MODE_SHIFT 1
-#define E1000_FWSM_FW_VALID 0x00008000 /* FW established a valid mode */
-
-#define E1000_FWSM_RSPCIPHY 0x00000040 /* Reset PHY on PCI reset */
-#define E1000_FWSM_DISSW 0x10000000 /* FW disable SW Write Access */
-#define E1000_FWSM_SKUSEL_MASK 0x60000000 /* LAN SKU select */
-#define E1000_FWSM_SKUEL_SHIFT 29
-#define E1000_FWSM_SKUSEL_EMB 0x0 /* Embedded SKU */
-#define E1000_FWSM_SKUSEL_CONS 0x1 /* Consumer SKU */
-#define E1000_FWSM_SKUSEL_PERF_100 0x2 /* Perf & Corp 10/100 SKU */
-#define E1000_FWSM_SKUSEL_PERF_GBE 0x3 /* Perf & Copr GbE SKU */
-
-/* FFLT Debug Register */
-#define E1000_FFLT_DBG_INVC 0x00100000 /* Invalid /C/ code handling */
-
-typedef enum {
- em_mng_mode_none = 0,
- em_mng_mode_asf,
- em_mng_mode_pt,
- em_mng_mode_ipmi,
- em_mng_mode_host_interface_only
-} em_mng_mode;
-
-/* Host Inteface Control Register */
-#define E1000_HICR_EN 0x00000001 /* Enable Bit - RO */
-#define E1000_HICR_C 0x00000002 /* Driver sets this bit when done
- * to put command in RAM */
-#define E1000_HICR_SV 0x00000004 /* Status Validity */
-#define E1000_HICR_FWR 0x00000080 /* FW reset. Set by the Host */
-
-/* Host Interface Command Interface - Address range 0x8800-0x8EFF */
-#define E1000_HI_MAX_DATA_LENGTH 252 /* Host Interface data length */
-#define E1000_HI_MAX_BLOCK_BYTE_LENGTH 1792 /* Number of bytes in range */
-#define E1000_HI_MAX_BLOCK_DWORD_LENGTH 448 /* Number of dwords in range */
-#define E1000_HI_COMMAND_TIMEOUT 500 /* Time in ms to process HI command */
-
-struct em_host_command_header {
- uint8_t command_id;
- uint8_t command_length;
- uint8_t command_options; /* I/F bits for command, status for return */
- uint8_t checksum;
-};
-struct em_host_command_info {
- struct em_host_command_header command_header; /* Command Head/Command Result Head has 4 bytes */
- uint8_t command_data[E1000_HI_MAX_DATA_LENGTH]; /* Command data can length 0..252 */
-};
-
-/* Host SMB register #0 */
-#define E1000_HSMC0R_CLKIN 0x00000001 /* SMB Clock in */
-#define E1000_HSMC0R_DATAIN 0x00000002 /* SMB Data in */
-#define E1000_HSMC0R_DATAOUT 0x00000004 /* SMB Data out */
-#define E1000_HSMC0R_CLKOUT 0x00000008 /* SMB Clock out */
-
-/* Host SMB register #1 */
-#define E1000_HSMC1R_CLKIN E1000_HSMC0R_CLKIN
-#define E1000_HSMC1R_DATAIN E1000_HSMC0R_DATAIN
-#define E1000_HSMC1R_DATAOUT E1000_HSMC0R_DATAOUT
-#define E1000_HSMC1R_CLKOUT E1000_HSMC0R_CLKOUT
-
-/* FW Status Register */
-#define E1000_FWSTS_FWS_MASK 0x000000FF /* FW Status */
-
-/* Wake Up Packet Length */
-#define E1000_WUPL_LENGTH_MASK 0x0FFF /* Only the lower 12 bits are valid */
-
-#define E1000_MDALIGN 4096
-
-/* PCI-Ex registers*/
-
-/* PCI-Ex Control Register */
-#define E1000_GCR_RXD_NO_SNOOP 0x00000001
-#define E1000_GCR_RXDSCW_NO_SNOOP 0x00000002
-#define E1000_GCR_RXDSCR_NO_SNOOP 0x00000004
-#define E1000_GCR_TXD_NO_SNOOP 0x00000008
-#define E1000_GCR_TXDSCW_NO_SNOOP 0x00000010
-#define E1000_GCR_TXDSCR_NO_SNOOP 0x00000020
-
-#define PCI_EX_NO_SNOOP_ALL (E1000_GCR_RXD_NO_SNOOP | \
- E1000_GCR_RXDSCW_NO_SNOOP | \
- E1000_GCR_RXDSCR_NO_SNOOP | \
- E1000_GCR_TXD_NO_SNOOP | \
- E1000_GCR_TXDSCW_NO_SNOOP | \
- E1000_GCR_TXDSCR_NO_SNOOP)
-
-#define PCI_EX_82566_SNOOP_ALL PCI_EX_NO_SNOOP_ALL
-
-#define E1000_GCR_L1_ACT_WITHOUT_L0S_RX 0x08000000
-/* Function Active and Power State to MNG */
-#define E1000_FACTPS_FUNC0_POWER_STATE_MASK 0x00000003
-#define E1000_FACTPS_LAN0_VALID 0x00000004
-#define E1000_FACTPS_FUNC0_AUX_EN 0x00000008
-#define E1000_FACTPS_FUNC1_POWER_STATE_MASK 0x000000C0
-#define E1000_FACTPS_FUNC1_POWER_STATE_SHIFT 6
-#define E1000_FACTPS_LAN1_VALID 0x00000100
-#define E1000_FACTPS_FUNC1_AUX_EN 0x00000200
-#define E1000_FACTPS_FUNC2_POWER_STATE_MASK 0x00003000
-#define E1000_FACTPS_FUNC2_POWER_STATE_SHIFT 12
-#define E1000_FACTPS_IDE_ENABLE 0x00004000
-#define E1000_FACTPS_FUNC2_AUX_EN 0x00008000
-#define E1000_FACTPS_FUNC3_POWER_STATE_MASK 0x000C0000
-#define E1000_FACTPS_FUNC3_POWER_STATE_SHIFT 18
-#define E1000_FACTPS_SP_ENABLE 0x00100000
-#define E1000_FACTPS_FUNC3_AUX_EN 0x00200000
-#define E1000_FACTPS_FUNC4_POWER_STATE_MASK 0x03000000
-#define E1000_FACTPS_FUNC4_POWER_STATE_SHIFT 24
-#define E1000_FACTPS_IPMI_ENABLE 0x04000000
-#define E1000_FACTPS_FUNC4_AUX_EN 0x08000000
-#define E1000_FACTPS_MNGCG 0x20000000
-#define E1000_FACTPS_LAN_FUNC_SEL 0x40000000
-#define E1000_FACTPS_PM_STATE_CHANGED 0x80000000
-
-/* EEPROM Commands - Microwire */
-#define EEPROM_READ_OPCODE_MICROWIRE 0x6 /* EEPROM read opcode */
-#define EEPROM_WRITE_OPCODE_MICROWIRE 0x5 /* EEPROM write opcode */
-#define EEPROM_ERASE_OPCODE_MICROWIRE 0x7 /* EEPROM erase opcode */
-#define EEPROM_EWEN_OPCODE_MICROWIRE 0x13 /* EEPROM erase/write enable */
-#define EEPROM_EWDS_OPCODE_MICROWIRE 0x10 /* EEPROM erast/write disable */
-
-/* EEPROM Commands - SPI */
-#define EEPROM_MAX_RETRY_SPI 5000 /* Max wait of 5ms, for RDY signal */
-#define EEPROM_READ_OPCODE_SPI 0x03 /* EEPROM read opcode */
-#define EEPROM_WRITE_OPCODE_SPI 0x02 /* EEPROM write opcode */
-#define EEPROM_A8_OPCODE_SPI 0x08 /* opcode bit-3 = address bit-8 */
-#define EEPROM_WREN_OPCODE_SPI 0x06 /* EEPROM set Write Enable latch */
-#define EEPROM_WRDI_OPCODE_SPI 0x04 /* EEPROM reset Write Enable latch */
-#define EEPROM_RDSR_OPCODE_SPI 0x05 /* EEPROM read Status register */
-#define EEPROM_WRSR_OPCODE_SPI 0x01 /* EEPROM write Status register */
-#define EEPROM_ERASE4K_OPCODE_SPI 0x20 /* EEPROM ERASE 4KB */
-#define EEPROM_ERASE64K_OPCODE_SPI 0xD8 /* EEPROM ERASE 64KB */
-#define EEPROM_ERASE256_OPCODE_SPI 0xDB /* EEPROM ERASE 256B */
-
-/* EEPROM Size definitions */
-#define EEPROM_WORD_SIZE_SHIFT 6
-#define EEPROM_SIZE_SHIFT 10
-#define EEPROM_SIZE_MASK 0x1C00
-
-/* EEPROM Word Offsets */
-#define EEPROM_COMPAT 0x0003
-#define EEPROM_ID_LED_SETTINGS 0x0004
-#define EEPROM_VERSION 0x0005
-#define EEPROM_SERDES_AMPLITUDE 0x0006 /* For SERDES output amplitude adjustment. */
-#define EEPROM_PHY_CLASS_WORD 0x0007
-#define EEPROM_INIT_CONTROL1_REG 0x000A
-#define EEPROM_INIT_CONTROL2_REG 0x000F
-#define EEPROM_SWDEF_PINS_CTRL_PORT_1 0x0010
-#define EEPROM_INIT_CONTROL3_PORT_B 0x0014
-#define EEPROM_INIT_3GIO_3 0x001A
-#define EEPROM_SWDEF_PINS_CTRL_PORT_0 0x0020
-#define EEPROM_INIT_CONTROL3_PORT_A 0x0024
-#define EEPROM_CFG 0x0012
-#define EEPROM_FLASH_VERSION 0x0032
-#define EEPROM_CHECKSUM_REG 0x003F
-
-#define E1000_EEPROM_CFG_DONE 0x00040000 /* MNG config cycle done */
-#define E1000_EEPROM_CFG_DONE_PORT_1 0x00080000 /* ...for second port */
-
-/* Word definitions for ID LED Settings */
-#define ID_LED_RESERVED_0000 0x0000
-#define ID_LED_RESERVED_FFFF 0xFFFF
-#define ID_LED_RESERVED_82573 0xF746
-#define ID_LED_DEFAULT_82573 0x1811
-#define ID_LED_DEFAULT ((ID_LED_OFF1_ON2 << 12) | \
- (ID_LED_OFF1_OFF2 << 8) | \
- (ID_LED_DEF1_DEF2 << 4) | \
- (ID_LED_DEF1_DEF2))
-#define ID_LED_DEFAULT_ICH8LAN ((ID_LED_DEF1_DEF2 << 12) | \
- (ID_LED_DEF1_OFF2 << 8) | \
- (ID_LED_DEF1_ON2 << 4) | \
- (ID_LED_DEF1_DEF2))
-#define ID_LED_DEF1_DEF2 0x1
-#define ID_LED_DEF1_ON2 0x2
-#define ID_LED_DEF1_OFF2 0x3
-#define ID_LED_ON1_DEF2 0x4
-#define ID_LED_ON1_ON2 0x5
-#define ID_LED_ON1_OFF2 0x6
-#define ID_LED_OFF1_DEF2 0x7
-#define ID_LED_OFF1_ON2 0x8
-#define ID_LED_OFF1_OFF2 0x9
-
-#define IGP_ACTIVITY_LED_MASK 0xFFFFF0FF
-#define IGP_ACTIVITY_LED_ENABLE 0x0300
-#define IGP_LED3_MODE 0x07000000
-
-
-/* Mask bits for SERDES amplitude adjustment in Word 6 of the EEPROM */
-#define EEPROM_SERDES_AMPLITUDE_MASK 0x000F
-
-/* Mask bit for PHY class in Word 7 of the EEPROM */
-#define EEPROM_PHY_CLASS_A 0x8000
-
-/* Mask bits for fields in Word 0x0a of the EEPROM */
-#define EEPROM_WORD0A_ILOS 0x0010
-#define EEPROM_WORD0A_SWDPIO 0x01E0
-#define EEPROM_WORD0A_LRST 0x0200
-#define EEPROM_WORD0A_FD 0x0400
-#define EEPROM_WORD0A_66MHZ 0x0800
-
-/* Mask bits for fields in Word 0x0f of the EEPROM */
-#define EEPROM_WORD0F_PAUSE_MASK 0x3000
-#define EEPROM_WORD0F_PAUSE 0x1000
-#define EEPROM_WORD0F_ASM_DIR 0x2000
-#define EEPROM_WORD0F_ANE 0x0800
-#define EEPROM_WORD0F_SWPDIO_EXT 0x00F0
-#define EEPROM_WORD0F_LPLU 0x0001
-
-/* Mask bits for fields in Word 0x10/0x20 of the EEPROM */
-#define EEPROM_WORD1020_GIGA_DISABLE 0x0010
-#define EEPROM_WORD1020_GIGA_DISABLE_NON_D0A 0x0008
-
-/* Mask bits for fields in Word 0x1a of the EEPROM */
-#define EEPROM_WORD1A_ASPM_MASK 0x000C
-
-/* For checksumming, the sum of all words in the EEPROM should equal 0xBABA. */
-#define EEPROM_SUM 0xBABA
-
-/* EEPROM Map defines (WORD OFFSETS)*/
-#define EEPROM_NODE_ADDRESS_BYTE_0 0
-#define EEPROM_PBA_BYTE_1 8
-
-#define EEPROM_RESERVED_WORD 0xFFFF
-
-/* EEPROM Map Sizes (Byte Counts) */
-#define PBA_SIZE 4
-
-/* Collision related configuration parameters */
-#define E1000_COLLISION_THRESHOLD 15
-#define E1000_CT_SHIFT 4
-/* Collision distance is a 0-based value that applies to
- * half-duplex-capable hardware only. */
-#define E1000_COLLISION_DISTANCE 63
-#define E1000_COLLISION_DISTANCE_82542 64
-#define E1000_FDX_COLLISION_DISTANCE E1000_COLLISION_DISTANCE
-#define E1000_HDX_COLLISION_DISTANCE E1000_COLLISION_DISTANCE
-#define E1000_COLD_SHIFT 12
-
-/* Number of Transmit and Receive Descriptors must be a multiple of 8 */
-#define REQ_TX_DESCRIPTOR_MULTIPLE 8
-#define REQ_RX_DESCRIPTOR_MULTIPLE 8
-
-/* Default values for the transmit IPG register */
-#define DEFAULT_82542_TIPG_IPGT 10
-#define DEFAULT_82543_TIPG_IPGT_FIBER 9
-#define DEFAULT_82543_TIPG_IPGT_COPPER 8
-
-#define E1000_TIPG_IPGT_MASK 0x000003FF
-#define E1000_TIPG_IPGR1_MASK 0x000FFC00
-#define E1000_TIPG_IPGR2_MASK 0x3FF00000
-
-#define DEFAULT_82542_TIPG_IPGR1 2
-#define DEFAULT_82543_TIPG_IPGR1 8
-#define E1000_TIPG_IPGR1_SHIFT 10
-
-#define DEFAULT_82542_TIPG_IPGR2 10
-#define DEFAULT_82543_TIPG_IPGR2 6
-#define DEFAULT_80003ES2LAN_TIPG_IPGR2 7
-#define E1000_TIPG_IPGR2_SHIFT 20
-
-#define DEFAULT_80003ES2LAN_TIPG_IPGT_10_100 0x00000009
-#define DEFAULT_80003ES2LAN_TIPG_IPGT_1000 0x00000008
-#define E1000_TXDMAC_DPP 0x00000001
-
-/* Adaptive IFS defines */
-#define TX_THRESHOLD_START 8
-#define TX_THRESHOLD_INCREMENT 10
-#define TX_THRESHOLD_DECREMENT 1
-#define TX_THRESHOLD_STOP 190
-#define TX_THRESHOLD_DISABLE 0
-#define TX_THRESHOLD_TIMER_MS 10000
-#define MIN_NUM_XMITS 1000
-#define IFS_MAX 80
-#define IFS_STEP 10
-#define IFS_MIN 40
-#define IFS_RATIO 4
-
-/* Extended Configuration Control and Size */
-#define E1000_EXTCNF_CTRL_PCIE_WRITE_ENABLE 0x00000001
-#define E1000_EXTCNF_CTRL_PHY_WRITE_ENABLE 0x00000002
-#define E1000_EXTCNF_CTRL_D_UD_ENABLE 0x00000004
-#define E1000_EXTCNF_CTRL_D_UD_LATENCY 0x00000008
-#define E1000_EXTCNF_CTRL_D_UD_OWNER 0x00000010
-#define E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP 0x00000020
-#define E1000_EXTCNF_CTRL_MDIO_HW_OWNERSHIP 0x00000040
-#define E1000_EXTCNF_CTRL_EXT_CNF_POINTER 0x0FFF0000
-
-#define E1000_EXTCNF_SIZE_EXT_PHY_LENGTH 0x000000FF
-#define E1000_EXTCNF_SIZE_EXT_DOCK_LENGTH 0x0000FF00
-#define E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH 0x00FF0000
-#define E1000_EXTCNF_CTRL_LCD_WRITE_ENABLE 0x00000001
-#define E1000_EXTCNF_CTRL_SWFLAG 0x00000020
-
-/* PBA constants */
-#define E1000_PBA_8K 0x0008 /* 8KB, default Rx allocation */
-#define E1000_PBA_12K 0x000C /* 12KB, default Rx allocation */
-#define E1000_PBA_16K 0x0010 /* 16KB, default TX allocation */
-#define E1000_PBA_22K 0x0016
-#define E1000_PBA_24K 0x0018
-#define E1000_PBA_30K 0x001E
-#define E1000_PBA_32K 0x0020
-#define E1000_PBA_34K 0x0022
-#define E1000_PBA_38K 0x0026
-#define E1000_PBA_40K 0x0028
-#define E1000_PBA_48K 0x0030 /* 48KB, default RX allocation */
-
-#define E1000_PBS_16K E1000_PBA_16K
-
-/* Flow Control Constants */
-#define FLOW_CONTROL_ADDRESS_LOW 0x00C28001
-#define FLOW_CONTROL_ADDRESS_HIGH 0x00000100
-#define FLOW_CONTROL_TYPE 0x8808
-
-/* The historical defaults for the flow control values are given below. */
-#define FC_DEFAULT_HI_THRESH (0x8000) /* 32KB */
-#define FC_DEFAULT_LO_THRESH (0x4000) /* 16KB */
-#define FC_DEFAULT_TX_TIMER (0x100) /* ~130 us */
-
-/* PCIX Config space */
-#define PCIX_COMMAND_REGISTER 0xE6
-#define PCIX_STATUS_REGISTER_LO 0xE8
-#define PCIX_STATUS_REGISTER_HI 0xEA
-
-#define PCIX_COMMAND_MMRBC_MASK 0x000C
-#define PCIX_COMMAND_MMRBC_SHIFT 0x2
-#define PCIX_STATUS_HI_MMRBC_MASK 0x0060
-#define PCIX_STATUS_HI_MMRBC_SHIFT 0x5
-#define PCIX_STATUS_HI_MMRBC_4K 0x3
-#define PCIX_STATUS_HI_MMRBC_2K 0x2
-
-
-/* Number of bits required to shift right the "pause" bits from the
- * EEPROM (bits 13:12) to the "pause" (bits 8:7) field in the TXCW register.
- */
-#define PAUSE_SHIFT 5
-
-/* Number of bits required to shift left the "SWDPIO" bits from the
- * EEPROM (bits 8:5) to the "SWDPIO" (bits 25:22) field in the CTRL register.
- */
-#define SWDPIO_SHIFT 17
-
-/* Number of bits required to shift left the "SWDPIO_EXT" bits from the
- * EEPROM word F (bits 7:4) to the bits 11:8 of The Extended CTRL register.
- */
-#define SWDPIO__EXT_SHIFT 4
-
-/* Number of bits required to shift left the "ILOS" bit from the EEPROM
- * (bit 4) to the "ILOS" (bit 7) field in the CTRL register.
- */
-#define ILOS_SHIFT 3
-
-
-#define RECEIVE_BUFFER_ALIGN_SIZE (256)
-
-/* Number of milliseconds we wait for auto-negotiation to complete */
-#define LINK_UP_TIMEOUT 500
-
-/* Number of 100 microseconds we wait for PCI Express master disable */
-#define MASTER_DISABLE_TIMEOUT 800
-/* Number of milliseconds we wait for Eeprom auto read bit done after MAC reset */
-#define AUTO_READ_DONE_TIMEOUT 10
-/* Number of milliseconds we wait for PHY configuration done after MAC reset */
-#define PHY_CFG_TIMEOUT 100
-
-#define E1000_TX_BUFFER_SIZE ((uint32_t)1514)
-
-/* The carrier extension symbol, as received by the NIC. */
-#define CARRIER_EXTENSION 0x0F
-
-/* TBI_ACCEPT macro definition:
- *
- * This macro requires:
- * adapter = a pointer to struct em_hw
- * status = the 8 bit status field of the RX descriptor with EOP set
- * error = the 8 bit error field of the RX descriptor with EOP set
- * length = the sum of all the length fields of the RX descriptors that
- * make up the current frame
- * last_byte = the last byte of the frame DMAed by the hardware
- * max_frame_length = the maximum frame length we want to accept.
- * min_frame_length = the minimum frame length we want to accept.
- *
- * This macro is a conditional that should be used in the interrupt
- * handler's Rx processing routine when RxErrors have been detected.
- *
- * Typical use:
- * ...
- * if (TBI_ACCEPT) {
- * accept_frame = TRUE;
- * em_tbi_adjust_stats(adapter, MacAddress);
- * frame_length--;
- * } else {
- * accept_frame = FALSE;
- * }
- * ...
- */
-
-#define TBI_ACCEPT(adapter, status, errors, length, last_byte) \
- ((adapter)->tbi_compatibility_on && \
- (((errors) & E1000_RXD_ERR_FRAME_ERR_MASK) == E1000_RXD_ERR_CE) && \
- ((last_byte) == CARRIER_EXTENSION) && \
- (((status) & E1000_RXD_STAT_VP) ? \
- (((length) > ((adapter)->min_frame_size - VLAN_TAG_SIZE)) && \
- ((length) <= ((adapter)->max_frame_size + 1))) : \
- (((length) > (adapter)->min_frame_size) && \
- ((length) <= ((adapter)->max_frame_size + VLAN_TAG_SIZE + 1)))))
-
-
-/* Structures, enums, and macros for the PHY */
-
-/* Bit definitions for the Management Data IO (MDIO) and Management Data
- * Clock (MDC) pins in the Device Control Register.
- */
-#define E1000_CTRL_PHY_RESET_DIR E1000_CTRL_SWDPIO0
-#define E1000_CTRL_PHY_RESET E1000_CTRL_SWDPIN0
-#define E1000_CTRL_MDIO_DIR E1000_CTRL_SWDPIO2
-#define E1000_CTRL_MDIO E1000_CTRL_SWDPIN2
-#define E1000_CTRL_MDC_DIR E1000_CTRL_SWDPIO3
-#define E1000_CTRL_MDC E1000_CTRL_SWDPIN3
-#define E1000_CTRL_PHY_RESET_DIR4 E1000_CTRL_EXT_SDP4_DIR
-#define E1000_CTRL_PHY_RESET4 E1000_CTRL_EXT_SDP4_DATA
-
-/* PHY 1000 MII Register/Bit Definitions */
-/* PHY Registers defined by IEEE */
-#define PHY_CTRL 0x00 /* Control Register */
-#define PHY_STATUS 0x01 /* Status Regiser */
-#define PHY_ID1 0x02 /* Phy Id Reg (word 1) */
-#define PHY_ID2 0x03 /* Phy Id Reg (word 2) */
-#define PHY_AUTONEG_ADV 0x04 /* Autoneg Advertisement */
-#define PHY_LP_ABILITY 0x05 /* Link Partner Ability (Base Page) */
-#define PHY_AUTONEG_EXP 0x06 /* Autoneg Expansion Reg */
-#define PHY_NEXT_PAGE_TX 0x07 /* Next Page TX */
-#define PHY_LP_NEXT_PAGE 0x08 /* Link Partner Next Page */
-#define PHY_1000T_CTRL 0x09 /* 1000Base-T Control Reg */
-#define PHY_1000T_STATUS 0x0A /* 1000Base-T Status Reg */
-#define PHY_EXT_STATUS 0x0F /* Extended Status Reg */
-
-#define MAX_PHY_REG_ADDRESS 0x1F /* 5 bit address bus (0-0x1F) */
-#define MAX_PHY_MULTI_PAGE_REG 0xF /* Registers equal on all pages */
-
-/* M88E1000 Specific Registers */
-#define M88E1000_PHY_SPEC_CTRL 0x10 /* PHY Specific Control Register */
-#define M88E1000_PHY_SPEC_STATUS 0x11 /* PHY Specific Status Register */
-#define M88E1000_INT_ENABLE 0x12 /* Interrupt Enable Register */
-#define M88E1000_INT_STATUS 0x13 /* Interrupt Status Register */
-#define M88E1000_EXT_PHY_SPEC_CTRL 0x14 /* Extended PHY Specific Control */
-#define M88E1000_RX_ERR_CNTR 0x15 /* Receive Error Counter */
-
-#define M88E1000_PHY_EXT_CTRL 0x1A /* PHY extend control register */
-#define M88E1000_PHY_PAGE_SELECT 0x1D /* Reg 29 for page number setting */
-#define M88E1000_PHY_GEN_CONTROL 0x1E /* Its meaning depends on reg 29 */
-#define M88E1000_PHY_VCO_REG_BIT8 0x100 /* Bits 8 & 11 are adjusted for */
-#define M88E1000_PHY_VCO_REG_BIT11 0x800 /* improved BER performance */
-
-#define IGP01E1000_IEEE_REGS_PAGE 0x0000
-#define IGP01E1000_IEEE_RESTART_AUTONEG 0x3300
-#define IGP01E1000_IEEE_FORCE_GIGA 0x0140
-
-/* IGP01E1000 Specific Registers */
-#define IGP01E1000_PHY_PORT_CONFIG 0x10 /* PHY Specific Port Config Register */
-#define IGP01E1000_PHY_PORT_STATUS 0x11 /* PHY Specific Status Register */
-#define IGP01E1000_PHY_PORT_CTRL 0x12 /* PHY Specific Control Register */
-#define IGP01E1000_PHY_LINK_HEALTH 0x13 /* PHY Link Health Register */
-#define IGP01E1000_GMII_FIFO 0x14 /* GMII FIFO Register */
-#define IGP01E1000_PHY_CHANNEL_QUALITY 0x15 /* PHY Channel Quality Register */
-#define IGP02E1000_PHY_POWER_MGMT 0x19
-#define IGP01E1000_PHY_PAGE_SELECT 0x1F /* PHY Page Select Core Register */
-
-/* IGP01E1000 AGC Registers - stores the cable length values*/
-#define IGP01E1000_PHY_AGC_A 0x1172
-#define IGP01E1000_PHY_AGC_B 0x1272
-#define IGP01E1000_PHY_AGC_C 0x1472
-#define IGP01E1000_PHY_AGC_D 0x1872
-
-/* IGP02E1000 AGC Registers for cable length values */
-#define IGP02E1000_PHY_AGC_A 0x11B1
-#define IGP02E1000_PHY_AGC_B 0x12B1
-#define IGP02E1000_PHY_AGC_C 0x14B1
-#define IGP02E1000_PHY_AGC_D 0x18B1
-
-/* IGP01E1000 DSP Reset Register */
-#define IGP01E1000_PHY_DSP_RESET 0x1F33
-#define IGP01E1000_PHY_DSP_SET 0x1F71
-#define IGP01E1000_PHY_DSP_FFE 0x1F35
-
-#define IGP01E1000_PHY_CHANNEL_NUM 4
-#define IGP02E1000_PHY_CHANNEL_NUM 4
-
-#define IGP01E1000_PHY_AGC_PARAM_A 0x1171
-#define IGP01E1000_PHY_AGC_PARAM_B 0x1271
-#define IGP01E1000_PHY_AGC_PARAM_C 0x1471
-#define IGP01E1000_PHY_AGC_PARAM_D 0x1871
-
-#define IGP01E1000_PHY_EDAC_MU_INDEX 0xC000
-#define IGP01E1000_PHY_EDAC_SIGN_EXT_9_BITS 0x8000
-
-#define IGP01E1000_PHY_ANALOG_TX_STATE 0x2890
-#define IGP01E1000_PHY_ANALOG_CLASS_A 0x2000
-#define IGP01E1000_PHY_FORCE_ANALOG_ENABLE 0x0004
-#define IGP01E1000_PHY_DSP_FFE_CM_CP 0x0069
-
-#define IGP01E1000_PHY_DSP_FFE_DEFAULT 0x002A
-/* IGP01E1000 PCS Initialization register - stores the polarity status when
- * speed = 1000 Mbps. */
-#define IGP01E1000_PHY_PCS_INIT_REG 0x00B4
-#define IGP01E1000_PHY_PCS_CTRL_REG 0x00B5
-
-#define IGP01E1000_ANALOG_REGS_PAGE 0x20C0
-
-/* Bits...
- * 15-5: page
- * 4-0: register offset
- */
-#define GG82563_PAGE_SHIFT 5
-#define GG82563_REG(page, reg) \
- (((page) << GG82563_PAGE_SHIFT) | ((reg) & MAX_PHY_REG_ADDRESS))
-#define GG82563_MIN_ALT_REG 30
-
-/* GG82563 Specific Registers */
-#define GG82563_PHY_SPEC_CTRL \
- GG82563_REG(0, 16) /* PHY Specific Control */
-#define GG82563_PHY_SPEC_STATUS \
- GG82563_REG(0, 17) /* PHY Specific Status */
-#define GG82563_PHY_INT_ENABLE \
- GG82563_REG(0, 18) /* Interrupt Enable */
-#define GG82563_PHY_SPEC_STATUS_2 \
- GG82563_REG(0, 19) /* PHY Specific Status 2 */
-#define GG82563_PHY_RX_ERR_CNTR \
- GG82563_REG(0, 21) /* Receive Error Counter */
-#define GG82563_PHY_PAGE_SELECT \
- GG82563_REG(0, 22) /* Page Select */
-#define GG82563_PHY_SPEC_CTRL_2 \
- GG82563_REG(0, 26) /* PHY Specific Control 2 */
-#define GG82563_PHY_PAGE_SELECT_ALT \
- GG82563_REG(0, 29) /* Alternate Page Select */
-#define GG82563_PHY_TEST_CLK_CTRL \
- GG82563_REG(0, 30) /* Test Clock Control (use reg. 29 to select) */
-
-#define GG82563_PHY_MAC_SPEC_CTRL \
- GG82563_REG(2, 21) /* MAC Specific Control Register */
-#define GG82563_PHY_MAC_SPEC_CTRL_2 \
- GG82563_REG(2, 26) /* MAC Specific Control 2 */
-
-#define GG82563_PHY_DSP_DISTANCE \
- GG82563_REG(5, 26) /* DSP Distance */
-
-/* Page 193 - Port Control Registers */
-#define GG82563_PHY_KMRN_MODE_CTRL \
- GG82563_REG(193, 16) /* Kumeran Mode Control */
-#define GG82563_PHY_PORT_RESET \
- GG82563_REG(193, 17) /* Port Reset */
-#define GG82563_PHY_REVISION_ID \
- GG82563_REG(193, 18) /* Revision ID */
-#define GG82563_PHY_DEVICE_ID \
- GG82563_REG(193, 19) /* Device ID */
-#define GG82563_PHY_PWR_MGMT_CTRL \
- GG82563_REG(193, 20) /* Power Management Control */
-#define GG82563_PHY_RATE_ADAPT_CTRL \
- GG82563_REG(193, 25) /* Rate Adaptation Control */
-
-/* Page 194 - KMRN Registers */
-#define GG82563_PHY_KMRN_FIFO_CTRL_STAT \
- GG82563_REG(194, 16) /* FIFO's Control/Status */
-#define GG82563_PHY_KMRN_CTRL \
- GG82563_REG(194, 17) /* Control */
-#define GG82563_PHY_INBAND_CTRL \
- GG82563_REG(194, 18) /* Inband Control */
-#define GG82563_PHY_KMRN_DIAGNOSTIC \
- GG82563_REG(194, 19) /* Diagnostic */
-#define GG82563_PHY_ACK_TIMEOUTS \
- GG82563_REG(194, 20) /* Acknowledge Timeouts */
-#define GG82563_PHY_ADV_ABILITY \
- GG82563_REG(194, 21) /* Advertised Ability */
-#define GG82563_PHY_LINK_PARTNER_ADV_ABILITY \
- GG82563_REG(194, 23) /* Link Partner Advertised Ability */
-#define GG82563_PHY_ADV_NEXT_PAGE \
- GG82563_REG(194, 24) /* Advertised Next Page */
-#define GG82563_PHY_LINK_PARTNER_ADV_NEXT_PAGE \
- GG82563_REG(194, 25) /* Link Partner Advertised Next page */
-#define GG82563_PHY_KMRN_MISC \
- GG82563_REG(194, 26) /* Misc. */
-
-/* PHY Control Register */
-#define MII_CR_SPEED_SELECT_MSB 0x0040 /* bits 6,13: 10=1000, 01=100, 00=10 */
-#define MII_CR_COLL_TEST_ENABLE 0x0080 /* Collision test enable */
-#define MII_CR_FULL_DUPLEX 0x0100 /* FDX =1, half duplex =0 */
-#define MII_CR_RESTART_AUTO_NEG 0x0200 /* Restart auto negotiation */
-#define MII_CR_ISOLATE 0x0400 /* Isolate PHY from MII */
-#define MII_CR_POWER_DOWN 0x0800 /* Power down */
-#define MII_CR_AUTO_NEG_EN 0x1000 /* Auto Neg Enable */
-#define MII_CR_SPEED_SELECT_LSB 0x2000 /* bits 6,13: 10=1000, 01=100, 00=10 */
-#define MII_CR_LOOPBACK 0x4000 /* 0 = normal, 1 = loopback */
-#define MII_CR_RESET 0x8000 /* 0 = normal, 1 = PHY reset */
-
-/* PHY Status Register */
-#define MII_SR_EXTENDED_CAPS 0x0001 /* Extended register capabilities */
-#define MII_SR_JABBER_DETECT 0x0002 /* Jabber Detected */
-#define MII_SR_LINK_STATUS 0x0004 /* Link Status 1 = link */
-#define MII_SR_AUTONEG_CAPS 0x0008 /* Auto Neg Capable */
-#define MII_SR_REMOTE_FAULT 0x0010 /* Remote Fault Detect */
-#define MII_SR_AUTONEG_COMPLETE 0x0020 /* Auto Neg Complete */
-#define MII_SR_PREAMBLE_SUPPRESS 0x0040 /* Preamble may be suppressed */
-#define MII_SR_EXTENDED_STATUS 0x0100 /* Ext. status info in Reg 0x0F */
-#define MII_SR_100T2_HD_CAPS 0x0200 /* 100T2 Half Duplex Capable */
-#define MII_SR_100T2_FD_CAPS 0x0400 /* 100T2 Full Duplex Capable */
-#define MII_SR_10T_HD_CAPS 0x0800 /* 10T Half Duplex Capable */
-#define MII_SR_10T_FD_CAPS 0x1000 /* 10T Full Duplex Capable */
-#define MII_SR_100X_HD_CAPS 0x2000 /* 100X Half Duplex Capable */
-#define MII_SR_100X_FD_CAPS 0x4000 /* 100X Full Duplex Capable */
-#define MII_SR_100T4_CAPS 0x8000 /* 100T4 Capable */
-
-/* Autoneg Advertisement Register */
-#define NWAY_AR_SELECTOR_FIELD 0x0001 /* indicates IEEE 802.3 CSMA/CD */
-#define NWAY_AR_10T_HD_CAPS 0x0020 /* 10T Half Duplex Capable */
-#define NWAY_AR_10T_FD_CAPS 0x0040 /* 10T Full Duplex Capable */
-#define NWAY_AR_100TX_HD_CAPS 0x0080 /* 100TX Half Duplex Capable */
-#define NWAY_AR_100TX_FD_CAPS 0x0100 /* 100TX Full Duplex Capable */
-#define NWAY_AR_100T4_CAPS 0x0200 /* 100T4 Capable */
-#define NWAY_AR_PAUSE 0x0400 /* Pause operation desired */
-#define NWAY_AR_ASM_DIR 0x0800 /* Asymmetric Pause Direction bit */
-#define NWAY_AR_REMOTE_FAULT 0x2000 /* Remote Fault detected */
-#define NWAY_AR_NEXT_PAGE 0x8000 /* Next Page ability supported */
-
-/* Link Partner Ability Register (Base Page) */
-#define NWAY_LPAR_SELECTOR_FIELD 0x0000 /* LP protocol selector field */
-#define NWAY_LPAR_10T_HD_CAPS 0x0020 /* LP is 10T Half Duplex Capable */
-#define NWAY_LPAR_10T_FD_CAPS 0x0040 /* LP is 10T Full Duplex Capable */
-#define NWAY_LPAR_100TX_HD_CAPS 0x0080 /* LP is 100TX Half Duplex Capable */
-#define NWAY_LPAR_100TX_FD_CAPS 0x0100 /* LP is 100TX Full Duplex Capable */
-#define NWAY_LPAR_100T4_CAPS 0x0200 /* LP is 100T4 Capable */
-#define NWAY_LPAR_PAUSE 0x0400 /* LP Pause operation desired */
-#define NWAY_LPAR_ASM_DIR 0x0800 /* LP Asymmetric Pause Direction bit */
-#define NWAY_LPAR_REMOTE_FAULT 0x2000 /* LP has detected Remote Fault */
-#define NWAY_LPAR_ACKNOWLEDGE 0x4000 /* LP has rx'd link code word */
-#define NWAY_LPAR_NEXT_PAGE 0x8000 /* Next Page ability supported */
-
-/* Autoneg Expansion Register */
-#define NWAY_ER_LP_NWAY_CAPS 0x0001 /* LP has Auto Neg Capability */
-#define NWAY_ER_PAGE_RXD 0x0002 /* LP is 10T Half Duplex Capable */
-#define NWAY_ER_NEXT_PAGE_CAPS 0x0004 /* LP is 10T Full Duplex Capable */
-#define NWAY_ER_LP_NEXT_PAGE_CAPS 0x0008 /* LP is 100TX Half Duplex Capable */
-#define NWAY_ER_PAR_DETECT_FAULT 0x0010 /* LP is 100TX Full Duplex Capable */
-
-/* Next Page TX Register */
-#define NPTX_MSG_CODE_FIELD 0x0001 /* NP msg code or unformatted data */
-#define NPTX_TOGGLE 0x0800 /* Toggles between exchanges
- * of different NP
- */
-#define NPTX_ACKNOWLDGE2 0x1000 /* 1 = will comply with msg
- * 0 = cannot comply with msg
- */
-#define NPTX_MSG_PAGE 0x2000 /* formatted(1)/unformatted(0) pg */
-#define NPTX_NEXT_PAGE 0x8000 /* 1 = addition NP will follow
- * 0 = sending last NP
- */
-
-/* Link Partner Next Page Register */
-#define LP_RNPR_MSG_CODE_FIELD 0x0001 /* NP msg code or unformatted data */
-#define LP_RNPR_TOGGLE 0x0800 /* Toggles between exchanges
- * of different NP
- */
-#define LP_RNPR_ACKNOWLDGE2 0x1000 /* 1 = will comply with msg
- * 0 = cannot comply with msg
- */
-#define LP_RNPR_MSG_PAGE 0x2000 /* formatted(1)/unformatted(0) pg */
-#define LP_RNPR_ACKNOWLDGE 0x4000 /* 1 = ACK / 0 = NO ACK */
-#define LP_RNPR_NEXT_PAGE 0x8000 /* 1 = addition NP will follow
- * 0 = sending last NP
- */
-
-/* 1000BASE-T Control Register */
-#define CR_1000T_ASYM_PAUSE 0x0080 /* Advertise asymmetric pause bit */
-#define CR_1000T_HD_CAPS 0x0100 /* Advertise 1000T HD capability */
-#define CR_1000T_FD_CAPS 0x0200 /* Advertise 1000T FD capability */
-#define CR_1000T_REPEATER_DTE 0x0400 /* 1=Repeater/switch device port */
- /* 0=DTE device */
-#define CR_1000T_MS_VALUE 0x0800 /* 1=Configure PHY as Master */
- /* 0=Configure PHY as Slave */
-#define CR_1000T_MS_ENABLE 0x1000 /* 1=Master/Slave manual config value */
- /* 0=Automatic Master/Slave config */
-#define CR_1000T_TEST_MODE_NORMAL 0x0000 /* Normal Operation */
-#define CR_1000T_TEST_MODE_1 0x2000 /* Transmit Waveform test */
-#define CR_1000T_TEST_MODE_2 0x4000 /* Master Transmit Jitter test */
-#define CR_1000T_TEST_MODE_3 0x6000 /* Slave Transmit Jitter test */
-#define CR_1000T_TEST_MODE_4 0x8000 /* Transmitter Distortion test */
-
-/* 1000BASE-T Status Register */
-#define SR_1000T_IDLE_ERROR_CNT 0x00FF /* Num idle errors since last read */
-#define SR_1000T_ASYM_PAUSE_DIR 0x0100 /* LP asymmetric pause direction bit */
-#define SR_1000T_LP_HD_CAPS 0x0400 /* LP is 1000T HD capable */
-#define SR_1000T_LP_FD_CAPS 0x0800 /* LP is 1000T FD capable */
-#define SR_1000T_REMOTE_RX_STATUS 0x1000 /* Remote receiver OK */
-#define SR_1000T_LOCAL_RX_STATUS 0x2000 /* Local receiver OK */
-#define SR_1000T_MS_CONFIG_RES 0x4000 /* 1=Local TX is Master, 0=Slave */
-#define SR_1000T_MS_CONFIG_FAULT 0x8000 /* Master/Slave config fault */
-#define SR_1000T_REMOTE_RX_STATUS_SHIFT 12
-#define SR_1000T_LOCAL_RX_STATUS_SHIFT 13
-#define SR_1000T_PHY_EXCESSIVE_IDLE_ERR_COUNT 5
-#define FFE_IDLE_ERR_COUNT_TIMEOUT_20 20
-#define FFE_IDLE_ERR_COUNT_TIMEOUT_100 100
-
-/* Extended Status Register */
-#define IEEE_ESR_1000T_HD_CAPS 0x1000 /* 1000T HD capable */
-#define IEEE_ESR_1000T_FD_CAPS 0x2000 /* 1000T FD capable */
-#define IEEE_ESR_1000X_HD_CAPS 0x4000 /* 1000X HD capable */
-#define IEEE_ESR_1000X_FD_CAPS 0x8000 /* 1000X FD capable */
-
-#define PHY_TX_POLARITY_MASK 0x0100 /* register 10h bit 8 (polarity bit) */
-#define PHY_TX_NORMAL_POLARITY 0 /* register 10h bit 8 (normal polarity) */
-
-#define AUTO_POLARITY_DISABLE 0x0010 /* register 11h bit 4 */
- /* (0=enable, 1=disable) */
-
-/* M88E1000 PHY Specific Control Register */
-#define M88E1000_PSCR_JABBER_DISABLE 0x0001 /* 1=Jabber Function disabled */
-#define M88E1000_PSCR_POLARITY_REVERSAL 0x0002 /* 1=Polarity Reversal enabled */
-#define M88E1000_PSCR_SQE_TEST 0x0004 /* 1=SQE Test enabled */
-#define M88E1000_PSCR_CLK125_DISABLE 0x0010 /* 1=CLK125 low,
- * 0=CLK125 toggling
- */
-#define M88E1000_PSCR_MDI_MANUAL_MODE 0x0000 /* MDI Crossover Mode bits 6:5 */
- /* Manual MDI configuration */
-#define M88E1000_PSCR_MDIX_MANUAL_MODE 0x0020 /* Manual MDIX configuration */
-#define M88E1000_PSCR_AUTO_X_1000T 0x0040 /* 1000BASE-T: Auto crossover,
- * 100BASE-TX/10BASE-T:
- * MDI Mode
- */
-#define M88E1000_PSCR_AUTO_X_MODE 0x0060 /* Auto crossover enabled
- * all speeds.
- */
-#define M88E1000_PSCR_10BT_EXT_DIST_ENABLE 0x0080
- /* 1=Enable Extended 10BASE-T distance
- * (Lower 10BASE-T RX Threshold)
- * 0=Normal 10BASE-T RX Threshold */
-#define M88E1000_PSCR_MII_5BIT_ENABLE 0x0100
- /* 1=5-Bit interface in 100BASE-TX
- * 0=MII interface in 100BASE-TX */
-#define M88E1000_PSCR_SCRAMBLER_DISABLE 0x0200 /* 1=Scrambler disable */
-#define M88E1000_PSCR_FORCE_LINK_GOOD 0x0400 /* 1=Force link good */
-#define M88E1000_PSCR_ASSERT_CRS_ON_TX 0x0800 /* 1=Assert CRS on Transmit */
-
-#define M88E1000_PSCR_POLARITY_REVERSAL_SHIFT 1
-#define M88E1000_PSCR_AUTO_X_MODE_SHIFT 5
-#define M88E1000_PSCR_10BT_EXT_DIST_ENABLE_SHIFT 7
-
-/* M88E1000 PHY Specific Status Register */
-#define M88E1000_PSSR_JABBER 0x0001 /* 1=Jabber */
-#define M88E1000_PSSR_REV_POLARITY 0x0002 /* 1=Polarity reversed */
-#define M88E1000_PSSR_DOWNSHIFT 0x0020 /* 1=Downshifted */
-#define M88E1000_PSSR_MDIX 0x0040 /* 1=MDIX; 0=MDI */
-#define M88E1000_PSSR_CABLE_LENGTH 0x0380 /* 0=<50M;1=50-80M;2=80-110M;
- * 3=110-140M;4=>140M */
-#define M88E1000_PSSR_LINK 0x0400 /* 1=Link up, 0=Link down */
-#define M88E1000_PSSR_SPD_DPLX_RESOLVED 0x0800 /* 1=Speed & Duplex resolved */
-#define M88E1000_PSSR_PAGE_RCVD 0x1000 /* 1=Page received */
-#define M88E1000_PSSR_DPLX 0x2000 /* 1=Duplex 0=Half Duplex */
-#define M88E1000_PSSR_SPEED 0xC000 /* Speed, bits 14:15 */
-#define M88E1000_PSSR_10MBS 0x0000 /* 00=10Mbs */
-#define M88E1000_PSSR_100MBS 0x4000 /* 01=100Mbs */
-#define M88E1000_PSSR_1000MBS 0x8000 /* 10=1000Mbs */
-
-#define M88E1000_PSSR_REV_POLARITY_SHIFT 1
-#define M88E1000_PSSR_DOWNSHIFT_SHIFT 5
-#define M88E1000_PSSR_MDIX_SHIFT 6
-#define M88E1000_PSSR_CABLE_LENGTH_SHIFT 7
-
-/* M88E1000 Extended PHY Specific Control Register */
-#define M88E1000_EPSCR_FIBER_LOOPBACK 0x4000 /* 1=Fiber loopback */
-#define M88E1000_EPSCR_DOWN_NO_IDLE 0x8000 /* 1=Lost lock detect enabled.
- * Will assert lost lock and bring
- * link down if idle not seen
- * within 1ms in 1000BASE-T
- */
-/* Number of times we will attempt to autonegotiate before downshifting if we
- * are the master */
-#define M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK 0x0C00
-#define M88E1000_EPSCR_MASTER_DOWNSHIFT_1X 0x0000
-#define M88E1000_EPSCR_MASTER_DOWNSHIFT_2X 0x0400
-#define M88E1000_EPSCR_MASTER_DOWNSHIFT_3X 0x0800
-#define M88E1000_EPSCR_MASTER_DOWNSHIFT_4X 0x0C00
-/* Number of times we will attempt to autonegotiate before downshifting if we
- * are the slave */
-#define M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK 0x0300
-#define M88E1000_EPSCR_SLAVE_DOWNSHIFT_DIS 0x0000
-#define M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X 0x0100
-#define M88E1000_EPSCR_SLAVE_DOWNSHIFT_2X 0x0200
-#define M88E1000_EPSCR_SLAVE_DOWNSHIFT_3X 0x0300
-#define M88E1000_EPSCR_TX_CLK_2_5 0x0060 /* 2.5 MHz TX_CLK */
-#define M88E1000_EPSCR_TX_CLK_25 0x0070 /* 25 MHz TX_CLK */
-#define M88E1000_EPSCR_TX_CLK_0 0x0000 /* NO TX_CLK */
-
-/* M88EC018 Rev 2 specific DownShift settings */
-#define M88EC018_EPSCR_DOWNSHIFT_COUNTER_MASK 0x0E00
-#define M88EC018_EPSCR_DOWNSHIFT_COUNTER_1X 0x0000
-#define M88EC018_EPSCR_DOWNSHIFT_COUNTER_2X 0x0200
-#define M88EC018_EPSCR_DOWNSHIFT_COUNTER_3X 0x0400
-#define M88EC018_EPSCR_DOWNSHIFT_COUNTER_4X 0x0600
-#define M88EC018_EPSCR_DOWNSHIFT_COUNTER_5X 0x0800
-#define M88EC018_EPSCR_DOWNSHIFT_COUNTER_6X 0x0A00
-#define M88EC018_EPSCR_DOWNSHIFT_COUNTER_7X 0x0C00
-#define M88EC018_EPSCR_DOWNSHIFT_COUNTER_8X 0x0E00
-
-/* IGP01E1000 Specific Port Config Register - R/W */
-#define IGP01E1000_PSCFR_AUTO_MDIX_PAR_DETECT 0x0010
-#define IGP01E1000_PSCFR_PRE_EN 0x0020
-#define IGP01E1000_PSCFR_SMART_SPEED 0x0080
-#define IGP01E1000_PSCFR_DISABLE_TPLOOPBACK 0x0100
-#define IGP01E1000_PSCFR_DISABLE_JABBER 0x0400
-#define IGP01E1000_PSCFR_DISABLE_TRANSMIT 0x2000
-
-/* IGP01E1000 Specific Port Status Register - R/O */
-#define IGP01E1000_PSSR_AUTONEG_FAILED 0x0001 /* RO LH SC */
-#define IGP01E1000_PSSR_POLARITY_REVERSED 0x0002
-#define IGP01E1000_PSSR_CABLE_LENGTH 0x007C
-#define IGP01E1000_PSSR_FULL_DUPLEX 0x0200
-#define IGP01E1000_PSSR_LINK_UP 0x0400
-#define IGP01E1000_PSSR_MDIX 0x0800
-#define IGP01E1000_PSSR_SPEED_MASK 0xC000 /* speed bits mask */
-#define IGP01E1000_PSSR_SPEED_10MBPS 0x4000
-#define IGP01E1000_PSSR_SPEED_100MBPS 0x8000
-#define IGP01E1000_PSSR_SPEED_1000MBPS 0xC000
-#define IGP01E1000_PSSR_CABLE_LENGTH_SHIFT 0x0002 /* shift right 2 */
-#define IGP01E1000_PSSR_MDIX_SHIFT 0x000B /* shift right 11 */
-
-/* IGP01E1000 Specific Port Control Register - R/W */
-#define IGP01E1000_PSCR_TP_LOOPBACK 0x0010
-#define IGP01E1000_PSCR_CORRECT_NC_SCMBLR 0x0200
-#define IGP01E1000_PSCR_TEN_CRS_SELECT 0x0400
-#define IGP01E1000_PSCR_FLIP_CHIP 0x0800
-#define IGP01E1000_PSCR_AUTO_MDIX 0x1000
-#define IGP01E1000_PSCR_FORCE_MDI_MDIX 0x2000 /* 0-MDI, 1-MDIX */
-
-/* IGP01E1000 Specific Port Link Health Register */
-#define IGP01E1000_PLHR_SS_DOWNGRADE 0x8000
-#define IGP01E1000_PLHR_GIG_SCRAMBLER_ERROR 0x4000
-#define IGP01E1000_PLHR_MASTER_FAULT 0x2000
-#define IGP01E1000_PLHR_MASTER_RESOLUTION 0x1000
-#define IGP01E1000_PLHR_GIG_REM_RCVR_NOK 0x0800 /* LH */
-#define IGP01E1000_PLHR_IDLE_ERROR_CNT_OFLOW 0x0400 /* LH */
-#define IGP01E1000_PLHR_DATA_ERR_1 0x0200 /* LH */
-#define IGP01E1000_PLHR_DATA_ERR_0 0x0100
-#define IGP01E1000_PLHR_AUTONEG_FAULT 0x0040
-#define IGP01E1000_PLHR_AUTONEG_ACTIVE 0x0010
-#define IGP01E1000_PLHR_VALID_CHANNEL_D 0x0008
-#define IGP01E1000_PLHR_VALID_CHANNEL_C 0x0004
-#define IGP01E1000_PLHR_VALID_CHANNEL_B 0x0002
-#define IGP01E1000_PLHR_VALID_CHANNEL_A 0x0001
-
-/* IGP01E1000 Channel Quality Register */
-#define IGP01E1000_MSE_CHANNEL_D 0x000F
-#define IGP01E1000_MSE_CHANNEL_C 0x00F0
-#define IGP01E1000_MSE_CHANNEL_B 0x0F00
-#define IGP01E1000_MSE_CHANNEL_A 0xF000
-
-#define IGP02E1000_PM_SPD 0x0001 /* Smart Power Down */
-#define IGP02E1000_PM_D3_LPLU 0x0004 /* Enable LPLU in non-D0a modes */
-#define IGP02E1000_PM_D0_LPLU 0x0002 /* Enable LPLU in D0a mode */
-
-/* IGP01E1000 DSP reset macros */
-#define DSP_RESET_ENABLE 0x0
-#define DSP_RESET_DISABLE 0x2
-#define E1000_MAX_DSP_RESETS 10
-
-/* IGP01E1000 & IGP02E1000 AGC Registers */
-
-#define IGP01E1000_AGC_LENGTH_SHIFT 7 /* Coarse - 13:11, Fine - 10:7 */
-#define IGP02E1000_AGC_LENGTH_SHIFT 9 /* Coarse - 15:13, Fine - 12:9 */
-
-/* IGP02E1000 AGC Register Length 9-bit mask */
-#define IGP02E1000_AGC_LENGTH_MASK 0x7F
-
-/* 7 bits (3 Coarse + 4 Fine) --> 128 optional values */
-#define IGP01E1000_AGC_LENGTH_TABLE_SIZE 128
-#define IGP02E1000_AGC_LENGTH_TABLE_SIZE 113
-
-/* The precision error of the cable length is +/- 10 meters */
-#define IGP01E1000_AGC_RANGE 10
-#define IGP02E1000_AGC_RANGE 15
-
-/* IGP01E1000 PCS Initialization register */
-/* bits 3:6 in the PCS registers stores the channels polarity */
-#define IGP01E1000_PHY_POLARITY_MASK 0x0078
-
-/* IGP01E1000 GMII FIFO Register */
-#define IGP01E1000_GMII_FLEX_SPD 0x10 /* Enable flexible speed
- * on Link-Up */
-#define IGP01E1000_GMII_SPD 0x20 /* Enable SPD */
-
-/* IGP01E1000 Analog Register */
-#define IGP01E1000_ANALOG_SPARE_FUSE_STATUS 0x20D1
-#define IGP01E1000_ANALOG_FUSE_STATUS 0x20D0
-#define IGP01E1000_ANALOG_FUSE_CONTROL 0x20DC
-#define IGP01E1000_ANALOG_FUSE_BYPASS 0x20DE
-
-#define IGP01E1000_ANALOG_FUSE_POLY_MASK 0xF000
-#define IGP01E1000_ANALOG_FUSE_FINE_MASK 0x0F80
-#define IGP01E1000_ANALOG_FUSE_COARSE_MASK 0x0070
-#define IGP01E1000_ANALOG_SPARE_FUSE_ENABLED 0x0100
-#define IGP01E1000_ANALOG_FUSE_ENABLE_SW_CONTROL 0x0002
-
-#define IGP01E1000_ANALOG_FUSE_COARSE_THRESH 0x0040
-#define IGP01E1000_ANALOG_FUSE_COARSE_10 0x0010
-#define IGP01E1000_ANALOG_FUSE_FINE_1 0x0080
-#define IGP01E1000_ANALOG_FUSE_FINE_10 0x0500
-
-/* GG82563 PHY Specific Status Register (Page 0, Register 16 */
-#define GG82563_PSCR_DISABLE_JABBER 0x0001 /* 1=Disable Jabber */
-#define GG82563_PSCR_POLARITY_REVERSAL_DISABLE 0x0002 /* 1=Polarity Reversal Disabled */
-#define GG82563_PSCR_POWER_DOWN 0x0004 /* 1=Power Down */
-#define GG82563_PSCR_COPPER_TRANSMITER_DISABLE 0x0008 /* 1=Transmitter Disabled */
-#define GG82563_PSCR_CROSSOVER_MODE_MASK 0x0060
-#define GG82563_PSCR_CROSSOVER_MODE_MDI 0x0000 /* 00=Manual MDI configuration */
-#define GG82563_PSCR_CROSSOVER_MODE_MDIX 0x0020 /* 01=Manual MDIX configuration */
-#define GG82563_PSCR_CROSSOVER_MODE_AUTO 0x0060 /* 11=Automatic crossover */
-#define GG82563_PSCR_ENALBE_EXTENDED_DISTANCE 0x0080 /* 1=Enable Extended Distance */
-#define GG82563_PSCR_ENERGY_DETECT_MASK 0x0300
-#define GG82563_PSCR_ENERGY_DETECT_OFF 0x0000 /* 00,01=Off */
-#define GG82563_PSCR_ENERGY_DETECT_RX 0x0200 /* 10=Sense on Rx only (Energy Detect) */
-#define GG82563_PSCR_ENERGY_DETECT_RX_TM 0x0300 /* 11=Sense and Tx NLP */
-#define GG82563_PSCR_FORCE_LINK_GOOD 0x0400 /* 1=Force Link Good */
-#define GG82563_PSCR_DOWNSHIFT_ENABLE 0x0800 /* 1=Enable Downshift */
-#define GG82563_PSCR_DOWNSHIFT_COUNTER_MASK 0x7000
-#define GG82563_PSCR_DOWNSHIFT_COUNTER_SHIFT 12
-
-/* PHY Specific Status Register (Page 0, Register 17) */
-#define GG82563_PSSR_JABBER 0x0001 /* 1=Jabber */
-#define GG82563_PSSR_POLARITY 0x0002 /* 1=Polarity Reversed */
-#define GG82563_PSSR_LINK 0x0008 /* 1=Link is Up */
-#define GG82563_PSSR_ENERGY_DETECT 0x0010 /* 1=Sleep, 0=Active */
-#define GG82563_PSSR_DOWNSHIFT 0x0020 /* 1=Downshift */
-#define GG82563_PSSR_CROSSOVER_STATUS 0x0040 /* 1=MDIX, 0=MDI */
-#define GG82563_PSSR_RX_PAUSE_ENABLED 0x0100 /* 1=Receive Pause Enabled */
-#define GG82563_PSSR_TX_PAUSE_ENABLED 0x0200 /* 1=Transmit Pause Enabled */
-#define GG82563_PSSR_LINK_UP 0x0400 /* 1=Link Up */
-#define GG82563_PSSR_SPEED_DUPLEX_RESOLVED 0x0800 /* 1=Resolved */
-#define GG82563_PSSR_PAGE_RECEIVED 0x1000 /* 1=Page Received */
-#define GG82563_PSSR_DUPLEX 0x2000 /* 1-Full-Duplex */
-#define GG82563_PSSR_SPEED_MASK 0xC000
-#define GG82563_PSSR_SPEED_10MBPS 0x0000 /* 00=10Mbps */
-#define GG82563_PSSR_SPEED_100MBPS 0x4000 /* 01=100Mbps */
-#define GG82563_PSSR_SPEED_1000MBPS 0x8000 /* 10=1000Mbps */
-
-/* PHY Specific Status Register 2 (Page 0, Register 19) */
-#define GG82563_PSSR2_JABBER 0x0001 /* 1=Jabber */
-#define GG82563_PSSR2_POLARITY_CHANGED 0x0002 /* 1=Polarity Changed */
-#define GG82563_PSSR2_ENERGY_DETECT_CHANGED 0x0010 /* 1=Energy Detect Changed */
-#define GG82563_PSSR2_DOWNSHIFT_INTERRUPT 0x0020 /* 1=Downshift Detected */
-#define GG82563_PSSR2_MDI_CROSSOVER_CHANGE 0x0040 /* 1=Crossover Changed */
-#define GG82563_PSSR2_FALSE_CARRIER 0x0100 /* 1=False Carrier */
-#define GG82563_PSSR2_SYMBOL_ERROR 0x0200 /* 1=Symbol Error */
-#define GG82563_PSSR2_LINK_STATUS_CHANGED 0x0400 /* 1=Link Status Changed */
-#define GG82563_PSSR2_AUTO_NEG_COMPLETED 0x0800 /* 1=Auto-Neg Completed */
-#define GG82563_PSSR2_PAGE_RECEIVED 0x1000 /* 1=Page Received */
-#define GG82563_PSSR2_DUPLEX_CHANGED 0x2000 /* 1=Duplex Changed */
-#define GG82563_PSSR2_SPEED_CHANGED 0x4000 /* 1=Speed Changed */
-#define GG82563_PSSR2_AUTO_NEG_ERROR 0x8000 /* 1=Auto-Neg Error */
-
-/* PHY Specific Control Register 2 (Page 0, Register 26) */
-#define GG82563_PSCR2_10BT_POLARITY_FORCE 0x0002 /* 1=Force Negative Polarity */
-#define GG82563_PSCR2_1000MB_TEST_SELECT_MASK 0x000C
-#define GG82563_PSCR2_1000MB_TEST_SELECT_NORMAL 0x0000 /* 00,01=Normal Operation */
-#define GG82563_PSCR2_1000MB_TEST_SELECT_112NS 0x0008 /* 10=Select 112ns Sequence */
-#define GG82563_PSCR2_1000MB_TEST_SELECT_16NS 0x000C /* 11=Select 16ns Sequence */
-#define GG82563_PSCR2_REVERSE_AUTO_NEG 0x2000 /* 1=Reverse Auto-Negotiation */
-#define GG82563_PSCR2_1000BT_DISABLE 0x4000 /* 1=Disable 1000BASE-T */
-#define GG82563_PSCR2_TRANSMITER_TYPE_MASK 0x8000
-#define GG82563_PSCR2_TRANSMITTER_TYPE_CLASS_B 0x0000 /* 0=Class B */
-#define GG82563_PSCR2_TRANSMITTER_TYPE_CLASS_A 0x8000 /* 1=Class A */
-
-/* MAC Specific Control Register (Page 2, Register 21) */
-/* Tx clock speed for Link Down and 1000BASE-T for the following speeds */
-#define GG82563_MSCR_TX_CLK_MASK 0x0007
-#define GG82563_MSCR_TX_CLK_10MBPS_2_5MHZ 0x0004
-#define GG82563_MSCR_TX_CLK_100MBPS_25MHZ 0x0005
-#define GG82563_MSCR_TX_CLK_1000MBPS_2_5MHZ 0x0006
-#define GG82563_MSCR_TX_CLK_1000MBPS_25MHZ 0x0007
-
-#define GG82563_MSCR_ASSERT_CRS_ON_TX 0x0010 /* 1=Assert */
-
-/* DSP Distance Register (Page 5, Register 26) */
-#define GG82563_DSPD_CABLE_LENGTH 0x0007 /* 0 = <50M;
- 1 = 50-80M;
- 2 = 80-110M;
- 3 = 110-140M;
- 4 = >140M */
-
-/* Kumeran Mode Control Register (Page 193, Register 16) */
-#define GG82563_KMCR_PHY_LEDS_EN 0x0020 /* 1=PHY LEDs, 0=Kumeran Inband LEDs */
-#define GG82563_KMCR_FORCE_LINK_UP 0x0040 /* 1=Force Link Up */
-#define GG82563_KMCR_SUPPRESS_SGMII_EPD_EXT 0x0080
-#define GG82563_KMCR_MDIO_BUS_SPEED_SELECT_MASK 0x0400
-#define GG82563_KMCR_MDIO_BUS_SPEED_SELECT 0x0400 /* 1=6.25MHz, 0=0.8MHz */
-#define GG82563_KMCR_PASS_FALSE_CARRIER 0x0800
-
-/* Power Management Control Register (Page 193, Register 20) */
-#define GG82563_PMCR_ENABLE_ELECTRICAL_IDLE 0x0001 /* 1=Enalbe SERDES Electrical Idle */
-#define GG82563_PMCR_DISABLE_PORT 0x0002 /* 1=Disable Port */
-#define GG82563_PMCR_DISABLE_SERDES 0x0004 /* 1=Disable SERDES */
-#define GG82563_PMCR_REVERSE_AUTO_NEG 0x0008 /* 1=Enable Reverse Auto-Negotiation */
-#define GG82563_PMCR_DISABLE_1000_NON_D0 0x0010 /* 1=Disable 1000Mbps Auto-Neg in non D0 */
-#define GG82563_PMCR_DISABLE_1000 0x0020 /* 1=Disable 1000Mbps Auto-Neg Always */
-#define GG82563_PMCR_REVERSE_AUTO_NEG_D0A 0x0040 /* 1=Enable D0a Reverse Auto-Negotiation */
-#define GG82563_PMCR_FORCE_POWER_STATE 0x0080 /* 1=Force Power State */
-#define GG82563_PMCR_PROGRAMMED_POWER_STATE_MASK 0x0300
-#define GG82563_PMCR_PROGRAMMED_POWER_STATE_DR 0x0000 /* 00=Dr */
-#define GG82563_PMCR_PROGRAMMED_POWER_STATE_D0U 0x0100 /* 01=D0u */
-#define GG82563_PMCR_PROGRAMMED_POWER_STATE_D0A 0x0200 /* 10=D0a */
-#define GG82563_PMCR_PROGRAMMED_POWER_STATE_D3 0x0300 /* 11=D3 */
-
-/* In-Band Control Register (Page 194, Register 18) */
-#define GG82563_ICR_DIS_PADDING 0x0010 /* Disable Padding Use */
-
-
-/* Bit definitions for valid PHY IDs. */
-/* I = Integrated
- * E = External
- */
-#define M88E1000_E_PHY_ID 0x01410C50
-#define M88E1000_I_PHY_ID 0x01410C30
-#define M88E1011_I_PHY_ID 0x01410C20
-#define IGP01E1000_I_PHY_ID 0x02A80380
-#define M88E1000_12_PHY_ID M88E1000_E_PHY_ID
-#define M88E1000_14_PHY_ID M88E1000_E_PHY_ID
-#define M88E1011_I_REV_4 0x04
-#define M88E1111_I_PHY_ID 0x01410CC0
-#define L1LXT971A_PHY_ID 0x001378E0
-#define GG82563_E_PHY_ID 0x01410CA0
-
-
-/* Bits...
- * 15-5: page
- * 4-0: register offset
- */
-#define PHY_PAGE_SHIFT 5
-#define PHY_REG(page, reg) \
- (((page) << PHY_PAGE_SHIFT) | ((reg) & MAX_PHY_REG_ADDRESS))
-
-#define IGP3_PHY_PORT_CTRL \
- PHY_REG(769, 17) /* Port General Configuration */
-#define IGP3_PHY_RATE_ADAPT_CTRL \
- PHY_REG(769, 25) /* Rate Adapter Control Register */
-
-#define IGP3_KMRN_FIFO_CTRL_STATS \
- PHY_REG(770, 16) /* KMRN FIFO's control/status register */
-#define IGP3_KMRN_POWER_MNG_CTRL \
- PHY_REG(770, 17) /* KMRN Power Management Control Register */
-#define IGP3_KMRN_INBAND_CTRL \
- PHY_REG(770, 18) /* KMRN Inband Control Register */
-#define IGP3_KMRN_DIAG \
- PHY_REG(770, 19) /* KMRN Diagnostic register */
-#define IGP3_KMRN_DIAG_PCS_LOCK_LOSS 0x0002 /* RX PCS is not synced */
-#define IGP3_KMRN_ACK_TIMEOUT \
- PHY_REG(770, 20) /* KMRN Acknowledge Timeouts register */
-
-#define IGP3_VR_CTRL \
- PHY_REG(776, 18) /* Voltage regulator control register */
-#define IGP3_VR_CTRL_MODE_SHUT 0x0200 /* Enter powerdown, shutdown VRs */
-
-#define IGP3_CAPABILITY \
- PHY_REG(776, 19) /* IGP3 Capability Register */
-
-/* Capabilities for SKU Control */
-#define IGP3_CAP_INITIATE_TEAM 0x0001 /* Able to initiate a team */
-#define IGP3_CAP_WFM 0x0002 /* Support WoL and PXE */
-#define IGP3_CAP_ASF 0x0004 /* Support ASF */
-#define IGP3_CAP_LPLU 0x0008 /* Support Low Power Link Up */
-#define IGP3_CAP_DC_AUTO_SPEED 0x0010 /* Support AC/DC Auto Link Speed */
-#define IGP3_CAP_SPD 0x0020 /* Support Smart Power Down */
-#define IGP3_CAP_MULT_QUEUE 0x0040 /* Support 2 tx & 2 rx queues */
-#define IGP3_CAP_RSS 0x0080 /* Support RSS */
-#define IGP3_CAP_8021PQ 0x0100 /* Support 802.1Q & 802.1p */
-#define IGP3_CAP_AMT_CB 0x0200 /* Support active manageability and circuit breaker */
-
-#define IGP3_PPC_JORDAN_EN 0x0001
-#define IGP3_PPC_JORDAN_GIGA_SPEED 0x0002
-
-#define IGP3_KMRN_PMC_EE_IDLE_LINK_DIS 0x0001
-#define IGP3_KMRN_PMC_K0S_ENTRY_LATENCY_MASK 0x001E
-#define IGP3_KMRN_PMC_K0S_MODE1_EN_GIGA 0x0020
-#define IGP3_KMRN_PMC_K0S_MODE1_EN_100 0x0040
-
-#define IGP3E1000_PHY_MISC_CTRL 0x1B /* Misc. Ctrl register */
-#define IGP3_PHY_MISC_DUPLEX_MANUAL_SET 0x1000 /* Duplex Manual Set */
-
-#define IGP3_KMRN_EXT_CTRL PHY_REG(770, 18)
-#define IGP3_KMRN_EC_DIS_INBAND 0x0080
-
-#define IGP03E1000_E_PHY_ID 0x02A80390
-#define IFE_E_PHY_ID 0x02A80330 /* 10/100 PHY */
-#define IFE_PLUS_E_PHY_ID 0x02A80320
-#define IFE_C_E_PHY_ID 0x02A80310
-
-#define IFE_PHY_EXTENDED_STATUS_CONTROL 0x10 /* 100BaseTx Extended Status, Control and Address */
-#define IFE_PHY_SPECIAL_CONTROL 0x11 /* 100BaseTx PHY special control register */
-#define IFE_PHY_RCV_FALSE_CARRIER 0x13 /* 100BaseTx Receive False Carrier Counter */
-#define IFE_PHY_RCV_DISCONNECT 0x14 /* 100BaseTx Receive Disconnet Counter */
-#define IFE_PHY_RCV_ERROT_FRAME 0x15 /* 100BaseTx Receive Error Frame Counter */
-#define IFE_PHY_RCV_SYMBOL_ERR 0x16 /* Receive Symbol Error Counter */
-#define IFE_PHY_PREM_EOF_ERR 0x17 /* 100BaseTx Receive Premature End Of Frame Error Counter */
-#define IFE_PHY_RCV_EOF_ERR 0x18 /* 10BaseT Receive End Of Frame Error Counter */
-#define IFE_PHY_TX_JABBER_DETECT 0x19 /* 10BaseT Transmit Jabber Detect Counter */
-#define IFE_PHY_EQUALIZER 0x1A /* PHY Equalizer Control and Status */
-#define IFE_PHY_SPECIAL_CONTROL_LED 0x1B /* PHY special control and LED configuration */
-#define IFE_PHY_MDIX_CONTROL 0x1C /* MDI/MDI-X Control register */
-#define IFE_PHY_HWI_CONTROL 0x1D /* Hardware Integrity Control (HWI) */
-
-#define IFE_PESC_REDUCED_POWER_DOWN_DISABLE 0x2000 /* Defaut 1 = Disable auto reduced power down */
-#define IFE_PESC_100BTX_POWER_DOWN 0x0400 /* Indicates the power state of 100BASE-TX */
-#define IFE_PESC_10BTX_POWER_DOWN 0x0200 /* Indicates the power state of 10BASE-T */
-#define IFE_PESC_POLARITY_REVERSED 0x0100 /* Indicates 10BASE-T polarity */
-#define IFE_PESC_PHY_ADDR_MASK 0x007C /* Bit 6:2 for sampled PHY address */
-#define IFE_PESC_SPEED 0x0002 /* Auto-negotiation speed result 1=100Mbs, 0=10Mbs */
-#define IFE_PESC_DUPLEX 0x0001 /* Auto-negotiation duplex result 1=Full, 0=Half */
-#define IFE_PESC_POLARITY_REVERSED_SHIFT 8
-
-#define IFE_PSC_DISABLE_DYNAMIC_POWER_DOWN 0x0100 /* 1 = Dyanmic Power Down disabled */
-#define IFE_PSC_FORCE_POLARITY 0x0020 /* 1=Reversed Polarity, 0=Normal */
-#define IFE_PSC_AUTO_POLARITY_DISABLE 0x0010 /* 1=Auto Polarity Disabled, 0=Enabled */
-#define IFE_PSC_JABBER_FUNC_DISABLE 0x0001 /* 1=Jabber Disabled, 0=Normal Jabber Operation */
-#define IFE_PSC_FORCE_POLARITY_SHIFT 5
-#define IFE_PSC_AUTO_POLARITY_DISABLE_SHIFT 4
-
-#define IFE_PMC_AUTO_MDIX 0x0080 /* 1=enable MDI/MDI-X feature, default 0=disabled */
-#define IFE_PMC_FORCE_MDIX 0x0040 /* 1=force MDIX-X, 0=force MDI */
-#define IFE_PMC_MDIX_STATUS 0x0020 /* 1=MDI-X, 0=MDI */
-#define IFE_PMC_AUTO_MDIX_COMPLETE 0x0010 /* Resolution algorthm is completed */
-#define IFE_PMC_MDIX_MODE_SHIFT 6
-#define IFE_PHC_MDIX_RESET_ALL_MASK 0x0000 /* Disable auto MDI-X */
-
-#define IFE_PHC_HWI_ENABLE 0x8000 /* Enable the HWI feature */
-#define IFE_PHC_ABILITY_CHECK 0x4000 /* 1= Test Passed, 0=failed */
-#define IFE_PHC_TEST_EXEC 0x2000 /* PHY launch test pulses on the wire */
-#define IFE_PHC_HIGHZ 0x0200 /* 1 = Open Circuit */
-#define IFE_PHC_LOWZ 0x0400 /* 1 = Short Circuit */
-#define IFE_PHC_LOW_HIGH_Z_MASK 0x0600 /* Mask for indication type of problem on the line */
-#define IFE_PHC_DISTANCE_MASK 0x01FF /* Mask for distance to the cable problem, in 80cm granularity */
-#define IFE_PHC_RESET_ALL_MASK 0x0000 /* Disable HWI */
-#define IFE_PSCL_PROBE_MODE 0x0020 /* LED Probe mode */
-#define IFE_PSCL_PROBE_LEDS_OFF 0x0006 /* Force LEDs 0 and 2 off */
-#define IFE_PSCL_PROBE_LEDS_ON 0x0007 /* Force LEDs 0 and 2 on */
-
-#define ICH8_FLASH_COMMAND_TIMEOUT 500 /* 500 ms , should be adjusted */
-#define ICH8_FLASH_CYCLE_REPEAT_COUNT 10 /* 10 cycles , should be adjusted */
-#define ICH8_FLASH_SEG_SIZE_256 256
-#define ICH8_FLASH_SEG_SIZE_4K 4096
-#define ICH8_FLASH_SEG_SIZE_64K 65536
-
-#define ICH8_CYCLE_READ 0x0
-#define ICH8_CYCLE_RESERVED 0x1
-#define ICH8_CYCLE_WRITE 0x2
-#define ICH8_CYCLE_ERASE 0x3
-
-#define ICH8_FLASH_GFPREG 0x0000
-#define ICH8_FLASH_HSFSTS 0x0004
-#define ICH8_FLASH_HSFCTL 0x0006
-#define ICH8_FLASH_FADDR 0x0008
-#define ICH8_FLASH_FDATA0 0x0010
-#define ICH8_FLASH_FRACC 0x0050
-#define ICH8_FLASH_FREG0 0x0054
-#define ICH8_FLASH_FREG1 0x0058
-#define ICH8_FLASH_FREG2 0x005C
-#define ICH8_FLASH_FREG3 0x0060
-#define ICH8_FLASH_FPR0 0x0074
-#define ICH8_FLASH_FPR1 0x0078
-#define ICH8_FLASH_SSFSTS 0x0090
-#define ICH8_FLASH_SSFCTL 0x0092
-#define ICH8_FLASH_PREOP 0x0094
-#define ICH8_FLASH_OPTYPE 0x0096
-#define ICH8_FLASH_OPMENU 0x0098
-
-#define ICH8_FLASH_REG_MAPSIZE 0x00A0
-#define ICH8_FLASH_SECTOR_SIZE 4096
-#define ICH8_GFPREG_BASE_MASK 0x1FFF
-#define ICH8_FLASH_LINEAR_ADDR_MASK 0x00FFFFFF
-
-/* ICH8 GbE Flash Hardware Sequencing Flash Status Register bit breakdown */
-/* Offset 04h HSFSTS */
-union ich8_hws_flash_status {
- struct ich8_hsfsts {
- uint16_t flcdone :1; /* bit 0 Flash Cycle Done */
- uint16_t flcerr :1; /* bit 1 Flash Cycle Error */
- uint16_t dael :1; /* bit 2 Direct Access error Log */
- uint16_t berasesz :2; /* bit 4:3 Block/Sector Erase Size */
- uint16_t flcinprog :1; /* bit 5 flash SPI cycle in Progress */
- uint16_t reserved1 :2; /* bit 13:6 Reserved */
- uint16_t reserved2 :6; /* bit 13:6 Reserved */
- uint16_t fldesvalid :1; /* bit 14 Flash Descriptor Valid */
- uint16_t flockdn :1; /* bit 15 Flash Configuration Lock-Down */
- } hsf_status;
- uint16_t regval;
-};
-
-/* ICH8 GbE Flash Hardware Sequencing Flash control Register bit breakdown */
-/* Offset 06h FLCTL */
-union ich8_hws_flash_ctrl {
- struct ich8_hsflctl {
- uint16_t flcgo :1; /* 0 Flash Cycle Go */
- uint16_t flcycle :2; /* 2:1 Flash Cycle */
- uint16_t reserved :5; /* 7:3 Reserved */
- uint16_t fldbcount :2; /* 9:8 Flash Data Byte Count */
- uint16_t flockdn :6; /* 15:10 Reserved */
- } hsf_ctrl;
- uint16_t regval;
-};
-
-/* ICH8 Flash Region Access Permissions */
-union ich8_hws_flash_regacc {
- struct ich8_flracc {
- uint32_t grra :8; /* 0:7 GbE region Read Access */
- uint32_t grwa :8; /* 8:15 GbE region Write Access */
- uint32_t gmrag :8; /* 23:16 GbE Master Read Access Grant */
- uint32_t gmwag :8; /* 31:24 GbE Master Write Access Grant */
- } hsf_flregacc;
- uint16_t regval;
-};
-
-/* Miscellaneous PHY bit definitions. */
-#define PHY_PREAMBLE 0xFFFFFFFF
-#define PHY_SOF 0x01
-#define PHY_OP_READ 0x02
-#define PHY_OP_WRITE 0x01
-#define PHY_TURNAROUND 0x02
-#define PHY_PREAMBLE_SIZE 32
-#define MII_CR_SPEED_1000 0x0040
-#define MII_CR_SPEED_100 0x2000
-#define MII_CR_SPEED_10 0x0000
-#define E1000_PHY_ADDRESS 0x01
-#define PHY_AUTO_NEG_TIME 45 /* 4.5 Seconds */
-#define PHY_FORCE_TIME 20 /* 2.0 Seconds */
-#define PHY_REVISION_MASK 0xFFFFFFF0
-#define DEVICE_SPEED_MASK 0x00000300 /* Device Ctrl Reg Speed Mask */
-#define REG4_SPEED_MASK 0x01E0
-#define REG9_SPEED_MASK 0x0300
-#define ADVERTISE_10_HALF 0x0001
-#define ADVERTISE_10_FULL 0x0002
-#define ADVERTISE_100_HALF 0x0004
-#define ADVERTISE_100_FULL 0x0008
-#define ADVERTISE_1000_HALF 0x0010
-#define ADVERTISE_1000_FULL 0x0020
-#define AUTONEG_ADVERTISE_SPEED_DEFAULT 0x002F /* Everything but 1000-Half */
-#define AUTONEG_ADVERTISE_10_100_ALL 0x000F /* All 10/100 speeds*/
-#define AUTONEG_ADVERTISE_10_ALL 0x0003 /* 10Mbps Full & Half speeds*/
-
-#endif /* _EM_HW_H_ */
--- /dev/null
+++ sys/dev/em/e1000_82542.c
@@ -0,0 +1,552 @@
+/*******************************************************************************
+
+ Copyright (c) 2001-2007, Intel Corporation
+ All rights reserved.
+
+ Redistribution and use in source and binary forms, with or without
+ modification, are permitted provided that the following conditions are met:
+
+ 1. Redistributions of source code must retain the above copyright notice,
+ this list of conditions and the following disclaimer.
+
+ 2. Redistributions in binary form must reproduce the above copyright
+ notice, this list of conditions and the following disclaimer in the
+ documentation and/or other materials provided with the distribution.
+
+ 3. Neither the name of the Intel Corporation nor the names of its
+ contributors may be used to endorse or promote products derived from
+ this software without specific prior written permission.
+
+ THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
+ AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+ IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
+ LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
+ CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
+ SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
+ INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
+ CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
+ ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
+ POSSIBILITY OF SUCH DAMAGE.
+
+*******************************************************************************/
+/* $FreeBSD: src/sys/dev/em/e1000_82542.c,v 1.3.4.1 2007/11/28 23:24:37 jfv Exp $ */
+
+
+/* e1000_82542 (rev 1 & 2)
+ */
+
+#include "e1000_api.h"
+
+void e1000_init_function_pointers_82542(struct e1000_hw *hw);
+
+STATIC s32 e1000_init_phy_params_82542(struct e1000_hw *hw);
+STATIC s32 e1000_init_nvm_params_82542(struct e1000_hw *hw);
+STATIC s32 e1000_init_mac_params_82542(struct e1000_hw *hw);
+STATIC s32 e1000_get_bus_info_82542(struct e1000_hw *hw);
+STATIC s32 e1000_reset_hw_82542(struct e1000_hw *hw);
+STATIC s32 e1000_init_hw_82542(struct e1000_hw *hw);
+STATIC s32 e1000_setup_link_82542(struct e1000_hw *hw);
+STATIC s32 e1000_led_on_82542(struct e1000_hw *hw);
+STATIC s32 e1000_led_off_82542(struct e1000_hw *hw);
+STATIC void e1000_clear_hw_cntrs_82542(struct e1000_hw *hw);
+
+struct e1000_dev_spec_82542 {
+ bool dma_fairness;
+};
+
+/**
+ * e1000_init_phy_params_82542 - Init PHY func ptrs.
+ * @hw: pointer to the HW structure
+ *
+ * This is a function pointer entry point called by the api module.
+ **/
+STATIC s32 e1000_init_phy_params_82542(struct e1000_hw *hw)
+{
+ struct e1000_phy_info *phy = &hw->phy;
+ s32 ret_val = E1000_SUCCESS;
+
+ DEBUGFUNC("e1000_init_phy_params_82542");
+
+ phy->type = e1000_phy_none;
+
+ return ret_val;
+}
+
+/**
+ * e1000_init_nvm_params_82542 - Init NVM func ptrs.
+ * @hw: pointer to the HW structure
+ *
+ * This is a function pointer entry point called by the api module.
+ **/
+STATIC s32 e1000_init_nvm_params_82542(struct e1000_hw *hw)
+{
+ struct e1000_nvm_info *nvm = &hw->nvm;
+ struct e1000_functions *func = &hw->func;
+
+ DEBUGFUNC("e1000_init_nvm_params_82542");
+
+ nvm->address_bits = 6;
+ nvm->delay_usec = 50;
+ nvm->opcode_bits = 3;
+ nvm->type = e1000_nvm_eeprom_microwire;
+ nvm->word_size = 64;
+
+ /* Function Pointers */
+ func->read_nvm = e1000_read_nvm_microwire;
+ func->release_nvm = e1000_stop_nvm;
+ func->write_nvm = e1000_write_nvm_microwire;
+ func->update_nvm = e1000_update_nvm_checksum_generic;
+ func->validate_nvm = e1000_validate_nvm_checksum_generic;
+
+ return E1000_SUCCESS;
+}
+
+/**
+ * e1000_init_mac_params_82542 - Init MAC func ptrs.
+ * @hw: pointer to the HW structure
+ *
+ * This is a function pointer entry point called by the api module.
+ **/
+STATIC s32 e1000_init_mac_params_82542(struct e1000_hw *hw)
+{
+ struct e1000_mac_info *mac = &hw->mac;
+ struct e1000_functions *func = &hw->func;
+ s32 ret_val = E1000_SUCCESS;
+
+ DEBUGFUNC("e1000_init_mac_params_82542");
+
+ /* Set media type */
+ hw->phy.media_type = e1000_media_type_fiber;
+
+ /* Set mta register count */
+ mac->mta_reg_count = 128;
+ /* Set rar entry count */
+ mac->rar_entry_count = E1000_RAR_ENTRIES;
+
+ /* Function pointers */
+
+ /* bus type/speed/width */
+ func->get_bus_info = e1000_get_bus_info_82542;
+ /* reset */
+ func->reset_hw = e1000_reset_hw_82542;
+ /* hw initialization */
+ func->init_hw = e1000_init_hw_82542;
+ /* link setup */
+ func->setup_link = e1000_setup_link_82542;
+ /* phy/fiber/serdes setup */
+ func->setup_physical_interface = e1000_setup_fiber_serdes_link_generic;
+ /* check for link */
+ func->check_for_link = e1000_check_for_fiber_link_generic;
+ /* multicast address update */
+ func->update_mc_addr_list = e1000_update_mc_addr_list_generic;
+ /* writing VFTA */
+ func->write_vfta = e1000_write_vfta_generic;
+ /* clearing VFTA */
+ func->clear_vfta = e1000_clear_vfta_generic;
+ /* setting MTA */
+ func->mta_set = e1000_mta_set_generic;
+ /* turn on/off LED */
+ func->led_on = e1000_led_on_82542;
+ func->led_off = e1000_led_off_82542;
+ /* remove device */
+ func->remove_device = e1000_remove_device_generic;
+ /* clear hardware counters */
+ func->clear_hw_cntrs = e1000_clear_hw_cntrs_82542;
+ /* link info */
+ func->get_link_up_info = e1000_get_speed_and_duplex_fiber_serdes_generic;
+
+ hw->dev_spec_size = sizeof(struct e1000_dev_spec_82542);
+
+ /* Device-specific structure allocation */
+ ret_val = e1000_alloc_zeroed_dev_spec_struct(hw, hw->dev_spec_size);
+
+ return ret_val;
+}
+
+/**
+ * e1000_init_function_pointers_82542 - Init func ptrs.
+ * @hw: pointer to the HW structure
+ *
+ * The only function explicitly called by the api module to initialize
+ * all function pointers and parameters.
+ **/
+void e1000_init_function_pointers_82542(struct e1000_hw *hw)
+{
+ DEBUGFUNC("e1000_init_function_pointers_82542");
+
+ hw->func.init_mac_params = e1000_init_mac_params_82542;
+ hw->func.init_nvm_params = e1000_init_nvm_params_82542;
+ hw->func.init_phy_params = e1000_init_phy_params_82542;
+}
+
+/**
+ * e1000_get_bus_info_82542 - Obtain bus information for adapter
+ * @hw: pointer to the HW structure
+ *
+ * This will obtain information about the HW bus for which the
+ * adaper is attached and stores it in the hw structure. This is a function
+ * pointer entry point called by the api module.
+ **/
+STATIC s32 e1000_get_bus_info_82542(struct e1000_hw *hw)
+{
+ DEBUGFUNC("e1000_get_bus_info_82542");
+
+ hw->bus.type = e1000_bus_type_pci;
+ hw->bus.speed = e1000_bus_speed_unknown;
+ hw->bus.width = e1000_bus_width_unknown;
+
+ return E1000_SUCCESS;
+}
+
+/**
+ * e1000_reset_hw_82542 - Reset hardware
+ * @hw: pointer to the HW structure
+ *
+ * This resets the hardware into a known state. This is a
+ * function pointer entry point called by the api module.
+ **/
+STATIC s32 e1000_reset_hw_82542(struct e1000_hw *hw)
+{
+ struct e1000_bus_info *bus = &hw->bus;
+ s32 ret_val = E1000_SUCCESS;
+ u32 ctrl, icr;
+
+ DEBUGFUNC("e1000_reset_hw_82542");
+
+ if (hw->revision_id == E1000_REVISION_2) {
+ DEBUGOUT("Disabling MWI on 82542 rev 2\n");
+ e1000_pci_clear_mwi(hw);
+ }
+
+ DEBUGOUT("Masking off all interrupts\n");
+ E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff);
+
+ E1000_WRITE_REG(hw, E1000_RCTL, 0);
+ E1000_WRITE_REG(hw, E1000_TCTL, E1000_TCTL_PSP);
+ E1000_WRITE_FLUSH(hw);
+
+ /*
+ * Delay to allow any outstanding PCI transactions to complete before
+ * resetting the device
+ */
+ msec_delay(10);
+
+ ctrl = E1000_READ_REG(hw, E1000_CTRL);
+
+ DEBUGOUT("Issuing a global reset to 82542/82543 MAC\n");
+ E1000_WRITE_REG(hw, E1000_CTRL, ctrl | E1000_CTRL_RST);
+
+ e1000_reload_nvm(hw);
+ msec_delay(2);
+
+ E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff);
+ icr = E1000_READ_REG(hw, E1000_ICR);
+
+ if (hw->revision_id == E1000_REVISION_2) {
+ if (bus->pci_cmd_word & CMD_MEM_WRT_INVALIDATE)
+ e1000_pci_set_mwi(hw);
+ }
+
+ return ret_val;
+}
+
+/**
+ * e1000_init_hw_82542 - Initialize hardware
+ * @hw: pointer to the HW structure
+ *
+ * This inits the hardware readying it for operation. This is a
+ * function pointer entry point called by the api module.
+ **/
+STATIC s32 e1000_init_hw_82542(struct e1000_hw *hw)
+{
+ struct e1000_mac_info *mac = &hw->mac;
+ struct e1000_dev_spec_82542 *dev_spec;
+ s32 ret_val = E1000_SUCCESS;
+ u32 ctrl;
+ u16 i;
+
+ DEBUGFUNC("e1000_init_hw_82542");
+
+ dev_spec = (struct e1000_dev_spec_82542 *)hw->dev_spec;
+
+ /* Disabling VLAN filtering */
+ E1000_WRITE_REG(hw, E1000_VET, 0);
+ e1000_clear_vfta(hw);
+
+ /* For 82542 (rev 2.0), disable MWI and put the receiver into reset */
+ if (hw->revision_id == E1000_REVISION_2) {
+ DEBUGOUT("Disabling MWI on 82542 rev 2.0\n");
+ e1000_pci_clear_mwi(hw);
+ E1000_WRITE_REG(hw, E1000_RCTL, E1000_RCTL_RST);
+ E1000_WRITE_FLUSH(hw);
+ msec_delay(5);
+ }
+
+ /* Setup the receive address. */
+ e1000_init_rx_addrs_generic(hw, mac->rar_entry_count);
+
+ /* For 82542 (rev 2.0), take the receiver out of reset and enable MWI */
+ if (hw->revision_id == E1000_REVISION_2) {
+ E1000_WRITE_REG(hw, E1000_RCTL, 0);
+ E1000_WRITE_FLUSH(hw);
+ msec_delay(1);
+ if (hw->bus.pci_cmd_word & CMD_MEM_WRT_INVALIDATE)
+ e1000_pci_set_mwi(hw);
+ }
+
+ /* Zero out the Multicast HASH table */
+ DEBUGOUT("Zeroing the MTA\n");
+ for (i = 0; i < mac->mta_reg_count; i++)
+ E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
+
+ /*
+ * Set the PCI priority bit correctly in the CTRL register. This
+ * determines if the adapter gives priority to receives, or if it
+ * gives equal priority to transmits and receives.
+ */
+ if (dev_spec->dma_fairness) {
+ ctrl = E1000_READ_REG(hw, E1000_CTRL);
+ E1000_WRITE_REG(hw, E1000_CTRL, ctrl | E1000_CTRL_PRIOR);
+ }
+
+ /* Setup link and flow control */
+ ret_val = e1000_setup_link_82542(hw);
+
+ /*
+ * Clear all of the statistics registers (clear on read). It is
+ * important that we do this after we have tried to establish link
+ * because the symbol error count will increment wildly if there
+ * is no link.
+ */
+ e1000_clear_hw_cntrs_82542(hw);
+
+ return ret_val;
+}
+
+/**
+ * e1000_setup_link_82542 - Setup flow control and link settings
+ * @hw: pointer to the HW structure
+ *
+ * Determines which flow control settings to use, then configures flow
+ * control. Calls the appropriate media-specific link configuration
+ * function. Assuming the adapter has a valid link partner, a valid link
+ * should be established. Assumes the hardware has previously been reset
+ * and the transmitter and receiver are not enabled. This is a function
+ * pointer entry point called by the api module.
+ **/
+STATIC s32 e1000_setup_link_82542(struct e1000_hw *hw)
+{
+ struct e1000_mac_info *mac = &hw->mac;
+ struct e1000_functions *func = &hw->func;
+ s32 ret_val = E1000_SUCCESS;
+
+ DEBUGFUNC("e1000_setup_link_82542");
+
+ ret_val = e1000_set_default_fc_generic(hw);
+ if (ret_val)
+ goto out;
+
+ hw->fc.type &= ~e1000_fc_tx_pause;
+
+ if (mac->report_tx_early == 1)
+ hw->fc.type &= ~e1000_fc_rx_pause;
+
+ /*
+ * We want to save off the original Flow Control configuration just in
+ * case we get disconnected and then reconnected into a different hub
+ * or switch with different Flow Control capabilities.
+ */
+ hw->fc.original_type = hw->fc.type;
+
+ DEBUGOUT1("After fix-ups FlowControl is now = %x\n", hw->fc.type);
+
+ /* Call the necessary subroutine to configure the link. */
+ ret_val = func->setup_physical_interface(hw);
+ if (ret_val)
+ goto out;
+
+ /*
+ * Initialize the flow control address, type, and PAUSE timer
+ * registers to their default values. This is done even if flow
+ * control is disabled, because it does not hurt anything to
+ * initialize these registers.
+ */
+ DEBUGOUT("Initializing Flow Control address, type and timer regs\n");
+
+ E1000_WRITE_REG(hw, E1000_FCAL, FLOW_CONTROL_ADDRESS_LOW);
+ E1000_WRITE_REG(hw, E1000_FCAH, FLOW_CONTROL_ADDRESS_HIGH);
+ E1000_WRITE_REG(hw, E1000_FCT, FLOW_CONTROL_TYPE);
+
+ E1000_WRITE_REG(hw, E1000_FCTTV, hw->fc.pause_time);
+
+ ret_val = e1000_set_fc_watermarks_generic(hw);
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_led_on_82542 - Turn on SW controllable LED
+ * @hw: pointer to the HW structure
+ *
+ * Turns the SW defined LED on. This is a function pointer entry point
+ * called by the api module.
+ **/
+STATIC s32 e1000_led_on_82542(struct e1000_hw *hw)
+{
+ u32 ctrl = E1000_READ_REG(hw, E1000_CTRL);
+
+ DEBUGFUNC("e1000_led_on_82542");
+
+ ctrl |= E1000_CTRL_SWDPIN0;
+ ctrl |= E1000_CTRL_SWDPIO0;
+ E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
+
+ return E1000_SUCCESS;
+}
+
+/**
+ * e1000_led_off_82542 - Turn off SW controllable LED
+ * @hw: pointer to the HW structure
+ *
+ * Turns the SW defined LED off. This is a function pointer entry point
+ * called by the api module.
+ **/
+STATIC s32 e1000_led_off_82542(struct e1000_hw *hw)
+{
+ u32 ctrl = E1000_READ_REG(hw, E1000_CTRL);
+
+ DEBUGFUNC("e1000_led_off_82542");
+
+ ctrl &= ~E1000_CTRL_SWDPIN0;
+ ctrl |= E1000_CTRL_SWDPIO0;
+ E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
+
+ return E1000_SUCCESS;
+}
+
+/**
+ * e1000_translate_register_82542 - Translate the proper regiser offset
+ * @reg: e1000 register to be read
+ *
+ * Registers in 82542 are located in different offsets than other adapters
+ * even though they function in the same manner. This function takes in
+ * the name of the register to read and returns the correct offset for
+ * 82542 silicon.
+ **/
+u32 e1000_translate_register_82542(u32 reg)
+{
+ /*
+ * Some of the 82542 registers are located at different
+ * offsets than they are in newer adapters.
+ * Despite the difference in location, the registers
+ * function in the same manner.
+ */
+ switch (reg) {
+ case E1000_RA:
+ reg = 0x00040;
+ break;
+ case E1000_RDTR:
+ reg = 0x00108;
+ break;
+ case E1000_RDBAL(0):
+ reg = 0x00110;
+ break;
+ case E1000_RDBAH(0):
+ reg = 0x00114;
+ break;
+ case E1000_RDLEN(0):
+ reg = 0x00118;
+ break;
+ case E1000_RDH(0):
+ reg = 0x00120;
+ break;
+ case E1000_RDT(0):
+ reg = 0x00128;
+ break;
+ case E1000_RDBAL(1):
+ reg = 0x00138;
+ break;
+ case E1000_RDBAH(1):
+ reg = 0x0013C;
+ break;
+ case E1000_RDLEN(1):
+ reg = 0x00140;
+ break;
+ case E1000_RDH(1):
+ reg = 0x00148;
+ break;
+ case E1000_RDT(1):
+ reg = 0x00150;
+ break;
+ case E1000_FCRTH:
+ reg = 0x00160;
+ break;
+ case E1000_FCRTL:
+ reg = 0x00168;
+ break;
+ case E1000_MTA:
+ reg = 0x00200;
+ break;
+ case E1000_TDBAL(0):
+ reg = 0x00420;
+ break;
+ case E1000_TDBAH(0):
+ reg = 0x00424;
+ break;
+ case E1000_TDLEN(0):
+ reg = 0x00428;
+ break;
+ case E1000_TDH(0):
+ reg = 0x00430;
+ break;
+ case E1000_TDT(0):
+ reg = 0x00438;
+ break;
+ case E1000_TIDV:
+ reg = 0x00440;
+ break;
+ case E1000_VFTA:
+ reg = 0x00600;
+ break;
+ case E1000_TDFH:
+ reg = 0x08010;
+ break;
+ case E1000_TDFT:
+ reg = 0x08018;
+ break;
+ default:
+ break;
+ }
+
+ return reg;
+}
+
+/**
+ * e1000_clear_hw_cntrs_82542 - Clear device specific hardware counters
+ * @hw: pointer to the HW structure
+ *
+ * Clears the hardware counters by reading the counter registers.
+ **/
+STATIC void e1000_clear_hw_cntrs_82542(struct e1000_hw *hw)
+{
+ volatile u32 temp;
+
+ DEBUGFUNC("e1000_clear_hw_cntrs_82542");
+
+ e1000_clear_hw_cntrs_base_generic(hw);
+
+ temp = E1000_READ_REG(hw, E1000_PRC64);
+ temp = E1000_READ_REG(hw, E1000_PRC127);
+ temp = E1000_READ_REG(hw, E1000_PRC255);
+ temp = E1000_READ_REG(hw, E1000_PRC511);
+ temp = E1000_READ_REG(hw, E1000_PRC1023);
+ temp = E1000_READ_REG(hw, E1000_PRC1522);
+ temp = E1000_READ_REG(hw, E1000_PTC64);
+ temp = E1000_READ_REG(hw, E1000_PTC127);
+ temp = E1000_READ_REG(hw, E1000_PTC255);
+ temp = E1000_READ_REG(hw, E1000_PTC511);
+ temp = E1000_READ_REG(hw, E1000_PTC1023);
+ temp = E1000_READ_REG(hw, E1000_PTC1522);
+}
--- /dev/null
+++ sys/dev/em/e1000_82541.h
@@ -0,0 +1,91 @@
+/*******************************************************************************
+
+ Copyright (c) 2001-2007, Intel Corporation
+ All rights reserved.
+
+ Redistribution and use in source and binary forms, with or without
+ modification, are permitted provided that the following conditions are met:
+
+ 1. Redistributions of source code must retain the above copyright notice,
+ this list of conditions and the following disclaimer.
+
+ 2. Redistributions in binary form must reproduce the above copyright
+ notice, this list of conditions and the following disclaimer in the
+ documentation and/or other materials provided with the distribution.
+
+ 3. Neither the name of the Intel Corporation nor the names of its
+ contributors may be used to endorse or promote products derived from
+ this software without specific prior written permission.
+
+ THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
+ AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+ IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
+ LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
+ CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
+ SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
+ INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
+ CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
+ ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
+ POSSIBILITY OF SUCH DAMAGE.
+
+*******************************************************************************/
+/* $FreeBSD: src/sys/dev/em/e1000_82541.h,v 1.3.4.1 2007/11/28 23:24:37 jfv Exp $ */
+
+
+#ifndef _E1000_82541_H_
+#define _E1000_82541_H_
+
+#define NVM_WORD_SIZE_BASE_SHIFT_82541 (NVM_WORD_SIZE_BASE_SHIFT + 1)
+
+#define IGP01E1000_PHY_CHANNEL_NUM 4
+
+#define IGP01E1000_PHY_AGC_A 0x1172
+#define IGP01E1000_PHY_AGC_B 0x1272
+#define IGP01E1000_PHY_AGC_C 0x1472
+#define IGP01E1000_PHY_AGC_D 0x1872
+
+#define IGP01E1000_PHY_AGC_PARAM_A 0x1171
+#define IGP01E1000_PHY_AGC_PARAM_B 0x1271
+#define IGP01E1000_PHY_AGC_PARAM_C 0x1471
+#define IGP01E1000_PHY_AGC_PARAM_D 0x1871
+
+#define IGP01E1000_PHY_EDAC_MU_INDEX 0xC000
+#define IGP01E1000_PHY_EDAC_SIGN_EXT_9_BITS 0x8000
+
+#define IGP01E1000_PHY_DSP_RESET 0x1F33
+
+#define IGP01E1000_PHY_DSP_FFE 0x1F35
+#define IGP01E1000_PHY_DSP_FFE_CM_CP 0x0069
+#define IGP01E1000_PHY_DSP_FFE_DEFAULT 0x002A
+
+#define IGP01E1000_IEEE_FORCE_GIG 0x0140
+#define IGP01E1000_IEEE_RESTART_AUTONEG 0x3300
+
+#define IGP01E1000_AGC_LENGTH_SHIFT 7
+#define IGP01E1000_AGC_RANGE 10
+
+#define FFE_IDLE_ERR_COUNT_TIMEOUT_20 20
+#define FFE_IDLE_ERR_COUNT_TIMEOUT_100 100
+
+#define IGP01E1000_ANALOG_FUSE_STATUS 0x20D0
+#define IGP01E1000_ANALOG_SPARE_FUSE_STATUS 0x20D1
+#define IGP01E1000_ANALOG_FUSE_CONTROL 0x20DC
+#define IGP01E1000_ANALOG_FUSE_BYPASS 0x20DE
+
+#define IGP01E1000_ANALOG_SPARE_FUSE_ENABLED 0x0100
+#define IGP01E1000_ANALOG_FUSE_FINE_MASK 0x0F80
+#define IGP01E1000_ANALOG_FUSE_COARSE_MASK 0x0070
+#define IGP01E1000_ANALOG_FUSE_COARSE_THRESH 0x0040
+#define IGP01E1000_ANALOG_FUSE_COARSE_10 0x0010
+#define IGP01E1000_ANALOG_FUSE_FINE_1 0x0080
+#define IGP01E1000_ANALOG_FUSE_FINE_10 0x0500
+#define IGP01E1000_ANALOG_FUSE_POLY_MASK 0xF000
+#define IGP01E1000_ANALOG_FUSE_ENABLE_SW_CONTROL 0x0002
+
+#define IGP01E1000_MSE_CHANNEL_D 0x000F
+#define IGP01E1000_MSE_CHANNEL_C 0x00F0
+#define IGP01E1000_MSE_CHANNEL_B 0x0F00
+#define IGP01E1000_MSE_CHANNEL_A 0xF000
+
+#endif
Index: if_em.h
===================================================================
RCS file: /home/cvs/src/sys/dev/em/if_em.h,v
retrieving revision 1.3
retrieving revision 1.4
diff -L sys/dev/em/if_em.h -L sys/dev/em/if_em.h -u -r1.3 -r1.4
--- sys/dev/em/if_em.h
+++ sys/dev/em/if_em.h
@@ -1,6 +1,6 @@
/**************************************************************************
-Copyright (c) 2001-2006, Intel Corporation
+Copyright (c) 2001-2007, Intel Corporation
All rights reserved.
Redistribution and use in source and binary forms, with or without
@@ -30,14 +30,18 @@
POSSIBILITY OF SUCH DAMAGE.
***************************************************************************/
-
-/*$FreeBSD: /repoman/r/ncvs/src/sys/dev/em/if_em.h,v 1.32.2.3 2006/08/08 09:20:26 glebius Exp $*/
+/* $FreeBSD: src/sys/dev/em/if_em.h,v 1.62.2.1 2007/11/28 23:24:38 jfv Exp $ */
#ifndef _EM_H_DEFINED_
#define _EM_H_DEFINED_
/* Tunables */
+/* Set FAST handling on by default */
+#if __FreeBSD_version > 700000
+#define EM_FAST_IRQ
+#endif
+
/*
* EM_TXD: Maximum number of Transmit Descriptors
* Valid Range: 80-256 for 82542 and 82543-based adapters
@@ -48,7 +52,7 @@
* descriptor is 16 bytes.
* Since TDLEN should be multiple of 128bytes, the number of transmit
* desscriptors should meet the following condition.
- * (num_tx_desc * sizeof(struct em_tx_desc)) % 128 == 0
+ * (num_tx_desc * sizeof(struct e1000_tx_desc)) % 128 == 0
*/
#define EM_MIN_TXD 80
#define EM_MAX_TXD_82543 256
@@ -66,12 +70,12 @@
* descriptor. The maximum MTU size is 16110.
* Since TDLEN should be multiple of 128bytes, the number of transmit
* desscriptors should meet the following condition.
- * (num_tx_desc * sizeof(struct em_tx_desc)) % 128 == 0
+ * (num_tx_desc * sizeof(struct e1000_tx_desc)) % 128 == 0
*/
#define EM_MIN_RXD 80
#define EM_MAX_RXD_82543 256
#define EM_MAX_RXD 4096
-#define EM_DEFAULT_RXD EM_MAX_RXD_82543
+#define EM_DEFAULT_RXD EM_MAX_RXD_82543
/*
* EM_TIDV - Transmit Interrupt Delay Value
@@ -86,7 +90,8 @@
#define EM_TIDV 64
/*
- * EM_TADV - Transmit Absolute Interrupt Delay Value (Not valid for 82542/82543/82544)
+ * EM_TADV - Transmit Absolute Interrupt Delay Value
+ * (Not valid for 82542/82543/82544)
* Valid Range: 0-65535 (0=off)
* Default Value: 64
* This value, in units of 1.024 microseconds, limits the delay in which a
@@ -112,10 +117,10 @@
*
* CAUTION: When setting EM_RDTR to a value other than 0, adapters
* may hang (stop transmitting) under certain network conditions.
- * If this occurs a WATCHDOG message is logged in the system event log.
- * In addition, the controller is automatically reset, restoring the
- * network connection. To eliminate the potential for the hang
- * ensure that EM_RDTR is set to 0.
+ * If this occurs a WATCHDOG message is logged in the system
+ * event log. In addition, the controller is automatically reset,
+ * restoring the network connection. To eliminate the potential
+ * for the hang ensure that EM_RDTR is set to 0.
*/
#define EM_RDTR 0
@@ -133,20 +138,16 @@
#define EM_RADV 64
/*
- * Inform the stack about transmit checksum offload capabilities.
- */
-#define EM_CHECKSUM_FEATURES (CSUM_TCP | CSUM_UDP)
-
-/*
* This parameter controls the duration of transmit watchdog timer.
*/
-#define EM_TX_TIMEOUT 5 /* set to 5 seconds */
+#define EM_TX_TIMEOUT 5
/*
* This parameter controls when the driver calls the routine to reclaim
* transmit descriptors.
*/
-#define EM_TX_CLEANUP_THRESHOLD (adapter->num_tx_desc / 8)
+#define EM_TX_CLEANUP_THRESHOLD (adapter->num_tx_desc / 8)
+#define EM_TX_OP_THRESHOLD (adapter->num_tx_desc / 32)
/*
* This parameter controls whether or not autonegotation is enabled.
@@ -163,35 +164,39 @@
*/
#define WAIT_FOR_AUTO_NEG_DEFAULT 0
-/*
- * EM_MASTER_SLAVE is only defined to enable a workaround for a known compatibility issue
- * with 82541/82547 devices and some switches. See the "Known Limitations" section of
- * the README file for a complete description and a list of affected switches.
- *
- * 0 = Hardware default
- * 1 = Master mode
- * 2 = Slave mode
- * 3 = Auto master/slave
- */
-/* #define EM_MASTER_SLAVE 2 */
-
/* Tunables -- End */
-#define AUTONEG_ADV_DEFAULT (ADVERTISE_10_HALF | ADVERTISE_10_FULL | \
- ADVERTISE_100_HALF | ADVERTISE_100_FULL | \
- ADVERTISE_1000_FULL)
+#define AUTONEG_ADV_DEFAULT (ADVERTISE_10_HALF | ADVERTISE_10_FULL | \
+ ADVERTISE_100_HALF | ADVERTISE_100_FULL | \
+ ADVERTISE_1000_FULL)
+
+#define AUTO_ALL_MODES 0
+
+/* PHY master/slave setting */
+#define EM_MASTER_SLAVE e1000_ms_hw_default
+/*
+ * Micellaneous constants
+ */
#define EM_VENDOR_ID 0x8086
-#define EM_FLASH 0x0014 /* Flash memory on ICH8 */
+#define EM_FLASH 0x0014
#define EM_JUMBO_PBA 0x00000028
#define EM_DEFAULT_PBA 0x00000030
#define EM_SMARTSPEED_DOWNSHIFT 3
#define EM_SMARTSPEED_MAX 15
+#define EM_MAX_INTR 10
#define MAX_NUM_MULTICAST_ADDRESSES 128
#define PCI_ANY_ID (~0U)
#define ETHER_ALIGN 2
+#define EM_FC_PAUSE_TIME 0x0680
+#define EM_EEPROM_APME 0x400;
+
+/* Code compatilbility between 6 and 7 */
+#ifndef ETHER_BPF_MTAP
+#define ETHER_BPF_MTAP BPF_MTAP
+#endif
/*
* TDBA/RDBA should be aligned on 16 byte boundary. But TDLEN/RDLEN should be
@@ -202,6 +207,18 @@
#define SPEED_MODE_BIT (1<<21) /* On PCI-E MACs only */
+/* PCI Config defines */
+#define EM_BAR_TYPE(v) ((v) & EM_BAR_TYPE_MASK)
+#define EM_BAR_TYPE_MASK 0x00000001
+#define EM_BAR_TYPE_MMEM 0x00000000
+#define EM_BAR_TYPE_IO 0x00000001
+#define EM_BAR_TYPE_FLASH 0x0014
+#define EM_BAR_MEM_TYPE(v) ((v) & EM_BAR_MEM_TYPE_MASK)
+#define EM_BAR_MEM_TYPE_MASK 0x00000006
+#define EM_BAR_MEM_TYPE_32BIT 0x00000000
+#define EM_BAR_MEM_TYPE_64BIT 0x00000004
+#define EM_MSIX_BAR 3 /* On 82575 */
+
/* Defines for printing debug information */
#define DEBUG_INIT 0
#define DEBUG_IOCTL 0
@@ -217,67 +234,68 @@
#define HW_DEBUGOUT1(S, A) if (DEBUG_HW) printf(S "\n", A)
#define HW_DEBUGOUT2(S, A, B) if (DEBUG_HW) printf(S "\n", A, B)
+#define EM_MAX_SCATTER 64
+#define EM_TSO_SIZE (65535 + sizeof(struct ether_vlan_header))
+#define EM_TSO_SEG_SIZE 4096 /* Max dma segment size */
+#define ETH_ZLEN 60
+#define ETH_ADDR_LEN 6
+#define CSUM_OFFLOAD 7 /* Offload bits in mbuf flag */
-/* Supported RX Buffer Sizes */
-#define EM_RXBUFFER_2048 2048
-#define EM_RXBUFFER_4096 4096
-#define EM_RXBUFFER_8192 8192
-#define EM_RXBUFFER_16384 16384
-
-#define EM_MAX_SCATTER 64
-
-typedef enum _XSUM_CONTEXT_T {
- OFFLOAD_NONE,
- OFFLOAD_TCP_IP,
- OFFLOAD_UDP_IP
-} XSUM_CONTEXT_T;
+struct adapter;
-struct adapter adapter; /* XXX: ugly forward declaration */
struct em_int_delay_info {
- struct adapter *adapter; /* XXX: ugly pointer */
- int offset; /* Register offset to read/write */
- int value; /* Current value in usecs */
+ struct adapter *adapter; /* Back-pointer to the adapter struct */
+ int offset; /* Register offset to read/write */
+ int value; /* Current value in usecs */
};
/*
* Bus dma allocation structure used by
- * em_dma_malloc() and em_dma_free().
+ * e1000_dma_malloc and e1000_dma_free.
*/
struct em_dma_alloc {
- bus_addr_t dma_paddr;
- caddr_t dma_vaddr;
- bus_dma_tag_t dma_tag;
- bus_dmamap_t dma_map;
- bus_dma_segment_t dma_seg;
- int dma_nseg;
+ bus_addr_t dma_paddr;
+ caddr_t dma_vaddr;
+ bus_dma_tag_t dma_tag;
+ bus_dmamap_t dma_map;
+ bus_dma_segment_t dma_seg;
+ int dma_nseg;
};
-/* Driver softc. */
+/* Our adapter structure */
struct adapter {
struct ifnet *ifp;
- struct em_hw hw;
+ struct e1000_hw hw;
/* FreeBSD operating-system-specific structures. */
- struct em_osdep osdep;
+ struct e1000_osdep osdep;
struct device *dev;
struct resource *res_memory;
struct resource *flash_mem;
+ struct resource *msix_mem;
struct resource *res_ioport;
struct resource *res_interrupt;
void *int_handler_tag;
struct ifmedia media;
struct callout timer;
struct callout tx_fifo_timer;
+ int watchdog_timer;
int io_rid;
+ int msi;
int if_flags;
- struct mtx mtx;
+ int max_frame_size;
+ int min_frame_size;
+ struct mtx core_mtx;
+ struct mtx tx_mtx;
int em_insert_vlan_header;
- struct task link_task;
- struct task rxtx_task;
- struct taskqueue *tq; /* private task queue */
+ struct task link_task;
+ struct task rxtx_task;
+ struct taskqueue *tq; /* private task queue */
+ /* Management and WOL features */
+ int wol;
+ int has_manage;
/* Info about the board itself */
- uint32_t part_num;
uint8_t link_active;
uint16_t link_speed;
uint16_t link_duplex;
@@ -287,8 +305,6 @@
struct em_int_delay_info rx_int_delay;
struct em_int_delay_info rx_abs_int_delay;
- XSUM_CONTEXT_T active_checksum_context;
-
/*
* Transmit definitions
*
@@ -299,14 +315,21 @@
* The number of remaining tx_desc is num_tx_desc_avail.
*/
struct em_dma_alloc txdma; /* bus_dma glue for tx desc */
- struct em_tx_desc *tx_desc_base;
+ struct e1000_tx_desc *tx_desc_base;
uint32_t next_avail_tx_desc;
- uint32_t oldest_used_tx_desc;
+ uint32_t next_tx_to_clean;
volatile uint16_t num_tx_desc_avail;
uint16_t num_tx_desc;
uint32_t txd_cmd;
struct em_buffer *tx_buffer_area;
bus_dma_tag_t txtag; /* dma tag for tx */
+ uint32_t tx_tso; /* last tx was tso */
+
+ /*
+ * Transmit function pointer:
+ * legacy or advanced (82575 and later)
+ */
+ int (*em_xmit) (struct adapter *adapter, struct mbuf **m_headp);
/*
* Receive definitions
@@ -317,7 +340,7 @@
* The next pair to check on receive is at offset next_rx_desc_to_check
*/
struct em_dma_alloc rxdma; /* bus_dma glue for rx desc */
- struct em_rx_desc *rx_desc_base;
+ struct e1000_rx_desc *rx_desc_base;
uint32_t next_rx_desc_to_check;
uint32_t rx_buffer_len;
uint16_t num_rx_desc;
@@ -326,11 +349,15 @@
bus_dma_tag_t rxtag;
bus_dmamap_t rx_sparemap;
- /* First/last mbuf pointers, for collecting multisegment RX packets. */
+ /*
+ * First/last mbuf pointers, for
+ * collecting multisegment RX packets.
+ */
struct mbuf *fmp;
struct mbuf *lmp;
/* Misc stats maintained by the driver */
+ unsigned long dropped_pkts;
unsigned long mbuf_alloc_failed;
unsigned long mbuf_cluster_failed;
unsigned long no_tx_desc_avail1;
@@ -359,7 +386,7 @@
boolean_t pcix_82544;
boolean_t in_detach;
- struct em_hw_stats stats;
+ struct e1000_hw_stats stats;
};
/* ******************************************************************************
@@ -379,6 +406,7 @@
struct em_buffer {
+ int next_eop; /* Index of the desc to watch */
struct mbuf *m_head;
bus_dmamap_t map; /* bus_dma map for packet */
};
@@ -386,21 +414,27 @@
/* For 82544 PCIX Workaround */
typedef struct _ADDRESS_LENGTH_PAIR
{
- u_int64_t address;
- u_int32_t length;
+ uint64_t address;
+ uint32_t length;
} ADDRESS_LENGTH_PAIR, *PADDRESS_LENGTH_PAIR;
typedef struct _DESCRIPTOR_PAIR
{
- ADDRESS_LENGTH_PAIR descriptor[4];
- u_int32_t elements;
+ ADDRESS_LENGTH_PAIR descriptor[4];
+ uint32_t elements;
} DESC_ARRAY, *PDESC_ARRAY;
-#define EM_LOCK_INIT(_sc, _name) \
- mtx_init(&(_sc)->mtx, _name, MTX_NETWORK_LOCK, MTX_DEF)
-#define EM_LOCK_DESTROY(_sc) mtx_destroy(&(_sc)->mtx)
-#define EM_LOCK(_sc) mtx_lock(&(_sc)->mtx)
-#define EM_UNLOCK(_sc) mtx_unlock(&(_sc)->mtx)
-#define EM_LOCK_ASSERT(_sc) mtx_assert(&(_sc)->mtx, MA_OWNED)
+#define EM_CORE_LOCK_INIT(_sc, _name) \
+ mtx_init(&(_sc)->core_mtx, _name, "EM Core Lock", MTX_DEF)
+#define EM_TX_LOCK_INIT(_sc, _name) \
+ mtx_init(&(_sc)->tx_mtx, _name, "EM TX Lock", MTX_DEF)
+#define EM_CORE_LOCK_DESTROY(_sc) mtx_destroy(&(_sc)->core_mtx)
+#define EM_TX_LOCK_DESTROY(_sc) mtx_destroy(&(_sc)->tx_mtx)
+#define EM_CORE_LOCK(_sc) mtx_lock(&(_sc)->core_mtx)
+#define EM_TX_LOCK(_sc) mtx_lock(&(_sc)->tx_mtx)
+#define EM_CORE_UNLOCK(_sc) mtx_unlock(&(_sc)->core_mtx)
+#define EM_TX_UNLOCK(_sc) mtx_unlock(&(_sc)->tx_mtx)
+#define EM_CORE_LOCK_ASSERT(_sc) mtx_assert(&(_sc)->core_mtx, MA_OWNED)
+#define EM_TX_LOCK_ASSERT(_sc) mtx_assert(&(_sc)->tx_mtx, MA_OWNED)
#endif /* _EM_H_DEFINED_ */
--- /dev/null
+++ sys/dev/em/e1000_82571.c
@@ -0,0 +1,1439 @@
+/*******************************************************************************
+
+ Copyright (c) 2001-2007, Intel Corporation
+ All rights reserved.
+
+ Redistribution and use in source and binary forms, with or without
+ modification, are permitted provided that the following conditions are met:
+
+ 1. Redistributions of source code must retain the above copyright notice,
+ this list of conditions and the following disclaimer.
+
+ 2. Redistributions in binary form must reproduce the above copyright
+ notice, this list of conditions and the following disclaimer in the
+ documentation and/or other materials provided with the distribution.
+
+ 3. Neither the name of the Intel Corporation nor the names of its
+ contributors may be used to endorse or promote products derived from
+ this software without specific prior written permission.
+
+ THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
+ AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+ IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
+ LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
+ CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
+ SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
+ INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
+ CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
+ ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
+ POSSIBILITY OF SUCH DAMAGE.
+
+*******************************************************************************/
+/* $FreeBSD: src/sys/dev/em/e1000_82571.c,v 1.3.4.1 2007/11/28 23:24:37 jfv Exp $ */
+
+
+/* e1000_82571
+ * e1000_82572
+ * e1000_82573
+ * e1000_82574
+ */
+
+#include "e1000_api.h"
+#include "e1000_82571.h"
+
+void e1000_init_function_pointers_82571(struct e1000_hw *hw);
+
+STATIC s32 e1000_init_phy_params_82571(struct e1000_hw *hw);
+STATIC s32 e1000_init_nvm_params_82571(struct e1000_hw *hw);
+STATIC s32 e1000_init_mac_params_82571(struct e1000_hw *hw);
+STATIC s32 e1000_acquire_nvm_82571(struct e1000_hw *hw);
+STATIC void e1000_release_nvm_82571(struct e1000_hw *hw);
+STATIC s32 e1000_write_nvm_82571(struct e1000_hw *hw, u16 offset,
+ u16 words, u16 *data);
+STATIC s32 e1000_update_nvm_checksum_82571(struct e1000_hw *hw);
+STATIC s32 e1000_validate_nvm_checksum_82571(struct e1000_hw *hw);
+STATIC s32 e1000_get_cfg_done_82571(struct e1000_hw *hw);
+STATIC s32 e1000_set_d0_lplu_state_82571(struct e1000_hw *hw,
+ bool active);
+STATIC s32 e1000_reset_hw_82571(struct e1000_hw *hw);
+STATIC s32 e1000_init_hw_82571(struct e1000_hw *hw);
+STATIC void e1000_clear_vfta_82571(struct e1000_hw *hw);
+STATIC void e1000_update_mc_addr_list_82571(struct e1000_hw *hw,
+ u8 *mc_addr_list, u32 mc_addr_count,
+ u32 rar_used_count, u32 rar_count);
+STATIC s32 e1000_setup_link_82571(struct e1000_hw *hw);
+STATIC s32 e1000_setup_copper_link_82571(struct e1000_hw *hw);
+STATIC s32 e1000_setup_fiber_serdes_link_82571(struct e1000_hw *hw);
+STATIC s32 e1000_valid_led_default_82571(struct e1000_hw *hw, u16 *data);
+STATIC void e1000_clear_hw_cntrs_82571(struct e1000_hw *hw);
+static s32 e1000_get_hw_semaphore_82571(struct e1000_hw *hw);
+static s32 e1000_fix_nvm_checksum_82571(struct e1000_hw *hw);
+static s32 e1000_get_phy_id_82571(struct e1000_hw *hw);
+static void e1000_put_hw_semaphore_82571(struct e1000_hw *hw);
+static void e1000_initialize_hw_bits_82571(struct e1000_hw *hw);
+static s32 e1000_write_nvm_eewr_82571(struct e1000_hw *hw, u16 offset,
+ u16 words, u16 *data);
+STATIC s32 e1000_read_mac_addr_82571(struct e1000_hw *hw);
+STATIC void e1000_power_down_phy_copper_82571(struct e1000_hw *hw);
+
+struct e1000_dev_spec_82571 {
+ bool laa_is_present;
+};
+
+/**
+ * e1000_init_phy_params_82571 - Init PHY func ptrs.
+ * @hw: pointer to the HW structure
+ *
+ * This is a function pointer entry point called by the api module.
+ **/
+STATIC s32 e1000_init_phy_params_82571(struct e1000_hw *hw)
+{
+ struct e1000_phy_info *phy = &hw->phy;
+ struct e1000_functions *func = &hw->func;
+ s32 ret_val = E1000_SUCCESS;
+
+ DEBUGFUNC("e1000_init_phy_params_82571");
+
+ if (hw->phy.media_type != e1000_media_type_copper) {
+ phy->type = e1000_phy_none;
+ goto out;
+ }
+
+ phy->addr = 1;
+ phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
+ phy->reset_delay_us = 100;
+
+ func->acquire_phy = e1000_get_hw_semaphore_82571;
+ func->check_polarity = e1000_check_polarity_igp;
+ func->check_reset_block = e1000_check_reset_block_generic;
+ func->release_phy = e1000_put_hw_semaphore_82571;
+ func->reset_phy = e1000_phy_hw_reset_generic;
+ func->set_d0_lplu_state = e1000_set_d0_lplu_state_82571;
+ func->set_d3_lplu_state = e1000_set_d3_lplu_state_generic;
+ func->power_up_phy = e1000_power_up_phy_copper;
+ func->power_down_phy = e1000_power_down_phy_copper_82571;
+
+ switch (hw->mac.type) {
+ case e1000_82571:
+ case e1000_82572:
+ phy->type = e1000_phy_igp_2;
+ func->get_cfg_done = e1000_get_cfg_done_82571;
+ func->get_phy_info = e1000_get_phy_info_igp;
+ func->force_speed_duplex = e1000_phy_force_speed_duplex_igp;
+ func->get_cable_length = e1000_get_cable_length_igp_2;
+ func->read_phy_reg = e1000_read_phy_reg_igp;
+ func->write_phy_reg = e1000_write_phy_reg_igp;
+
+ /* This uses above function pointers */
+ ret_val = e1000_get_phy_id_82571(hw);
+
+ /* Verify PHY ID */
+ if (phy->id != IGP01E1000_I_PHY_ID) {
+ ret_val = -E1000_ERR_PHY;
+ goto out;
+ }
+ break;
+ case e1000_82573:
+ phy->type = e1000_phy_m88;
+ func->get_cfg_done = e1000_get_cfg_done_generic;
+ func->get_phy_info = e1000_get_phy_info_m88;
+ func->commit_phy = e1000_phy_sw_reset_generic;
+ func->force_speed_duplex = e1000_phy_force_speed_duplex_m88;
+ func->get_cable_length = e1000_get_cable_length_m88;
+ func->read_phy_reg = e1000_read_phy_reg_m88;
+ func->write_phy_reg = e1000_write_phy_reg_m88;
+
+ /* This uses above function pointers */
+ ret_val = e1000_get_phy_id_82571(hw);
+
+ /* Verify PHY ID */
+ if (phy->id != M88E1111_I_PHY_ID) {
+ ret_val = -E1000_ERR_PHY;
+ DEBUGOUT1("PHY ID unknown: type = 0x%08x\n", phy->id);
+ goto out;
+ }
+ break;
+ default:
+ ret_val = -E1000_ERR_PHY;
+ goto out;
+ break;
+ }
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_init_nvm_params_82571 - Init NVM func ptrs.
+ * @hw: pointer to the HW structure
+ *
+ * This is a function pointer entry point called by the api module.
+ **/
+STATIC s32 e1000_init_nvm_params_82571(struct e1000_hw *hw)
+{
+ struct e1000_nvm_info *nvm = &hw->nvm;
+ struct e1000_functions *func = &hw->func;
+ u32 eecd = E1000_READ_REG(hw, E1000_EECD);
+ u16 size;
+
+ DEBUGFUNC("e1000_init_nvm_params_82571");
+
+ nvm->opcode_bits = 8;
+ nvm->delay_usec = 1;
+ switch (nvm->override) {
+ case e1000_nvm_override_spi_large:
+ nvm->page_size = 32;
+ nvm->address_bits = 16;
+ break;
+ case e1000_nvm_override_spi_small:
+ nvm->page_size = 8;
+ nvm->address_bits = 8;
+ break;
+ default:
+ nvm->page_size = eecd & E1000_EECD_ADDR_BITS ? 32 : 8;
+ nvm->address_bits = eecd & E1000_EECD_ADDR_BITS ? 16 : 8;
+ break;
+ }
+
+ switch (hw->mac.type) {
+ case e1000_82573:
+ if (((eecd >> 15) & 0x3) == 0x3) {
+ nvm->type = e1000_nvm_flash_hw;
+ nvm->word_size = 2048;
+ /*
+ * Autonomous Flash update bit must be cleared due
+ * to Flash update issue.
+ */
+ eecd &= ~E1000_EECD_AUPDEN;
+ E1000_WRITE_REG(hw, E1000_EECD, eecd);
+ break;
+ }
+ /* Fall Through */
+ default:
+ nvm->type = e1000_nvm_eeprom_spi;
+ size = (u16)((eecd & E1000_EECD_SIZE_EX_MASK) >>
+ E1000_EECD_SIZE_EX_SHIFT);
+ /*
+ * Added to a constant, "size" becomes the left-shift value
+ * for setting word_size.
+ */
+ size += NVM_WORD_SIZE_BASE_SHIFT;
+
+ /* EEPROM access above 16k is unsupported */
+ if (size > 14)
+ size = 14;
+ nvm->word_size = 1 << size;
+ break;
+ }
+
+ /* Function Pointers */
+ func->acquire_nvm = e1000_acquire_nvm_82571;
+ func->read_nvm = (hw->mac.type == e1000_82573)
+ ? e1000_read_nvm_eerd
+ : e1000_read_nvm_spi;
+ func->release_nvm = e1000_release_nvm_82571;
+ func->update_nvm = e1000_update_nvm_checksum_82571;
+ func->validate_nvm = e1000_validate_nvm_checksum_82571;
+ func->valid_led_default = e1000_valid_led_default_82571;
+ func->write_nvm = e1000_write_nvm_82571;
+
+ return E1000_SUCCESS;
+}
+
+/**
+ * e1000_init_mac_params_82571 - Init MAC func ptrs.
+ * @hw: pointer to the HW structure
+ *
+ * This is a function pointer entry point called by the api module.
+ **/
+STATIC s32 e1000_init_mac_params_82571(struct e1000_hw *hw)
+{
+ struct e1000_mac_info *mac = &hw->mac;
+ struct e1000_functions *func = &hw->func;
+ s32 ret_val = E1000_SUCCESS;
+
+ DEBUGFUNC("e1000_init_mac_params_82571");
+
+ /* Set media type */
+ switch (hw->device_id) {
+ case E1000_DEV_ID_82571EB_FIBER:
+ case E1000_DEV_ID_82572EI_FIBER:
+ case E1000_DEV_ID_82571EB_QUAD_FIBER:
+ hw->phy.media_type = e1000_media_type_fiber;
+ break;
+ case E1000_DEV_ID_82571EB_SERDES:
+ case E1000_DEV_ID_82571EB_SERDES_DUAL:
+ case E1000_DEV_ID_82571EB_SERDES_QUAD:
+ case E1000_DEV_ID_82572EI_SERDES:
+ hw->phy.media_type = e1000_media_type_internal_serdes;
+ break;
+ default:
+ hw->phy.media_type = e1000_media_type_copper;
+ break;
+ }
+
+ /* Set mta register count */
+ mac->mta_reg_count = 128;
+ /* Set rar entry count */
+ mac->rar_entry_count = E1000_RAR_ENTRIES;
+ /* Set if part includes ASF firmware */
+ mac->asf_firmware_present = TRUE;
+ /* Set if manageability features are enabled. */
+ mac->arc_subsystem_valid =
+ (E1000_READ_REG(hw, E1000_FWSM) & E1000_FWSM_MODE_MASK)
+ ? TRUE : FALSE;
+
+ /* Function pointers */
+
+ /* bus type/speed/width */
+ func->get_bus_info = e1000_get_bus_info_pcie_generic;
+ /* reset */
+ func->reset_hw = e1000_reset_hw_82571;
+ /* hw initialization */
+ func->init_hw = e1000_init_hw_82571;
+ /* link setup */
+ func->setup_link = e1000_setup_link_82571;
+ /* physical interface link setup */
+ func->setup_physical_interface =
+ (hw->phy.media_type == e1000_media_type_copper)
+ ? e1000_setup_copper_link_82571
+ : e1000_setup_fiber_serdes_link_82571;
+ /* check for link */
+ switch (hw->phy.media_type) {
+ case e1000_media_type_copper:
+ func->check_for_link = e1000_check_for_copper_link_generic;
+ break;
+ case e1000_media_type_fiber:
+ func->check_for_link = e1000_check_for_fiber_link_generic;
+ break;
+ case e1000_media_type_internal_serdes:
+ func->check_for_link = e1000_check_for_serdes_link_generic;
+ break;
+ default:
+ ret_val = -E1000_ERR_CONFIG;
+ goto out;
+ break;
+ }
+ /* check management mode */
+ func->check_mng_mode = e1000_check_mng_mode_generic;
+ /* multicast address update */
+ func->update_mc_addr_list = e1000_update_mc_addr_list_82571;
+ /* writing VFTA */
+ func->write_vfta = e1000_write_vfta_generic;
+ /* clearing VFTA */
+ func->clear_vfta = e1000_clear_vfta_82571;
+ /* setting MTA */
+ func->mta_set = e1000_mta_set_generic;
+ /* read mac address */
+ func->read_mac_addr = e1000_read_mac_addr_82571;
+ /* blink LED */
+ func->blink_led = e1000_blink_led_generic;
+ /* setup LED */
+ func->setup_led = e1000_setup_led_generic;
+ /* cleanup LED */
+ func->cleanup_led = e1000_cleanup_led_generic;
+ /* turn on/off LED */
+ func->led_on = e1000_led_on_generic;
+ func->led_off = e1000_led_off_generic;
+ /* remove device */
+ func->remove_device = e1000_remove_device_generic;
+ /* clear hardware counters */
+ func->clear_hw_cntrs = e1000_clear_hw_cntrs_82571;
+ /* link info */
+ func->get_link_up_info =
+ (hw->phy.media_type == e1000_media_type_copper)
+ ? e1000_get_speed_and_duplex_copper_generic
+ : e1000_get_speed_and_duplex_fiber_serdes_generic;
+
+ hw->dev_spec_size = sizeof(struct e1000_dev_spec_82571);
+
+ /* Device-specific structure allocation */
+ ret_val = e1000_alloc_zeroed_dev_spec_struct(hw, hw->dev_spec_size);
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_init_function_pointers_82571 - Init func ptrs.
+ * @hw: pointer to the HW structure
+ *
+ * The only function explicitly called by the api module to initialize
+ * all function pointers and parameters.
+ **/
+void e1000_init_function_pointers_82571(struct e1000_hw *hw)
+{
+ DEBUGFUNC("e1000_init_function_pointers_82571");
+
+ hw->func.init_mac_params = e1000_init_mac_params_82571;
+ hw->func.init_nvm_params = e1000_init_nvm_params_82571;
+ hw->func.init_phy_params = e1000_init_phy_params_82571;
+}
+
+/**
+ * e1000_get_phy_id_82571 - Retrieve the PHY ID and revision
+ * @hw: pointer to the HW structure
+ *
+ * Reads the PHY registers and stores the PHY ID and possibly the PHY
+ * revision in the hardware structure.
+ **/
+static s32 e1000_get_phy_id_82571(struct e1000_hw *hw)
+{
+ struct e1000_phy_info *phy = &hw->phy;
+ s32 ret_val = E1000_SUCCESS;
+
+ DEBUGFUNC("e1000_get_phy_id_82571");
+
+ switch (hw->mac.type) {
+ case e1000_82571:
+ case e1000_82572:
+ /*
+ * The 82571 firmware may still be configuring the PHY.
+ * In this case, we cannot access the PHY until the
+ * configuration is done. So we explicitly set the
+ * PHY ID.
+ */
+ phy->id = IGP01E1000_I_PHY_ID;
+ break;
+ case e1000_82573:
+ ret_val = e1000_get_phy_id(hw);
+ break;
+ default:
+ ret_val = -E1000_ERR_PHY;
+ break;
+ }
+
+ return ret_val;
+}
+
+/**
+ * e1000_get_hw_semaphore_82571 - Acquire hardware semaphore
+ * @hw: pointer to the HW structure
+ *
+ * Acquire the HW semaphore to access the PHY or NVM
+ **/
+s32 e1000_get_hw_semaphore_82571(struct e1000_hw *hw)
+{
+ u32 swsm;
+ s32 ret_val = E1000_SUCCESS;
+ s32 timeout = hw->nvm.word_size + 1;
+ s32 i = 0;
+
+ DEBUGFUNC("e1000_get_hw_semaphore_82571");
+
+ /* Get the FW semaphore. */
+ for (i = 0; i < timeout; i++) {
+ swsm = E1000_READ_REG(hw, E1000_SWSM);
+ E1000_WRITE_REG(hw, E1000_SWSM, swsm | E1000_SWSM_SWESMBI);
+
+ /* Semaphore acquired if bit latched */
+ if (E1000_READ_REG(hw, E1000_SWSM) & E1000_SWSM_SWESMBI)
+ break;
+
+ usec_delay(50);
+ }
+
+ if (i == timeout) {
+ /* Release semaphores */
+ e1000_put_hw_semaphore_generic(hw);
+ DEBUGOUT("Driver can't access the NVM\n");
+ ret_val = -E1000_ERR_NVM;
+ goto out;
+ }
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_put_hw_semaphore_82571 - Release hardware semaphore
+ * @hw: pointer to the HW structure
+ *
+ * Release hardware semaphore used to access the PHY or NVM
+ **/
+void e1000_put_hw_semaphore_82571(struct e1000_hw *hw)
+{
+ u32 swsm;
+
+ DEBUGFUNC("e1000_put_hw_semaphore_82571");
+
+ swsm = E1000_READ_REG(hw, E1000_SWSM);
+
+ swsm &= ~E1000_SWSM_SWESMBI;
+
+ E1000_WRITE_REG(hw, E1000_SWSM, swsm);
+}
+
+/**
+ * e1000_acquire_nvm_82571 - Request for access to the EEPROM
+ * @hw: pointer to the HW structure
+ *
+ * To gain access to the EEPROM, first we must obtain a hardware semaphore.
+ * Then for non-82573 hardware, set the EEPROM access request bit and wait
+ * for EEPROM access grant bit. If the access grant bit is not set, release
+ * hardware semaphore.
+ **/
+STATIC s32 e1000_acquire_nvm_82571(struct e1000_hw *hw)
+{
+ s32 ret_val;
+
+ DEBUGFUNC("e1000_acquire_nvm_82571");
+
+ ret_val = e1000_get_hw_semaphore_82571(hw);
+ if (ret_val)
+ goto out;
+
+ if (hw->mac.type != e1000_82573)
+ ret_val = e1000_acquire_nvm_generic(hw);
+
+ if (ret_val)
+ e1000_put_hw_semaphore_82571(hw);
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_release_nvm_82571 - Release exclusive access to EEPROM
+ * @hw: pointer to the HW structure
+ *
+ * Stop any current commands to the EEPROM and clear the EEPROM request bit.
+ **/
+STATIC void e1000_release_nvm_82571(struct e1000_hw *hw)
+{
+ DEBUGFUNC("e1000_release_nvm_82571");
+
+ e1000_release_nvm_generic(hw);
+ e1000_put_hw_semaphore_82571(hw);
+}
+
+/**
+ * e1000_write_nvm_82571 - Write to EEPROM using appropriate interface
+ * @hw: pointer to the HW structure
+ * @offset: offset within the EEPROM to be written to
+ * @words: number of words to write
+ * @data: 16 bit word(s) to be written to the EEPROM
+ *
+ * For non-82573 silicon, write data to EEPROM at offset using SPI interface.
+ *
+ * If e1000_update_nvm_checksum is not called after this function, the
+ * EEPROM will most likley contain an invalid checksum.
+ **/
+STATIC s32 e1000_write_nvm_82571(struct e1000_hw *hw, u16 offset, u16 words,
+ u16 *data)
+{
+ s32 ret_val = E1000_SUCCESS;
+
+ DEBUGFUNC("e1000_write_nvm_82571");
+
+ switch (hw->mac.type) {
+ case e1000_82573:
+ ret_val = e1000_write_nvm_eewr_82571(hw, offset, words, data);
+ break;
+ case e1000_82571:
+ case e1000_82572:
+ ret_val = e1000_write_nvm_spi(hw, offset, words, data);
+ break;
+ default:
+ ret_val = -E1000_ERR_NVM;
+ break;
+ }
+
+ return ret_val;
+}
+
+/**
+ * e1000_update_nvm_checksum_82571 - Update EEPROM checksum
+ * @hw: pointer to the HW structure
+ *
+ * Updates the EEPROM checksum by reading/adding each word of the EEPROM
+ * up to the checksum. Then calculates the EEPROM checksum and writes the
+ * value to the EEPROM.
+ **/
+STATIC s32 e1000_update_nvm_checksum_82571(struct e1000_hw *hw)
+{
+ u32 eecd;
+ s32 ret_val;
+ u16 i;
+
+ DEBUGFUNC("e1000_update_nvm_checksum_82571");
+
+ ret_val = e1000_update_nvm_checksum_generic(hw);
+ if (ret_val)
+ goto out;
+
+ /*
+ * If our nvm is an EEPROM, then we're done
+ * otherwise, commit the checksum to the flash NVM.
+ */
+ if (hw->nvm.type != e1000_nvm_flash_hw)
+ goto out;
+
+ /* Check for pending operations. */
+ for (i = 0; i < E1000_FLASH_UPDATES; i++) {
+ msec_delay(1);
+ if ((E1000_READ_REG(hw, E1000_EECD) & E1000_EECD_FLUPD) == 0)
+ break;
+ }
+
+ if (i == E1000_FLASH_UPDATES) {
+ ret_val = -E1000_ERR_NVM;
+ goto out;
+ }
+
+ /* Reset the firmware if using STM opcode. */
+ if ((E1000_READ_REG(hw, E1000_FLOP) & 0xFF00) == E1000_STM_OPCODE) {
+ /*
+ * The enabling of and the actual reset must be done
+ * in two write cycles.
+ */
+ E1000_WRITE_REG(hw, E1000_HICR, E1000_HICR_FW_RESET_ENABLE);
+ E1000_WRITE_FLUSH(hw);
+ E1000_WRITE_REG(hw, E1000_HICR, E1000_HICR_FW_RESET);
+ }
+
+ /* Commit the write to flash */
+ eecd = E1000_READ_REG(hw, E1000_EECD) | E1000_EECD_FLUPD;
+ E1000_WRITE_REG(hw, E1000_EECD, eecd);
+
+ for (i = 0; i < E1000_FLASH_UPDATES; i++) {
+ msec_delay(1);
+ if ((E1000_READ_REG(hw, E1000_EECD) & E1000_EECD_FLUPD) == 0)
+ break;
+ }
+
+ if (i == E1000_FLASH_UPDATES) {
+ ret_val = -E1000_ERR_NVM;
+ goto out;
+ }
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_validate_nvm_checksum_82571 - Validate EEPROM checksum
+ * @hw: pointer to the HW structure
+ *
+ * Calculates the EEPROM checksum by reading/adding each word of the EEPROM
+ * and then verifies that the sum of the EEPROM is equal to 0xBABA.
+ **/
+STATIC s32 e1000_validate_nvm_checksum_82571(struct e1000_hw *hw)
+{
+ DEBUGFUNC("e1000_validate_nvm_checksum_82571");
+
+ if (hw->nvm.type == e1000_nvm_flash_hw)
+ e1000_fix_nvm_checksum_82571(hw);
+
+ return e1000_validate_nvm_checksum_generic(hw);
+}
+
+/**
+ * e1000_write_nvm_eewr_82571 - Write to EEPROM for 82573 silicon
+ * @hw: pointer to the HW structure
+ * @offset: offset within the EEPROM to be written to
+ * @words: number of words to write
+ * @data: 16 bit word(s) to be written to the EEPROM
+ *
+ * After checking for invalid values, poll the EEPROM to ensure the previous
+ * command has completed before trying to write the next word. After write
+ * poll for completion.
+ *
+ * If e1000_update_nvm_checksum is not called after this function, the
+ * EEPROM will most likley contain an invalid checksum.
+ **/
+static s32 e1000_write_nvm_eewr_82571(struct e1000_hw *hw, u16 offset,
+ u16 words, u16 *data)
+{
+ struct e1000_nvm_info *nvm = &hw->nvm;
+ u32 i, eewr = 0;
+ s32 ret_val = 0;
+
+ DEBUGFUNC("e1000_write_nvm_eewr_82571");
+
+ /*
+ * A check for invalid values: offset too large, too many words,
+ * and not enough words.
+ */
+ if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
+ (words == 0)) {
+ DEBUGOUT("nvm parameter(s) out of bounds\n");
+ ret_val = -E1000_ERR_NVM;
+ goto out;
+ }
+
+ for (i = 0; i < words; i++) {
+ eewr = (data[i] << E1000_NVM_RW_REG_DATA) |
+ ((offset+i) << E1000_NVM_RW_ADDR_SHIFT) |
+ E1000_NVM_RW_REG_START;
+
+ ret_val = e1000_poll_eerd_eewr_done(hw, E1000_NVM_POLL_WRITE);
+ if (ret_val)
+ break;
+
+ E1000_WRITE_REG(hw, E1000_EEWR, eewr);
+
+ ret_val = e1000_poll_eerd_eewr_done(hw, E1000_NVM_POLL_WRITE);
+ if (ret_val)
+ break;
+ }
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_get_cfg_done_82571 - Poll for configuration done
+ * @hw: pointer to the HW structure
+ *
+ * Reads the management control register for the config done bit to be set.
+ **/
+STATIC s32 e1000_get_cfg_done_82571(struct e1000_hw *hw)
+{
+ s32 timeout = PHY_CFG_TIMEOUT;
+ s32 ret_val = E1000_SUCCESS;
+
+ DEBUGFUNC("e1000_get_cfg_done_82571");
+
+ while (timeout) {
+ if (E1000_READ_REG(hw, E1000_EEMNGCTL) & E1000_NVM_CFG_DONE_PORT_0)
+ break;
+ msec_delay(1);
+ timeout--;
+ }
+ if (!timeout) {
+ DEBUGOUT("MNG configuration cycle has not completed.\n");
+ ret_val = -E1000_ERR_RESET;
+ goto out;
+ }
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_set_d0_lplu_state_82571 - Set Low Power Linkup D0 state
+ * @hw: pointer to the HW structure
+ * @active: TRUE to enable LPLU, FALSE to disable
+ *
+ * Sets the LPLU D0 state according to the active flag. When activating LPLU
+ * this function also disables smart speed and vice versa. LPLU will not be
+ * activated unless the device autonegotiation advertisement meets standards
+ * of either 10 or 10/100 or 10/100/1000 at all duplexes. This is a function
+ * pointer entry point only called by PHY setup routines.
+ **/
+STATIC s32 e1000_set_d0_lplu_state_82571(struct e1000_hw *hw, bool active)
+{
+ struct e1000_phy_info *phy = &hw->phy;
+ s32 ret_val;
+ u16 data;
+
+ DEBUGFUNC("e1000_set_d0_lplu_state_82571");
+
+ ret_val = e1000_read_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, &data);
+ if (ret_val)
+ goto out;
+
+ if (active) {
+ data |= IGP02E1000_PM_D0_LPLU;
+ ret_val = e1000_write_phy_reg(hw,
+ IGP02E1000_PHY_POWER_MGMT,
+ data);
+ if (ret_val)
+ goto out;
+
+ /* When LPLU is enabled, we should disable SmartSpeed */
+ ret_val = e1000_read_phy_reg(hw,
+ IGP01E1000_PHY_PORT_CONFIG,
+ &data);
+ data &= ~IGP01E1000_PSCFR_SMART_SPEED;
+ ret_val = e1000_write_phy_reg(hw,
+ IGP01E1000_PHY_PORT_CONFIG,
+ data);
+ if (ret_val)
+ goto out;
+ } else {
+ data &= ~IGP02E1000_PM_D0_LPLU;
+ ret_val = e1000_write_phy_reg(hw,
+ IGP02E1000_PHY_POWER_MGMT,
+ data);
+ /*
+ * LPLU and SmartSpeed are mutually exclusive. LPLU is used
+ * during Dx states where the power conservation is most
+ * important. During driver activity we should enable
+ * SmartSpeed, so performance is maintained.
+ */
+ if (phy->smart_speed == e1000_smart_speed_on) {
+ ret_val = e1000_read_phy_reg(hw,
+ IGP01E1000_PHY_PORT_CONFIG,
+ &data);
+ if (ret_val)
+ goto out;
+
+ data |= IGP01E1000_PSCFR_SMART_SPEED;
+ ret_val = e1000_write_phy_reg(hw,
+ IGP01E1000_PHY_PORT_CONFIG,
+ data);
+ if (ret_val)
+ goto out;
+ } else if (phy->smart_speed == e1000_smart_speed_off) {
+ ret_val = e1000_read_phy_reg(hw,
+ IGP01E1000_PHY_PORT_CONFIG,
+ &data);
+ if (ret_val)
+ goto out;
+
+ data &= ~IGP01E1000_PSCFR_SMART_SPEED;
+ ret_val = e1000_write_phy_reg(hw,
+ IGP01E1000_PHY_PORT_CONFIG,
+ data);
+ if (ret_val)
+ goto out;
+ }
+ }
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_reset_hw_82571 - Reset hardware
+ * @hw: pointer to the HW structure
+ *
+ * This resets the hardware into a known state. This is a
+ * function pointer entry point called by the api module.
+ **/
+STATIC s32 e1000_reset_hw_82571(struct e1000_hw *hw)
+{
+ u32 ctrl, extcnf_ctrl, ctrl_ext, icr;
+ s32 ret_val;
+ u16 i = 0;
+
+ DEBUGFUNC("e1000_reset_hw_82571");
+
+ /*
+ * Prevent the PCI-E bus from sticking if there is no TLP connection
+ * on the last TLP read/write transaction when MAC is reset.
+ */
+ ret_val = e1000_disable_pcie_master_generic(hw);
+ if (ret_val) {
+ DEBUGOUT("PCI-E Master disable polling has failed.\n");
+ }
+
+ DEBUGOUT("Masking off all interrupts\n");
+ E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff);
+
+ E1000_WRITE_REG(hw, E1000_RCTL, 0);
+ E1000_WRITE_REG(hw, E1000_TCTL, E1000_TCTL_PSP);
+ E1000_WRITE_FLUSH(hw);
+
+ msec_delay(10);
+
+ /*
+ * Must acquire the MDIO ownership before MAC reset.
+ * Ownership defaults to firmware after a reset.
+ */
+ if (hw->mac.type == e1000_82573) {
+ extcnf_ctrl = E1000_READ_REG(hw, E1000_EXTCNF_CTRL);
+ extcnf_ctrl |= E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP;
+
+ do {
+ E1000_WRITE_REG(hw, E1000_EXTCNF_CTRL, extcnf_ctrl);
+ extcnf_ctrl = E1000_READ_REG(hw, E1000_EXTCNF_CTRL);
+
+ if (extcnf_ctrl & E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP)
+ break;
+
+ extcnf_ctrl |= E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP;
+
+ msec_delay(2);
+ i++;
+ } while (i < MDIO_OWNERSHIP_TIMEOUT);
+ }
+
+ ctrl = E1000_READ_REG(hw, E1000_CTRL);
+
+ DEBUGOUT("Issuing a global reset to MAC\n");
+ E1000_WRITE_REG(hw, E1000_CTRL, ctrl | E1000_CTRL_RST);
+
+ if (hw->nvm.type == e1000_nvm_flash_hw) {
+ usec_delay(10);
+ ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
+ ctrl_ext |= E1000_CTRL_EXT_EE_RST;
+ E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
+ E1000_WRITE_FLUSH(hw);
+ }
+
+ ret_val = e1000_get_auto_rd_done_generic(hw);
+ if (ret_val)
+ /* We don't want to continue accessing MAC registers. */
+ goto out;
+
+ /*
+ * Phy configuration from NVM just starts after EECD_AUTO_RD is set.
+ * Need to wait for Phy configuration completion before accessing
+ * NVM and Phy.
+ */
+ if (hw->mac.type == e1000_82573)
+ msec_delay(25);
+
+ /* Clear any pending interrupt events. */
+ E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff);
+ icr = E1000_READ_REG(hw, E1000_ICR);
+
+ if (!(e1000_check_alt_mac_addr_generic(hw)))
+ e1000_set_laa_state_82571(hw, TRUE);
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_init_hw_82571 - Initialize hardware
+ * @hw: pointer to the HW structure
+ *
+ * This inits the hardware readying it for operation.
+ **/
+STATIC s32 e1000_init_hw_82571(struct e1000_hw *hw)
+{
+ struct e1000_mac_info *mac = &hw->mac;
+ u32 reg_data;
+ s32 ret_val;
+ u16 i, rar_count = mac->rar_entry_count;
+
+ DEBUGFUNC("e1000_init_hw_82571");
+
+ e1000_initialize_hw_bits_82571(hw);
+
+ /* Initialize identification LED */
+ ret_val = e1000_id_led_init_generic(hw);
+ if (ret_val) {
+ DEBUGOUT("Error initializing identification LED\n");
+ /* This is not fatal and we should not stop init due to this */
+ }
+
+ /* Disabling VLAN filtering */
+ DEBUGOUT("Initializing the IEEE VLAN\n");
+ e1000_clear_vfta(hw);
+
+ /* Setup the receive address. */
+ /*
+ * If, however, a locally administered address was assigned to the
+ * 82571, we must reserve a RAR for it to work around an issue where
+ * resetting one port will reload the MAC on the other port.
+ */
+ if (e1000_get_laa_state_82571(hw))
+ rar_count--;
+ e1000_init_rx_addrs_generic(hw, rar_count);
+
+ /* Zero out the Multicast HASH table */
+ DEBUGOUT("Zeroing the MTA\n");
+ for (i = 0; i < mac->mta_reg_count; i++)
+ E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
+
+ /* Setup link and flow control */
+ ret_val = e1000_setup_link(hw);
+
+ /* Set the transmit descriptor write-back policy */
+ reg_data = E1000_READ_REG(hw, E1000_TXDCTL(0));
+ reg_data = (reg_data & ~E1000_TXDCTL_WTHRESH) |
+ E1000_TXDCTL_FULL_TX_DESC_WB |
+ E1000_TXDCTL_COUNT_DESC;
+ E1000_WRITE_REG(hw, E1000_TXDCTL(0), reg_data);
+
+ /* ...for both queues. */
+ if (mac->type != e1000_82573) {
+ reg_data = E1000_READ_REG(hw, E1000_TXDCTL(1));
+ reg_data = (reg_data & ~E1000_TXDCTL_WTHRESH) |
+ E1000_TXDCTL_FULL_TX_DESC_WB |
+ E1000_TXDCTL_COUNT_DESC;
+ E1000_WRITE_REG(hw, E1000_TXDCTL(1), reg_data);
+ } else {
+ e1000_enable_tx_pkt_filtering(hw);
+ reg_data = E1000_READ_REG(hw, E1000_GCR);
+ reg_data |= E1000_GCR_L1_ACT_WITHOUT_L0S_RX;
+ E1000_WRITE_REG(hw, E1000_GCR, reg_data);
+ }
+
+ /*
+ * Clear all of the statistics registers (clear on read). It is
+ * important that we do this after we have tried to establish link
+ * because the symbol error count will increment wildly if there
+ * is no link.
+ */
+ e1000_clear_hw_cntrs_82571(hw);
+
+ return ret_val;
+}
+
+/**
+ * e1000_initialize_hw_bits_82571 - Initialize hardware-dependent bits
+ * @hw: pointer to the HW structure
+ *
+ * Initializes required hardware-dependent bits needed for normal operation.
+ **/
+static void e1000_initialize_hw_bits_82571(struct e1000_hw *hw)
+{
+ u32 reg;
+
+ DEBUGFUNC("e1000_initialize_hw_bits_82571");
+
+ if (hw->mac.disable_hw_init_bits)
+ goto out;
+
+ /* Transmit Descriptor Control 0 */
+ reg = E1000_READ_REG(hw, E1000_TXDCTL(0));
+ reg |= (1 << 22);
+ E1000_WRITE_REG(hw, E1000_TXDCTL(0), reg);
+
+ /* Transmit Descriptor Control 1 */
+ reg = E1000_READ_REG(hw, E1000_TXDCTL(1));
+ reg |= (1 << 22);
+ E1000_WRITE_REG(hw, E1000_TXDCTL(1), reg);
+
+ /* Transmit Arbitration Control 0 */
+ reg = E1000_READ_REG(hw, E1000_TARC(0));
+ reg &= ~(0xF << 27); /* 30:27 */
+ switch (hw->mac.type) {
+ case e1000_82571:
+ case e1000_82572:
+ reg |= (1 << 23) | (1 << 24) | (1 << 25) | (1 << 26);
+ break;
+ default:
+ break;
+ }
+ E1000_WRITE_REG(hw, E1000_TARC(0), reg);
+
+ /* Transmit Arbitration Control 1 */
+ reg = E1000_READ_REG(hw, E1000_TARC(1));
+ switch (hw->mac.type) {
+ case e1000_82571:
+ case e1000_82572:
+ reg &= ~((1 << 29) | (1 << 30));
+ reg |= (1 << 22) | (1 << 24) | (1 << 25) | (1 << 26);
+ if (E1000_READ_REG(hw, E1000_TCTL) & E1000_TCTL_MULR)
+ reg &= ~(1 << 28);
+ else
+ reg |= (1 << 28);
+ E1000_WRITE_REG(hw, E1000_TARC(1), reg);
+ break;
+ default:
+ break;
+ }
+
+ /* Device Control */
+ if (hw->mac.type == e1000_82573) {
+ reg = E1000_READ_REG(hw, E1000_CTRL);
+ reg &= ~(1 << 29);
+ E1000_WRITE_REG(hw, E1000_CTRL, reg);
+ }
+
+ /* Extended Device Control */
+ if (hw->mac.type == e1000_82573) {
+ reg = E1000_READ_REG(hw, E1000_CTRL_EXT);
+ reg &= ~(1 << 23);
+ reg |= (1 << 22);
+ E1000_WRITE_REG(hw, E1000_CTRL_EXT, reg);
+ }
+
+out:
+ return;
+}
+
+/**
+ * e1000_clear_vfta_82571 - Clear VLAN filter table
+ * @hw: pointer to the HW structure
+ *
+ * Clears the register array which contains the VLAN filter table by
+ * setting all the values to 0.
+ **/
+STATIC void e1000_clear_vfta_82571(struct e1000_hw *hw)
+{
+ u32 offset;
+ u32 vfta_value = 0;
+ u32 vfta_offset = 0;
+ u32 vfta_bit_in_reg = 0;
+
+ DEBUGFUNC("e1000_clear_vfta_82571");
+
+ if (hw->mac.type == e1000_82573) {
+ if (hw->mng_cookie.vlan_id != 0) {
+ /*
+ * The VFTA is a 4096b bit-field, each identifying
+ * a single VLAN ID. The following operations
+ * determine which 32b entry (i.e. offset) into the
+ * array we want to set the VLAN ID (i.e. bit) of
+ * the manageability unit.
+ */
+ vfta_offset = (hw->mng_cookie.vlan_id >>
+ E1000_VFTA_ENTRY_SHIFT) &
+ E1000_VFTA_ENTRY_MASK;
+ vfta_bit_in_reg = 1 << (hw->mng_cookie.vlan_id &
+ E1000_VFTA_ENTRY_BIT_SHIFT_MASK);
+ }
+ }
+ for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) {
+ /*
+ * If the offset we want to clear is the same offset of the
+ * manageability VLAN ID, then clear all bits except that of
+ * the manageability unit.
+ */
+ vfta_value = (offset == vfta_offset) ? vfta_bit_in_reg : 0;
+ E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset, vfta_value);
+ E1000_WRITE_FLUSH(hw);
+ }
+}
+
+/**
+ * e1000_update_mc_addr_list_82571 - Update Multicast addresses
+ * @hw: pointer to the HW structure
+ * @mc_addr_list: array of multicast addresses to program
+ * @mc_addr_count: number of multicast addresses to program
+ * @rar_used_count: the first RAR register free to program
+ * @rar_count: total number of supported Receive Address Registers
+ *
+ * Updates the Receive Address Registers and Multicast Table Array.
+ * The caller must have a packed mc_addr_list of multicast addresses.
+ * The parameter rar_count will usually be hw->mac.rar_entry_count
+ * unless there are workarounds that change this.
+ **/
+STATIC void e1000_update_mc_addr_list_82571(struct e1000_hw *hw,
+ u8 *mc_addr_list, u32 mc_addr_count,
+ u32 rar_used_count, u32 rar_count)
+{
+ DEBUGFUNC("e1000_update_mc_addr_list_82571");
+
+ if (e1000_get_laa_state_82571(hw))
+ rar_count--;
+
+ e1000_update_mc_addr_list_generic(hw, mc_addr_list, mc_addr_count,
+ rar_used_count, rar_count);
+}
+
+/**
+ * e1000_setup_link_82571 - Setup flow control and link settings
+ * @hw: pointer to the HW structure
+ *
+ * Determines which flow control settings to use, then configures flow
+ * control. Calls the appropriate media-specific link configuration
+ * function. Assuming the adapter has a valid link partner, a valid link
+ * should be established. Assumes the hardware has previously been reset
+ * and the transmitter and receiver are not enabled.
+ **/
+STATIC s32 e1000_setup_link_82571(struct e1000_hw *hw)
+{
+ DEBUGFUNC("e1000_setup_link_82571");
+
+ /*
+ * 82573 does not have a word in the NVM to determine
+ * the default flow control setting, so we explicitly
+ * set it to full.
+ */
+ if (hw->mac.type == e1000_82573)
+ hw->fc.type = e1000_fc_full;
+
+ return e1000_setup_link_generic(hw);
+}
+
+/**
+ * e1000_setup_copper_link_82571 - Configure copper link settings
+ * @hw: pointer to the HW structure
+ *
+ * Configures the link for auto-neg or forced speed and duplex. Then we check
+ * for link, once link is established calls to configure collision distance
+ * and flow control are called.
+ **/
+STATIC s32 e1000_setup_copper_link_82571(struct e1000_hw *hw)
+{
+ u32 ctrl, led_ctrl;
+ s32 ret_val;
+
+ DEBUGFUNC("e1000_setup_copper_link_82571");
+
+ ctrl = E1000_READ_REG(hw, E1000_CTRL);
+ ctrl |= E1000_CTRL_SLU;
+ ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
+ E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
+
+ switch (hw->phy.type) {
+ case e1000_phy_m88:
+ ret_val = e1000_copper_link_setup_m88(hw);
+ break;
+ case e1000_phy_igp_2:
+ ret_val = e1000_copper_link_setup_igp(hw);
+ /* Setup activity LED */
+ led_ctrl = E1000_READ_REG(hw, E1000_LEDCTL);
+ led_ctrl &= IGP_ACTIVITY_LED_MASK;
+ led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE);
+ E1000_WRITE_REG(hw, E1000_LEDCTL, led_ctrl);
+ break;
+ default:
+ ret_val = -E1000_ERR_PHY;
+ break;
+ }
+
+ if (ret_val)
+ goto out;
+
+ ret_val = e1000_setup_copper_link_generic(hw);
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_setup_fiber_serdes_link_82571 - Setup link for fiber/serdes
+ * @hw: pointer to the HW structure
+ *
+ * Configures collision distance and flow control for fiber and serdes links.
+ * Upon successful setup, poll for link.
+ **/
+STATIC s32 e1000_setup_fiber_serdes_link_82571(struct e1000_hw *hw)
+{
+ DEBUGFUNC("e1000_setup_fiber_serdes_link_82571");
+
+ switch (hw->mac.type) {
+ case e1000_82571:
+ case e1000_82572:
+ /*
+ * If SerDes loopback mode is entered, there is no form
+ * of reset to take the adapter out of that mode. So we
+ * have to explicitly take the adapter out of loopback
+ * mode. This prevents drivers from twidling their thumbs
+ * if another tool failed to take it out of loopback mode.
+ */
+ E1000_WRITE_REG(hw, E1000_SCTL, E1000_SCTL_DISABLE_SERDES_LOOPBACK);
+ break;
+ default:
+ break;
+ }
+
+ return e1000_setup_fiber_serdes_link_generic(hw);
+}
+
+/**
+ * e1000_valid_led_default_82571 - Verify a valid default LED config
+ * @hw: pointer to the HW structure
+ * @data: pointer to the NVM (EEPROM)
+ *
+ * Read the EEPROM for the current default LED configuration. If the
+ * LED configuration is not valid, set to a valid LED configuration.
+ **/
+STATIC s32 e1000_valid_led_default_82571(struct e1000_hw *hw, u16 *data)
+{
+ s32 ret_val;
+
+ DEBUGFUNC("e1000_valid_led_default_82571");
+
+ ret_val = e1000_read_nvm(hw, NVM_ID_LED_SETTINGS, 1, data);
+ if (ret_val) {
+ DEBUGOUT("NVM Read Error\n");
+ goto out;
+ }
+
+ if (hw->mac.type == e1000_82573 &&
+ *data == ID_LED_RESERVED_F746)
+ *data = ID_LED_DEFAULT_82573;
+ else if (*data == ID_LED_RESERVED_0000 ||
+ *data == ID_LED_RESERVED_FFFF)
+ *data = ID_LED_DEFAULT;
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_get_laa_state_82571 - Get locally administered address state
+ * @hw: pointer to the HW structure
+ *
+ * Retrieve and return the current locally administed address state.
+ **/
+bool e1000_get_laa_state_82571(struct e1000_hw *hw)
+{
+ struct e1000_dev_spec_82571 *dev_spec;
+ bool state = FALSE;
+
+ DEBUGFUNC("e1000_get_laa_state_82571");
+
+ if (hw->mac.type != e1000_82571)
+ goto out;
+
+ dev_spec = (struct e1000_dev_spec_82571 *)hw->dev_spec;
+
+ state = dev_spec->laa_is_present;
+
+out:
+ return state;
+}
+
+/**
+ * e1000_set_laa_state_82571 - Set locally administered address state
+ * @hw: pointer to the HW structure
+ * @state: enable/disable locally administered address
+ *
+ * Enable/Disable the current locally administed address state.
+ **/
+void e1000_set_laa_state_82571(struct e1000_hw *hw, bool state)
+{
+ struct e1000_dev_spec_82571 *dev_spec;
+
+ DEBUGFUNC("e1000_set_laa_state_82571");
+
+ if (hw->mac.type != e1000_82571)
+ goto out;
+
+ dev_spec = (struct e1000_dev_spec_82571 *)hw->dev_spec;
+
+ dev_spec->laa_is_present = state;
+
+ /* If workaround is activated... */
+ if (state) {
+ /*
+ * Hold a copy of the LAA in RAR[14] This is done so that
+ * between the time RAR[0] gets clobbered and the time it
+ * gets fixed, the actual LAA is in one of the RARs and no
+ * incoming packets directed to this port are dropped.
+ * Eventually the LAA will be in RAR[0] and RAR[14].
+ */
+ e1000_rar_set_generic(hw, hw->mac.addr,
+ hw->mac.rar_entry_count - 1);
+ }
+
+out:
+ return;
+}
+
+/**
+ * e1000_fix_nvm_checksum_82571 - Fix EEPROM checksum
+ * @hw: pointer to the HW structure
+ *
+ * Verifies that the EEPROM has completed the update. After updating the
+ * EEPROM, we need to check bit 15 in work 0x23 for the checksum fix. If
+ * the checksum fix is not implemented, we need to set the bit and update
+ * the checksum. Otherwise, if bit 15 is set and the checksum is incorrect,
+ * we need to return bad checksum.
+ **/
+static s32 e1000_fix_nvm_checksum_82571(struct e1000_hw *hw)
+{
+ struct e1000_nvm_info *nvm = &hw->nvm;
+ s32 ret_val = E1000_SUCCESS;
+ u16 data;
+
+ DEBUGFUNC("e1000_fix_nvm_checksum_82571");
+
+ if (nvm->type != e1000_nvm_flash_hw)
+ goto out;
+
+ /*
+ * Check bit 4 of word 10h. If it is 0, firmware is done updating
+ * 10h-12h. Checksum may need to be fixed.
+ */
+ ret_val = e1000_read_nvm(hw, 0x10, 1, &data);
+ if (ret_val)
+ goto out;
+
+ if (!(data & 0x10)) {
+ /*
+ * Read 0x23 and check bit 15. This bit is a 1
+ * when the checksum has already been fixed. If
+ * the checksum is still wrong and this bit is a
+ * 1, we need to return bad checksum. Otherwise,
+ * we need to set this bit to a 1 and update the
+ * checksum.
+ */
+ ret_val = e1000_read_nvm(hw, 0x23, 1, &data);
+ if (ret_val)
+ goto out;
+
+ if (!(data & 0x8000)) {
+ data |= 0x8000;
+ ret_val = e1000_write_nvm(hw, 0x23, 1, &data);
+ if (ret_val)
+ goto out;
+ ret_val = e1000_update_nvm_checksum(hw);
+ }
+ }
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_read_mac_addr_82571 - Read device MAC address
+ * @hw: pointer to the HW structure
+ **/
+STATIC s32 e1000_read_mac_addr_82571(struct e1000_hw *hw)
+{
+ s32 ret_val = E1000_SUCCESS;
+
+ DEBUGFUNC("e1000_read_mac_addr_82571");
+ if (e1000_check_alt_mac_addr_generic(hw))
+ ret_val = e1000_read_mac_addr_generic(hw);
+
+ return ret_val;
+}
+
+/**
+ * e1000_power_down_phy_copper_82571 - Remove link during PHY power down
+ * @hw: pointer to the HW structure
+ *
+ * In the case of a PHY power down to save power, or to turn off link during a
+ * driver unload, or wake on lan is not enabled, remove the link.
+ **/
+STATIC void e1000_power_down_phy_copper_82571(struct e1000_hw *hw)
+{
+ /* If the management interface is not enabled, then power down */
+ if (!(e1000_check_mng_mode(hw) || e1000_check_reset_block(hw)))
+ e1000_power_down_phy_copper(hw);
+
+ return;
+}
+
+/**
+ * e1000_clear_hw_cntrs_82571 - Clear device specific hardware counters
+ * @hw: pointer to the HW structure
+ *
+ * Clears the hardware counters by reading the counter registers.
+ **/
+STATIC void e1000_clear_hw_cntrs_82571(struct e1000_hw *hw)
+{
+ volatile u32 temp;
+
+ DEBUGFUNC("e1000_clear_hw_cntrs_82571");
+
+ e1000_clear_hw_cntrs_base_generic(hw);
+ temp = E1000_READ_REG(hw, E1000_PRC64);
+ temp = E1000_READ_REG(hw, E1000_PRC127);
+ temp = E1000_READ_REG(hw, E1000_PRC255);
+ temp = E1000_READ_REG(hw, E1000_PRC511);
+ temp = E1000_READ_REG(hw, E1000_PRC1023);
+ temp = E1000_READ_REG(hw, E1000_PRC1522);
+ temp = E1000_READ_REG(hw, E1000_PTC64);
+ temp = E1000_READ_REG(hw, E1000_PTC127);
+ temp = E1000_READ_REG(hw, E1000_PTC255);
+ temp = E1000_READ_REG(hw, E1000_PTC511);
+ temp = E1000_READ_REG(hw, E1000_PTC1023);
+ temp = E1000_READ_REG(hw, E1000_PTC1522);
+
+ temp = E1000_READ_REG(hw, E1000_ALGNERRC);
+ temp = E1000_READ_REG(hw, E1000_RXERRC);
+ temp = E1000_READ_REG(hw, E1000_TNCRS);
+ temp = E1000_READ_REG(hw, E1000_CEXTERR);
+ temp = E1000_READ_REG(hw, E1000_TSCTC);
+ temp = E1000_READ_REG(hw, E1000_TSCTFC);
+
+ temp = E1000_READ_REG(hw, E1000_MGTPRC);
+ temp = E1000_READ_REG(hw, E1000_MGTPDC);
+ temp = E1000_READ_REG(hw, E1000_MGTPTC);
+
+ temp = E1000_READ_REG(hw, E1000_IAC);
+ temp = E1000_READ_REG(hw, E1000_ICRXOC);
+
+ temp = E1000_READ_REG(hw, E1000_ICRXPTC);
+ temp = E1000_READ_REG(hw, E1000_ICRXATC);
+ temp = E1000_READ_REG(hw, E1000_ICTXPTC);
+ temp = E1000_READ_REG(hw, E1000_ICTXATC);
+ temp = E1000_READ_REG(hw, E1000_ICTXQEC);
+ temp = E1000_READ_REG(hw, E1000_ICTXQMTC);
+ temp = E1000_READ_REG(hw, E1000_ICRXDMTC);
+}
--- /dev/null
+++ sys/dev/em/e1000_82543.c
@@ -0,0 +1,1663 @@
+/*******************************************************************************
+
+ Copyright (c) 2001-2007, Intel Corporation
+ All rights reserved.
+
+ Redistribution and use in source and binary forms, with or without
+ modification, are permitted provided that the following conditions are met:
+
+ 1. Redistributions of source code must retain the above copyright notice,
+ this list of conditions and the following disclaimer.
+
+ 2. Redistributions in binary form must reproduce the above copyright
+ notice, this list of conditions and the following disclaimer in the
+ documentation and/or other materials provided with the distribution.
+
+ 3. Neither the name of the Intel Corporation nor the names of its
+ contributors may be used to endorse or promote products derived from
+ this software without specific prior written permission.
+
+ THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
+ AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+ IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
+ LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
+ CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
+ SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
+ INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
+ CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
+ ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
+ POSSIBILITY OF SUCH DAMAGE.
+
+*******************************************************************************/
+/* $FreeBSD: src/sys/dev/em/e1000_82543.c,v 1.3.4.1 2007/11/28 23:24:37 jfv Exp $ */
+
+
+/* e1000_82543
+ * e1000_82544
+ */
+
+#include "e1000_api.h"
+#include "e1000_82543.h"
+
+void e1000_init_function_pointers_82543(struct e1000_hw *hw);
+
+STATIC s32 e1000_init_phy_params_82543(struct e1000_hw *hw);
+STATIC s32 e1000_init_nvm_params_82543(struct e1000_hw *hw);
+STATIC s32 e1000_init_mac_params_82543(struct e1000_hw *hw);
+STATIC s32 e1000_read_phy_reg_82543(struct e1000_hw *hw, u32 offset,
+ u16 *data);
+STATIC s32 e1000_write_phy_reg_82543(struct e1000_hw *hw, u32 offset,
+ u16 data);
+STATIC s32 e1000_phy_force_speed_duplex_82543(struct e1000_hw *hw);
+STATIC s32 e1000_phy_hw_reset_82543(struct e1000_hw *hw);
+STATIC s32 e1000_reset_hw_82543(struct e1000_hw *hw);
+STATIC s32 e1000_init_hw_82543(struct e1000_hw *hw);
+STATIC s32 e1000_setup_link_82543(struct e1000_hw *hw);
+STATIC s32 e1000_setup_copper_link_82543(struct e1000_hw *hw);
+STATIC s32 e1000_setup_fiber_link_82543(struct e1000_hw *hw);
+STATIC s32 e1000_check_for_copper_link_82543(struct e1000_hw *hw);
+STATIC s32 e1000_check_for_fiber_link_82543(struct e1000_hw *hw);
+STATIC s32 e1000_led_on_82543(struct e1000_hw *hw);
+STATIC s32 e1000_led_off_82543(struct e1000_hw *hw);
+STATIC void e1000_write_vfta_82543(struct e1000_hw *hw, u32 offset,
+ u32 value);
+STATIC void e1000_mta_set_82543(struct e1000_hw *hw, u32 hash_value);
+STATIC void e1000_clear_hw_cntrs_82543(struct e1000_hw *hw);
+static s32 e1000_config_mac_to_phy_82543(struct e1000_hw *hw);
+static bool e1000_init_phy_disabled_82543(struct e1000_hw *hw);
+static void e1000_lower_mdi_clk_82543(struct e1000_hw *hw, u32 *ctrl);
+static s32 e1000_polarity_reversal_workaround_82543(struct e1000_hw *hw);
+static void e1000_raise_mdi_clk_82543(struct e1000_hw *hw, u32 *ctrl);
+static u16 e1000_shift_in_mdi_bits_82543(struct e1000_hw *hw);
+static void e1000_shift_out_mdi_bits_82543(struct e1000_hw *hw, u32 data,
+ u16 count);
+static bool e1000_tbi_compatibility_enabled_82543(struct e1000_hw *hw);
+static void e1000_set_tbi_sbp_82543(struct e1000_hw *hw, bool state);
+
+struct e1000_dev_spec_82543 {
+ u32 tbi_compatibility;
+ bool dma_fairness;
+ bool init_phy_disabled;
+};
+
+/**
+ * e1000_init_phy_params_82543 - Init PHY func ptrs.
+ * @hw: pointer to the HW structure
+ *
+ * This is a function pointer entry point called by the api module.
+ **/
+STATIC s32 e1000_init_phy_params_82543(struct e1000_hw *hw)
+{
+ struct e1000_phy_info *phy = &hw->phy;
+ struct e1000_functions *func = &hw->func;
+ s32 ret_val = E1000_SUCCESS;
+
+ DEBUGFUNC("e1000_init_phy_params_82543");
+
+ if (hw->phy.media_type != e1000_media_type_copper) {
+ phy->type = e1000_phy_none;
+ goto out;
+ } else {
+ func->power_up_phy = e1000_power_up_phy_copper;
+ func->power_down_phy = e1000_power_down_phy_copper;
+ }
+
+ phy->addr = 1;
+ phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
+ phy->reset_delay_us = 10000;
+ phy->type = e1000_phy_m88;
+
+ /* Function Pointers */
+ func->check_polarity = e1000_check_polarity_m88;
+ func->commit_phy = e1000_phy_sw_reset_generic;
+ func->force_speed_duplex = e1000_phy_force_speed_duplex_82543;
+ func->get_cable_length = e1000_get_cable_length_m88;
+ func->get_cfg_done = e1000_get_cfg_done_generic;
+ func->read_phy_reg = (hw->mac.type == e1000_82543)
+ ? e1000_read_phy_reg_82543
+ : e1000_read_phy_reg_m88;
+ func->reset_phy = (hw->mac.type == e1000_82543)
+ ? e1000_phy_hw_reset_82543
+ : e1000_phy_hw_reset_generic;
+ func->write_phy_reg = (hw->mac.type == e1000_82543)
+ ? e1000_write_phy_reg_82543
+ : e1000_write_phy_reg_m88;
+ func->get_phy_info = e1000_get_phy_info_m88;
+
+ /*
+ * The external PHY of the 82543 can be in a funky state.
+ * Resetting helps us read the PHY registers for acquiring
+ * the PHY ID.
+ */
+ if (!e1000_init_phy_disabled_82543(hw)) {
+ ret_val = e1000_phy_hw_reset(hw);
+ if (ret_val) {
+ DEBUGOUT("Resetting PHY during init failed.\n");
+ goto out;
+ }
+ msec_delay(20);
+ }
+
+ ret_val = e1000_get_phy_id(hw);
+ if (ret_val)
+ goto out;
+
+ /* Verify phy id */
+ switch (hw->mac.type) {
+ case e1000_82543:
+ if (phy->id != M88E1000_E_PHY_ID) {
+ ret_val = -E1000_ERR_PHY;
+ goto out;
+ }
+ break;
+ case e1000_82544:
+ if (phy->id != M88E1000_I_PHY_ID) {
+ ret_val = -E1000_ERR_PHY;
+ goto out;
+ }
+ break;
+ default:
+ ret_val = -E1000_ERR_PHY;
+ goto out;
+ break;
+ }
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_init_nvm_params_82543 - Init NVM func ptrs.
+ * @hw: pointer to the HW structure
+ *
+ * This is a function pointer entry point called by the api module.
+ **/
+STATIC s32 e1000_init_nvm_params_82543(struct e1000_hw *hw)
+{
+ struct e1000_nvm_info *nvm = &hw->nvm;
+ struct e1000_functions *func = &hw->func;
+
+ DEBUGFUNC("e1000_init_nvm_params_82543");
+
+ nvm->type = e1000_nvm_eeprom_microwire;
+ nvm->word_size = 64;
+ nvm->delay_usec = 50;
+ nvm->address_bits = 6;
+ nvm->opcode_bits = 3;
+
+ /* Function Pointers */
+ func->read_nvm = e1000_read_nvm_microwire;
+ func->update_nvm = e1000_update_nvm_checksum_generic;
+ func->valid_led_default = e1000_valid_led_default_generic;
+ func->validate_nvm = e1000_validate_nvm_checksum_generic;
+ func->write_nvm = e1000_write_nvm_microwire;
+
+ return E1000_SUCCESS;
+}
+
+/**
+ * e1000_init_mac_params_82543 - Init MAC func ptrs.
+ * @hw: pointer to the HW structure
+ *
+ * This is a function pointer entry point called by the api module.
+ **/
+STATIC s32 e1000_init_mac_params_82543(struct e1000_hw *hw)
+{
+ struct e1000_mac_info *mac = &hw->mac;
+ struct e1000_functions *func = &hw->func;
+ s32 ret_val;
+
+ DEBUGFUNC("e1000_init_mac_params_82543");
+
+ /* Set media type */
+ switch (hw->device_id) {
+ case E1000_DEV_ID_82543GC_FIBER:
+ case E1000_DEV_ID_82544EI_FIBER:
+ hw->phy.media_type = e1000_media_type_fiber;
+ break;
+ default:
+ hw->phy.media_type = e1000_media_type_copper;
+ break;
+ }
+
+ /* Set mta register count */
+ mac->mta_reg_count = 128;
+ /* Set rar entry count */
+ mac->rar_entry_count = E1000_RAR_ENTRIES;
+
+ /* Function pointers */
+
+ /* bus type/speed/width */
+ func->get_bus_info = e1000_get_bus_info_pci_generic;
+ /* reset */
+ func->reset_hw = e1000_reset_hw_82543;
+ /* hw initialization */
+ func->init_hw = e1000_init_hw_82543;
+ /* link setup */
+ func->setup_link = e1000_setup_link_82543;
+ /* physical interface setup */
+ func->setup_physical_interface =
+ (hw->phy.media_type == e1000_media_type_copper)
+ ? e1000_setup_copper_link_82543
+ : e1000_setup_fiber_link_82543;
+ /* check for link */
+ func->check_for_link =
+ (hw->phy.media_type == e1000_media_type_copper)
+ ? e1000_check_for_copper_link_82543
+ : e1000_check_for_fiber_link_82543;
+ /* link info */
+ func->get_link_up_info =
+ (hw->phy.media_type == e1000_media_type_copper)
+ ? e1000_get_speed_and_duplex_copper_generic
+ : e1000_get_speed_and_duplex_fiber_serdes_generic;
+ /* multicast address update */
+ func->update_mc_addr_list = e1000_update_mc_addr_list_generic;
+ /* writing VFTA */
+ func->write_vfta = e1000_write_vfta_82543;
+ /* clearing VFTA */
+ func->clear_vfta = e1000_clear_vfta_generic;
+ /* setting MTA */
+ func->mta_set = e1000_mta_set_82543;
+ /* turn on/off LED */
+ func->led_on = e1000_led_on_82543;
+ func->led_off = e1000_led_off_82543;
+ /* remove device */
+ func->remove_device = e1000_remove_device_generic;
+ /* clear hardware counters */
+ func->clear_hw_cntrs = e1000_clear_hw_cntrs_82543;
+
+ hw->dev_spec_size = sizeof(struct e1000_dev_spec_82543);
+
+ /* Device-specific structure allocation */
+ ret_val = e1000_alloc_zeroed_dev_spec_struct(hw, hw->dev_spec_size);
+ if (ret_val)
+ goto out;
+
+ /* Set tbi compatibility */
+ if ((hw->mac.type != e1000_82543) ||
+ (hw->phy.media_type == e1000_media_type_fiber))
+ e1000_set_tbi_compatibility_82543(hw, FALSE);
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_init_function_pointers_82543 - Init func ptrs.
+ * @hw: pointer to the HW structure
+ *
+ * The only function explicitly called by the api module to initialize
+ * all function pointers and parameters.
+ **/
+void e1000_init_function_pointers_82543(struct e1000_hw *hw)
+{
+ DEBUGFUNC("e1000_init_function_pointers_82543");
+
+ hw->func.init_mac_params = e1000_init_mac_params_82543;
+ hw->func.init_nvm_params = e1000_init_nvm_params_82543;
+ hw->func.init_phy_params = e1000_init_phy_params_82543;
+}
+
+/**
+ * e1000_tbi_compatibility_enabled_82543 - Returns TBI compat status
+ * @hw: pointer to the HW structure
+ *
+ * Returns the curent status of 10-bit Interface (TBI) compatibility
+ * (enabled/disabled).
+ **/
+static bool e1000_tbi_compatibility_enabled_82543(struct e1000_hw *hw)
+{
+ struct e1000_dev_spec_82543 *dev_spec;
+ bool state = FALSE;
+
+ DEBUGFUNC("e1000_tbi_compatibility_enabled_82543");
+
+ if (hw->mac.type != e1000_82543) {
+ DEBUGOUT("TBI compatibility workaround for 82543 only.\n");
+ goto out;
+ }
+
+ dev_spec = (struct e1000_dev_spec_82543 *)hw->dev_spec;
+
+ if (!dev_spec) {
+ DEBUGOUT("dev_spec pointer is set to NULL.\n");
+ goto out;
+ }
+
+ state = (dev_spec->tbi_compatibility & TBI_COMPAT_ENABLED)
+ ? TRUE : FALSE;
+
+out:
+ return state;
+}
+
+/**
+ * e1000_set_tbi_compatibility_82543 - Set TBI compatibility
+ * @hw: pointer to the HW structure
+ * @state: enable/disable TBI compatibility
+ *
+ * Enables or disabled 10-bit Interface (TBI) compatibility.
+ **/
+void e1000_set_tbi_compatibility_82543(struct e1000_hw *hw, bool state)
+{
+ struct e1000_dev_spec_82543 *dev_spec;
+
+ DEBUGFUNC("e1000_set_tbi_compatibility_82543");
+
+ if (hw->mac.type != e1000_82543) {
+ DEBUGOUT("TBI compatibility workaround for 82543 only.\n");
+ goto out;
+ }
+
+ dev_spec = (struct e1000_dev_spec_82543 *)hw->dev_spec;
+
+ if (!dev_spec) {
+ DEBUGOUT("dev_spec pointer is set to NULL.\n");
+ goto out;
+ }
+
+ if (state)
+ dev_spec->tbi_compatibility |= TBI_COMPAT_ENABLED;
+ else
+ dev_spec->tbi_compatibility &= ~TBI_COMPAT_ENABLED;
+
+out:
+ return;
+}
+
+/**
+ * e1000_tbi_sbp_enabled_82543 - Returns TBI SBP status
+ * @hw: pointer to the HW structure
+ *
+ * Returns the curent status of 10-bit Interface (TBI) store bad packet (SBP)
+ * (enabled/disabled).
+ **/
+bool e1000_tbi_sbp_enabled_82543(struct e1000_hw *hw)
+{
+ struct e1000_dev_spec_82543 *dev_spec;
+ bool state = FALSE;
+
+ DEBUGFUNC("e1000_tbi_sbp_enabled_82543");
+
+ if (hw->mac.type != e1000_82543) {
+ DEBUGOUT("TBI compatibility workaround for 82543 only.\n");
+ goto out;
+ }
+
+ dev_spec = (struct e1000_dev_spec_82543 *)hw->dev_spec;
+
+ if (!dev_spec) {
+ DEBUGOUT("dev_spec pointer is set to NULL.\n");
+ goto out;
+ }
+
+ state = (dev_spec->tbi_compatibility & TBI_SBP_ENABLED)
+ ? TRUE : FALSE;
+
+out:
+ return state;
+}
+
+/**
+ * e1000_set_tbi_sbp_82543 - Set TBI SBP
+ * @hw: pointer to the HW structure
+ * @state: enable/disable TBI store bad packet
+ *
+ * Enables or disabled 10-bit Interface (TBI) store bad packet (SBP).
+ **/
+static void e1000_set_tbi_sbp_82543(struct e1000_hw *hw, bool state)
+{
+ struct e1000_dev_spec_82543 *dev_spec;
+
+ DEBUGFUNC("e1000_set_tbi_sbp_82543");
+
+ dev_spec = (struct e1000_dev_spec_82543 *)hw->dev_spec;
+
+ if (state && e1000_tbi_compatibility_enabled_82543(hw))
+ dev_spec->tbi_compatibility |= TBI_SBP_ENABLED;
+ else
+ dev_spec->tbi_compatibility &= ~TBI_SBP_ENABLED;
+
+ return;
+}
+
+/**
+ * e1000_init_phy_disabled_82543 - Returns init PHY status
+ * @hw: pointer to the HW structure
+ *
+ * Returns the current status of whether PHY initialization is disabled.
+ * True if PHY initialization is disabled else false.
+ **/
+static bool e1000_init_phy_disabled_82543(struct e1000_hw *hw)
+{
+ struct e1000_dev_spec_82543 *dev_spec;
+ bool ret_val;
+
+ DEBUGFUNC("e1000_init_phy_disabled_82543");
+
+ if (hw->mac.type != e1000_82543) {
+ ret_val = FALSE;
+ goto out;
+ }
+
+ dev_spec = (struct e1000_dev_spec_82543 *)hw->dev_spec;
+
+ if (!dev_spec) {
+ DEBUGOUT("dev_spec pointer is set to NULL.\n");
+ ret_val = FALSE;
+ goto out;
+ }
+
+ ret_val = dev_spec->init_phy_disabled;
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_tbi_adjust_stats_82543 - Adjust stats when TBI enabled
+ * @hw: pointer to the HW structure
+ * @stats: Struct containing statistic register values
+ * @frame_len: The length of the frame in question
+ * @mac_addr: The Ethernet destination address of the frame in question
+ * @max_frame_size: The maximum frame size
+ *
+ * Adjusts the statistic counters when a frame is accepted by TBI_ACCEPT
+ **/
+void e1000_tbi_adjust_stats_82543(struct e1000_hw *hw,
+ struct e1000_hw_stats *stats, u32 frame_len,
+ u8 *mac_addr, u32 max_frame_size)
+{
+ if (!(e1000_tbi_sbp_enabled_82543(hw)))
+ goto out;
+
+ /* First adjust the frame length. */
+ frame_len--;
+ /*
+ * We need to adjust the statistics counters, since the hardware
+ * counters overcount this packet as a CRC error and undercount
+ * the packet as a good packet
+ */
+ /* This packet should not be counted as a CRC error. */
+ stats->crcerrs--;
+ /* This packet does count as a Good Packet Received. */
+ stats->gprc++;
+
+ /* Adjust the Good Octets received counters */
+ stats->gorc += frame_len;
+
+ /*
+ * Is this a broadcast or multicast? Check broadcast first,
+ * since the test for a multicast frame will test positive on
+ * a broadcast frame.
+ */
+ if ((mac_addr[0] == 0xff) && (mac_addr[1] == 0xff))
+ /* Broadcast packet */
+ stats->bprc++;
+ else if (*mac_addr & 0x01)
+ /* Multicast packet */
+ stats->mprc++;
+
+ /*
+ * In this case, the hardware has overcounted the number of
+ * oversize frames.
+ */
+ if ((frame_len == max_frame_size) && (stats->roc > 0))
+ stats->roc--;
+
+ /*
+ * Adjust the bin counters when the extra byte put the frame in the
+ * wrong bin. Remember that the frame_len was adjusted above.
+ */
+ if (frame_len == 64) {
+ stats->prc64++;
+ stats->prc127--;
+ } else if (frame_len == 127) {
+ stats->prc127++;
+ stats->prc255--;
+ } else if (frame_len == 255) {
+ stats->prc255++;
+ stats->prc511--;
+ } else if (frame_len == 511) {
+ stats->prc511++;
+ stats->prc1023--;
+ } else if (frame_len == 1023) {
+ stats->prc1023++;
+ stats->prc1522--;
+ } else if (frame_len == 1522) {
+ stats->prc1522++;
+ }
+
+out:
+ return;
+}
+
+/**
+ * e1000_read_phy_reg_82543 - Read PHY register
+ * @hw: pointer to the HW structure
+ * @offset: register offset to be read
+ * @data: pointer to the read data
+ *
+ * Reads the PHY at offset and stores the information read to data.
+ **/
+STATIC s32 e1000_read_phy_reg_82543(struct e1000_hw *hw, u32 offset, u16 *data)
+{
+ u32 mdic;
+ s32 ret_val = E1000_SUCCESS;
+
+ DEBUGFUNC("e1000_read_phy_reg_82543");
+
+ if (offset > MAX_PHY_REG_ADDRESS) {
+ DEBUGOUT1("PHY Address %d is out of range\n", offset);
+ ret_val = -E1000_ERR_PARAM;
+ goto out;
+ }
+
+ /*
+ * We must first send a preamble through the MDIO pin to signal the
+ * beginning of an MII instruction. This is done by sending 32
+ * consecutive "1" bits.
+ */
+ e1000_shift_out_mdi_bits_82543(hw, PHY_PREAMBLE, PHY_PREAMBLE_SIZE);
+
+ /*
+ * Now combine the next few fields that are required for a read
+ * operation. We use this method instead of calling the
+ * e1000_shift_out_mdi_bits routine five different times. The format
+ * of an MII read instruction consists of a shift out of 14 bits and
+ * is defined as follows:
+ * <Preamble><SOF><Op Code><Phy Addr><Offset>
+ * followed by a shift in of 18 bits. This first two bits shifted in
+ * are TurnAround bits used to avoid contention on the MDIO pin when a
+ * READ operation is performed. These two bits are thrown away
+ * followed by a shift in of 16 bits which contains the desired data.
+ */
+ mdic = (offset | (hw->phy.addr << 5) |
+ (PHY_OP_READ << 10) | (PHY_SOF << 12));
+
+ e1000_shift_out_mdi_bits_82543(hw, mdic, 14);
+
+ /*
+ * Now that we've shifted out the read command to the MII, we need to
+ * "shift in" the 16-bit value (18 total bits) of the requested PHY
+ * register address.
+ */
+ *data = e1000_shift_in_mdi_bits_82543(hw);
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_write_phy_reg_82543 - Write PHY register
+ * @hw: pointer to the HW structure
+ * @offset: register offset to be written
+ * @data: pointer to the data to be written at offset
+ *
+ * Writes data to the PHY at offset.
+ **/
+STATIC s32 e1000_write_phy_reg_82543(struct e1000_hw *hw, u32 offset, u16 data)
+{
+ u32 mdic;
+ s32 ret_val = E1000_SUCCESS;
+
+ DEBUGFUNC("e1000_write_phy_reg_82543");
+
+ if (offset > MAX_PHY_REG_ADDRESS) {
+ DEBUGOUT1("PHY Address %d is out of range\n", offset);
+ ret_val = -E1000_ERR_PARAM;
+ goto out;
+ }
+
+ /*
+ * We'll need to use the SW defined pins to shift the write command
+ * out to the PHY. We first send a preamble to the PHY to signal the
+ * beginning of the MII instruction. This is done by sending 32
+ * consecutive "1" bits.
+ */
+ e1000_shift_out_mdi_bits_82543(hw, PHY_PREAMBLE, PHY_PREAMBLE_SIZE);
+
+ /*
+ * Now combine the remaining required fields that will indicate a
+ * write operation. We use this method instead of calling the
+ * e1000_shift_out_mdi_bits routine for each field in the command. The
+ * format of a MII write instruction is as follows:
+ * <Preamble><SOF><Op Code><Phy Addr><Reg Addr><Turnaround><Data>.
+ */
+ mdic = ((PHY_TURNAROUND) | (offset << 2) | (hw->phy.addr << 7) |
+ (PHY_OP_WRITE << 12) | (PHY_SOF << 14));
+ mdic <<= 16;
+ mdic |= (u32) data;
+
+ e1000_shift_out_mdi_bits_82543(hw, mdic, 32);
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_raise_mdi_clk_82543 - Raise Management Data Input clock
+ * @hw: pointer to the HW structure
+ * @ctrl: pointer to the control register
+ *
+ * Raise the management data input clock by setting the MDC bit in the control
+ * register.
+ **/
+static void e1000_raise_mdi_clk_82543(struct e1000_hw *hw, u32 *ctrl)
+{
+ /*
+ * Raise the clock input to the Management Data Clock (by setting the
+ * MDC bit), and then delay a sufficient amount of time.
+ */
+ E1000_WRITE_REG(hw, E1000_CTRL, (*ctrl | E1000_CTRL_MDC));
+ E1000_WRITE_FLUSH(hw);
+ usec_delay(10);
+}
+
+/**
+ * e1000_lower_mdi_clk_82543 - Lower Management Data Input clock
+ * @hw: pointer to the HW structure
+ * @ctrl: pointer to the control register
+ *
+ * Lower the management data input clock by clearing the MDC bit in the control
+ * register.
+ **/
+static void e1000_lower_mdi_clk_82543(struct e1000_hw *hw, u32 *ctrl)
+{
+ /*
+ * Lower the clock input to the Management Data Clock (by clearing the
+ * MDC bit), and then delay a sufficient amount of time.
+ */
+ E1000_WRITE_REG(hw, E1000_CTRL, (*ctrl & ~E1000_CTRL_MDC));
+ E1000_WRITE_FLUSH(hw);
+ usec_delay(10);
+}
+
+/**
+ * e1000_shift_out_mdi_bits_82543 - Shift data bits our to the PHY
+ * @hw: pointer to the HW structure
+ * @data: data to send to the PHY
+ * @count: number of bits to shift out
+ *
+ * We need to shift 'count' bits out to the PHY. So, the value in the
+ * "data" parameter will be shifted out to the PHY one bit at a time.
+ * In order to do this, "data" must be broken down into bits.
+ **/
+static void e1000_shift_out_mdi_bits_82543(struct e1000_hw *hw, u32 data,
+ u16 count)
+{
+ u32 ctrl, mask;
+
+ /*
+ * We need to shift "count" number of bits out to the PHY. So, the
+ * value in the "data" parameter will be shifted out to the PHY one
+ * bit at a time. In order to do this, "data" must be broken down
+ * into bits.
+ */
+ mask = 0x01;
+ mask <<= (count -1);
+
+ ctrl = E1000_READ_REG(hw, E1000_CTRL);
+
+ /* Set MDIO_DIR and MDC_DIR direction bits to be used as output pins. */
+ ctrl |= (E1000_CTRL_MDIO_DIR | E1000_CTRL_MDC_DIR);
+
+ while (mask) {
+ /*
+ * A "1" is shifted out to the PHY by setting the MDIO bit to
+ * "1" and then raising and lowering the Management Data Clock.
+ * A "0" is shifted out to the PHY by setting the MDIO bit to
+ * "0" and then raising and lowering the clock.
+ */
+ if (data & mask) ctrl |= E1000_CTRL_MDIO;
+ else ctrl &= ~E1000_CTRL_MDIO;
+
+ E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
+ E1000_WRITE_FLUSH(hw);
+
+ usec_delay(10);
+
+ e1000_raise_mdi_clk_82543(hw, &ctrl);
+ e1000_lower_mdi_clk_82543(hw, &ctrl);
+
+ mask >>= 1;
+ }
+}
+
+/**
+ * e1000_shift_in_mdi_bits_82543 - Shift data bits in from the PHY
+ * @hw: pointer to the HW structure
+ *
+ * In order to read a register from the PHY, we need to shift 18 bits
+ * in from the PHY. Bits are "shifted in" by raising the clock input to
+ * the PHY (setting the MDC bit), and then reading the value of the data out
+ * MDIO bit.
+ **/
+static u16 e1000_shift_in_mdi_bits_82543(struct e1000_hw *hw)
+{
+ u32 ctrl;
+ u16 data = 0;
+ u8 i;
+
+ /*
+ * In order to read a register from the PHY, we need to shift in a
+ * total of 18 bits from the PHY. The first two bit (turnaround)
+ * times are used to avoid contention on the MDIO pin when a read
+ * operation is performed. These two bits are ignored by us and
+ * thrown away. Bits are "shifted in" by raising the input to the
+ * Management Data Clock (setting the MDC bit) and then reading the
+ * value of the MDIO bit.
+ */
+ ctrl = E1000_READ_REG(hw, E1000_CTRL);
+
+ /*
+ * Clear MDIO_DIR (SWDPIO1) to indicate this bit is to be used as
+ * input.
+ */
+ ctrl &= ~E1000_CTRL_MDIO_DIR;
+ ctrl &= ~E1000_CTRL_MDIO;
+
+ E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
+ E1000_WRITE_FLUSH(hw);
+
+ /*
+ * Raise and lower the clock before reading in the data. This accounts
+ * for the turnaround bits. The first clock occurred when we clocked
+ * out the last bit of the Register Address.
+ */
+ e1000_raise_mdi_clk_82543(hw, &ctrl);
+ e1000_lower_mdi_clk_82543(hw, &ctrl);
+
+ for (data = 0, i = 0; i < 16; i++) {
+ data <<= 1;
+ e1000_raise_mdi_clk_82543(hw, &ctrl);
+ ctrl = E1000_READ_REG(hw, E1000_CTRL);
+ /* Check to see if we shifted in a "1". */
+ if (ctrl & E1000_CTRL_MDIO)
+ data |= 1;
+ e1000_lower_mdi_clk_82543(hw, &ctrl);
+ }
+
+ e1000_raise_mdi_clk_82543(hw, &ctrl);
+ e1000_lower_mdi_clk_82543(hw, &ctrl);
+
+ return data;
+}
+
+/**
+ * e1000_phy_force_speed_duplex_82543 - Force speed/duplex for PHY
+ * @hw: pointer to the HW structure
+ *
+ * Calls the function to force speed and duplex for the m88 PHY, and
+ * if the PHY is not auto-negotiating and the speed is forced to 10Mbit,
+ * then call the function for polarity reversal workaround.
+ **/
+STATIC s32 e1000_phy_force_speed_duplex_82543(struct e1000_hw *hw)
+{
+ s32 ret_val;
+
+ DEBUGFUNC("e1000_phy_force_speed_duplex_82543");
+
+ ret_val = e1000_phy_force_speed_duplex_m88(hw);
+ if (ret_val)
+ goto out;
+
+ if (!hw->mac.autoneg &&
+ (hw->mac.forced_speed_duplex & E1000_ALL_10_SPEED))
+ ret_val = e1000_polarity_reversal_workaround_82543(hw);
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_polarity_reversal_workaround_82543 - Workaround polarity reversal
+ * @hw: pointer to the HW structure
+ *
+ * When forcing link to 10 Full or 10 Half, the PHY can reverse the polarity
+ * inadvertantly. To workaround the issue, we disable the transmitter on
+ * the PHY until we have established the link partner's link parameters.
+ **/
+static s32 e1000_polarity_reversal_workaround_82543(struct e1000_hw *hw)
+{
+ s32 ret_val;
+ u16 mii_status_reg;
+ u16 i;
+ bool link;
+
+ /* Polarity reversal workaround for forced 10F/10H links. */
+
+ /* Disable the transmitter on the PHY */
+
+ ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0019);
+ if (ret_val)
+ goto out;
+ ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xFFFF);
+ if (ret_val)
+ goto out;
+
+ ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0000);
+ if (ret_val)
+ goto out;
+
+ /*
+ * This loop will early-out if the NO link condition has been met.
+ * In other words, DO NOT use e1000_phy_has_link_generic() here.
+ */
+ for (i = PHY_FORCE_TIME; i > 0; i--) {
+ /*
+ * Read the MII Status Register and wait for Link Status bit
+ * to be clear.
+ */
+
+ ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
+ if (ret_val)
+ goto out;
+
+ ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
+ if (ret_val)
+ goto out;
+
+ if ((mii_status_reg & ~MII_SR_LINK_STATUS) == 0)
+ break;
+ msec_delay_irq(100);
+ }
+
+ /* Recommended delay time after link has been lost */
+ msec_delay_irq(1000);
+
+ /* Now we will re-enable the transmitter on the PHY */
+
+ ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0019);
+ if (ret_val)
+ goto out;
+ msec_delay_irq(50);
+ ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xFFF0);
+ if (ret_val)
+ goto out;
+ msec_delay_irq(50);
+ ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xFF00);
+ if (ret_val)
+ goto out;
+ msec_delay_irq(50);
+ ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0x0000);
+ if (ret_val)
+ goto out;
+
+ ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0000);
+ if (ret_val)
+ goto out;
+
+ /*
+ * Read the MII Status Register and wait for Link Status bit
+ * to be set.
+ */
+ ret_val = e1000_phy_has_link_generic(hw, PHY_FORCE_TIME, 100000, &link);
+ if (ret_val)
+ goto out;
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_phy_hw_reset_82543 - PHY hardware reset
+ * @hw: pointer to the HW structure
+ *
+ * Sets the PHY_RESET_DIR bit in the extended device control register
+ * to put the PHY into a reset and waits for completion. Once the reset
+ * has been accomplished, clear the PHY_RESET_DIR bit to take the PHY out
+ * of reset. This is a function pointer entry point called by the api module.
+ **/
+STATIC s32 e1000_phy_hw_reset_82543(struct e1000_hw *hw)
+{
+ struct e1000_functions *func = &hw->func;
+ u32 ctrl_ext;
+ s32 ret_val;
+
+ DEBUGFUNC("e1000_phy_hw_reset_82543");
+
+ /*
+ * Read the Extended Device Control Register, assert the PHY_RESET_DIR
+ * bit to put the PHY into reset...
+ */
+ ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
+ ctrl_ext |= E1000_CTRL_EXT_SDP4_DIR;
+ ctrl_ext &= ~E1000_CTRL_EXT_SDP4_DATA;
+ E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
+ E1000_WRITE_FLUSH(hw);
+
+ msec_delay(10);
+
+ /* ...then take it out of reset. */
+ ctrl_ext |= E1000_CTRL_EXT_SDP4_DATA;
+ E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
+ E1000_WRITE_FLUSH(hw);
+
+ usec_delay(150);
+
+ ret_val = func->get_cfg_done(hw);
+
+ return ret_val;
+}
+
+/**
+ * e1000_reset_hw_82543 - Reset hardware
+ * @hw: pointer to the HW structure
+ *
+ * This resets the hardware into a known state. This is a
+ * function pointer entry point called by the api module.
+ **/
+STATIC s32 e1000_reset_hw_82543(struct e1000_hw *hw)
+{
+ u32 ctrl, icr;
+ s32 ret_val = E1000_SUCCESS;
+
+ DEBUGFUNC("e1000_reset_hw_82543");
+
+ DEBUGOUT("Masking off all interrupts\n");
+ E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff);
+
+ E1000_WRITE_REG(hw, E1000_RCTL, 0);
+ E1000_WRITE_REG(hw, E1000_TCTL, E1000_TCTL_PSP);
+ E1000_WRITE_FLUSH(hw);
+
+ e1000_set_tbi_sbp_82543(hw, FALSE);
+
+ /*
+ * Delay to allow any outstanding PCI transactions to complete before
+ * resetting the device
+ */
+ msec_delay(10);
+
+ ctrl = E1000_READ_REG(hw, E1000_CTRL);
+
+ DEBUGOUT("Issuing a global reset to 82543/82544 MAC\n");
+ if (hw->mac.type == e1000_82543) {
+ E1000_WRITE_REG(hw, E1000_CTRL, ctrl | E1000_CTRL_RST);
+ } else {
+ /*
+ * The 82544 can't ACK the 64-bit write when issuing the
+ * reset, so use IO-mapping as a workaround.
+ */
+ E1000_WRITE_REG_IO(hw, E1000_CTRL, ctrl | E1000_CTRL_RST);
+ }
+
+ /*
+ * After MAC reset, force reload of NVM to restore power-on
+ * settings to device.
+ */
+ e1000_reload_nvm(hw);
+ msec_delay(2);
+
+ /* Masking off and clearing any pending interrupts */
+ E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff);
+ icr = E1000_READ_REG(hw, E1000_ICR);
+
+ return ret_val;
+}
+
+/**
+ * e1000_init_hw_82543 - Initialize hardware
+ * @hw: pointer to the HW structure
+ *
+ * This inits the hardware readying it for operation.
+ **/
+STATIC s32 e1000_init_hw_82543(struct e1000_hw *hw)
+{
+ struct e1000_mac_info *mac = &hw->mac;
+ struct e1000_dev_spec_82543 *dev_spec;
+ u32 ctrl;
+ s32 ret_val;
+ u16 i;
+
+ DEBUGFUNC("e1000_init_hw_82543");
+
+ dev_spec = (struct e1000_dev_spec_82543 *)hw->dev_spec;
+
+ if (!dev_spec) {
+ DEBUGOUT("dev_spec pointer is set to NULL.\n");
+ ret_val = -E1000_ERR_CONFIG;
+ goto out;
+ }
+
+ /* Disabling VLAN filtering */
+ E1000_WRITE_REG(hw, E1000_VET, 0);
+ e1000_clear_vfta(hw);
+
+ /* Setup the receive address. */
+ e1000_init_rx_addrs_generic(hw, mac->rar_entry_count);
+
+ /* Zero out the Multicast HASH table */
+ DEBUGOUT("Zeroing the MTA\n");
+ for (i = 0; i < mac->mta_reg_count; i++) {
+ E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
+ E1000_WRITE_FLUSH(hw);
+ }
+
+ /*
+ * Set the PCI priority bit correctly in the CTRL register. This
+ * determines if the adapter gives priority to receives, or if it
+ * gives equal priority to transmits and receives.
+ */
+ if (hw->mac.type == e1000_82543 && dev_spec->dma_fairness) {
+ ctrl = E1000_READ_REG(hw, E1000_CTRL);
+ E1000_WRITE_REG(hw, E1000_CTRL, ctrl | E1000_CTRL_PRIOR);
+ }
+
+ e1000_pcix_mmrbc_workaround_generic(hw);
+
+ /* Setup link and flow control */
+ ret_val = e1000_setup_link(hw);
+
+ /*
+ * Clear all of the statistics registers (clear on read). It is
+ * important that we do this after we have tried to establish link
+ * because the symbol error count will increment wildly if there
+ * is no link.
+ */
+ e1000_clear_hw_cntrs_82543(hw);
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_setup_link_82543 - Setup flow control and link settings
+ * @hw: pointer to the HW structure
+ *
+ * Read the EEPROM to determine the initial polarity value and write the
+ * extended device control register with the information before calling
+ * the generic setup link function, which does the following:
+ * Determines which flow control settings to use, then configures flow
+ * control. Calls the appropriate media-specific link configuration
+ * function. Assuming the adapter has a valid link partner, a valid link
+ * should be established. Assumes the hardware has previously been reset
+ * and the transmitter and receiver are not enabled.
+ **/
+STATIC s32 e1000_setup_link_82543(struct e1000_hw *hw)
+{
+ u32 ctrl_ext;
+ s32 ret_val;
+ u16 data;
+
+ DEBUGFUNC("e1000_setup_link_82543");
+
+ /*
+ * Take the 4 bits from NVM word 0xF that determine the initial
+ * polarity value for the SW controlled pins, and setup the
+ * Extended Device Control reg with that info.
+ * This is needed because one of the SW controlled pins is used for
+ * signal detection. So this should be done before phy setup.
+ */
+ if (hw->mac.type == e1000_82543) {
+ ret_val = e1000_read_nvm(hw, NVM_INIT_CONTROL2_REG, 1, &data);
+ if (ret_val) {
+ DEBUGOUT("NVM Read Error\n");
+ ret_val = -E1000_ERR_NVM;
+ goto out;
+ }
+ ctrl_ext = ((data & NVM_WORD0F_SWPDIO_EXT_MASK) <<
+ NVM_SWDPIO_EXT_SHIFT);
+ E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
+ }
+
+ ret_val = e1000_setup_link_generic(hw);
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_setup_copper_link_82543 - Configure copper link settings
+ * @hw: pointer to the HW structure
+ *
+ * Configures the link for auto-neg or forced speed and duplex. Then we check
+ * for link, once link is established calls to configure collision distance
+ * and flow control are called.
+ **/
+STATIC s32 e1000_setup_copper_link_82543(struct e1000_hw *hw)
+{
+ u32 ctrl;
+ s32 ret_val;
+ bool link;
+
+ DEBUGFUNC("e1000_setup_copper_link_82543");
+
+ ctrl = E1000_READ_REG(hw, E1000_CTRL) | E1000_CTRL_SLU;
+ /*
+ * With 82543, we need to force speed and duplex on the MAC
+ * equal to what the PHY speed and duplex configuration is.
+ * In addition, we need to perform a hardware reset on the
+ * PHY to take it out of reset.
+ */
+ if (hw->mac.type == e1000_82543) {
+ ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
+ E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
+ ret_val = e1000_phy_hw_reset(hw);
+ if (ret_val)
+ goto out;
+ hw->phy.reset_disable = FALSE;
+ } else {
+ ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
+ E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
+ }
+
+ /* Set MDI/MDI-X, Polarity Reversal, and downshift settings */
+ ret_val = e1000_copper_link_setup_m88(hw);
+ if (ret_val)
+ goto out;
+
+ if (hw->mac.autoneg) {
+ /*
+ * Setup autoneg and flow control advertisement and perform
+ * autonegotiation.
+ */
+ ret_val = e1000_copper_link_autoneg(hw);
+ if (ret_val)
+ goto out;
+ } else {
+ /*
+ * PHY will be set to 10H, 10F, 100H or 100F
+ * depending on user settings.
+ */
+ DEBUGOUT("Forcing Speed and Duplex\n");
+ ret_val = e1000_phy_force_speed_duplex_82543(hw);
+ if (ret_val) {
+ DEBUGOUT("Error Forcing Speed and Duplex\n");
+ goto out;
+ }
+ }
+
+ /*
+ * Check link status. Wait up to 100 microseconds for link to become
+ * valid.
+ */
+ ret_val = e1000_phy_has_link_generic(hw,
+ COPPER_LINK_UP_LIMIT,
+ 10,
+ &link);
+ if (ret_val)
+ goto out;
+
+
+ if (link) {
+ DEBUGOUT("Valid link established!!!\n");
+ /* Config the MAC and PHY after link is up */
+ if (hw->mac.type == e1000_82544) {
+ e1000_config_collision_dist_generic(hw);
+ } else {
+ ret_val = e1000_config_mac_to_phy_82543(hw);
+ if (ret_val)
+ goto out;
+ }
+ ret_val = e1000_config_fc_after_link_up_generic(hw);
+ } else {
+ DEBUGOUT("Unable to establish link!!!\n");
+ }
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_setup_fiber_link_82543 - Setup link for fiber
+ * @hw: pointer to the HW structure
+ *
+ * Configures collision distance and flow control for fiber links. Upon
+ * successful setup, poll for link.
+ **/
+STATIC s32 e1000_setup_fiber_link_82543(struct e1000_hw *hw)
+{
+ u32 ctrl;
+ s32 ret_val;
+
+ DEBUGFUNC("e1000_setup_fiber_link_82543");
+
+ ctrl = E1000_READ_REG(hw, E1000_CTRL);
+
+ /* Take the link out of reset */
+ ctrl &= ~E1000_CTRL_LRST;
+
+ e1000_config_collision_dist_generic(hw);
+
+ ret_val = e1000_commit_fc_settings_generic(hw);
+ if (ret_val)
+ goto out;
+
+ DEBUGOUT("Auto-negotiation enabled\n");
+
+ E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
+ E1000_WRITE_FLUSH(hw);
+ msec_delay(1);
+
+ /*
+ * For these adapters, the SW defineable pin 1 is cleared when the
+ * optics detect a signal. If we have a signal, then poll for a
+ * "Link-Up" indication.
+ */
+ if (!(E1000_READ_REG(hw, E1000_CTRL) & E1000_CTRL_SWDPIN1)) {
+ ret_val = e1000_poll_fiber_serdes_link_generic(hw);
+ } else {
+ DEBUGOUT("No signal detected\n");
+ }
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_check_for_copper_link_82543 - Check for link (Copper)
+ * @hw: pointer to the HW structure
+ *
+ * Checks the phy for link, if link exists, do the following:
+ * - check for downshift
+ * - do polarity workaround (if necessary)
+ * - configure collision distance
+ * - configure flow control after link up
+ * - configure tbi compatibility
+ **/
+STATIC s32 e1000_check_for_copper_link_82543(struct e1000_hw *hw)
+{
+ struct e1000_mac_info *mac = &hw->mac;
+ u32 icr, rctl;
+ s32 ret_val;
+ u16 speed, duplex;
+ bool link;
+
+ DEBUGFUNC("e1000_check_for_copper_link_82543");
+
+ if (!mac->get_link_status) {
+ ret_val = E1000_SUCCESS;
+ goto out;
+ }
+
+ ret_val = e1000_phy_has_link_generic(hw, 1, 0, &link);
+ if (ret_val)
+ goto out;
+
+ if (!link)
+ goto out; /* No link detected */
+
+ mac->get_link_status = FALSE;
+
+ e1000_check_downshift_generic(hw);
+
+ /*
+ * If we are forcing speed/duplex, then we can return since
+ * we have already determined whether we have link or not.
+ */
+ if (!mac->autoneg) {
+ /*
+ * If speed and duplex are forced to 10H or 10F, then we will
+ * implement the polarity reversal workaround. We disable
+ * interrupts first, and upon returning, place the devices
+ * interrupt state to its previous value except for the link
+ * status change interrupt which will happened due to the
+ * execution of this workaround.
+ */
+ if (mac->forced_speed_duplex & E1000_ALL_10_SPEED) {
+ E1000_WRITE_REG(hw, E1000_IMC, 0xFFFFFFFF);
+ ret_val = e1000_polarity_reversal_workaround_82543(hw);
+ icr = E1000_READ_REG(hw, E1000_ICR);
+ E1000_WRITE_REG(hw, E1000_ICS, (icr & ~E1000_ICS_LSC));
+ E1000_WRITE_REG(hw, E1000_IMS, IMS_ENABLE_MASK);
+ }
+
+ ret_val = -E1000_ERR_CONFIG;
+ goto out;
+ }
+
+ /*
+ * We have a M88E1000 PHY and Auto-Neg is enabled. If we
+ * have Si on board that is 82544 or newer, Auto
+ * Speed Detection takes care of MAC speed/duplex
+ * configuration. So we only need to configure Collision
+ * Distance in the MAC. Otherwise, we need to force
+ * speed/duplex on the MAC to the current PHY speed/duplex
+ * settings.
+ */
+ if (mac->type == e1000_82544)
+ e1000_config_collision_dist_generic(hw);
+ else {
+ ret_val = e1000_config_mac_to_phy_82543(hw);
+ if (ret_val) {
+ DEBUGOUT("Error configuring MAC to PHY settings\n");
+ goto out;
+ }
+ }
+
+ /*
+ * Configure Flow Control now that Auto-Neg has completed.
+ * First, we need to restore the desired flow control
+ * settings because we may have had to re-autoneg with a
+ * different link partner.
+ */
+ ret_val = e1000_config_fc_after_link_up_generic(hw);
+ if (ret_val) {
+ DEBUGOUT("Error configuring flow control\n");
+ }
+
+ /*
+ * At this point we know that we are on copper and we have
+ * auto-negotiated link. These are conditions for checking the link
+ * partner capability register. We use the link speed to determine if
+ * TBI compatibility needs to be turned on or off. If the link is not
+ * at gigabit speed, then TBI compatibility is not needed. If we are
+ * at gigabit speed, we turn on TBI compatibility.
+ */
+ if (e1000_tbi_compatibility_enabled_82543(hw)) {
+ ret_val = e1000_get_speed_and_duplex(hw, &speed, &duplex);
+ if (ret_val) {
+ DEBUGOUT("Error getting link speed and duplex\n");
+ return ret_val;
+ }
+ if (speed != SPEED_1000) {
+ /*
+ * If link speed is not set to gigabit speed,
+ * we do not need to enable TBI compatibility.
+ */
+ if (e1000_tbi_sbp_enabled_82543(hw)) {
+ /*
+ * If we previously were in the mode,
+ * turn it off.
+ */
+ e1000_set_tbi_sbp_82543(hw, FALSE);
+ rctl = E1000_READ_REG(hw, E1000_RCTL);
+ rctl &= ~E1000_RCTL_SBP;
+ E1000_WRITE_REG(hw, E1000_RCTL, rctl);
+ }
+ } else {
+ /*
+ * If TBI compatibility is was previously off,
+ * turn it on. For compatibility with a TBI link
+ * partner, we will store bad packets. Some
+ * frames have an additional byte on the end and
+ * will look like CRC errors to to the hardware.
+ */
+ if (!e1000_tbi_sbp_enabled_82543(hw)) {
+ e1000_set_tbi_sbp_82543(hw, TRUE);
+ rctl = E1000_READ_REG(hw, E1000_RCTL);
+ rctl |= E1000_RCTL_SBP;
+ E1000_WRITE_REG(hw, E1000_RCTL, rctl);
+ }
+ }
+ }
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_check_for_fiber_link_82543 - Check for link (Fiber)
+ * @hw: pointer to the HW structure
+ *
+ * Checks for link up on the hardware. If link is not up and we have
+ * a signal, then we need to force link up.
+ **/
+STATIC s32 e1000_check_for_fiber_link_82543(struct e1000_hw *hw)
+{
+ struct e1000_mac_info *mac = &hw->mac;
+ u32 rxcw, ctrl, status;
+ s32 ret_val = E1000_SUCCESS;
+
+ DEBUGFUNC("e1000_check_for_fiber_link_82543");
+
+ ctrl = E1000_READ_REG(hw, E1000_CTRL);
+ status = E1000_READ_REG(hw, E1000_STATUS);
+ rxcw = E1000_READ_REG(hw, E1000_RXCW);
+
+ /*
+ * If we don't have link (auto-negotiation failed or link partner
+ * cannot auto-negotiate), the cable is plugged in (we have signal),
+ * and our link partner is not trying to auto-negotiate with us (we
+ * are receiving idles or data), we need to force link up. We also
+ * need to give auto-negotiation time to complete, in case the cable
+ * was just plugged in. The autoneg_failed flag does this.
+ */
+ /* (ctrl & E1000_CTRL_SWDPIN1) == 0 == have signal */
+ if ((!(ctrl & E1000_CTRL_SWDPIN1)) &&
+ (!(status & E1000_STATUS_LU)) &&
+ (!(rxcw & E1000_RXCW_C))) {
+ if (mac->autoneg_failed == 0) {
+ mac->autoneg_failed = 1;
+ ret_val = 0;
+ goto out;
+ }
+ DEBUGOUT("NOT RXing /C/, disable AutoNeg and force link.\n");
+
+ /* Disable auto-negotiation in the TXCW register */
+ E1000_WRITE_REG(hw, E1000_TXCW, (mac->txcw & ~E1000_TXCW_ANE));
+
+ /* Force link-up and also force full-duplex. */
+ ctrl = E1000_READ_REG(hw, E1000_CTRL);
+ ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD);
+ E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
+
+ /* Configure Flow Control after forcing link up. */
+ ret_val = e1000_config_fc_after_link_up_generic(hw);
+ if (ret_val) {
+ DEBUGOUT("Error configuring flow control\n");
+ goto out;
+ }
+ } else if ((ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) {
+ /*
+ * If we are forcing link and we are receiving /C/ ordered
+ * sets, re-enable auto-negotiation in the TXCW register
+ * and disable forced link in the Device Control register
+ * in an attempt to auto-negotiate with our link partner.
+ */
+ DEBUGOUT("RXing /C/, enable AutoNeg and stop forcing link.\n");
+ E1000_WRITE_REG(hw, E1000_TXCW, mac->txcw);
+ E1000_WRITE_REG(hw, E1000_CTRL, (ctrl & ~E1000_CTRL_SLU));
+
+ mac->serdes_has_link = TRUE;
+ }
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_config_mac_to_phy_82543 - Configure MAC to PHY settings
+ * @hw: pointer to the HW structure
+ *
+ * For the 82543 silicon, we need to set the MAC to match the settings
+ * of the PHY, even if the PHY is auto-negotiating.
+ **/
+static s32 e1000_config_mac_to_phy_82543(struct e1000_hw *hw)
+{
+ u32 ctrl;
+ s32 ret_val;
+ u16 phy_data;
+
+ DEBUGFUNC("e1000_config_mac_to_phy_82543");
+
+ /* Set the bits to force speed and duplex */
+ ctrl = E1000_READ_REG(hw, E1000_CTRL);
+ ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
+ ctrl &= ~(E1000_CTRL_SPD_SEL | E1000_CTRL_ILOS);
+
+ /*
+ * Set up duplex in the Device Control and Transmit Control
+ * registers depending on negotiated values.
+ */
+ ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
+ if (ret_val)
+ goto out;
+
+ ctrl &= ~E1000_CTRL_FD;
+ if (phy_data & M88E1000_PSSR_DPLX)
+ ctrl |= E1000_CTRL_FD;
+
+ e1000_config_collision_dist_generic(hw);
+
+ /*
+ * Set up speed in the Device Control register depending on
+ * negotiated values.
+ */
+ if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS)
+ ctrl |= E1000_CTRL_SPD_1000;
+ else if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_100MBS)
+ ctrl |= E1000_CTRL_SPD_100;
+
+ E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_write_vfta_82543 - Write value to VLAN filter table
+ * @hw: pointer to the HW structure
+ * @offset: the 32-bit offset in which to write the value to.
+ * @value: the 32-bit value to write at location offset.
+ *
+ * This writes a 32-bit value to a 32-bit offset in the VLAN filter
+ * table.
+ **/
+STATIC void e1000_write_vfta_82543(struct e1000_hw *hw, u32 offset, u32 value)
+{
+ u32 temp;
+
+ DEBUGFUNC("e1000_write_vfta_82543");
+
+ if ((hw->mac.type == e1000_82544) && (offset & 1)) {
+ temp = E1000_READ_REG_ARRAY(hw, E1000_VFTA, offset - 1);
+ E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset, value);
+ E1000_WRITE_FLUSH(hw);
+ E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset - 1, temp);
+ E1000_WRITE_FLUSH(hw);
+ } else {
+ e1000_write_vfta_generic(hw, offset, value);
+ }
+}
+
+/**
+ * e1000_mta_set_82543 - Set multicast filter table address
+ * @hw: pointer to the HW structure
+ * @hash_value: determines the MTA register and bit to set
+ *
+ * The multicast table address is a register array of 32-bit registers.
+ * The hash_value is used to determine what register the bit is in, the
+ * current value is read, the new bit is OR'd in and the new value is
+ * written back into the register.
+ **/
+STATIC void e1000_mta_set_82543(struct e1000_hw *hw, u32 hash_value)
+{
+ u32 hash_bit, hash_reg, mta, temp;
+
+ DEBUGFUNC("e1000_mta_set_82543");
+
+ hash_reg = (hash_value >> 5);
+
+ /*
+ * If we are on an 82544 and we are trying to write an odd offset
+ * in the MTA, save off the previous entry before writing and
+ * restore the old value after writing.
+ */
+ if ((hw->mac.type == e1000_82544) && (hash_reg & 1)) {
+ hash_reg &= (hw->mac.mta_reg_count - 1);
+ hash_bit = hash_value & 0x1F;
+ mta = E1000_READ_REG_ARRAY(hw, E1000_MTA, hash_reg);
+ mta |= (1 << hash_bit);
+ temp = E1000_READ_REG_ARRAY(hw, E1000_MTA, hash_reg - 1);
+
+ E1000_WRITE_REG_ARRAY(hw, E1000_MTA, hash_reg, mta);
+ E1000_WRITE_FLUSH(hw);
+ E1000_WRITE_REG_ARRAY(hw, E1000_MTA, hash_reg - 1, temp);
+ E1000_WRITE_FLUSH(hw);
+ } else {
+ e1000_mta_set_generic(hw, hash_value);
+ }
+}
+
+/**
+ * e1000_led_on_82543 - Turn on SW controllable LED
+ * @hw: pointer to the HW structure
+ *
+ * Turns the SW defined LED on. This is a function pointer entry point
+ * called by the api module.
+ **/
+STATIC s32 e1000_led_on_82543(struct e1000_hw *hw)
+{
+ u32 ctrl = E1000_READ_REG(hw, E1000_CTRL);
+
+ DEBUGFUNC("e1000_led_on_82543");
+
+ if (hw->mac.type == e1000_82544 &&
+ hw->phy.media_type == e1000_media_type_copper) {
+ /* Clear SW-defineable Pin 0 to turn on the LED */
+ ctrl &= ~E1000_CTRL_SWDPIN0;
+ ctrl |= E1000_CTRL_SWDPIO0;
+ } else {
+ /* Fiber 82544 and all 82543 use this method */
+ ctrl |= E1000_CTRL_SWDPIN0;
+ ctrl |= E1000_CTRL_SWDPIO0;
+ }
+ E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
+
+ return E1000_SUCCESS;
+}
+
+/**
+ * e1000_led_off_82543 - Turn off SW controllable LED
+ * @hw: pointer to the HW structure
+ *
+ * Turns the SW defined LED off. This is a function pointer entry point
+ * called by the api module.
+ **/
+STATIC s32 e1000_led_off_82543(struct e1000_hw *hw)
+{
+ u32 ctrl = E1000_READ_REG(hw, E1000_CTRL);
+
+ DEBUGFUNC("e1000_led_off_82543");
+
+ if (hw->mac.type == e1000_82544 &&
+ hw->phy.media_type == e1000_media_type_copper) {
+ /* Set SW-defineable Pin 0 to turn off the LED */
+ ctrl |= E1000_CTRL_SWDPIN0;
+ ctrl |= E1000_CTRL_SWDPIO0;
+ } else {
+ ctrl &= ~E1000_CTRL_SWDPIN0;
+ ctrl |= E1000_CTRL_SWDPIO0;
+ }
+ E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
+
+ return E1000_SUCCESS;
+}
+
+/**
+ * e1000_clear_hw_cntrs_82543 - Clear device specific hardware counters
+ * @hw: pointer to the HW structure
+ *
+ * Clears the hardware counters by reading the counter registers.
+ **/
+STATIC void e1000_clear_hw_cntrs_82543(struct e1000_hw *hw)
+{
+ volatile u32 temp;
+
+ DEBUGFUNC("e1000_clear_hw_cntrs_82543");
+
+ e1000_clear_hw_cntrs_base_generic(hw);
+
+ temp = E1000_READ_REG(hw, E1000_PRC64);
+ temp = E1000_READ_REG(hw, E1000_PRC127);
+ temp = E1000_READ_REG(hw, E1000_PRC255);
+ temp = E1000_READ_REG(hw, E1000_PRC511);
+ temp = E1000_READ_REG(hw, E1000_PRC1023);
+ temp = E1000_READ_REG(hw, E1000_PRC1522);
+ temp = E1000_READ_REG(hw, E1000_PTC64);
+ temp = E1000_READ_REG(hw, E1000_PTC127);
+ temp = E1000_READ_REG(hw, E1000_PTC255);
+ temp = E1000_READ_REG(hw, E1000_PTC511);
+ temp = E1000_READ_REG(hw, E1000_PTC1023);
+ temp = E1000_READ_REG(hw, E1000_PTC1522);
+
+ temp = E1000_READ_REG(hw, E1000_ALGNERRC);
+ temp = E1000_READ_REG(hw, E1000_RXERRC);
+ temp = E1000_READ_REG(hw, E1000_TNCRS);
+ temp = E1000_READ_REG(hw, E1000_CEXTERR);
+ temp = E1000_READ_REG(hw, E1000_TSCTC);
+ temp = E1000_READ_REG(hw, E1000_TSCTFC);
+}
--- /dev/null
+++ sys/dev/em/e1000_manage.c
@@ -0,0 +1,391 @@
+/*******************************************************************************
+
+ Copyright (c) 2001-2007, Intel Corporation
+ All rights reserved.
+
+ Redistribution and use in source and binary forms, with or without
+ modification, are permitted provided that the following conditions are met:
+
+ 1. Redistributions of source code must retain the above copyright notice,
+ this list of conditions and the following disclaimer.
+
+ 2. Redistributions in binary form must reproduce the above copyright
+ notice, this list of conditions and the following disclaimer in the
+ documentation and/or other materials provided with the distribution.
+
+ 3. Neither the name of the Intel Corporation nor the names of its
+ contributors may be used to endorse or promote products derived from
+ this software without specific prior written permission.
+
+ THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
+ AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+ IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
+ LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
+ CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
+ SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
+ INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
+ CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
+ ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
+ POSSIBILITY OF SUCH DAMAGE.
+
+*******************************************************************************/
+/* $FreeBSD: src/sys/dev/em/e1000_manage.c,v 1.3.4.1 2007/11/28 23:24:38 jfv Exp $ */
+
+
+#include "e1000_api.h"
+#include "e1000_manage.h"
+
+static u8 e1000_calculate_checksum(u8 *buffer, u32 length);
+
+/**
+ * e1000_calculate_checksum - Calculate checksum for buffer
+ * @buffer: pointer to EEPROM
+ * @length: size of EEPROM to calculate a checksum for
+ *
+ * Calculates the checksum for some buffer on a specified length. The
+ * checksum calculated is returned.
+ **/
+static u8 e1000_calculate_checksum(u8 *buffer, u32 length)
+{
+ u32 i;
+ u8 sum = 0;
+
+ DEBUGFUNC("e1000_calculate_checksum");
+
+ if (!buffer)
+ return 0;
+
+ for (i = 0; i < length; i++)
+ sum += buffer[i];
+
+ return (u8) (0 - sum);
+}
+
+/**
+ * e1000_mng_enable_host_if_generic - Checks host interface is enabled
+ * @hw: pointer to the HW structure
+ *
+ * Returns E1000_success upon success, else E1000_ERR_HOST_INTERFACE_COMMAND
+ *
+ * This function checks whether the HOST IF is enabled for command operaton
+ * and also checks whether the previous command is completed. It busy waits
+ * in case of previous command is not completed.
+ **/
+s32 e1000_mng_enable_host_if_generic(struct e1000_hw * hw)
+{
+ u32 hicr;
+ s32 ret_val = E1000_SUCCESS;
+ u8 i;
+
+ DEBUGFUNC("e1000_mng_enable_host_if_generic");
+
+ /* Check that the host interface is enabled. */
+ hicr = E1000_READ_REG(hw, E1000_HICR);
+ if ((hicr & E1000_HICR_EN) == 0) {
+ DEBUGOUT("E1000_HOST_EN bit disabled.\n");
+ ret_val = -E1000_ERR_HOST_INTERFACE_COMMAND;
+ goto out;
+ }
+ /* check the previous command is completed */
+ for (i = 0; i < E1000_MNG_DHCP_COMMAND_TIMEOUT; i++) {
+ hicr = E1000_READ_REG(hw, E1000_HICR);
+ if (!(hicr & E1000_HICR_C))
+ break;
+ msec_delay_irq(1);
+ }
+
+ if (i == E1000_MNG_DHCP_COMMAND_TIMEOUT) {
+ DEBUGOUT("Previous command timeout failed .\n");
+ ret_val = -E1000_ERR_HOST_INTERFACE_COMMAND;
+ goto out;
+ }
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_check_mng_mode_generic - Generic check managament mode
+ * @hw: pointer to the HW structure
+ *
+ * Reads the firmware semaphore register and returns true (>0) if
+ * manageability is enabled, else false (0).
+ **/
+bool e1000_check_mng_mode_generic(struct e1000_hw *hw)
+{
+ u32 fwsm;
+
+ DEBUGFUNC("e1000_check_mng_mode_generic");
+
+ fwsm = E1000_READ_REG(hw, E1000_FWSM);
+
+ return ((fwsm & E1000_FWSM_MODE_MASK) ==
+ (E1000_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT));
+}
+
+/**
+ * e1000_enable_tx_pkt_filtering_generic - Enable packet filtering on TX
+ * @hw: pointer to the HW structure
+ *
+ * Enables packet filtering on transmit packets if manageability is enabled
+ * and host interface is enabled.
+ **/
+bool e1000_enable_tx_pkt_filtering_generic(struct e1000_hw *hw)
+{
+ struct e1000_host_mng_dhcp_cookie *hdr = &hw->mng_cookie;
+ u32 *buffer = (u32 *)&hw->mng_cookie;
+ u32 offset;
+ s32 ret_val, hdr_csum, csum;
+ u8 i, len;
+ bool tx_filter = TRUE;
+
+ DEBUGFUNC("e1000_enable_tx_pkt_filtering_generic");
+
+ /* No manageability, no filtering */
+ if (!e1000_check_mng_mode(hw)) {
+ tx_filter = FALSE;
+ goto out;
+ }
+
+ /*
+ * If we can't read from the host interface for whatever
+ * reason, disable filtering.
+ */
+ ret_val = e1000_mng_enable_host_if(hw);
+ if (ret_val != E1000_SUCCESS) {
+ tx_filter = FALSE;
+ goto out;
+ }
+
+ /* Read in the header. Length and offset are in dwords. */
+ len = E1000_MNG_DHCP_COOKIE_LENGTH >> 2;
+ offset = E1000_MNG_DHCP_COOKIE_OFFSET >> 2;
+ for (i = 0; i < len; i++) {
+ *(buffer + i) = E1000_READ_REG_ARRAY_DWORD(hw,
+ E1000_HOST_IF,
+ offset + i);
+ }
+ hdr_csum = hdr->checksum;
+ hdr->checksum = 0;
+ csum = e1000_calculate_checksum((u8 *)hdr,
+ E1000_MNG_DHCP_COOKIE_LENGTH);
+ /*
+ * If either the checksums or signature don't match, then
+ * the cookie area isn't considered valid, in which case we
+ * take the safe route of assuming Tx filtering is enabled.
+ */
+ if (hdr_csum != csum)
+ goto out;
+ if (hdr->signature != E1000_IAMT_SIGNATURE)
+ goto out;
+
+ /* Cookie area is valid, make the final check for filtering. */
+ if (!(hdr->status & E1000_MNG_DHCP_COOKIE_STATUS_PARSING))
+ tx_filter = FALSE;
+
+out:
+ hw->mac.tx_pkt_filtering = tx_filter;
+ return tx_filter;
+}
+
+/**
+ * e1000_mng_write_dhcp_info_generic - Writes DHCP info to host interface
+ * @hw: pointer to the HW structure
+ * @buffer: pointer to the host interface
+ * @length: size of the buffer
+ *
+ * Writes the DHCP information to the host interface.
+ **/
+s32 e1000_mng_write_dhcp_info_generic(struct e1000_hw * hw, u8 *buffer,
+ u16 length)
+{
+ struct e1000_host_mng_command_header hdr;
+ s32 ret_val;
+ u32 hicr;
+
+ DEBUGFUNC("e1000_mng_write_dhcp_info_generic");
+
+ hdr.command_id = E1000_MNG_DHCP_TX_PAYLOAD_CMD;
+ hdr.command_length = length;
+ hdr.reserved1 = 0;
+ hdr.reserved2 = 0;
+ hdr.checksum = 0;
+
+ /* Enable the host interface */
+ ret_val = e1000_mng_enable_host_if(hw);
+ if (ret_val)
+ goto out;
+
+ /* Populate the host interface with the contents of "buffer". */
+ ret_val = e1000_mng_host_if_write(hw, buffer, length,
+ sizeof(hdr), &(hdr.checksum));
+ if (ret_val)
+ goto out;
+
+ /* Write the manageability command header */
+ ret_val = e1000_mng_write_cmd_header(hw, &hdr);
+ if (ret_val)
+ goto out;
+
+ /* Tell the ARC a new command is pending. */
+ hicr = E1000_READ_REG(hw, E1000_HICR);
+ E1000_WRITE_REG(hw, E1000_HICR, hicr | E1000_HICR_C);
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_mng_write_cmd_header_generic - Writes manageability command header
+ * @hw: pointer to the HW structure
+ * @hdr: pointer to the host interface command header
+ *
+ * Writes the command header after does the checksum calculation.
+ **/
+s32 e1000_mng_write_cmd_header_generic(struct e1000_hw * hw,
+ struct e1000_host_mng_command_header * hdr)
+{
+ u16 i, length = sizeof(struct e1000_host_mng_command_header);
+
+ DEBUGFUNC("e1000_mng_write_cmd_header_generic");
+
+ /* Write the whole command header structure with new checksum. */
+
+ hdr->checksum = e1000_calculate_checksum((u8 *)hdr, length);
+
+ length >>= 2;
+ /* Write the relevant command block into the ram area. */
+ for (i = 0; i < length; i++) {
+ E1000_WRITE_REG_ARRAY_DWORD(hw, E1000_HOST_IF, i,
+ *((u32 *) hdr + i));
+ E1000_WRITE_FLUSH(hw);
+ }
+
+ return E1000_SUCCESS;
+}
+
+/**
+ * e1000_mng_host_if_write_generic - Writes to the manageability host interface
+ * @hw: pointer to the HW structure
+ * @buffer: pointer to the host interface buffer
+ * @length: size of the buffer
+ * @offset: location in the buffer to write to
+ * @sum: sum of the data (not checksum)
+ *
+ * This function writes the buffer content at the offset given on the host if.
+ * It also does alignment considerations to do the writes in most efficient
+ * way. Also fills up the sum of the buffer in *buffer parameter.
+ **/
+s32 e1000_mng_host_if_write_generic(struct e1000_hw * hw, u8 *buffer,
+ u16 length, u16 offset, u8 *sum)
+{
+ u8 *tmp;
+ u8 *bufptr = buffer;
+ u32 data = 0;
+ s32 ret_val = E1000_SUCCESS;
+ u16 remaining, i, j, prev_bytes;
+
+ DEBUGFUNC("e1000_mng_host_if_write_generic");
+
+ /* sum = only sum of the data and it is not checksum */
+
+ if (length == 0 || offset + length > E1000_HI_MAX_MNG_DATA_LENGTH) {
+ ret_val = -E1000_ERR_PARAM;
+ goto out;
+ }
+
+ tmp = (u8 *)&data;
+ prev_bytes = offset & 0x3;
+ offset >>= 2;
+
+ if (prev_bytes) {
+ data = E1000_READ_REG_ARRAY_DWORD(hw, E1000_HOST_IF, offset);
+ for (j = prev_bytes; j < sizeof(u32); j++) {
+ *(tmp + j) = *bufptr++;
+ *sum += *(tmp + j);
+ }
+ E1000_WRITE_REG_ARRAY_DWORD(hw, E1000_HOST_IF, offset, data);
+ length -= j - prev_bytes;
+ offset++;
+ }
+
+ remaining = length & 0x3;
+ length -= remaining;
+
+ /* Calculate length in DWORDs */
+ length >>= 2;
+
+ /*
+ * The device driver writes the relevant command block into the
+ * ram area.
+ */
+ for (i = 0; i < length; i++) {
+ for (j = 0; j < sizeof(u32); j++) {
+ *(tmp + j) = *bufptr++;
+ *sum += *(tmp + j);
+ }
+
+ E1000_WRITE_REG_ARRAY_DWORD(hw, E1000_HOST_IF, offset + i, data);
+ }
+ if (remaining) {
+ for (j = 0; j < sizeof(u32); j++) {
+ if (j < remaining)
+ *(tmp + j) = *bufptr++;
+ else
+ *(tmp + j) = 0;
+
+ *sum += *(tmp + j);
+ }
+ E1000_WRITE_REG_ARRAY_DWORD(hw, E1000_HOST_IF, offset + i, data);
+ }
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_enable_mng_pass_thru - Enable processing of ARP's
+ * @hw: pointer to the HW structure
+ *
+ * Verifies the hardware needs to allow ARPs to be processed by the host.
+ **/
+bool e1000_enable_mng_pass_thru(struct e1000_hw *hw)
+{
+ u32 manc;
+ u32 fwsm, factps;
+ bool ret_val = FALSE;
+
+ DEBUGFUNC("e1000_enable_mng_pass_thru");
+
+ if (!hw->mac.asf_firmware_present)
+ goto out;
+
+ manc = E1000_READ_REG(hw, E1000_MANC);
+
+ if (!(manc & E1000_MANC_RCV_TCO_EN) ||
+ !(manc & E1000_MANC_EN_MAC_ADDR_FILTER))
+ goto out;
+
+ if (hw->mac.arc_subsystem_valid) {
+ fwsm = E1000_READ_REG(hw, E1000_FWSM);
+ factps = E1000_READ_REG(hw, E1000_FACTPS);
+
+ if (!(factps & E1000_FACTPS_MNGCG) &&
+ ((fwsm & E1000_FWSM_MODE_MASK) ==
+ (e1000_mng_mode_pt << E1000_FWSM_MODE_SHIFT))) {
+ ret_val = TRUE;
+ goto out;
+ }
+ } else {
+ if ((manc & E1000_MANC_SMBUS_EN) &&
+ !(manc & E1000_MANC_ASF_EN)) {
+ ret_val = TRUE;
+ goto out;
+ }
+ }
+
+out:
+ return ret_val;
+}
+
--- /dev/null
+++ sys/dev/em/e1000_regs.h
@@ -0,0 +1,356 @@
+/*******************************************************************************
+
+ Copyright (c) 2001-2007, Intel Corporation
+ All rights reserved.
+
+ Redistribution and use in source and binary forms, with or without
+ modification, are permitted provided that the following conditions are met:
+
+ 1. Redistributions of source code must retain the above copyright notice,
+ this list of conditions and the following disclaimer.
+
+ 2. Redistributions in binary form must reproduce the above copyright
+ notice, this list of conditions and the following disclaimer in the
+ documentation and/or other materials provided with the distribution.
+
+ 3. Neither the name of the Intel Corporation nor the names of its
+ contributors may be used to endorse or promote products derived from
+ this software without specific prior written permission.
+
+ THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
+ AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+ IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
+ LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
+ CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
+ SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
+ INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
+ CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
+ ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
+ POSSIBILITY OF SUCH DAMAGE.
+
+*******************************************************************************/
+/* $FreeBSD: src/sys/dev/em/e1000_regs.h,v 1.3.4.1 2007/11/28 23:24:38 jfv Exp $ */
+
+
+#ifndef _E1000_REGS_H_
+#define _E1000_REGS_H_
+
+#define E1000_CTRL 0x00000 /* Device Control - RW */
+#define E1000_CTRL_DUP 0x00004 /* Device Control Duplicate (Shadow) - RW */
+#define E1000_STATUS 0x00008 /* Device Status - RO */
+#define E1000_EECD 0x00010 /* EEPROM/Flash Control - RW */
+#define E1000_EERD 0x00014 /* EEPROM Read - RW */
+#define E1000_CTRL_EXT 0x00018 /* Extended Device Control - RW */
+#define E1000_FLA 0x0001C /* Flash Access - RW */
+#define E1000_MDIC 0x00020 /* MDI Control - RW */
+#define E1000_SCTL 0x00024 /* SerDes Control - RW */
+#define E1000_FCAL 0x00028 /* Flow Control Address Low - RW */
+#define E1000_FCAH 0x0002C /* Flow Control Address High -RW */
+#define E1000_FEXTNVM 0x00028 /* Future Extended NVM - RW */
+#define E1000_FCT 0x00030 /* Flow Control Type - RW */
+#define E1000_CONNSW 0x00034 /* Copper/Fiber switch control - RW */
+#define E1000_VET 0x00038 /* VLAN Ether Type - RW */
+#define E1000_ICR 0x000C0 /* Interrupt Cause Read - R/clr */
+#define E1000_ITR 0x000C4 /* Interrupt Throttling Rate - RW */
+#define E1000_ICS 0x000C8 /* Interrupt Cause Set - WO */
+#define E1000_IMS 0x000D0 /* Interrupt Mask Set - RW */
+#define E1000_IMC 0x000D8 /* Interrupt Mask Clear - WO */
+#define E1000_IAM 0x000E0 /* Interrupt Acknowledge Auto Mask */
+#define E1000_RCTL 0x00100 /* Rx Control - RW */
+#define E1000_FCTTV 0x00170 /* Flow Control Transmit Timer Value - RW */
+#define E1000_TXCW 0x00178 /* Tx Configuration Word - RW */
+#define E1000_RXCW 0x00180 /* Rx Configuration Word - RO */
+#define E1000_EICR 0x01580 /* Ext. Interrupt Cause Read - R/clr */
+#define E1000_EITR(_n) (0x01680 + (0x4 * (_n)))
+#define E1000_EICS 0x01520 /* Ext. Interrupt Cause Set - W0 */
+#define E1000_EIMS 0x01524 /* Ext. Interrupt Mask Set/Read - RW */
+#define E1000_EIMC 0x01528 /* Ext. Interrupt Mask Clear - WO */
+#define E1000_EIAC 0x0152C /* Ext. Interrupt Auto Clear - RW */
+#define E1000_EIAM 0x01530 /* Ext. Interrupt Ack Auto Clear Mask - RW */
+#define E1000_TCTL 0x00400 /* Tx Control - RW */
+#define E1000_TCTL_EXT 0x00404 /* Extended Tx Control - RW */
+#define E1000_TIPG 0x00410 /* Tx Inter-packet gap -RW */
+#define E1000_TBT 0x00448 /* Tx Burst Timer - RW */
+#define E1000_AIT 0x00458 /* Adaptive Interframe Spacing Throttle - RW */
+#define E1000_LEDCTL 0x00E00 /* LED Control - RW */
+#define E1000_EXTCNF_CTRL 0x00F00 /* Extended Configuration Control */
+#define E1000_EXTCNF_SIZE 0x00F08 /* Extended Configuration Size */
+#define E1000_PHY_CTRL 0x00F10 /* PHY Control Register in CSR */
+#define E1000_PBA 0x01000 /* Packet Buffer Allocation - RW */
+#define E1000_PBS 0x01008 /* Packet Buffer Size */
+#define E1000_EEMNGCTL 0x01010 /* MNG EEprom Control */
+#define E1000_EEARBC 0x01024 /* EEPROM Auto Read Bus Control */
+#define E1000_FLASHT 0x01028 /* FLASH Timer Register */
+#define E1000_EEWR 0x0102C /* EEPROM Write Register - RW */
+#define E1000_FLSWCTL 0x01030 /* FLASH control register */
+#define E1000_FLSWDATA 0x01034 /* FLASH data register */
+#define E1000_FLSWCNT 0x01038 /* FLASH Access Counter */
+#define E1000_FLOP 0x0103C /* FLASH Opcode Register */
+#define E1000_I2CCMD 0x01028 /* SFPI2C Command Register - RW */
+#define E1000_I2CPARAMS 0x0102C /* SFPI2C Parameters Register - RW */
+#define E1000_WDSTP 0x01040 /* Watchdog Setup - RW */
+#define E1000_SWDSTS 0x01044 /* SW Device Status - RW */
+#define E1000_FRTIMER 0x01048 /* Free Running Timer - RW */
+#define E1000_TCPTIMER 0x0104C /* TCP Timer - RW */
+#define E1000_ERT 0x02008 /* Early Rx Threshold - RW */
+#define E1000_FCRTL 0x02160 /* Flow Control Receive Threshold Low - RW */
+#define E1000_FCRTH 0x02168 /* Flow Control Receive Threshold High - RW */
+#define E1000_PSRCTL 0x02170 /* Packet Split Receive Control - RW */
+#define E1000_RDFPCQ(_n) (0x02430 + (0x4 * (_n)))
+#define E1000_PBRTH 0x02458 /* PB Rx Arbitration Threshold - RW */
+#define E1000_FCRTV 0x02460 /* Flow Control Refresh Timer Value - RW */
+/* Split and Replication Rx Control - RW */
+#define E1000_RDPUMB 0x025CC /* DMA Rx Descriptor uC Mailbox - RW */
+#define E1000_RDPUAD 0x025D0 /* DMA Rx Descriptor uC Addr Command - RW */
+#define E1000_RDPUWD 0x025D4 /* DMA Rx Descriptor uC Data Write - RW */
+#define E1000_RDPURD 0x025D8 /* DMA Rx Descriptor uC Data Read - RW */
+#define E1000_RDPUCTL 0x025DC /* DMA Rx Descriptor uC Control - RW */
+#define E1000_RDTR 0x02820 /* Rx Delay Timer - RW */
+#define E1000_RADV 0x0282C /* Rx Interrupt Absolute Delay Timer - RW */
+/*
+ * Convenience macros
+ *
+ * Note: "_n" is the queue number of the register to be written to.
+ *
+ * Example usage:
+ * E1000_RDBAL_REG(current_rx_queue)
+ */
+#define E1000_RDBAL(_n) ((_n) < 4 ? (0x02800 + ((_n) * 0x100)) : (0x0C000 + ((_n) * 0x40)))
+#define E1000_RDBAH(_n) ((_n) < 4 ? (0x02804 + ((_n) * 0x100)) : (0x0C004 + ((_n) * 0x40)))
+#define E1000_RDLEN(_n) ((_n) < 4 ? (0x02808 + ((_n) * 0x100)) : (0x0C008 + ((_n) * 0x40)))
+#define E1000_SRRCTL(_n) ((_n) < 4 ? (0x0280C + ((_n) * 0x100)) : (0x0C00C + ((_n) * 0x40)))
+#define E1000_RDH(_n) ((_n) < 4 ? (0x02810 + ((_n) * 0x100)) : (0x0C010 + ((_n) * 0x40)))
+#define E1000_RDT(_n) ((_n) < 4 ? (0x02818 + ((_n) * 0x100)) : (0x0C018 + ((_n) * 0x40)))
+#define E1000_RXDCTL(_n) ((_n) < 4 ? (0x02828 + ((_n) * 0x100)) : (0x0C028 + ((_n) * 0x40)))
+#define E1000_TDBAL(_n) ((_n) < 4 ? (0x03800 + ((_n) * 0x100)) : (0x0E000 + ((_n) * 0x40)))
+#define E1000_TDBAH(_n) ((_n) < 4 ? (0x03804 + ((_n) * 0x100)) : (0x0E004 + ((_n) * 0x40)))
+#define E1000_TDLEN(_n) ((_n) < 4 ? (0x03808 + ((_n) * 0x100)) : (0x0E008 + ((_n) * 0x40)))
+#define E1000_TDH(_n) ((_n) < 4 ? (0x03810 + ((_n) * 0x100)) : (0x0E010 + ((_n) * 0x40)))
+#define E1000_TDT(_n) ((_n) < 4 ? (0x03818 + ((_n) * 0x100)) : (0x0E018 + ((_n) * 0x40)))
+#define E1000_TXDCTL(_n) ((_n) < 4 ? (0x03828 + ((_n) * 0x100)) : (0x0E028 + ((_n) * 0x40)))
+#define E1000_TARC(_n) (0x03840 + (_n << 8))
+#define E1000_DCA_TXCTRL(_n) (0x03814 + (_n << 8))
+#define E1000_DCA_RXCTRL(_n) (0x02814 + (_n << 8))
+#define E1000_TDWBAL(_n) ((_n) < 4 ? (0x03838 + ((_n) * 0x100)) : (0x0E038 + ((_n) * 0x40)))
+#define E1000_TDWBAH(_n) ((_n) < 4 ? (0x0383C + ((_n) * 0x100)) : (0x0E03C + ((_n) * 0x40)))
+#define E1000_RSRPD 0x02C00 /* Rx Small Packet Detect - RW */
+#define E1000_RAID 0x02C08 /* Receive Ack Interrupt Delay - RW */
+#define E1000_TXDMAC 0x03000 /* Tx DMA Control - RW */
+#define E1000_KABGTXD 0x03004 /* AFE Band Gap Transmit Ref Data */
+#define E1000_PSRTYPE_REG(_i) (0x05480 + ((_i) * 4))
+#define E1000_RAL(_i) (0x05400 + ((_i) * 8))
+#define E1000_RAH(_i) (0x05404 + ((_i) * 8))
+#define E1000_IP4AT_REG(_i) (0x05840 + ((_i) * 8))
+#define E1000_IP6AT_REG(_i) (0x05880 + ((_i) * 4))
+#define E1000_WUPM_REG(_i) (0x05A00 + ((_i) * 4))
+#define E1000_FFMT_REG(_i) (0x09000 + ((_i) * 8))
+#define E1000_FFVT_REG(_i) (0x09800 + ((_i) * 8))
+#define E1000_FFLT_REG(_i) (0x05F00 + ((_i) * 8))
+#define E1000_TDFH 0x03410 /* Tx Data FIFO Head - RW */
+#define E1000_TDFT 0x03418 /* Tx Data FIFO Tail - RW */
+#define E1000_TDFHS 0x03420 /* Tx Data FIFO Head Saved - RW */
+#define E1000_TDFTS 0x03428 /* Tx Data FIFO Tail Saved - RW */
+#define E1000_TDFPC 0x03430 /* Tx Data FIFO Packet Count - RW */
+#define E1000_TDPUMB 0x0357C /* DMA Tx Descriptor uC Mail Box - RW */
+#define E1000_TDPUAD 0x03580 /* DMA Tx Descriptor uC Addr Command - RW */
+#define E1000_TDPUWD 0x03584 /* DMA Tx Descriptor uC Data Write - RW */
+#define E1000_TDPURD 0x03588 /* DMA Tx Descriptor uC Data Read - RW */
+#define E1000_TDPUCTL 0x0358C /* DMA Tx Descriptor uC Control - RW */
+#define E1000_DTXCTL 0x03590 /* DMA Tx Control - RW */
+#define E1000_TIDV 0x03820 /* Tx Interrupt Delay Value - RW */
+#define E1000_TADV 0x0382C /* Tx Interrupt Absolute Delay Val - RW */
+#define E1000_TSPMT 0x03830 /* TCP Segmentation PAD & Min Threshold - RW */
+#define E1000_CRCERRS 0x04000 /* CRC Error Count - R/clr */
+#define E1000_ALGNERRC 0x04004 /* Alignment Error Count - R/clr */
+#define E1000_SYMERRS 0x04008 /* Symbol Error Count - R/clr */
+#define E1000_RXERRC 0x0400C /* Receive Error Count - R/clr */
+#define E1000_MPC 0x04010 /* Missed Packet Count - R/clr */
+#define E1000_SCC 0x04014 /* Single Collision Count - R/clr */
+#define E1000_ECOL 0x04018 /* Excessive Collision Count - R/clr */
+#define E1000_MCC 0x0401C /* Multiple Collision Count - R/clr */
+#define E1000_LATECOL 0x04020 /* Late Collision Count - R/clr */
+#define E1000_COLC 0x04028 /* Collision Count - R/clr */
+#define E1000_DC 0x04030 /* Defer Count - R/clr */
+#define E1000_TNCRS 0x04034 /* Tx-No CRS - R/clr */
+#define E1000_SEC 0x04038 /* Sequence Error Count - R/clr */
+#define E1000_CEXTERR 0x0403C /* Carrier Extension Error Count - R/clr */
+#define E1000_RLEC 0x04040 /* Receive Length Error Count - R/clr */
+#define E1000_XONRXC 0x04048 /* XON Rx Count - R/clr */
+#define E1000_XONTXC 0x0404C /* XON Tx Count - R/clr */
+#define E1000_XOFFRXC 0x04050 /* XOFF Rx Count - R/clr */
+#define E1000_XOFFTXC 0x04054 /* XOFF Tx Count - R/clr */
+#define E1000_FCRUC 0x04058 /* Flow Control Rx Unsupported Count- R/clr */
+#define E1000_PRC64 0x0405C /* Packets Rx (64 bytes) - R/clr */
+#define E1000_PRC127 0x04060 /* Packets Rx (65-127 bytes) - R/clr */
+#define E1000_PRC255 0x04064 /* Packets Rx (128-255 bytes) - R/clr */
+#define E1000_PRC511 0x04068 /* Packets Rx (255-511 bytes) - R/clr */
+#define E1000_PRC1023 0x0406C /* Packets Rx (512-1023 bytes) - R/clr */
+#define E1000_PRC1522 0x04070 /* Packets Rx (1024-1522 bytes) - R/clr */
+#define E1000_GPRC 0x04074 /* Good Packets Rx Count - R/clr */
+#define E1000_BPRC 0x04078 /* Broadcast Packets Rx Count - R/clr */
+#define E1000_MPRC 0x0407C /* Multicast Packets Rx Count - R/clr */
+#define E1000_GPTC 0x04080 /* Good Packets Tx Count - R/clr */
+#define E1000_GORCL 0x04088 /* Good Octets Rx Count Low - R/clr */
+#define E1000_GORCH 0x0408C /* Good Octets Rx Count High - R/clr */
+#define E1000_GOTCL 0x04090 /* Good Octets Tx Count Low - R/clr */
+#define E1000_GOTCH 0x04094 /* Good Octets Tx Count High - R/clr */
+#define E1000_RNBC 0x040A0 /* Rx No Buffers Count - R/clr */
+#define E1000_RUC 0x040A4 /* Rx Undersize Count - R/clr */
+#define E1000_RFC 0x040A8 /* Rx Fragment Count - R/clr */
+#define E1000_ROC 0x040AC /* Rx Oversize Count - R/clr */
+#define E1000_RJC 0x040B0 /* Rx Jabber Count - R/clr */
+#define E1000_MGTPRC 0x040B4 /* Management Packets Rx Count - R/clr */
+#define E1000_MGTPDC 0x040B8 /* Management Packets Dropped Count - R/clr */
+#define E1000_MGTPTC 0x040BC /* Management Packets Tx Count - R/clr */
+#define E1000_TORL 0x040C0 /* Total Octets Rx Low - R/clr */
+#define E1000_TORH 0x040C4 /* Total Octets Rx High - R/clr */
+#define E1000_TOTL 0x040C8 /* Total Octets Tx Low - R/clr */
+#define E1000_TOTH 0x040CC /* Total Octets Tx High - R/clr */
+#define E1000_TPR 0x040D0 /* Total Packets Rx - R/clr */
+#define E1000_TPT 0x040D4 /* Total Packets Tx - R/clr */
+#define E1000_PTC64 0x040D8 /* Packets Tx (64 bytes) - R/clr */
+#define E1000_PTC127 0x040DC /* Packets Tx (65-127 bytes) - R/clr */
+#define E1000_PTC255 0x040E0 /* Packets Tx (128-255 bytes) - R/clr */
+#define E1000_PTC511 0x040E4 /* Packets Tx (256-511 bytes) - R/clr */
+#define E1000_PTC1023 0x040E8 /* Packets Tx (512-1023 bytes) - R/clr */
+#define E1000_PTC1522 0x040EC /* Packets Tx (1024-1522 Bytes) - R/clr */
+#define E1000_MPTC 0x040F0 /* Multicast Packets Tx Count - R/clr */
+#define E1000_BPTC 0x040F4 /* Broadcast Packets Tx Count - R/clr */
+#define E1000_TSCTC 0x040F8 /* TCP Segmentation Context Tx - R/clr */
+#define E1000_TSCTFC 0x040FC /* TCP Segmentation Context Tx Fail - R/clr */
+#define E1000_IAC 0x04100 /* Interrupt Assertion Count */
+#define E1000_ICRXPTC 0x04104 /* Interrupt Cause Rx Packet Timer Expire Count */
+#define E1000_ICRXATC 0x04108 /* Interrupt Cause Rx Absolute Timer Expire Count */
+#define E1000_ICTXPTC 0x0410C /* Interrupt Cause Tx Packet Timer Expire Count */
+#define E1000_ICTXATC 0x04110 /* Interrupt Cause Tx Absolute Timer Expire Count */
+#define E1000_ICTXQEC 0x04118 /* Interrupt Cause Tx Queue Empty Count */
+#define E1000_ICTXQMTC 0x0411C /* Interrupt Cause Tx Queue Minimum Threshold Count */
+#define E1000_ICRXDMTC 0x04120 /* Interrupt Cause Rx Descriptor Minimum Threshold Count */
+#define E1000_ICRXOC 0x04124 /* Interrupt Cause Receiver Overrun Count */
+
+#define E1000_LSECTXUT 0x04300 /* LinkSec Tx Untagged Packet Count - OutPktsUntagged */
+#define E1000_LSECTXPKTE 0x04304 /* LinkSec Encrypted Tx Packets Count - OutPktsEncrypted */
+#define E1000_LSECTXPKTP 0x04308 /* LinkSec Protected Tx Packet Count - OutPktsProtected */
+#define E1000_LSECTXOCTE 0x0430C /* LinkSec Encrypted Tx Octets Count - OutOctetsEncrypted */
+#define E1000_LSECTXOCTP 0x04310 /* LinkSec Protected Tx Octets Count - OutOctetsProtected */
+#define E1000_LSECRXUT 0x04314 /* LinkSec Untagged non-Strict Rx Packet Count - InPktsUntagged/InPktsNoTag */
+#define E1000_LSECRXOCTD 0x0431C /* LinkSec Rx Octets Decrypted Count - InOctetsDecrypted */
+#define E1000_LSECRXOCTV 0x04320 /* LinkSec Rx Octets Validated - InOctetsValidated */
+#define E1000_LSECRXBAD 0x04324 /* LinkSec Rx Bad Tag - InPktsBadTag */
+#define E1000_LSECRXNOSCI 0x04328 /* LinkSec Rx Packet No SCI Count - InPktsNoSci */
+#define E1000_LSECRXUNSCI 0x0432C /* LinkSec Rx Packet Unknown SCI Count - InPktsUnknownSci */
+#define E1000_LSECRXUNCH 0x04330 /* LinkSec Rx Unchecked Packets Count - InPktsUnchecked */
+#define E1000_LSECRXDELAY 0x04340 /* LinkSec Rx Delayed Packet Count - InPktsDelayed */
+#define E1000_LSECRXLATE 0x04350 /* LinkSec Rx Late Packets Count - InPktsLate */
+#define E1000_LSECRXOK(_n) (0x04360 + (0x04 * (_n))) /* LinkSec Rx Packet OK Count - InPktsOk */
+#define E1000_LSECRXINV(_n) (0x04380 + (0x04 * (_n))) /* LinkSec Rx Invalid Count - InPktsInvalid */
+#define E1000_LSECRXNV(_n) (0x043A0 + (0x04 * (_n))) /* LinkSec Rx Not Valid Count - InPktsNotValid */
+#define E1000_LSECRXUNSA 0x043C0 /* LinkSec Rx Unused SA Count - InPktsUnusedSa */
+#define E1000_LSECRXNUSA 0x043D0 /* LinkSec Rx Not Using SA Count - InPktsNotUsingSa */
+#define E1000_LSECTXCAP 0x0B000 /* LinkSec Tx Capabilities Register - RO */
+#define E1000_LSECRXCAP 0x0B300 /* LinkSec Rx Capabilities Register - RO */
+#define E1000_LSECTXCTRL 0x0B004 /* LinkSec Tx Control - RW */
+#define E1000_LSECRXCTRL 0x0B304 /* LinkSec Rx Control - RW */
+#define E1000_LSECTXSCIL 0x0B008 /* LinkSec Tx SCI Low - RW */
+#define E1000_LSECTXSCIH 0x0B00C /* LinkSec Tx SCI High - RW */
+#define E1000_LSECTXSA 0x0B010 /* LinkSec Tx SA0 - RW */
+#define E1000_LSECTXPN0 0x0B018 /* LinkSec Tx SA PN 0 - RW */
+#define E1000_LSECTXPN1 0x0B01C /* LinkSec Tx SA PN 1 - RW */
+#define E1000_LSECRXSCL 0x0B3D0 /* LinkSec Rx SCI Low - RW */
+#define E1000_LSECRXSCH 0x0B3E0 /* LinkSec Rx SCI High - RW */
+#define E1000_LSECTXKEY0(_n) (0x0B020 + (0x04 * (_n))) /* LinkSec Tx 128-bit Key 0 - WO */
+#define E1000_LSECTXKEY1(_n) (0x0B030 + (0x04 * (_n))) /* LinkSec Tx 128-bit Key 1 - WO */
+#define E1000_LSECRXSA(_n) (0x0B310 + (0x04 * (_n))) /* LinkSec Rx SAs - RW */
+#define E1000_LSECRXPN(_n) (0x0B330 + (0x04 * (_n))) /* LinkSec Rx SAs - RW */
+/*
+ * LinkSec Rx Keys - where _n is the SA no. and _m the 4 dwords of the 128 bit
+ * key - RW.
+ */
+#define E1000_LSECRXKEY(_n, _m) (0x0B350 + (0x10 * (_n)) + (0x04 * (_m)))
+
+#define E1000_PCS_CFG0 0x04200 /* PCS Configuration 0 - RW */
+#define E1000_PCS_LCTL 0x04208 /* PCS Link Control - RW */
+#define E1000_PCS_LSTAT 0x0420C /* PCS Link Status - RO */
+#define E1000_CBTMPC 0x0402C /* Circuit Breaker Tx Packet Count */
+#define E1000_HTDPMC 0x0403C /* Host Transmit Discarded Packets */
+#define E1000_CBRDPC 0x04044 /* Circuit Breaker Rx Dropped Count */
+#define E1000_CBRMPC 0x040FC /* Circuit Breaker Rx Packet Count */
+#define E1000_RPTHC 0x04104 /* Rx Packets To Host */
+#define E1000_HGPTC 0x04118 /* Host Good Packets Tx Count */
+#define E1000_HTCBDPC 0x04124 /* Host Tx Circuit Breaker Dropped Count */
+#define E1000_HGORCL 0x04128 /* Host Good Octets Received Count Low */
+#define E1000_HGORCH 0x0412C /* Host Good Octets Received Count High */
+#define E1000_HGOTCL 0x04130 /* Host Good Octets Transmit Count Low */
+#define E1000_HGOTCH 0x04134 /* Host Good Octets Transmit Count High */
+#define E1000_LENERRS 0x04138 /* Length Errors Count */
+#define E1000_SCVPC 0x04228 /* SerDes/SGMII Code Violation Pkt Count */
+#define E1000_HRMPC 0x0A018 /* Header Redirection Missed Packet Count */
+#define E1000_PCS_ANADV 0x04218 /* AN advertisement - RW */
+#define E1000_PCS_LPAB 0x0421C /* Link Partner Ability - RW */
+#define E1000_PCS_NPTX 0x04220 /* AN Next Page Transmit - RW */
+#define E1000_PCS_LPABNP 0x04224 /* Link Partner Ability Next Page - RW */
+#define E1000_1GSTAT_RCV 0x04228 /* 1GSTAT Code Violation Packet Count - RW */
+#define E1000_RXCSUM 0x05000 /* Rx Checksum Control - RW */
+#define E1000_RLPML 0x05004 /* Rx Long Packet Max Length */
+#define E1000_RFCTL 0x05008 /* Receive Filter Control*/
+#define E1000_MTA 0x05200 /* Multicast Table Array - RW Array */
+#define E1000_RA 0x05400 /* Receive Address - RW Array */
+#define E1000_PSRTYPE 0x05480 /* Packet Split Receive Type - RW */
+#define E1000_VFTA 0x05600 /* VLAN Filter Table Array - RW Array */
+#define E1000_VMD_CTL 0x0581C /* VMDq Control - RW */
+#define E1000_VFQA0 0x0B000 /* VLAN Filter Queue Array 0 - RW Array */
+#define E1000_VFQA1 0x0B200 /* VLAN Filter Queue Array 1 - RW Array */
+#define E1000_WUC 0x05800 /* Wakeup Control - RW */
+#define E1000_WUFC 0x05808 /* Wakeup Filter Control - RW */
+#define E1000_WUS 0x05810 /* Wakeup Status - RO */
+#define E1000_MANC 0x05820 /* Management Control - RW */
+#define E1000_IPAV 0x05838 /* IP Address Valid - RW */
+#define E1000_IP4AT 0x05840 /* IPv4 Address Table - RW Array */
+#define E1000_IP6AT 0x05880 /* IPv6 Address Table - RW Array */
+#define E1000_WUPL 0x05900 /* Wakeup Packet Length - RW */
+#define E1000_WUPM 0x05A00 /* Wakeup Packet Memory - RO A */
+#define E1000_PBACL 0x05B68 /* MSIx PBA Clear - Read/Write 1's to clear */
+#define E1000_FFLT 0x05F00 /* Flexible Filter Length Table - RW Array */
+#define E1000_HOST_IF 0x08800 /* Host Interface */
+#define E1000_FFMT 0x09000 /* Flexible Filter Mask Table - RW Array */
+#define E1000_FFVT 0x09800 /* Flexible Filter Value Table - RW Array */
+
+#define E1000_KMRNCTRLSTA 0x00034 /* MAC-PHY interface - RW */
+#define E1000_MDPHYA 0x0003C /* PHY address - RW */
+#define E1000_MANC2H 0x05860 /* Management Control To Host - RW */
+#define E1000_SW_FW_SYNC 0x05B5C /* Software-Firmware Synchronization - RW */
+#define E1000_CCMCTL 0x05B48 /* CCM Control Register */
+#define E1000_GIOCTL 0x05B44 /* GIO Analog Control Register */
+#define E1000_SCCTL 0x05B4C /* PCIc PLL Configuration Register */
+#define E1000_GCR 0x05B00 /* PCI-Ex Control */
+#define E1000_GSCL_1 0x05B10 /* PCI-Ex Statistic Control #1 */
+#define E1000_GSCL_2 0x05B14 /* PCI-Ex Statistic Control #2 */
+#define E1000_GSCL_3 0x05B18 /* PCI-Ex Statistic Control #3 */
+#define E1000_GSCL_4 0x05B1C /* PCI-Ex Statistic Control #4 */
+#define E1000_FACTPS 0x05B30 /* Function Active and Power State to MNG */
+#define E1000_SWSM 0x05B50 /* SW Semaphore */
+#define E1000_FWSM 0x05B54 /* FW Semaphore */
+#define E1000_DCA_ID 0x05B70 /* DCA Requester ID Information - RO */
+#define E1000_DCA_CTRL 0x05B74 /* DCA Control - RW */
+#define E1000_FFLT_DBG 0x05F04 /* Debug Register */
+#define E1000_HICR 0x08F00 /* Host Inteface Control */
+
+/* RSS registers */
+#define E1000_CPUVEC 0x02C10 /* CPU Vector Register - RW */
+#define E1000_MRQC 0x05818 /* Multiple Receive Control - RW */
+#define E1000_IMIR(_i) (0x05A80 + ((_i) * 4)) /* Immediate Interrupt */
+#define E1000_IMIREXT(_i) (0x05AA0 + ((_i) * 4)) /* Immediate Interrupt Ext*/
+#define E1000_IMIRVP 0x05AC0 /* Immediate Interrupt Rx VLAN Priority - RW */
+#define E1000_MSIXBM(_i) (0x01600 + ((_i) * 4)) /* MSI-X Allocation Register (_i) - RW */
+#define E1000_MSIXTADD(_i) (0x0C000 + ((_i) * 0x10)) /* MSI-X Table entry addr low reg 0 - RW */
+#define E1000_MSIXTUADD(_i) (0x0C004 + ((_i) * 0x10)) /* MSI-X Table entry addr upper reg 0 - RW */
+#define E1000_MSIXTMSG(_i) (0x0C008 + ((_i) * 0x10)) /* MSI-X Table entry message reg 0 - RW */
+#define E1000_MSIXVCTRL(_i) (0x0C00C + ((_i) * 0x10)) /* MSI-X Table entry vector ctrl reg 0 - RW */
+#define E1000_MSIXPBA 0x0E000 /* MSI-X Pending bit array */
+#define E1000_RETA(_i) (0x05C00 + ((_i) * 4)) /* Redirection Table - RW Array */
+#define E1000_RSSRK(_i) (0x05C80 + ((_i) * 4)) /* RSS Random Key - RW Array */
+#define E1000_RSSIM 0x05864 /* RSS Interrupt Mask */
+#define E1000_RSSIR 0x05868 /* RSS Interrupt Request */
+
+#endif
--- sys/dev/em/if_em_hw.c
+++ /dev/null
@@ -1,9104 +0,0 @@
-/*******************************************************************************
-Copyright (c) 2001-2005, Intel Corporation
-All rights reserved.
-
-Redistribution and use in source and binary forms, with or without
-modification, are permitted provided that the following conditions are met:
-
- 1. Redistributions of source code must retain the above copyright notice,
- this list of conditions and the following disclaimer.
-
- 2. Redistributions in binary form must reproduce the above copyright
- notice, this list of conditions and the following disclaimer in the
- documentation and/or other materials provided with the distribution.
-
- 3. Neither the name of the Intel Corporation nor the names of its
- contributors may be used to endorse or promote products derived from
- this software without specific prior written permission.
-
-THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
-AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
-IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
-ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
-LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
-CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
-SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
-INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
-CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
-ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
-POSSIBILITY OF SUCH DAMAGE.
-*******************************************************************************/
-
-
-/* if_em_hw.c
- * Shared functions for accessing and configuring the MAC
- */
-
-#include <sys/cdefs.h>
-__FBSDID("$FreeBSD: /repoman/r/ncvs/src/sys/dev/em/if_em_hw.c,v 1.16.2.3 2006/08/25 12:38:27 glebius Exp $");
-
-#ifdef LM
-#include "if_em_hw.h"
-#else
-#include <dev/em/if_em_hw.h>
-#endif
-
-static int32_t em_set_phy_type(struct em_hw *hw);
-static void em_phy_init_script(struct em_hw *hw);
-static int32_t em_setup_copper_link(struct em_hw *hw);
-static int32_t em_setup_fiber_serdes_link(struct em_hw *hw);
-static int32_t em_adjust_serdes_amplitude(struct em_hw *hw);
-static int32_t em_phy_force_speed_duplex(struct em_hw *hw);
-static int32_t em_config_mac_to_phy(struct em_hw *hw);
-static void em_raise_mdi_clk(struct em_hw *hw, uint32_t *ctrl);
-static void em_lower_mdi_clk(struct em_hw *hw, uint32_t *ctrl);
-static void em_shift_out_mdi_bits(struct em_hw *hw, uint32_t data,
- uint16_t count);
-static uint16_t em_shift_in_mdi_bits(struct em_hw *hw);
-static int32_t em_phy_reset_dsp(struct em_hw *hw);
-static int32_t em_write_eeprom_spi(struct em_hw *hw, uint16_t offset,
- uint16_t words, uint16_t *data);
-static int32_t em_write_eeprom_microwire(struct em_hw *hw,
- uint16_t offset, uint16_t words,
- uint16_t *data);
-static int32_t em_spi_eeprom_ready(struct em_hw *hw);
-static void em_raise_ee_clk(struct em_hw *hw, uint32_t *eecd);
-static void em_lower_ee_clk(struct em_hw *hw, uint32_t *eecd);
-static void em_shift_out_ee_bits(struct em_hw *hw, uint16_t data,
- uint16_t count);
-static int32_t em_write_phy_reg_ex(struct em_hw *hw, uint32_t reg_addr,
- uint16_t phy_data);
-static int32_t em_read_phy_reg_ex(struct em_hw *hw,uint32_t reg_addr,
- uint16_t *phy_data);
-static uint16_t em_shift_in_ee_bits(struct em_hw *hw, uint16_t count);
-static int32_t em_acquire_eeprom(struct em_hw *hw);
-static void em_release_eeprom(struct em_hw *hw);
-static void em_standby_eeprom(struct em_hw *hw);
-static int32_t em_set_vco_speed(struct em_hw *hw);
-static int32_t em_polarity_reversal_workaround(struct em_hw *hw);
-static int32_t em_set_phy_mode(struct em_hw *hw);
-static int32_t em_host_if_read_cookie(struct em_hw *hw, uint8_t *buffer);
-static uint8_t em_calculate_mng_checksum(char *buffer, uint32_t length);
-static int32_t em_configure_kmrn_for_10_100(struct em_hw *hw,
- uint16_t duplex);
-static int32_t em_configure_kmrn_for_1000(struct em_hw *hw);
-
-/* IGP cable length table */
-static const
-uint16_t em_igp_cable_length_table[IGP01E1000_AGC_LENGTH_TABLE_SIZE] =
- { 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
- 5, 10, 10, 10, 10, 10, 10, 10, 20, 20, 20, 20, 20, 25, 25, 25,
- 25, 25, 25, 25, 30, 30, 30, 30, 40, 40, 40, 40, 40, 40, 40, 40,
- 40, 50, 50, 50, 50, 50, 50, 50, 60, 60, 60, 60, 60, 60, 60, 60,
- 60, 70, 70, 70, 70, 70, 70, 80, 80, 80, 80, 80, 80, 90, 90, 90,
- 90, 90, 90, 90, 90, 90, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100,
- 100, 100, 100, 100, 110, 110, 110, 110, 110, 110, 110, 110, 110, 110, 110, 110,
- 110, 110, 110, 110, 110, 110, 120, 120, 120, 120, 120, 120, 120, 120, 120, 120};
-
-static const
-uint16_t em_igp_2_cable_length_table[IGP02E1000_AGC_LENGTH_TABLE_SIZE] =
- { 0, 0, 0, 0, 0, 0, 0, 0, 3, 5, 8, 11, 13, 16, 18, 21,
- 0, 0, 0, 3, 6, 10, 13, 16, 19, 23, 26, 29, 32, 35, 38, 41,
- 6, 10, 14, 18, 22, 26, 30, 33, 37, 41, 44, 48, 51, 54, 58, 61,
- 21, 26, 31, 35, 40, 44, 49, 53, 57, 61, 65, 68, 72, 75, 79, 82,
- 40, 45, 51, 56, 61, 66, 70, 75, 79, 83, 87, 91, 94, 98, 101, 104,
- 60, 66, 72, 77, 82, 87, 92, 96, 100, 104, 108, 111, 114, 117, 119, 121,
- 83, 89, 95, 100, 105, 109, 113, 116, 119, 122, 124,
- 104, 109, 114, 118, 121, 124};
-
-
-/******************************************************************************
- * Set the phy type member in the hw struct.
- *
- * hw - Struct containing variables accessed by shared code
- *****************************************************************************/
-int32_t
-em_set_phy_type(struct em_hw *hw)
-{
- DEBUGFUNC("em_set_phy_type");
-
- if (hw->mac_type == em_undefined)
- return -E1000_ERR_PHY_TYPE;
-
- switch (hw->phy_id) {
- case M88E1000_E_PHY_ID:
- case M88E1000_I_PHY_ID:
- case M88E1011_I_PHY_ID:
- case M88E1111_I_PHY_ID:
- hw->phy_type = em_phy_m88;
- break;
- case IGP01E1000_I_PHY_ID:
- if (hw->mac_type == em_82541 ||
- hw->mac_type == em_82541_rev_2 ||
- hw->mac_type == em_82547 ||
- hw->mac_type == em_82547_rev_2) {
- hw->phy_type = em_phy_igp;
- break;
- }
- case IGP03E1000_E_PHY_ID:
- hw->phy_type = em_phy_igp_3;
- break;
- case IFE_E_PHY_ID:
- case IFE_PLUS_E_PHY_ID:
- case IFE_C_E_PHY_ID:
- hw->phy_type = em_phy_ife;
- break;
- case GG82563_E_PHY_ID:
- if (hw->mac_type == em_80003es2lan) {
- hw->phy_type = em_phy_gg82563;
- break;
- }
- /* Fall Through */
- default:
- /* Should never have loaded on this device */
- hw->phy_type = em_phy_undefined;
- return -E1000_ERR_PHY_TYPE;
- }
-
- return E1000_SUCCESS;
-}
-
-
-/******************************************************************************
- * IGP phy init script - initializes the GbE PHY
- *
- * hw - Struct containing variables accessed by shared code
- *****************************************************************************/
-static void
-em_phy_init_script(struct em_hw *hw)
-{
- uint32_t ret_val;
- uint16_t phy_saved_data;
-
- DEBUGFUNC("em_phy_init_script");
-
- if (hw->phy_init_script) {
- msec_delay(20);
-
- /* Save off the current value of register 0x2F5B to be restored at
- * the end of this routine. */
- ret_val = em_read_phy_reg(hw, 0x2F5B, &phy_saved_data);
-
- /* Disabled the PHY transmitter */
- em_write_phy_reg(hw, 0x2F5B, 0x0003);
-
- msec_delay(20);
-
- em_write_phy_reg(hw,0x0000,0x0140);
-
- msec_delay(5);
-
- switch (hw->mac_type) {
- case em_82541:
- case em_82547:
- em_write_phy_reg(hw, 0x1F95, 0x0001);
-
- em_write_phy_reg(hw, 0x1F71, 0xBD21);
-
- em_write_phy_reg(hw, 0x1F79, 0x0018);
-
- em_write_phy_reg(hw, 0x1F30, 0x1600);
-
- em_write_phy_reg(hw, 0x1F31, 0x0014);
-
- em_write_phy_reg(hw, 0x1F32, 0x161C);
-
- em_write_phy_reg(hw, 0x1F94, 0x0003);
-
- em_write_phy_reg(hw, 0x1F96, 0x003F);
-
- em_write_phy_reg(hw, 0x2010, 0x0008);
- break;
-
- case em_82541_rev_2:
- case em_82547_rev_2:
- em_write_phy_reg(hw, 0x1F73, 0x0099);
- break;
- default:
- break;
- }
-
- em_write_phy_reg(hw, 0x0000, 0x3300);
-
- msec_delay(20);
-
- /* Now enable the transmitter */
- em_write_phy_reg(hw, 0x2F5B, phy_saved_data);
-
- if (hw->mac_type == em_82547) {
- uint16_t fused, fine, coarse;
-
- /* Move to analog registers page */
- em_read_phy_reg(hw, IGP01E1000_ANALOG_SPARE_FUSE_STATUS, &fused);
-
- if (!(fused & IGP01E1000_ANALOG_SPARE_FUSE_ENABLED)) {
- em_read_phy_reg(hw, IGP01E1000_ANALOG_FUSE_STATUS, &fused);
-
- fine = fused & IGP01E1000_ANALOG_FUSE_FINE_MASK;
- coarse = fused & IGP01E1000_ANALOG_FUSE_COARSE_MASK;
-
- if (coarse > IGP01E1000_ANALOG_FUSE_COARSE_THRESH) {
- coarse -= IGP01E1000_ANALOG_FUSE_COARSE_10;
- fine -= IGP01E1000_ANALOG_FUSE_FINE_1;
- } else if (coarse == IGP01E1000_ANALOG_FUSE_COARSE_THRESH)
- fine -= IGP01E1000_ANALOG_FUSE_FINE_10;
-
- fused = (fused & IGP01E1000_ANALOG_FUSE_POLY_MASK) |
- (fine & IGP01E1000_ANALOG_FUSE_FINE_MASK) |
- (coarse & IGP01E1000_ANALOG_FUSE_COARSE_MASK);
-
- em_write_phy_reg(hw, IGP01E1000_ANALOG_FUSE_CONTROL, fused);
- em_write_phy_reg(hw, IGP01E1000_ANALOG_FUSE_BYPASS,
- IGP01E1000_ANALOG_FUSE_ENABLE_SW_CONTROL);
- }
- }
- }
-}
-
-/******************************************************************************
- * Set the mac type member in the hw struct.
- *
- * hw - Struct containing variables accessed by shared code
- *****************************************************************************/
-int32_t
-em_set_mac_type(struct em_hw *hw)
-{
- DEBUGFUNC("em_set_mac_type");
-
- switch (hw->device_id) {
- case E1000_DEV_ID_82542:
- switch (hw->revision_id) {
- case E1000_82542_2_0_REV_ID:
- hw->mac_type = em_82542_rev2_0;
- break;
- case E1000_82542_2_1_REV_ID:
- hw->mac_type = em_82542_rev2_1;
- break;
- default:
- /* Invalid 82542 revision ID */
- return -E1000_ERR_MAC_TYPE;
- }
- break;
- case E1000_DEV_ID_82543GC_FIBER:
- case E1000_DEV_ID_82543GC_COPPER:
- hw->mac_type = em_82543;
- break;
- case E1000_DEV_ID_82544EI_COPPER:
- case E1000_DEV_ID_82544EI_FIBER:
- case E1000_DEV_ID_82544GC_COPPER:
- case E1000_DEV_ID_82544GC_LOM:
- hw->mac_type = em_82544;
- break;
- case E1000_DEV_ID_82540EM:
- case E1000_DEV_ID_82540EM_LOM:
- case E1000_DEV_ID_82540EP:
- case E1000_DEV_ID_82540EP_LOM:
- case E1000_DEV_ID_82540EP_LP:
- hw->mac_type = em_82540;
- break;
- case E1000_DEV_ID_82545EM_COPPER:
- case E1000_DEV_ID_82545EM_FIBER:
- hw->mac_type = em_82545;
- break;
- case E1000_DEV_ID_82545GM_COPPER:
- case E1000_DEV_ID_82545GM_FIBER:
- case E1000_DEV_ID_82545GM_SERDES:
- hw->mac_type = em_82545_rev_3;
- break;
- case E1000_DEV_ID_82546EB_COPPER:
- case E1000_DEV_ID_82546EB_FIBER:
- case E1000_DEV_ID_82546EB_QUAD_COPPER:
- hw->mac_type = em_82546;
- break;
- case E1000_DEV_ID_82546GB_COPPER:
- case E1000_DEV_ID_82546GB_FIBER:
- case E1000_DEV_ID_82546GB_SERDES:
- case E1000_DEV_ID_82546GB_PCIE:
- case E1000_DEV_ID_82546GB_QUAD_COPPER:
- case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
- hw->mac_type = em_82546_rev_3;
- break;
- case E1000_DEV_ID_82541EI:
- case E1000_DEV_ID_82541EI_MOBILE:
- case E1000_DEV_ID_82541ER_LOM:
- hw->mac_type = em_82541;
- break;
- case E1000_DEV_ID_82541ER:
- case E1000_DEV_ID_82541GI:
- case E1000_DEV_ID_82541GI_LF:
- case E1000_DEV_ID_82541GI_MOBILE:
- hw->mac_type = em_82541_rev_2;
- break;
- case E1000_DEV_ID_82547EI:
- case E1000_DEV_ID_82547EI_MOBILE:
- hw->mac_type = em_82547;
- break;
- case E1000_DEV_ID_82547GI:
- hw->mac_type = em_82547_rev_2;
- break;
- case E1000_DEV_ID_82571EB_COPPER:
- case E1000_DEV_ID_82571EB_FIBER:
- case E1000_DEV_ID_82571EB_SERDES:
- case E1000_DEV_ID_82571EB_QUAD_COPPER:
- hw->mac_type = em_82571;
- break;
- case E1000_DEV_ID_82572EI_COPPER:
- case E1000_DEV_ID_82572EI_FIBER:
- case E1000_DEV_ID_82572EI_SERDES:
- case E1000_DEV_ID_82572EI:
- hw->mac_type = em_82572;
- break;
- case E1000_DEV_ID_82573E:
- case E1000_DEV_ID_82573E_IAMT:
- case E1000_DEV_ID_82573L:
- hw->mac_type = em_82573;
- break;
- case E1000_DEV_ID_80003ES2LAN_COPPER_SPT:
- case E1000_DEV_ID_80003ES2LAN_SERDES_SPT:
- case E1000_DEV_ID_80003ES2LAN_COPPER_DPT:
- case E1000_DEV_ID_80003ES2LAN_SERDES_DPT:
- hw->mac_type = em_80003es2lan;
- break;
- case E1000_DEV_ID_ICH8_IGP_M_AMT:
- case E1000_DEV_ID_ICH8_IGP_AMT:
- case E1000_DEV_ID_ICH8_IGP_C:
- case E1000_DEV_ID_ICH8_IFE:
- case E1000_DEV_ID_ICH8_IGP_M:
- hw->mac_type = em_ich8lan;
- break;
- default:
- /* Should never have loaded on this device */
- return -E1000_ERR_MAC_TYPE;
- }
-
- switch (hw->mac_type) {
- case em_ich8lan:
- hw->swfwhw_semaphore_present = TRUE;
- hw->asf_firmware_present = TRUE;
- break;
- case em_80003es2lan:
- hw->swfw_sync_present = TRUE;
- /* fall through */
- case em_82571:
- case em_82572:
- case em_82573:
- hw->eeprom_semaphore_present = TRUE;
- /* fall through */
- case em_82541:
- case em_82547:
- case em_82541_rev_2:
- case em_82547_rev_2:
- hw->asf_firmware_present = TRUE;
- break;
- default:
- break;
- }
-
- return E1000_SUCCESS;
-}
-
-/*****************************************************************************
- * Set media type and TBI compatibility.
- *
- * hw - Struct containing variables accessed by shared code
- * **************************************************************************/
-void
-em_set_media_type(struct em_hw *hw)
-{
- uint32_t status;
-
- DEBUGFUNC("em_set_media_type");
-
- if (hw->mac_type != em_82543) {
- /* tbi_compatibility is only valid on 82543 */
- hw->tbi_compatibility_en = FALSE;
- }
-
- switch (hw->device_id) {
- case E1000_DEV_ID_82545GM_SERDES:
- case E1000_DEV_ID_82546GB_SERDES:
- case E1000_DEV_ID_82571EB_SERDES:
- case E1000_DEV_ID_82572EI_SERDES:
- case E1000_DEV_ID_80003ES2LAN_SERDES_DPT:
- hw->media_type = em_media_type_internal_serdes;
- break;
- default:
- switch (hw->mac_type) {
- case em_82542_rev2_0:
- case em_82542_rev2_1:
- hw->media_type = em_media_type_fiber;
- break;
- case em_ich8lan:
- case em_82573:
- /* The STATUS_TBIMODE bit is reserved or reused for the this
- * device.
- */
- hw->media_type = em_media_type_copper;
- break;
- default:
- status = E1000_READ_REG(hw, STATUS);
- if (status & E1000_STATUS_TBIMODE) {
- hw->media_type = em_media_type_fiber;
- /* tbi_compatibility not valid on fiber */
- hw->tbi_compatibility_en = FALSE;
- } else {
- hw->media_type = em_media_type_copper;
- }
- break;
- }
- }
-}
-
-/******************************************************************************
- * Reset the transmit and receive units; mask and clear all interrupts.
- *
- * hw - Struct containing variables accessed by shared code
- *****************************************************************************/
-int32_t
-em_reset_hw(struct em_hw *hw)
-{
- uint32_t ctrl;
- uint32_t ctrl_ext;
- uint32_t icr;
- uint32_t manc;
- uint32_t led_ctrl;
- uint32_t timeout;
- uint32_t extcnf_ctrl;
- int32_t ret_val;
-
- DEBUGFUNC("em_reset_hw");
-
- /* For 82542 (rev 2.0), disable MWI before issuing a device reset */
- if (hw->mac_type == em_82542_rev2_0) {
- DEBUGOUT("Disabling MWI on 82542 rev 2.0\n");
- em_pci_clear_mwi(hw);
- }
-
- if (hw->bus_type == em_bus_type_pci_express) {
- /* Prevent the PCI-E bus from sticking if there is no TLP connection
- * on the last TLP read/write transaction when MAC is reset.
- */
- if (em_disable_pciex_master(hw) != E1000_SUCCESS) {
- DEBUGOUT("PCI-E Master disable polling has failed.\n");
- }
- }
-
- /* Clear interrupt mask to stop board from generating interrupts */
- DEBUGOUT("Masking off all interrupts\n");
- E1000_WRITE_REG(hw, IMC, 0xffffffff);
-
- /* Disable the Transmit and Receive units. Then delay to allow
- * any pending transactions to complete before we hit the MAC with
- * the global reset.
- */
- E1000_WRITE_REG(hw, RCTL, 0);
- E1000_WRITE_REG(hw, TCTL, E1000_TCTL_PSP);
- E1000_WRITE_FLUSH(hw);
-
- /* The tbi_compatibility_on Flag must be cleared when Rctl is cleared. */
- hw->tbi_compatibility_on = FALSE;
-
- /* Delay to allow any outstanding PCI transactions to complete before
- * resetting the device
- */
- msec_delay(10);
-
- ctrl = E1000_READ_REG(hw, CTRL);
-
- /* Must reset the PHY before resetting the MAC */
- if ((hw->mac_type == em_82541) || (hw->mac_type == em_82547)) {
- E1000_WRITE_REG(hw, CTRL, (ctrl | E1000_CTRL_PHY_RST));
- msec_delay(5);
- }
-
- /* Must acquire the MDIO ownership before MAC reset.
- * Ownership defaults to firmware after a reset. */
- if (hw->mac_type == em_82573) {
- timeout = 10;
-
- extcnf_ctrl = E1000_READ_REG(hw, EXTCNF_CTRL);
- extcnf_ctrl |= E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP;
-
- do {
- E1000_WRITE_REG(hw, EXTCNF_CTRL, extcnf_ctrl);
- extcnf_ctrl = E1000_READ_REG(hw, EXTCNF_CTRL);
-
- if (extcnf_ctrl & E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP)
- break;
- else
- extcnf_ctrl |= E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP;
-
- msec_delay(2);
- timeout--;
- } while (timeout);
- }
-
- /* Workaround for ICH8 bit corruption issue in FIFO memory */
- if (hw->mac_type == em_ich8lan) {
- /* Set Tx and Rx buffer allocation to 8k apiece. */
- E1000_WRITE_REG(hw, PBA, E1000_PBA_8K);
- /* Set Packet Buffer Size to 16k. */
- E1000_WRITE_REG(hw, PBS, E1000_PBS_16K);
- }
-
- /* Issue a global reset to the MAC. This will reset the chip's
- * transmit, receive, DMA, and link units. It will not effect
- * the current PCI configuration. The global reset bit is self-
- * clearing, and should clear within a microsecond.
- */
- DEBUGOUT("Issuing a global reset to MAC\n");
-
- switch (hw->mac_type) {
- case em_82544:
- case em_82540:
- case em_82545:
-#ifndef __arm__
- case em_82546:
-#endif
- case em_82541:
- case em_82541_rev_2:
- /* These controllers can't ack the 64-bit write when issuing the
- * reset, so use IO-mapping as a workaround to issue the reset */
- E1000_WRITE_REG_IO(hw, CTRL, (ctrl | E1000_CTRL_RST));
- break;
- case em_82545_rev_3:
- case em_82546_rev_3:
- /* Reset is performed on a shadow of the control register */
- E1000_WRITE_REG(hw, CTRL_DUP, (ctrl | E1000_CTRL_RST));
- break;
- case em_ich8lan:
- if (!hw->phy_reset_disable &&
- em_check_phy_reset_block(hw) == E1000_SUCCESS) {
- /* em_ich8lan PHY HW reset requires MAC CORE reset
- * at the same time to make sure the interface between
- * MAC and the external PHY is reset.
- */
- ctrl |= E1000_CTRL_PHY_RST;
- }
-
- em_get_software_flag(hw);
- E1000_WRITE_REG(hw, CTRL, (ctrl | E1000_CTRL_RST));
- msec_delay(5);
- break;
- default:
- E1000_WRITE_REG(hw, CTRL, (ctrl | E1000_CTRL_RST));
- break;
- }
-
- /* After MAC reset, force reload of EEPROM to restore power-on settings to
- * device. Later controllers reload the EEPROM automatically, so just wait
- * for reload to complete.
- */
- switch (hw->mac_type) {
- case em_82542_rev2_0:
- case em_82542_rev2_1:
- case em_82543:
- case em_82544:
- /* Wait for reset to complete */
- usec_delay(10);
- ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
- ctrl_ext |= E1000_CTRL_EXT_EE_RST;
- E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
- E1000_WRITE_FLUSH(hw);
- /* Wait for EEPROM reload */
- msec_delay(2);
- break;
- case em_82541:
- case em_82541_rev_2:
- case em_82547:
- case em_82547_rev_2:
- /* Wait for EEPROM reload */
- msec_delay(20);
- break;
- case em_82573:
- if (em_is_onboard_nvm_eeprom(hw) == FALSE) {
- usec_delay(10);
- ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
- ctrl_ext |= E1000_CTRL_EXT_EE_RST;
- E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
- E1000_WRITE_FLUSH(hw);
- }
- /* fall through */
- case em_82571:
- case em_82572:
- case em_ich8lan:
- case em_80003es2lan:
- ret_val = em_get_auto_rd_done(hw);
- if (ret_val)
- /* We don't want to continue accessing MAC registers. */
- return ret_val;
- break;
- default:
- /* Wait for EEPROM reload (it happens automatically) */
- msec_delay(5);
- break;
- }
-
- /* Disable HW ARPs on ASF enabled adapters */
- if (hw->mac_type >= em_82540 && hw->mac_type <= em_82547_rev_2) {
- manc = E1000_READ_REG(hw, MANC);
- manc &= ~(E1000_MANC_ARP_EN);
- E1000_WRITE_REG(hw, MANC, manc);
- }
-
- if ((hw->mac_type == em_82541) || (hw->mac_type == em_82547)) {
- em_phy_init_script(hw);
-
- /* Configure activity LED after PHY reset */
- led_ctrl = E1000_READ_REG(hw, LEDCTL);
- led_ctrl &= IGP_ACTIVITY_LED_MASK;
- led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE);
- E1000_WRITE_REG(hw, LEDCTL, led_ctrl);
- }
-
- /* Clear interrupt mask to stop board from generating interrupts */
- DEBUGOUT("Masking off all interrupts\n");
- E1000_WRITE_REG(hw, IMC, 0xffffffff);
-
- /* Clear any pending interrupt events. */
- icr = E1000_READ_REG(hw, ICR);
-
- /* If MWI was previously enabled, reenable it. */
- if (hw->mac_type == em_82542_rev2_0) {
- if (hw->pci_cmd_word & CMD_MEM_WRT_INVALIDATE)
- em_pci_set_mwi(hw);
- }
-
- if (hw->mac_type == em_ich8lan) {
- uint32_t kab = E1000_READ_REG(hw, KABGTXD);
- kab |= E1000_KABGTXD_BGSQLBIAS;
- E1000_WRITE_REG(hw, KABGTXD, kab);
- }
-
- return E1000_SUCCESS;
-}
-
-/******************************************************************************
- * Performs basic configuration of the adapter.
- *
- * hw - Struct containing variables accessed by shared code
- *
- * Assumes that the controller has previously been reset and is in a
- * post-reset uninitialized state. Initializes the receive address registers,
- * multicast table, and VLAN filter table. Calls routines to setup link
- * configuration and flow control settings. Clears all on-chip counters. Leaves
- * the transmit and receive units disabled and uninitialized.
- *****************************************************************************/
-int32_t
-em_init_hw(struct em_hw *hw)
-{
- uint32_t ctrl;
- uint32_t i;
- int32_t ret_val;
- uint16_t pcix_cmd_word;
- uint16_t pcix_stat_hi_word;
- uint16_t cmd_mmrbc;
- uint16_t stat_mmrbc;
- uint32_t mta_size;
- uint32_t reg_data;
- uint32_t ctrl_ext;
-
- DEBUGFUNC("em_init_hw");
-
- if (hw->mac_type == em_ich8lan) {
- reg_data = E1000_READ_REG(hw, TARC0);
- reg_data |= 0x30000000;
- E1000_WRITE_REG(hw, TARC0, reg_data);
-
- reg_data = E1000_READ_REG(hw, STATUS);
- reg_data &= ~0x80000000;
- E1000_WRITE_REG(hw, STATUS, reg_data);
- }
-
- /* Initialize Identification LED */
- ret_val = em_id_led_init(hw);
- if (ret_val) {
- DEBUGOUT("Error Initializing Identification LED\n");
- return ret_val;
- }
-
- /* Set the media type and TBI compatibility */
- em_set_media_type(hw);
-
- /* Disabling VLAN filtering. */
- DEBUGOUT("Initializing the IEEE VLAN\n");
- /* VET hardcoded to standard value and VFTA removed in ICH8 LAN */
- if (hw->mac_type != em_ich8lan) {
- if (hw->mac_type < em_82545_rev_3)
- E1000_WRITE_REG(hw, VET, 0);
- em_clear_vfta(hw);
- }
-
- /* For 82542 (rev 2.0), disable MWI and put the receiver into reset */
- if (hw->mac_type == em_82542_rev2_0) {
- DEBUGOUT("Disabling MWI on 82542 rev 2.0\n");
- em_pci_clear_mwi(hw);
- E1000_WRITE_REG(hw, RCTL, E1000_RCTL_RST);
- E1000_WRITE_FLUSH(hw);
- msec_delay(5);
- }
-
- /* Setup the receive address. This involves initializing all of the Receive
- * Address Registers (RARs 0 - 15).
- */
- em_init_rx_addrs(hw);
-
- /* For 82542 (rev 2.0), take the receiver out of reset and enable MWI */
- if (hw->mac_type == em_82542_rev2_0) {
- E1000_WRITE_REG(hw, RCTL, 0);
- E1000_WRITE_FLUSH(hw);
- msec_delay(1);
- if (hw->pci_cmd_word & CMD_MEM_WRT_INVALIDATE)
- em_pci_set_mwi(hw);
- }
-
- /* Zero out the Multicast HASH table */
- DEBUGOUT("Zeroing the MTA\n");
- mta_size = E1000_MC_TBL_SIZE;
- if (hw->mac_type == em_ich8lan)
- mta_size = E1000_MC_TBL_SIZE_ICH8LAN;
- for (i = 0; i < mta_size; i++) {
- E1000_WRITE_REG_ARRAY(hw, MTA, i, 0);
- /* use write flush to prevent Memory Write Block (MWB) from
- * occuring when accessing our register space */
- E1000_WRITE_FLUSH(hw);
- }
-
- /* Set the PCI priority bit correctly in the CTRL register. This
- * determines if the adapter gives priority to receives, or if it
- * gives equal priority to transmits and receives. Valid only on
- * 82542 and 82543 silicon.
- */
- if (hw->dma_fairness && hw->mac_type <= em_82543) {
- ctrl = E1000_READ_REG(hw, CTRL);
- E1000_WRITE_REG(hw, CTRL, ctrl | E1000_CTRL_PRIOR);
- }
-
- switch (hw->mac_type) {
- case em_82545_rev_3:
- case em_82546_rev_3:
- break;
- default:
- /* Workaround for PCI-X problem when BIOS sets MMRBC incorrectly. */
- if (hw->bus_type == em_bus_type_pcix) {
- em_read_pci_cfg(hw, PCIX_COMMAND_REGISTER, &pcix_cmd_word);
- em_read_pci_cfg(hw, PCIX_STATUS_REGISTER_HI,
- &pcix_stat_hi_word);
- cmd_mmrbc = (pcix_cmd_word & PCIX_COMMAND_MMRBC_MASK) >>
- PCIX_COMMAND_MMRBC_SHIFT;
- stat_mmrbc = (pcix_stat_hi_word & PCIX_STATUS_HI_MMRBC_MASK) >>
- PCIX_STATUS_HI_MMRBC_SHIFT;
- if (stat_mmrbc == PCIX_STATUS_HI_MMRBC_4K)
- stat_mmrbc = PCIX_STATUS_HI_MMRBC_2K;
- if (cmd_mmrbc > stat_mmrbc) {
- pcix_cmd_word &= ~PCIX_COMMAND_MMRBC_MASK;
- pcix_cmd_word |= stat_mmrbc << PCIX_COMMAND_MMRBC_SHIFT;
- em_write_pci_cfg(hw, PCIX_COMMAND_REGISTER,
- &pcix_cmd_word);
- }
- }
- break;
- }
-
- /* More time needed for PHY to initialize */
- if (hw->mac_type == em_ich8lan)
- msec_delay(15);
-
- /* Call a subroutine to configure the link and setup flow control. */
- ret_val = em_setup_link(hw);
-
- /* Set the transmit descriptor write-back policy */
- if (hw->mac_type > em_82544) {
- ctrl = E1000_READ_REG(hw, TXDCTL);
- ctrl = (ctrl & ~E1000_TXDCTL_WTHRESH) | E1000_TXDCTL_FULL_TX_DESC_WB;
- switch (hw->mac_type) {
- default:
- break;
- case em_82571:
- case em_82572:
- case em_82573:
- case em_ich8lan:
- case em_80003es2lan:
- ctrl |= E1000_TXDCTL_COUNT_DESC;
- break;
- }
- E1000_WRITE_REG(hw, TXDCTL, ctrl);
- }
-
- if (hw->mac_type == em_82573) {
- em_enable_tx_pkt_filtering(hw);
- }
-
- switch (hw->mac_type) {
- default:
- break;
- case em_80003es2lan:
- /* Enable retransmit on late collisions */
- reg_data = E1000_READ_REG(hw, TCTL);
- reg_data |= E1000_TCTL_RTLC;
- E1000_WRITE_REG(hw, TCTL, reg_data);
-
- /* Configure Gigabit Carry Extend Padding */
- reg_data = E1000_READ_REG(hw, TCTL_EXT);
- reg_data &= ~E1000_TCTL_EXT_GCEX_MASK;
- reg_data |= DEFAULT_80003ES2LAN_TCTL_EXT_GCEX;
- E1000_WRITE_REG(hw, TCTL_EXT, reg_data);
-
- /* Configure Transmit Inter-Packet Gap */
- reg_data = E1000_READ_REG(hw, TIPG);
- reg_data &= ~E1000_TIPG_IPGT_MASK;
- reg_data |= DEFAULT_80003ES2LAN_TIPG_IPGT_1000;
- E1000_WRITE_REG(hw, TIPG, reg_data);
-
- reg_data = E1000_READ_REG_ARRAY(hw, FFLT, 0x0001);
- reg_data &= ~0x00100000;
- E1000_WRITE_REG_ARRAY(hw, FFLT, 0x0001, reg_data);
- /* Fall through */
- case em_82571:
- case em_82572:
- case em_ich8lan:
- ctrl = E1000_READ_REG(hw, TXDCTL1);
- ctrl = (ctrl & ~E1000_TXDCTL_WTHRESH) | E1000_TXDCTL_FULL_TX_DESC_WB;
- if (hw->mac_type >= em_82571)
- ctrl |= E1000_TXDCTL_COUNT_DESC;
- E1000_WRITE_REG(hw, TXDCTL1, ctrl);
- break;
- }
-
-
- if (hw->mac_type == em_82573) {
- uint32_t gcr = E1000_READ_REG(hw, GCR);
- gcr |= E1000_GCR_L1_ACT_WITHOUT_L0S_RX;
- E1000_WRITE_REG(hw, GCR, gcr);
- }
-
- /* Clear all of the statistics registers (clear on read). It is
- * important that we do this after we have tried to establish link
- * because the symbol error count will increment wildly if there
- * is no link.
- */
- em_clear_hw_cntrs(hw);
-
- /* ICH8 No-snoop bits are opposite polarity.
- * Set to snoop by default after reset. */
- if (hw->mac_type == em_ich8lan)
- em_set_pci_ex_no_snoop(hw, PCI_EX_82566_SNOOP_ALL);
-
- if (hw->device_id == E1000_DEV_ID_82546GB_QUAD_COPPER ||
- hw->device_id == E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3) {
- ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
- /* Relaxed ordering must be disabled to avoid a parity
- * error crash in a PCI slot. */
- ctrl_ext |= E1000_CTRL_EXT_RO_DIS;
- E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
- }
-
- return ret_val;
-}
-
-/******************************************************************************
- * Adjust SERDES output amplitude based on EEPROM setting.
- *
- * hw - Struct containing variables accessed by shared code.
- *****************************************************************************/
-static int32_t
-em_adjust_serdes_amplitude(struct em_hw *hw)
-{
- uint16_t eeprom_data;
- int32_t ret_val;
-
- DEBUGFUNC("em_adjust_serdes_amplitude");
-
- if (hw->media_type != em_media_type_internal_serdes)
- return E1000_SUCCESS;
-
- switch (hw->mac_type) {
- case em_82545_rev_3:
- case em_82546_rev_3:
- break;
- default:
- return E1000_SUCCESS;
- }
-
- ret_val = em_read_eeprom(hw, EEPROM_SERDES_AMPLITUDE, 1, &eeprom_data);
- if (ret_val) {
- return ret_val;
- }
-
- if (eeprom_data != EEPROM_RESERVED_WORD) {
- /* Adjust SERDES output amplitude only. */
- eeprom_data &= EEPROM_SERDES_AMPLITUDE_MASK;
- ret_val = em_write_phy_reg(hw, M88E1000_PHY_EXT_CTRL, eeprom_data);
- if (ret_val)
- return ret_val;
- }
-
- return E1000_SUCCESS;
-}
-
-/******************************************************************************
- * Configures flow control and link settings.
- *
- * hw - Struct containing variables accessed by shared code
- *
- * Determines which flow control settings to use. Calls the apropriate media-
- * specific link configuration function. Configures the flow control settings.
- * Assuming the adapter has a valid link partner, a valid link should be
- * established. Assumes the hardware has previously been reset and the
- * transmitter and receiver are not enabled.
- *****************************************************************************/
-int32_t
-em_setup_link(struct em_hw *hw)
-{
- uint32_t ctrl_ext;
- int32_t ret_val;
- uint16_t eeprom_data;
-
- DEBUGFUNC("em_setup_link");
-
- /* In the case of the phy reset being blocked, we already have a link.
- * We do not have to set it up again. */
- if (em_check_phy_reset_block(hw))
- return E1000_SUCCESS;
-
- /* Read and store word 0x0F of the EEPROM. This word contains bits
- * that determine the hardware's default PAUSE (flow control) mode,
- * a bit that determines whether the HW defaults to enabling or
- * disabling auto-negotiation, and the direction of the
- * SW defined pins. If there is no SW over-ride of the flow
- * control setting, then the variable hw->fc will
- * be initialized based on a value in the EEPROM.
- */
- if (hw->fc == em_fc_default) {
- switch (hw->mac_type) {
- case em_ich8lan:
- case em_82573:
- hw->fc = em_fc_full;
- break;
- default:
- ret_val = em_read_eeprom(hw, EEPROM_INIT_CONTROL2_REG,
- 1, &eeprom_data);
- if (ret_val) {
- DEBUGOUT("EEPROM Read Error\n");
- return -E1000_ERR_EEPROM;
- }
- if ((eeprom_data & EEPROM_WORD0F_PAUSE_MASK) == 0)
- hw->fc = em_fc_none;
- else if ((eeprom_data & EEPROM_WORD0F_PAUSE_MASK) ==
- EEPROM_WORD0F_ASM_DIR)
- hw->fc = em_fc_tx_pause;
- else
- hw->fc = em_fc_full;
- break;
- }
- }
-
- /* We want to save off the original Flow Control configuration just
- * in case we get disconnected and then reconnected into a different
- * hub or switch with different Flow Control capabilities.
- */
- if (hw->mac_type == em_82542_rev2_0)
- hw->fc &= (~em_fc_tx_pause);
-
- if ((hw->mac_type < em_82543) && (hw->report_tx_early == 1))
- hw->fc &= (~em_fc_rx_pause);
-
- hw->original_fc = hw->fc;
-
- DEBUGOUT1("After fix-ups FlowControl is now = %x\n", hw->fc);
-
- /* Take the 4 bits from EEPROM word 0x0F that determine the initial
- * polarity value for the SW controlled pins, and setup the
- * Extended Device Control reg with that info.
- * This is needed because one of the SW controlled pins is used for
- * signal detection. So this should be done before em_setup_pcs_link()
- * or em_phy_setup() is called.
- */
- if (hw->mac_type == em_82543) {
- ret_val = em_read_eeprom(hw, EEPROM_INIT_CONTROL2_REG,
- 1, &eeprom_data);
- if (ret_val) {
- DEBUGOUT("EEPROM Read Error\n");
- return -E1000_ERR_EEPROM;
- }
- ctrl_ext = ((eeprom_data & EEPROM_WORD0F_SWPDIO_EXT) <<
- SWDPIO__EXT_SHIFT);
- E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
- }
-
- /* Call the necessary subroutine to configure the link. */
- ret_val = (hw->media_type == em_media_type_copper) ?
- em_setup_copper_link(hw) :
- em_setup_fiber_serdes_link(hw);
-
- /* Initialize the flow control address, type, and PAUSE timer
- * registers to their default values. This is done even if flow
- * control is disabled, because it does not hurt anything to
- * initialize these registers.
- */
- DEBUGOUT("Initializing the Flow Control address, type and timer regs\n");
-
- /* FCAL/H and FCT are hardcoded to standard values in em_ich8lan. */
- if (hw->mac_type != em_ich8lan) {
- E1000_WRITE_REG(hw, FCT, FLOW_CONTROL_TYPE);
- E1000_WRITE_REG(hw, FCAH, FLOW_CONTROL_ADDRESS_HIGH);
- E1000_WRITE_REG(hw, FCAL, FLOW_CONTROL_ADDRESS_LOW);
- }
-
- E1000_WRITE_REG(hw, FCTTV, hw->fc_pause_time);
-
- /* Set the flow control receive threshold registers. Normally,
- * these registers will be set to a default threshold that may be
- * adjusted later by the driver's runtime code. However, if the
- * ability to transmit pause frames in not enabled, then these
- * registers will be set to 0.
- */
- if (!(hw->fc & em_fc_tx_pause)) {
- E1000_WRITE_REG(hw, FCRTL, 0);
- E1000_WRITE_REG(hw, FCRTH, 0);
- } else {
- /* We need to set up the Receive Threshold high and low water marks
- * as well as (optionally) enabling the transmission of XON frames.
- */
- if (hw->fc_send_xon) {
- E1000_WRITE_REG(hw, FCRTL, (hw->fc_low_water | E1000_FCRTL_XONE));
- E1000_WRITE_REG(hw, FCRTH, hw->fc_high_water);
- } else {
- E1000_WRITE_REG(hw, FCRTL, hw->fc_low_water);
- E1000_WRITE_REG(hw, FCRTH, hw->fc_high_water);
- }
- }
- return ret_val;
-}
-
-/******************************************************************************
- * Sets up link for a fiber based or serdes based adapter
- *
- * hw - Struct containing variables accessed by shared code
- *
- * Manipulates Physical Coding Sublayer functions in order to configure
- * link. Assumes the hardware has been previously reset and the transmitter
- * and receiver are not enabled.
- *****************************************************************************/
-static int32_t
-em_setup_fiber_serdes_link(struct em_hw *hw)
-{
- uint32_t ctrl;
- uint32_t status;
- uint32_t txcw = 0;
- uint32_t i;
- uint32_t signal = 0;
- int32_t ret_val;
-
- DEBUGFUNC("em_setup_fiber_serdes_link");
-
- /* On 82571 and 82572 Fiber connections, SerDes loopback mode persists
- * until explicitly turned off or a power cycle is performed. A read to
- * the register does not indicate its status. Therefore, we ensure
- * loopback mode is disabled during initialization.
- */
- if (hw->mac_type == em_82571 || hw->mac_type == em_82572)
- E1000_WRITE_REG(hw, SCTL, E1000_DISABLE_SERDES_LOOPBACK);
-
- /* On adapters with a MAC newer than 82544, SW Defineable pin 1 will be
- * set when the optics detect a signal. On older adapters, it will be
- * cleared when there is a signal. This applies to fiber media only.
- * If we're on serdes media, adjust the output amplitude to value set in
- * the EEPROM.
- */
- ctrl = E1000_READ_REG(hw, CTRL);
- if (hw->media_type == em_media_type_fiber)
- signal = (hw->mac_type > em_82544) ? E1000_CTRL_SWDPIN1 : 0;
-
- ret_val = em_adjust_serdes_amplitude(hw);
- if (ret_val)
- return ret_val;
-
- /* Take the link out of reset */
- ctrl &= ~(E1000_CTRL_LRST);
-
- /* Adjust VCO speed to improve BER performance */
- ret_val = em_set_vco_speed(hw);
- if (ret_val)
- return ret_val;
-
- em_config_collision_dist(hw);
-
- /* Check for a software override of the flow control settings, and setup
- * the device accordingly. If auto-negotiation is enabled, then software
- * will have to set the "PAUSE" bits to the correct value in the Tranmsit
- * Config Word Register (TXCW) and re-start auto-negotiation. However, if
- * auto-negotiation is disabled, then software will have to manually
- * configure the two flow control enable bits in the CTRL register.
- *
- * The possible values of the "fc" parameter are:
- * 0: Flow control is completely disabled
- * 1: Rx flow control is enabled (we can receive pause frames, but
- * not send pause frames).
- * 2: Tx flow control is enabled (we can send pause frames but we do
- * not support receiving pause frames).
- * 3: Both Rx and TX flow control (symmetric) are enabled.
- */
- switch (hw->fc) {
- case em_fc_none:
- /* Flow control is completely disabled by a software over-ride. */
- txcw = (E1000_TXCW_ANE | E1000_TXCW_FD);
- break;
- case em_fc_rx_pause:
- /* RX Flow control is enabled and TX Flow control is disabled by a
- * software over-ride. Since there really isn't a way to advertise
- * that we are capable of RX Pause ONLY, we will advertise that we
- * support both symmetric and asymmetric RX PAUSE. Later, we will
- * disable the adapter's ability to send PAUSE frames.
- */
- txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
- break;
- case em_fc_tx_pause:
- /* TX Flow control is enabled, and RX Flow control is disabled, by a
- * software over-ride.
- */
- txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_ASM_DIR);
- break;
- case em_fc_full:
- /* Flow control (both RX and TX) is enabled by a software over-ride. */
- txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
- break;
- default:
- DEBUGOUT("Flow control param set incorrectly\n");
- return -E1000_ERR_CONFIG;
- break;
- }
-
- /* Since auto-negotiation is enabled, take the link out of reset (the link
- * will be in reset, because we previously reset the chip). This will
- * restart auto-negotiation. If auto-neogtiation is successful then the
- * link-up status bit will be set and the flow control enable bits (RFCE
- * and TFCE) will be set according to their negotiated value.
- */
- DEBUGOUT("Auto-negotiation enabled\n");
-
- E1000_WRITE_REG(hw, TXCW, txcw);
- E1000_WRITE_REG(hw, CTRL, ctrl);
- E1000_WRITE_FLUSH(hw);
-
- hw->txcw = txcw;
- msec_delay(1);
-
- /* If we have a signal (the cable is plugged in) then poll for a "Link-Up"
- * indication in the Device Status Register. Time-out if a link isn't
- * seen in 500 milliseconds seconds (Auto-negotiation should complete in
- * less than 500 milliseconds even if the other end is doing it in SW).
- * For internal serdes, we just assume a signal is present, then poll.
- */
- if (hw->media_type == em_media_type_internal_serdes ||
- (E1000_READ_REG(hw, CTRL) & E1000_CTRL_SWDPIN1) == signal) {
- DEBUGOUT("Looking for Link\n");
- for (i = 0; i < (LINK_UP_TIMEOUT / 10); i++) {
- msec_delay(10);
- status = E1000_READ_REG(hw, STATUS);
- if (status & E1000_STATUS_LU) break;
- }
- if (i == (LINK_UP_TIMEOUT / 10)) {
- DEBUGOUT("Never got a valid link from auto-neg!!!\n");
- hw->autoneg_failed = 1;
- /* AutoNeg failed to achieve a link, so we'll call
- * em_check_for_link. This routine will force the link up if
- * we detect a signal. This will allow us to communicate with
- * non-autonegotiating link partners.
- */
- ret_val = em_check_for_link(hw);
- if (ret_val) {
- DEBUGOUT("Error while checking for link\n");
- return ret_val;
- }
- hw->autoneg_failed = 0;
- } else {
- hw->autoneg_failed = 0;
- DEBUGOUT("Valid Link Found\n");
- }
- } else {
- DEBUGOUT("No Signal Detected\n");
- }
- return E1000_SUCCESS;
-}
-
-/******************************************************************************
-* Make sure we have a valid PHY and change PHY mode before link setup.
-*
-* hw - Struct containing variables accessed by shared code
-******************************************************************************/
-static int32_t
-em_copper_link_preconfig(struct em_hw *hw)
-{
- uint32_t ctrl;
- int32_t ret_val;
- uint16_t phy_data;
-
- DEBUGFUNC("em_copper_link_preconfig");
-
- ctrl = E1000_READ_REG(hw, CTRL);
- /* With 82543, we need to force speed and duplex on the MAC equal to what
- * the PHY speed and duplex configuration is. In addition, we need to
- * perform a hardware reset on the PHY to take it out of reset.
- */
- if (hw->mac_type > em_82543) {
- ctrl |= E1000_CTRL_SLU;
- ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
- E1000_WRITE_REG(hw, CTRL, ctrl);
- } else {
- ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX | E1000_CTRL_SLU);
- E1000_WRITE_REG(hw, CTRL, ctrl);
- ret_val = em_phy_hw_reset(hw);
- if (ret_val)
- return ret_val;
- }
-
- /* Make sure we have a valid PHY */
- ret_val = em_detect_gig_phy(hw);
- if (ret_val) {
- DEBUGOUT("Error, did not detect valid phy.\n");
- return ret_val;
- }
- DEBUGOUT1("Phy ID = %x \n", hw->phy_id);
-
- /* Set PHY to class A mode (if necessary) */
- ret_val = em_set_phy_mode(hw);
- if (ret_val)
- return ret_val;
-
- if ((hw->mac_type == em_82545_rev_3) ||
- (hw->mac_type == em_82546_rev_3)) {
- ret_val = em_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
- phy_data |= 0x00000008;
- ret_val = em_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
- }
-
- if (hw->mac_type <= em_82543 ||
- hw->mac_type == em_82541 || hw->mac_type == em_82547 ||
- hw->mac_type == em_82541_rev_2 || hw->mac_type == em_82547_rev_2)
- hw->phy_reset_disable = FALSE;
-
- return E1000_SUCCESS;
-}
-
-
-/********************************************************************
-* Copper link setup for em_phy_igp series.
-*
-* hw - Struct containing variables accessed by shared code
-*********************************************************************/
-static int32_t
-em_copper_link_igp_setup(struct em_hw *hw)
-{
- uint32_t led_ctrl;
- int32_t ret_val;
- uint16_t phy_data;
-
- DEBUGFUNC("em_copper_link_igp_setup");
-
- if (hw->phy_reset_disable)
- return E1000_SUCCESS;
-
- ret_val = em_phy_reset(hw);
- if (ret_val) {
- DEBUGOUT("Error Resetting the PHY\n");
- return ret_val;
- }
-
- /* Wait 15ms for MAC to configure PHY from eeprom settings */
- msec_delay(15);
- if (hw->mac_type != em_ich8lan) {
- /* Configure activity LED after PHY reset */
- led_ctrl = E1000_READ_REG(hw, LEDCTL);
- led_ctrl &= IGP_ACTIVITY_LED_MASK;
- led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE);
- E1000_WRITE_REG(hw, LEDCTL, led_ctrl);
- }
-
- /* The NVM settings will configure LPLU in D3 for IGP2 and IGP3 PHYs */
- if (hw->phy_type == em_phy_igp) {
- /* disable lplu d3 during driver init */
- ret_val = em_set_d3_lplu_state(hw, FALSE);
- if (ret_val) {
- DEBUGOUT("Error Disabling LPLU D3\n");
- return ret_val;
- }
- }
-
- /* disable lplu d0 during driver init */
- ret_val = em_set_d0_lplu_state(hw, FALSE);
- if (ret_val) {
- DEBUGOUT("Error Disabling LPLU D0\n");
- return ret_val;
- }
- /* Configure mdi-mdix settings */
- ret_val = em_read_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data);
- if (ret_val)
- return ret_val;
-
- if ((hw->mac_type == em_82541) || (hw->mac_type == em_82547)) {
- hw->dsp_config_state = em_dsp_config_disabled;
- /* Force MDI for earlier revs of the IGP PHY */
- phy_data &= ~(IGP01E1000_PSCR_AUTO_MDIX | IGP01E1000_PSCR_FORCE_MDI_MDIX);
- hw->mdix = 1;
-
- } else {
- hw->dsp_config_state = em_dsp_config_enabled;
- phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX;
-
- switch (hw->mdix) {
- case 1:
- phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
- break;
- case 2:
- phy_data |= IGP01E1000_PSCR_FORCE_MDI_MDIX;
- break;
- case 0:
- default:
- phy_data |= IGP01E1000_PSCR_AUTO_MDIX;
- break;
- }
- }
- ret_val = em_write_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, phy_data);
- if (ret_val)
- return ret_val;
-
- /* set auto-master slave resolution settings */
- if (hw->autoneg) {
- em_ms_type phy_ms_setting = hw->master_slave;
-
- if (hw->ffe_config_state == em_ffe_config_active)
- hw->ffe_config_state = em_ffe_config_enabled;
-
- if (hw->dsp_config_state == em_dsp_config_activated)
- hw->dsp_config_state = em_dsp_config_enabled;
-
- /* when autonegotiation advertisment is only 1000Mbps then we
- * should disable SmartSpeed and enable Auto MasterSlave
- * resolution as hardware default. */
- if (hw->autoneg_advertised == ADVERTISE_1000_FULL) {
- /* Disable SmartSpeed */
- ret_val = em_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
- &phy_data);
- if (ret_val)
- return ret_val;
- phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
- ret_val = em_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
- phy_data);
- if (ret_val)
- return ret_val;
- /* Set auto Master/Slave resolution process */
- ret_val = em_read_phy_reg(hw, PHY_1000T_CTRL, &phy_data);
- if (ret_val)
- return ret_val;
- phy_data &= ~CR_1000T_MS_ENABLE;
- ret_val = em_write_phy_reg(hw, PHY_1000T_CTRL, phy_data);
- if (ret_val)
- return ret_val;
- }
-
- ret_val = em_read_phy_reg(hw, PHY_1000T_CTRL, &phy_data);
- if (ret_val)
- return ret_val;
-
- /* load defaults for future use */
- hw->original_master_slave = (phy_data & CR_1000T_MS_ENABLE) ?
- ((phy_data & CR_1000T_MS_VALUE) ?
- em_ms_force_master :
- em_ms_force_slave) :
- em_ms_auto;
-
- switch (phy_ms_setting) {
- case em_ms_force_master:
- phy_data |= (CR_1000T_MS_ENABLE | CR_1000T_MS_VALUE);
- break;
- case em_ms_force_slave:
- phy_data |= CR_1000T_MS_ENABLE;
- phy_data &= ~(CR_1000T_MS_VALUE);
- break;
- case em_ms_auto:
- phy_data &= ~CR_1000T_MS_ENABLE;
- default:
- break;
- }
- ret_val = em_write_phy_reg(hw, PHY_1000T_CTRL, phy_data);
- if (ret_val)
- return ret_val;
- }
-
- return E1000_SUCCESS;
-}
-
-/********************************************************************
-* Copper link setup for em_phy_gg82563 series.
-*
-* hw - Struct containing variables accessed by shared code
-*********************************************************************/
-static int32_t
-em_copper_link_ggp_setup(struct em_hw *hw)
-{
- int32_t ret_val;
- uint16_t phy_data;
- uint32_t reg_data;
-
- DEBUGFUNC("em_copper_link_ggp_setup");
-
- if (!hw->phy_reset_disable) {
-
- /* Enable CRS on TX for half-duplex operation. */
- ret_val = em_read_phy_reg(hw, GG82563_PHY_MAC_SPEC_CTRL,
- &phy_data);
- if (ret_val)
- return ret_val;
-
- phy_data |= GG82563_MSCR_ASSERT_CRS_ON_TX;
- /* Use 25MHz for both link down and 1000BASE-T for Tx clock */
- phy_data |= GG82563_MSCR_TX_CLK_1000MBPS_25MHZ;
-
- ret_val = em_write_phy_reg(hw, GG82563_PHY_MAC_SPEC_CTRL,
- phy_data);
- if (ret_val)
- return ret_val;
-
- /* Options:
- * MDI/MDI-X = 0 (default)
- * 0 - Auto for all speeds
- * 1 - MDI mode
- * 2 - MDI-X mode
- * 3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
- */
- ret_val = em_read_phy_reg(hw, GG82563_PHY_SPEC_CTRL, &phy_data);
- if (ret_val)
- return ret_val;
-
- phy_data &= ~GG82563_PSCR_CROSSOVER_MODE_MASK;
-
- switch (hw->mdix) {
- case 1:
- phy_data |= GG82563_PSCR_CROSSOVER_MODE_MDI;
- break;
- case 2:
- phy_data |= GG82563_PSCR_CROSSOVER_MODE_MDIX;
- break;
- case 0:
- default:
- phy_data |= GG82563_PSCR_CROSSOVER_MODE_AUTO;
- break;
- }
-
- /* Options:
- * disable_polarity_correction = 0 (default)
- * Automatic Correction for Reversed Cable Polarity
- * 0 - Disabled
- * 1 - Enabled
- */
- phy_data &= ~GG82563_PSCR_POLARITY_REVERSAL_DISABLE;
- if (hw->disable_polarity_correction == 1)
- phy_data |= GG82563_PSCR_POLARITY_REVERSAL_DISABLE;
- ret_val = em_write_phy_reg(hw, GG82563_PHY_SPEC_CTRL, phy_data);
-
- if (ret_val)
- return ret_val;
-
- /* SW Reset the PHY so all changes take effect */
- ret_val = em_phy_reset(hw);
- if (ret_val) {
- DEBUGOUT("Error Resetting the PHY\n");
- return ret_val;
- }
- } /* phy_reset_disable */
-
- if (hw->mac_type == em_80003es2lan) {
- /* Bypass RX and TX FIFO's */
- ret_val = em_write_kmrn_reg(hw, E1000_KUMCTRLSTA_OFFSET_FIFO_CTRL,
- E1000_KUMCTRLSTA_FIFO_CTRL_RX_BYPASS |
- E1000_KUMCTRLSTA_FIFO_CTRL_TX_BYPASS);
- if (ret_val)
- return ret_val;
-
- ret_val = em_read_phy_reg(hw, GG82563_PHY_SPEC_CTRL_2, &phy_data);
- if (ret_val)
- return ret_val;
-
- phy_data &= ~GG82563_PSCR2_REVERSE_AUTO_NEG;
- ret_val = em_write_phy_reg(hw, GG82563_PHY_SPEC_CTRL_2, phy_data);
-
- if (ret_val)
- return ret_val;
-
- reg_data = E1000_READ_REG(hw, CTRL_EXT);
- reg_data &= ~(E1000_CTRL_EXT_LINK_MODE_MASK);
- E1000_WRITE_REG(hw, CTRL_EXT, reg_data);
-
- ret_val = em_read_phy_reg(hw, GG82563_PHY_PWR_MGMT_CTRL,
- &phy_data);
- if (ret_val)
- return ret_val;
-
- /* Do not init these registers when the HW is in IAMT mode, since the
- * firmware will have already initialized them. We only initialize
- * them if the HW is not in IAMT mode.
- */
- if (em_check_mng_mode(hw) == FALSE) {
- /* Enable Electrical Idle on the PHY */
- phy_data |= GG82563_PMCR_ENABLE_ELECTRICAL_IDLE;
- ret_val = em_write_phy_reg(hw, GG82563_PHY_PWR_MGMT_CTRL,
- phy_data);
- if (ret_val)
- return ret_val;
-
- ret_val = em_read_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL,
- &phy_data);
- if (ret_val)
- return ret_val;
-
- phy_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
- ret_val = em_write_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL,
- phy_data);
-
- if (ret_val)
- return ret_val;
- }
-
- /* Workaround: Disable padding in Kumeran interface in the MAC
- * and in the PHY to avoid CRC errors.
- */
- ret_val = em_read_phy_reg(hw, GG82563_PHY_INBAND_CTRL,
- &phy_data);
- if (ret_val)
- return ret_val;
- phy_data |= GG82563_ICR_DIS_PADDING;
- ret_val = em_write_phy_reg(hw, GG82563_PHY_INBAND_CTRL,
- phy_data);
- if (ret_val)
- return ret_val;
- }
-
- return E1000_SUCCESS;
-}
-
-/********************************************************************
-* Copper link setup for em_phy_m88 series.
-*
-* hw - Struct containing variables accessed by shared code
-*********************************************************************/
-static int32_t
-em_copper_link_mgp_setup(struct em_hw *hw)
-{
- int32_t ret_val;
- uint16_t phy_data;
-
- DEBUGFUNC("em_copper_link_mgp_setup");
-
- if (hw->phy_reset_disable)
- return E1000_SUCCESS;
-
- /* Enable CRS on TX. This must be set for half-duplex operation. */
- ret_val = em_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
- if (ret_val)
- return ret_val;
-
- phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
-
- /* Options:
- * MDI/MDI-X = 0 (default)
- * 0 - Auto for all speeds
- * 1 - MDI mode
- * 2 - MDI-X mode
- * 3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
- */
- phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
-
- switch (hw->mdix) {
- case 1:
- phy_data |= M88E1000_PSCR_MDI_MANUAL_MODE;
- break;
- case 2:
- phy_data |= M88E1000_PSCR_MDIX_MANUAL_MODE;
- break;
- case 3:
- phy_data |= M88E1000_PSCR_AUTO_X_1000T;
- break;
- case 0:
- default:
- phy_data |= M88E1000_PSCR_AUTO_X_MODE;
- break;
- }
-
- /* Options:
- * disable_polarity_correction = 0 (default)
- * Automatic Correction for Reversed Cable Polarity
- * 0 - Disabled
- * 1 - Enabled
- */
- phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL;
- if (hw->disable_polarity_correction == 1)
- phy_data |= M88E1000_PSCR_POLARITY_REVERSAL;
- ret_val = em_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
- if (ret_val)
- return ret_val;
-
- if (hw->phy_revision < M88E1011_I_REV_4) {
- /* Force TX_CLK in the Extended PHY Specific Control Register
- * to 25MHz clock.
- */
- ret_val = em_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data);
- if (ret_val)
- return ret_val;
-
- phy_data |= M88E1000_EPSCR_TX_CLK_25;
-
- if ((hw->phy_revision == E1000_REVISION_2) &&
- (hw->phy_id == M88E1111_I_PHY_ID)) {
- /* Vidalia Phy, set the downshift counter to 5x */
- phy_data &= ~(M88EC018_EPSCR_DOWNSHIFT_COUNTER_MASK);
- phy_data |= M88EC018_EPSCR_DOWNSHIFT_COUNTER_5X;
- ret_val = em_write_phy_reg(hw,
- M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
- if (ret_val)
- return ret_val;
- } else {
- /* Configure Master and Slave downshift values */
- phy_data &= ~(M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK |
- M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK);
- phy_data |= (M88E1000_EPSCR_MASTER_DOWNSHIFT_1X |
- M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X);
- ret_val = em_write_phy_reg(hw,
- M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
- if (ret_val)
- return ret_val;
- }
- }
-
- /* SW Reset the PHY so all changes take effect */
- ret_val = em_phy_reset(hw);
- if (ret_val) {
- DEBUGOUT("Error Resetting the PHY\n");
- return ret_val;
- }
-
- return E1000_SUCCESS;
-}
-
-/********************************************************************
-* Setup auto-negotiation and flow control advertisements,
-* and then perform auto-negotiation.
-*
-* hw - Struct containing variables accessed by shared code
-*********************************************************************/
-static int32_t
-em_copper_link_autoneg(struct em_hw *hw)
-{
- int32_t ret_val;
- uint16_t phy_data;
-
- DEBUGFUNC("em_copper_link_autoneg");
-
- /* Perform some bounds checking on the hw->autoneg_advertised
- * parameter. If this variable is zero, then set it to the default.
- */
- hw->autoneg_advertised &= AUTONEG_ADVERTISE_SPEED_DEFAULT;
-
- /* If autoneg_advertised is zero, we assume it was not defaulted
- * by the calling code so we set to advertise full capability.
- */
- if (hw->autoneg_advertised == 0)
- hw->autoneg_advertised = AUTONEG_ADVERTISE_SPEED_DEFAULT;
-
- /* IFE phy only supports 10/100 */
- if (hw->phy_type == em_phy_ife)
- hw->autoneg_advertised &= AUTONEG_ADVERTISE_10_100_ALL;
-
- DEBUGOUT("Reconfiguring auto-neg advertisement params\n");
- ret_val = em_phy_setup_autoneg(hw);
- if (ret_val) {
- DEBUGOUT("Error Setting up Auto-Negotiation\n");
- return ret_val;
- }
- DEBUGOUT("Restarting Auto-Neg\n");
-
- /* Restart auto-negotiation by setting the Auto Neg Enable bit and
- * the Auto Neg Restart bit in the PHY control register.
- */
- ret_val = em_read_phy_reg(hw, PHY_CTRL, &phy_data);
- if (ret_val)
- return ret_val;
-
- phy_data |= (MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG);
- ret_val = em_write_phy_reg(hw, PHY_CTRL, phy_data);
- if (ret_val)
- return ret_val;
-
- /* Does the user want to wait for Auto-Neg to complete here, or
- * check at a later time (for example, callback routine).
- */
- if (hw->wait_autoneg_complete) {
- ret_val = em_wait_autoneg(hw);
- if (ret_val) {
- DEBUGOUT("Error while waiting for autoneg to complete\n");
- return ret_val;
- }
- }
-
- hw->get_link_status = TRUE;
-
- return E1000_SUCCESS;
-}
-
-/******************************************************************************
-* Config the MAC and the PHY after link is up.
-* 1) Set up the MAC to the current PHY speed/duplex
-* if we are on 82543. If we
-* are on newer silicon, we only need to configure
-* collision distance in the Transmit Control Register.
-* 2) Set up flow control on the MAC to that established with
-* the link partner.
-* 3) Config DSP to improve Gigabit link quality for some PHY revisions.
-*
-* hw - Struct containing variables accessed by shared code
-******************************************************************************/
-static int32_t
-em_copper_link_postconfig(struct em_hw *hw)
-{
- int32_t ret_val;
- DEBUGFUNC("em_copper_link_postconfig");
-
- if (hw->mac_type >= em_82544) {
- em_config_collision_dist(hw);
- } else {
- ret_val = em_config_mac_to_phy(hw);
- if (ret_val) {
- DEBUGOUT("Error configuring MAC to PHY settings\n");
- return ret_val;
- }
- }
- ret_val = em_config_fc_after_link_up(hw);
- if (ret_val) {
- DEBUGOUT("Error Configuring Flow Control\n");
- return ret_val;
- }
-
- /* Config DSP to improve Giga link quality */
- if (hw->phy_type == em_phy_igp) {
- ret_val = em_config_dsp_after_link_change(hw, TRUE);
- if (ret_val) {
- DEBUGOUT("Error Configuring DSP after link up\n");
- return ret_val;
- }
- }
-
- return E1000_SUCCESS;
-}
-
-/******************************************************************************
-* Detects which PHY is present and setup the speed and duplex
-*
-* hw - Struct containing variables accessed by shared code
-******************************************************************************/
-static int32_t
-em_setup_copper_link(struct em_hw *hw)
-{
- int32_t ret_val;
- uint16_t i;
- uint16_t phy_data;
- uint16_t reg_data;
-
- DEBUGFUNC("em_setup_copper_link");
-
- switch (hw->mac_type) {
- case em_80003es2lan:
- case em_ich8lan:
- /* Set the mac to wait the maximum time between each
- * iteration and increase the max iterations when
- * polling the phy; this fixes erroneous timeouts at 10Mbps. */
- ret_val = em_write_kmrn_reg(hw, GG82563_REG(0x34, 4), 0xFFFF);
- if (ret_val)
- return ret_val;
- ret_val = em_read_kmrn_reg(hw, GG82563_REG(0x34, 9), ®_data);
- if (ret_val)
- return ret_val;
- reg_data |= 0x3F;
- ret_val = em_write_kmrn_reg(hw, GG82563_REG(0x34, 9), reg_data);
- if (ret_val)
- return ret_val;
- default:
- break;
- }
-
- /* Check if it is a valid PHY and set PHY mode if necessary. */
- ret_val = em_copper_link_preconfig(hw);
- if (ret_val)
- return ret_val;
-
- switch (hw->mac_type) {
- case em_80003es2lan:
- /* Kumeran registers are written-only */
- reg_data = E1000_KUMCTRLSTA_INB_CTRL_LINK_STATUS_TX_TIMEOUT_DEFAULT;
- reg_data |= E1000_KUMCTRLSTA_INB_CTRL_DIS_PADDING;
- ret_val = em_write_kmrn_reg(hw, E1000_KUMCTRLSTA_OFFSET_INB_CTRL,
- reg_data);
- if (ret_val)
- return ret_val;
- break;
- default:
- break;
- }
-
- if (hw->phy_type == em_phy_igp ||
- hw->phy_type == em_phy_igp_3 ||
- hw->phy_type == em_phy_igp_2) {
- ret_val = em_copper_link_igp_setup(hw);
- if (ret_val)
- return ret_val;
- } else if (hw->phy_type == em_phy_m88) {
- ret_val = em_copper_link_mgp_setup(hw);
- if (ret_val)
- return ret_val;
- } else if (hw->phy_type == em_phy_gg82563) {
- ret_val = em_copper_link_ggp_setup(hw);
- if (ret_val)
- return ret_val;
- }
-
- if (hw->autoneg) {
- /* Setup autoneg and flow control advertisement
- * and perform autonegotiation */
- ret_val = em_copper_link_autoneg(hw);
- if (ret_val)
- return ret_val;
- } else {
- /* PHY will be set to 10H, 10F, 100H,or 100F
- * depending on value from forced_speed_duplex. */
- DEBUGOUT("Forcing speed and duplex\n");
- ret_val = em_phy_force_speed_duplex(hw);
- if (ret_val) {
- DEBUGOUT("Error Forcing Speed and Duplex\n");
- return ret_val;
- }
- }
-
- /* Check link status. Wait up to 100 microseconds for link to become
- * valid.
- */
- for (i = 0; i < 10; i++) {
- ret_val = em_read_phy_reg(hw, PHY_STATUS, &phy_data);
- if (ret_val)
- return ret_val;
- ret_val = em_read_phy_reg(hw, PHY_STATUS, &phy_data);
- if (ret_val)
- return ret_val;
-
- if (phy_data & MII_SR_LINK_STATUS) {
- /* Config the MAC and PHY after link is up */
- ret_val = em_copper_link_postconfig(hw);
- if (ret_val)
- return ret_val;
-
- DEBUGOUT("Valid link established!!!\n");
- return E1000_SUCCESS;
- }
- usec_delay(10);
- }
-
- DEBUGOUT("Unable to establish link!!!\n");
- return E1000_SUCCESS;
-}
-
-/******************************************************************************
-* Configure the MAC-to-PHY interface for 10/100Mbps
-*
-* hw - Struct containing variables accessed by shared code
-******************************************************************************/
-static int32_t
-em_configure_kmrn_for_10_100(struct em_hw *hw, uint16_t duplex)
-{
- int32_t ret_val = E1000_SUCCESS;
- uint32_t tipg;
- uint16_t reg_data;
-
- DEBUGFUNC("em_configure_kmrn_for_10_100");
-
- reg_data = E1000_KUMCTRLSTA_HD_CTRL_10_100_DEFAULT;
- ret_val = em_write_kmrn_reg(hw, E1000_KUMCTRLSTA_OFFSET_HD_CTRL,
- reg_data);
- if (ret_val)
- return ret_val;
-
- /* Configure Transmit Inter-Packet Gap */
- tipg = E1000_READ_REG(hw, TIPG);
- tipg &= ~E1000_TIPG_IPGT_MASK;
- tipg |= DEFAULT_80003ES2LAN_TIPG_IPGT_10_100;
- E1000_WRITE_REG(hw, TIPG, tipg);
-
- ret_val = em_read_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, ®_data);
-
- if (ret_val)
- return ret_val;
-
- if (duplex == HALF_DUPLEX)
- reg_data |= GG82563_KMCR_PASS_FALSE_CARRIER;
- else
- reg_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
-
- ret_val = em_write_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, reg_data);
-
- return ret_val;
-}
-
-static int32_t
-em_configure_kmrn_for_1000(struct em_hw *hw)
-{
- int32_t ret_val = E1000_SUCCESS;
- uint16_t reg_data;
- uint32_t tipg;
-
- DEBUGFUNC("em_configure_kmrn_for_1000");
-
- reg_data = E1000_KUMCTRLSTA_HD_CTRL_1000_DEFAULT;
- ret_val = em_write_kmrn_reg(hw, E1000_KUMCTRLSTA_OFFSET_HD_CTRL,
- reg_data);
- if (ret_val)
- return ret_val;
-
- /* Configure Transmit Inter-Packet Gap */
- tipg = E1000_READ_REG(hw, TIPG);
- tipg &= ~E1000_TIPG_IPGT_MASK;
- tipg |= DEFAULT_80003ES2LAN_TIPG_IPGT_1000;
- E1000_WRITE_REG(hw, TIPG, tipg);
-
- ret_val = em_read_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, ®_data);
-
- if (ret_val)
- return ret_val;
-
- reg_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
- ret_val = em_write_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, reg_data);
-
- return ret_val;
-}
-
-/******************************************************************************
-* Configures PHY autoneg and flow control advertisement settings
-*
-* hw - Struct containing variables accessed by shared code
-******************************************************************************/
-int32_t
-em_phy_setup_autoneg(struct em_hw *hw)
-{
- int32_t ret_val;
- uint16_t mii_autoneg_adv_reg;
- uint16_t mii_1000t_ctrl_reg;
-
- DEBUGFUNC("em_phy_setup_autoneg");
-
- /* Read the MII Auto-Neg Advertisement Register (Address 4). */
- ret_val = em_read_phy_reg(hw, PHY_AUTONEG_ADV, &mii_autoneg_adv_reg);
- if (ret_val)
- return ret_val;
-
- if (hw->phy_type != em_phy_ife) {
- /* Read the MII 1000Base-T Control Register (Address 9). */
- ret_val = em_read_phy_reg(hw, PHY_1000T_CTRL, &mii_1000t_ctrl_reg);
- if (ret_val)
- return ret_val;
- } else
- mii_1000t_ctrl_reg=0;
-
- /* Need to parse both autoneg_advertised and fc and set up
- * the appropriate PHY registers. First we will parse for
- * autoneg_advertised software override. Since we can advertise
- * a plethora of combinations, we need to check each bit
- * individually.
- */
-
- /* First we clear all the 10/100 mb speed bits in the Auto-Neg
- * Advertisement Register (Address 4) and the 1000 mb speed bits in
- * the 1000Base-T Control Register (Address 9).
- */
- mii_autoneg_adv_reg &= ~REG4_SPEED_MASK;
- mii_1000t_ctrl_reg &= ~REG9_SPEED_MASK;
-
- DEBUGOUT1("autoneg_advertised %x\n", hw->autoneg_advertised);
-
- /* Do we want to advertise 10 Mb Half Duplex? */
- if (hw->autoneg_advertised & ADVERTISE_10_HALF) {
- DEBUGOUT("Advertise 10mb Half duplex\n");
- mii_autoneg_adv_reg |= NWAY_AR_10T_HD_CAPS;
- }
-
- /* Do we want to advertise 10 Mb Full Duplex? */
- if (hw->autoneg_advertised & ADVERTISE_10_FULL) {
- DEBUGOUT("Advertise 10mb Full duplex\n");
- mii_autoneg_adv_reg |= NWAY_AR_10T_FD_CAPS;
- }
-
- /* Do we want to advertise 100 Mb Half Duplex? */
- if (hw->autoneg_advertised & ADVERTISE_100_HALF) {
- DEBUGOUT("Advertise 100mb Half duplex\n");
- mii_autoneg_adv_reg |= NWAY_AR_100TX_HD_CAPS;
- }
-
- /* Do we want to advertise 100 Mb Full Duplex? */
- if (hw->autoneg_advertised & ADVERTISE_100_FULL) {
- DEBUGOUT("Advertise 100mb Full duplex\n");
- mii_autoneg_adv_reg |= NWAY_AR_100TX_FD_CAPS;
- }
-
- /* We do not allow the Phy to advertise 1000 Mb Half Duplex */
- if (hw->autoneg_advertised & ADVERTISE_1000_HALF) {
- DEBUGOUT("Advertise 1000mb Half duplex requested, request denied!\n");
- }
-
- /* Do we want to advertise 1000 Mb Full Duplex? */
- if (hw->autoneg_advertised & ADVERTISE_1000_FULL) {
- DEBUGOUT("Advertise 1000mb Full duplex\n");
- mii_1000t_ctrl_reg |= CR_1000T_FD_CAPS;
- if (hw->phy_type == em_phy_ife) {
- DEBUGOUT("em_phy_ife is a 10/100 PHY. Gigabit speed is not supported.\n");
- }
- }
-
- /* Check for a software override of the flow control settings, and
- * setup the PHY advertisement registers accordingly. If
- * auto-negotiation is enabled, then software will have to set the
- * "PAUSE" bits to the correct value in the Auto-Negotiation
- * Advertisement Register (PHY_AUTONEG_ADV) and re-start auto-negotiation.
- *
- * The possible values of the "fc" parameter are:
- * 0: Flow control is completely disabled
- * 1: Rx flow control is enabled (we can receive pause frames
- * but not send pause frames).
- * 2: Tx flow control is enabled (we can send pause frames
- * but we do not support receiving pause frames).
- * 3: Both Rx and TX flow control (symmetric) are enabled.
- * other: No software override. The flow control configuration
- * in the EEPROM is used.
- */
- switch (hw->fc) {
- case em_fc_none: /* 0 */
- /* Flow control (RX & TX) is completely disabled by a
- * software over-ride.
- */
- mii_autoneg_adv_reg &= ~(NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
- break;
- case em_fc_rx_pause: /* 1 */
- /* RX Flow control is enabled, and TX Flow control is
- * disabled, by a software over-ride.
- */
- /* Since there really isn't a way to advertise that we are
- * capable of RX Pause ONLY, we will advertise that we
- * support both symmetric and asymmetric RX PAUSE. Later
- * (in em_config_fc_after_link_up) we will disable the
- *hw's ability to send PAUSE frames.
- */
- mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
- break;
- case em_fc_tx_pause: /* 2 */
- /* TX Flow control is enabled, and RX Flow control is
- * disabled, by a software over-ride.
- */
- mii_autoneg_adv_reg |= NWAY_AR_ASM_DIR;
- mii_autoneg_adv_reg &= ~NWAY_AR_PAUSE;
- break;
- case em_fc_full: /* 3 */
- /* Flow control (both RX and TX) is enabled by a software
- * over-ride.
- */
- mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
- break;
- default:
- DEBUGOUT("Flow control param set incorrectly\n");
- return -E1000_ERR_CONFIG;
- }
-
- ret_val = em_write_phy_reg(hw, PHY_AUTONEG_ADV, mii_autoneg_adv_reg);
- if (ret_val)
- return ret_val;
-
- DEBUGOUT1("Auto-Neg Advertising %x\n", mii_autoneg_adv_reg);
-
- if (hw->phy_type != em_phy_ife) {
- ret_val = em_write_phy_reg(hw, PHY_1000T_CTRL, mii_1000t_ctrl_reg);
- if (ret_val)
- return ret_val;
- }
-
- return E1000_SUCCESS;
-}
-
-/******************************************************************************
-* Force PHY speed and duplex settings to hw->forced_speed_duplex
-*
-* hw - Struct containing variables accessed by shared code
-******************************************************************************/
-static int32_t
-em_phy_force_speed_duplex(struct em_hw *hw)
-{
- uint32_t ctrl;
- int32_t ret_val;
- uint16_t mii_ctrl_reg;
- uint16_t mii_status_reg;
- uint16_t phy_data;
- uint16_t i;
-
- DEBUGFUNC("em_phy_force_speed_duplex");
-
- /* Turn off Flow control if we are forcing speed and duplex. */
- hw->fc = em_fc_none;
-
- DEBUGOUT1("hw->fc = %d\n", hw->fc);
-
- /* Read the Device Control Register. */
- ctrl = E1000_READ_REG(hw, CTRL);
-
- /* Set the bits to Force Speed and Duplex in the Device Ctrl Reg. */
- ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
- ctrl &= ~(DEVICE_SPEED_MASK);
-
- /* Clear the Auto Speed Detect Enable bit. */
- ctrl &= ~E1000_CTRL_ASDE;
-
- /* Read the MII Control Register. */
- ret_val = em_read_phy_reg(hw, PHY_CTRL, &mii_ctrl_reg);
- if (ret_val)
- return ret_val;
-
- /* We need to disable autoneg in order to force link and duplex. */
-
- mii_ctrl_reg &= ~MII_CR_AUTO_NEG_EN;
-
- /* Are we forcing Full or Half Duplex? */
- if (hw->forced_speed_duplex == em_100_full ||
- hw->forced_speed_duplex == em_10_full) {
- /* We want to force full duplex so we SET the full duplex bits in the
- * Device and MII Control Registers.
- */
- ctrl |= E1000_CTRL_FD;
- mii_ctrl_reg |= MII_CR_FULL_DUPLEX;
- DEBUGOUT("Full Duplex\n");
- } else {
- /* We want to force half duplex so we CLEAR the full duplex bits in
- * the Device and MII Control Registers.
- */
- ctrl &= ~E1000_CTRL_FD;
- mii_ctrl_reg &= ~MII_CR_FULL_DUPLEX;
- DEBUGOUT("Half Duplex\n");
- }
-
- /* Are we forcing 100Mbps??? */
- if (hw->forced_speed_duplex == em_100_full ||
- hw->forced_speed_duplex == em_100_half) {
- /* Set the 100Mb bit and turn off the 1000Mb and 10Mb bits. */
- ctrl |= E1000_CTRL_SPD_100;
- mii_ctrl_reg |= MII_CR_SPEED_100;
- mii_ctrl_reg &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_10);
- DEBUGOUT("Forcing 100mb ");
- } else {
- /* Set the 10Mb bit and turn off the 1000Mb and 100Mb bits. */
- ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
- mii_ctrl_reg |= MII_CR_SPEED_10;
- mii_ctrl_reg &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_100);
- DEBUGOUT("Forcing 10mb ");
- }
-
- em_config_collision_dist(hw);
-
- /* Write the configured values back to the Device Control Reg. */
- E1000_WRITE_REG(hw, CTRL, ctrl);
-
- if ((hw->phy_type == em_phy_m88) ||
- (hw->phy_type == em_phy_gg82563)) {
- ret_val = em_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
- if (ret_val)
- return ret_val;
-
- /* Clear Auto-Crossover to force MDI manually. M88E1000 requires MDI
- * forced whenever speed are duplex are forced.
- */
- phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
- ret_val = em_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
- if (ret_val)
- return ret_val;
-
- DEBUGOUT1("M88E1000 PSCR: %x \n", phy_data);
-
- /* Need to reset the PHY or these changes will be ignored */
- mii_ctrl_reg |= MII_CR_RESET;
- /* Disable MDI-X support for 10/100 */
- } else if (hw->phy_type == em_phy_ife) {
- ret_val = em_read_phy_reg(hw, IFE_PHY_MDIX_CONTROL, &phy_data);
- if (ret_val)
- return ret_val;
-
- phy_data &= ~IFE_PMC_AUTO_MDIX;
- phy_data &= ~IFE_PMC_FORCE_MDIX;
-
- ret_val = em_write_phy_reg(hw, IFE_PHY_MDIX_CONTROL, phy_data);
- if (ret_val)
- return ret_val;
- } else {
- /* Clear Auto-Crossover to force MDI manually. IGP requires MDI
- * forced whenever speed or duplex are forced.
- */
- ret_val = em_read_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data);
- if (ret_val)
- return ret_val;
-
- phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX;
- phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
-
- ret_val = em_write_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, phy_data);
- if (ret_val)
- return ret_val;
- }
-
- /* Write back the modified PHY MII control register. */
- ret_val = em_write_phy_reg(hw, PHY_CTRL, mii_ctrl_reg);
- if (ret_val)
- return ret_val;
-
- usec_delay(1);
-
- /* The wait_autoneg_complete flag may be a little misleading here.
- * Since we are forcing speed and duplex, Auto-Neg is not enabled.
- * But we do want to delay for a period while forcing only so we
- * don't generate false No Link messages. So we will wait here
- * only if the user has set wait_autoneg_complete to 1, which is
- * the default.
- */
- if (hw->wait_autoneg_complete) {
- /* We will wait for autoneg to complete. */
- DEBUGOUT("Waiting for forced speed/duplex link.\n");
- mii_status_reg = 0;
-
- /* We will wait for autoneg to complete or 4.5 seconds to expire. */
- for (i = PHY_FORCE_TIME; i > 0; i--) {
- /* Read the MII Status Register and wait for Auto-Neg Complete bit
- * to be set.
- */
- ret_val = em_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
- if (ret_val)
- return ret_val;
-
- ret_val = em_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
- if (ret_val)
- return ret_val;
-
- if (mii_status_reg & MII_SR_LINK_STATUS) break;
- msec_delay(100);
- }
- if ((i == 0) &&
- ((hw->phy_type == em_phy_m88) ||
- (hw->phy_type == em_phy_gg82563))) {
- /* We didn't get link. Reset the DSP and wait again for link. */
- ret_val = em_phy_reset_dsp(hw);
- if (ret_val) {
- DEBUGOUT("Error Resetting PHY DSP\n");
- return ret_val;
- }
- }
- /* This loop will early-out if the link condition has been met. */
- for (i = PHY_FORCE_TIME; i > 0; i--) {
- if (mii_status_reg & MII_SR_LINK_STATUS) break;
- msec_delay(100);
- /* Read the MII Status Register and wait for Auto-Neg Complete bit
- * to be set.
- */
- ret_val = em_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
- if (ret_val)
- return ret_val;
-
- ret_val = em_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
- if (ret_val)
- return ret_val;
- }
- }
-
- if (hw->phy_type == em_phy_m88) {
- /* Because we reset the PHY above, we need to re-force TX_CLK in the
- * Extended PHY Specific Control Register to 25MHz clock. This value
- * defaults back to a 2.5MHz clock when the PHY is reset.
- */
- ret_val = em_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data);
- if (ret_val)
- return ret_val;
-
- phy_data |= M88E1000_EPSCR_TX_CLK_25;
- ret_val = em_write_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
- if (ret_val)
- return ret_val;
-
- /* In addition, because of the s/w reset above, we need to enable CRS on
- * TX. This must be set for both full and half duplex operation.
- */
- ret_val = em_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
- if (ret_val)
- return ret_val;
-
- phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
- ret_val = em_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
- if (ret_val)
- return ret_val;
-
- if ((hw->mac_type == em_82544 || hw->mac_type == em_82543) &&
- (!hw->autoneg) && (hw->forced_speed_duplex == em_10_full ||
- hw->forced_speed_duplex == em_10_half)) {
- ret_val = em_polarity_reversal_workaround(hw);
- if (ret_val)
- return ret_val;
- }
- } else if (hw->phy_type == em_phy_gg82563) {
- /* The TX_CLK of the Extended PHY Specific Control Register defaults
- * to 2.5MHz on a reset. We need to re-force it back to 25MHz, if
- * we're not in a forced 10/duplex configuration. */
- ret_val = em_read_phy_reg(hw, GG82563_PHY_MAC_SPEC_CTRL, &phy_data);
- if (ret_val)
- return ret_val;
-
- phy_data &= ~GG82563_MSCR_TX_CLK_MASK;
- if ((hw->forced_speed_duplex == em_10_full) ||
- (hw->forced_speed_duplex == em_10_half))
- phy_data |= GG82563_MSCR_TX_CLK_10MBPS_2_5MHZ;
- else
- phy_data |= GG82563_MSCR_TX_CLK_100MBPS_25MHZ;
-
- /* Also due to the reset, we need to enable CRS on Tx. */
- phy_data |= GG82563_MSCR_ASSERT_CRS_ON_TX;
-
- ret_val = em_write_phy_reg(hw, GG82563_PHY_MAC_SPEC_CTRL, phy_data);
- if (ret_val)
- return ret_val;
- }
- return E1000_SUCCESS;
-}
-
-/******************************************************************************
-* Sets the collision distance in the Transmit Control register
-*
-* hw - Struct containing variables accessed by shared code
-*
-* Link should have been established previously. Reads the speed and duplex
-* information from the Device Status register.
-******************************************************************************/
-void
-em_config_collision_dist(struct em_hw *hw)
-{
- uint32_t tctl, coll_dist;
-
- DEBUGFUNC("em_config_collision_dist");
-
- if (hw->mac_type < em_82543)
- coll_dist = E1000_COLLISION_DISTANCE_82542;
- else
- coll_dist = E1000_COLLISION_DISTANCE;
-
- tctl = E1000_READ_REG(hw, TCTL);
-
- tctl &= ~E1000_TCTL_COLD;
- tctl |= coll_dist << E1000_COLD_SHIFT;
-
- E1000_WRITE_REG(hw, TCTL, tctl);
- E1000_WRITE_FLUSH(hw);
-}
-
-/******************************************************************************
-* Sets MAC speed and duplex settings to reflect the those in the PHY
-*
-* hw - Struct containing variables accessed by shared code
-* mii_reg - data to write to the MII control register
-*
-* The contents of the PHY register containing the needed information need to
-* be passed in.
-******************************************************************************/
-static int32_t
-em_config_mac_to_phy(struct em_hw *hw)
-{
- uint32_t ctrl;
- int32_t ret_val;
- uint16_t phy_data;
-
- DEBUGFUNC("em_config_mac_to_phy");
-
- /* 82544 or newer MAC, Auto Speed Detection takes care of
- * MAC speed/duplex configuration.*/
- if (hw->mac_type >= em_82544)
- return E1000_SUCCESS;
-
- /* Read the Device Control Register and set the bits to Force Speed
- * and Duplex.
- */
- ctrl = E1000_READ_REG(hw, CTRL);
- ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
- ctrl &= ~(E1000_CTRL_SPD_SEL | E1000_CTRL_ILOS);
-
- /* Set up duplex in the Device Control and Transmit Control
- * registers depending on negotiated values.
- */
- ret_val = em_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
- if (ret_val)
- return ret_val;
-
- if (phy_data & M88E1000_PSSR_DPLX)
- ctrl |= E1000_CTRL_FD;
- else
- ctrl &= ~E1000_CTRL_FD;
-
- em_config_collision_dist(hw);
-
- /* Set up speed in the Device Control register depending on
- * negotiated values.
- */
- if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS)
- ctrl |= E1000_CTRL_SPD_1000;
- else if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_100MBS)
- ctrl |= E1000_CTRL_SPD_100;
-
- /* Write the configured values back to the Device Control Reg. */
- E1000_WRITE_REG(hw, CTRL, ctrl);
- return E1000_SUCCESS;
-}
-
-/******************************************************************************
- * Forces the MAC's flow control settings.
- *
- * hw - Struct containing variables accessed by shared code
- *
- * Sets the TFCE and RFCE bits in the device control register to reflect
- * the adapter settings. TFCE and RFCE need to be explicitly set by
- * software when a Copper PHY is used because autonegotiation is managed
- * by the PHY rather than the MAC. Software must also configure these
- * bits when link is forced on a fiber connection.
- *****************************************************************************/
-int32_t
-em_force_mac_fc(struct em_hw *hw)
-{
- uint32_t ctrl;
-
- DEBUGFUNC("em_force_mac_fc");
-
- /* Get the current configuration of the Device Control Register */
- ctrl = E1000_READ_REG(hw, CTRL);
-
- /* Because we didn't get link via the internal auto-negotiation
- * mechanism (we either forced link or we got link via PHY
- * auto-neg), we have to manually enable/disable transmit an
- * receive flow control.
- *
- * The "Case" statement below enables/disable flow control
- * according to the "hw->fc" parameter.
- *
- * The possible values of the "fc" parameter are:
- * 0: Flow control is completely disabled
- * 1: Rx flow control is enabled (we can receive pause
- * frames but not send pause frames).
- * 2: Tx flow control is enabled (we can send pause frames
- * frames but we do not receive pause frames).
- * 3: Both Rx and TX flow control (symmetric) is enabled.
- * other: No other values should be possible at this point.
- */
-
- switch (hw->fc) {
- case em_fc_none:
- ctrl &= (~(E1000_CTRL_TFCE | E1000_CTRL_RFCE));
- break;
- case em_fc_rx_pause:
- ctrl &= (~E1000_CTRL_TFCE);
- ctrl |= E1000_CTRL_RFCE;
- break;
- case em_fc_tx_pause:
- ctrl &= (~E1000_CTRL_RFCE);
- ctrl |= E1000_CTRL_TFCE;
- break;
- case em_fc_full:
- ctrl |= (E1000_CTRL_TFCE | E1000_CTRL_RFCE);
- break;
- default:
- DEBUGOUT("Flow control param set incorrectly\n");
- return -E1000_ERR_CONFIG;
- }
-
- /* Disable TX Flow Control for 82542 (rev 2.0) */
- if (hw->mac_type == em_82542_rev2_0)
- ctrl &= (~E1000_CTRL_TFCE);
-
- E1000_WRITE_REG(hw, CTRL, ctrl);
- return E1000_SUCCESS;
-}
-
-/******************************************************************************
- * Configures flow control settings after link is established
- *
- * hw - Struct containing variables accessed by shared code
- *
- * Should be called immediately after a valid link has been established.
- * Forces MAC flow control settings if link was forced. When in MII/GMII mode
- * and autonegotiation is enabled, the MAC flow control settings will be set
- * based on the flow control negotiated by the PHY. In TBI mode, the TFCE
- * and RFCE bits will be automaticaly set to the negotiated flow control mode.
- *****************************************************************************/
-int32_t
-em_config_fc_after_link_up(struct em_hw *hw)
-{
- int32_t ret_val;
- uint16_t mii_status_reg;
- uint16_t mii_nway_adv_reg;
- uint16_t mii_nway_lp_ability_reg;
- uint16_t speed;
- uint16_t duplex;
-
- DEBUGFUNC("em_config_fc_after_link_up");
-
- /* Check for the case where we have fiber media and auto-neg failed
- * so we had to force link. In this case, we need to force the
- * configuration of the MAC to match the "fc" parameter.
- */
- if (((hw->media_type == em_media_type_fiber) && (hw->autoneg_failed)) ||
- ((hw->media_type == em_media_type_internal_serdes) &&
- (hw->autoneg_failed)) ||
- ((hw->media_type == em_media_type_copper) && (!hw->autoneg))) {
- ret_val = em_force_mac_fc(hw);
- if (ret_val) {
- DEBUGOUT("Error forcing flow control settings\n");
- return ret_val;
- }
- }
-
- /* Check for the case where we have copper media and auto-neg is
- * enabled. In this case, we need to check and see if Auto-Neg
- * has completed, and if so, how the PHY and link partner has
- * flow control configured.
- */
- if ((hw->media_type == em_media_type_copper) && hw->autoneg) {
- /* Read the MII Status Register and check to see if AutoNeg
- * has completed. We read this twice because this reg has
- * some "sticky" (latched) bits.
- */
- ret_val = em_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
- if (ret_val)
- return ret_val;
- ret_val = em_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
- if (ret_val)
- return ret_val;
-
- if (mii_status_reg & MII_SR_AUTONEG_COMPLETE) {
- /* The AutoNeg process has completed, so we now need to
- * read both the Auto Negotiation Advertisement Register
- * (Address 4) and the Auto_Negotiation Base Page Ability
- * Register (Address 5) to determine how flow control was
- * negotiated.
- */
- ret_val = em_read_phy_reg(hw, PHY_AUTONEG_ADV,
- &mii_nway_adv_reg);
- if (ret_val)
- return ret_val;
- ret_val = em_read_phy_reg(hw, PHY_LP_ABILITY,
- &mii_nway_lp_ability_reg);
- if (ret_val)
- return ret_val;
-
- /* Two bits in the Auto Negotiation Advertisement Register
- * (Address 4) and two bits in the Auto Negotiation Base
- * Page Ability Register (Address 5) determine flow control
- * for both the PHY and the link partner. The following
- * table, taken out of the IEEE 802.3ab/D6.0 dated March 25,
- * 1999, describes these PAUSE resolution bits and how flow
- * control is determined based upon these settings.
- * NOTE: DC = Don't Care
- *
- * LOCAL DEVICE | LINK PARTNER
- * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution
- *-------|---------|-------|---------|--------------------
- * 0 | 0 | DC | DC | em_fc_none
- * 0 | 1 | 0 | DC | em_fc_none
- * 0 | 1 | 1 | 0 | em_fc_none
- * 0 | 1 | 1 | 1 | em_fc_tx_pause
- * 1 | 0 | 0 | DC | em_fc_none
- * 1 | DC | 1 | DC | em_fc_full
- * 1 | 1 | 0 | 0 | em_fc_none
- * 1 | 1 | 0 | 1 | em_fc_rx_pause
- *
- */
- /* Are both PAUSE bits set to 1? If so, this implies
- * Symmetric Flow Control is enabled at both ends. The
- * ASM_DIR bits are irrelevant per the spec.
- *
- * For Symmetric Flow Control:
- *
- * LOCAL DEVICE | LINK PARTNER
- * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
- *-------|---------|-------|---------|--------------------
- * 1 | DC | 1 | DC | em_fc_full
- *
- */
- if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
- (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE)) {
- /* Now we need to check if the user selected RX ONLY
- * of pause frames. In this case, we had to advertise
- * FULL flow control because we could not advertise RX
- * ONLY. Hence, we must now check to see if we need to
- * turn OFF the TRANSMISSION of PAUSE frames.
- */
- if (hw->original_fc == em_fc_full) {
- hw->fc = em_fc_full;
- DEBUGOUT("Flow Control = FULL.\n");
- } else {
- hw->fc = em_fc_rx_pause;
- DEBUGOUT("Flow Control = RX PAUSE frames only.\n");
- }
- }
- /* For receiving PAUSE frames ONLY.
- *
- * LOCAL DEVICE | LINK PARTNER
- * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
- *-------|---------|-------|---------|--------------------
- * 0 | 1 | 1 | 1 | em_fc_tx_pause
- *
- */
- else if (!(mii_nway_adv_reg & NWAY_AR_PAUSE) &&
- (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
- (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
- (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) {
- hw->fc = em_fc_tx_pause;
- DEBUGOUT("Flow Control = TX PAUSE frames only.\n");
- }
- /* For transmitting PAUSE frames ONLY.
- *
- * LOCAL DEVICE | LINK PARTNER
- * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
- *-------|---------|-------|---------|--------------------
- * 1 | 1 | 0 | 1 | em_fc_rx_pause
- *
- */
- else if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
- (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
- !(mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
- (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) {
- hw->fc = em_fc_rx_pause;
- DEBUGOUT("Flow Control = RX PAUSE frames only.\n");
- }
- /* Per the IEEE spec, at this point flow control should be
- * disabled. However, we want to consider that we could
- * be connected to a legacy switch that doesn't advertise
- * desired flow control, but can be forced on the link
- * partner. So if we advertised no flow control, that is
- * what we will resolve to. If we advertised some kind of
- * receive capability (Rx Pause Only or Full Flow Control)
- * and the link partner advertised none, we will configure
- * ourselves to enable Rx Flow Control only. We can do
- * this safely for two reasons: If the link partner really
- * didn't want flow control enabled, and we enable Rx, no
- * harm done since we won't be receiving any PAUSE frames
- * anyway. If the intent on the link partner was to have
- * flow control enabled, then by us enabling RX only, we
- * can at least receive pause frames and process them.
- * This is a good idea because in most cases, since we are
- * predominantly a server NIC, more times than not we will
- * be asked to delay transmission of packets than asking
- * our link partner to pause transmission of frames.
- */
- else if ((hw->original_fc == em_fc_none ||
- hw->original_fc == em_fc_tx_pause) ||
- hw->fc_strict_ieee) {
- hw->fc = em_fc_none;
- DEBUGOUT("Flow Control = NONE.\n");
- } else {
- hw->fc = em_fc_rx_pause;
- DEBUGOUT("Flow Control = RX PAUSE frames only.\n");
- }
-
- /* Now we need to do one last check... If we auto-
- * negotiated to HALF DUPLEX, flow control should not be
- * enabled per IEEE 802.3 spec.
- */
- ret_val = em_get_speed_and_duplex(hw, &speed, &duplex);
- if (ret_val) {
- DEBUGOUT("Error getting link speed and duplex\n");
- return ret_val;
- }
-
- if (duplex == HALF_DUPLEX)
- hw->fc = em_fc_none;
-
- /* Now we call a subroutine to actually force the MAC
- * controller to use the correct flow control settings.
- */
- ret_val = em_force_mac_fc(hw);
- if (ret_val) {
- DEBUGOUT("Error forcing flow control settings\n");
- return ret_val;
- }
- } else {
- DEBUGOUT("Copper PHY and Auto Neg has not completed.\n");
- }
- }
- return E1000_SUCCESS;
-}
-
-/******************************************************************************
- * Checks to see if the link status of the hardware has changed.
- *
- * hw - Struct containing variables accessed by shared code
- *
- * Called by any function that needs to check the link status of the adapter.
- *****************************************************************************/
-int32_t
-em_check_for_link(struct em_hw *hw)
-{
- uint32_t rxcw = 0;
- uint32_t ctrl;
- uint32_t status;
- uint32_t rctl;
- uint32_t icr;
- uint32_t signal = 0;
- int32_t ret_val;
- uint16_t phy_data;
-
- DEBUGFUNC("em_check_for_link");
-
- ctrl = E1000_READ_REG(hw, CTRL);
- status = E1000_READ_REG(hw, STATUS);
-
- /* On adapters with a MAC newer than 82544, SW Defineable pin 1 will be
- * set when the optics detect a signal. On older adapters, it will be
- * cleared when there is a signal. This applies to fiber media only.
- */
- if ((hw->media_type == em_media_type_fiber) ||
- (hw->media_type == em_media_type_internal_serdes)) {
- rxcw = E1000_READ_REG(hw, RXCW);
-
- if (hw->media_type == em_media_type_fiber) {
- signal = (hw->mac_type > em_82544) ? E1000_CTRL_SWDPIN1 : 0;
- if (status & E1000_STATUS_LU)
- hw->get_link_status = FALSE;
- }
- }
-
- /* If we have a copper PHY then we only want to go out to the PHY
- * registers to see if Auto-Neg has completed and/or if our link
- * status has changed. The get_link_status flag will be set if we
- * receive a Link Status Change interrupt or we have Rx Sequence
- * Errors.
- */
- if ((hw->media_type == em_media_type_copper) && hw->get_link_status) {
- /* First we want to see if the MII Status Register reports
- * link. If so, then we want to get the current speed/duplex
- * of the PHY.
- * Read the register twice since the link bit is sticky.
- */
- ret_val = em_read_phy_reg(hw, PHY_STATUS, &phy_data);
- if (ret_val)
- return ret_val;
- ret_val = em_read_phy_reg(hw, PHY_STATUS, &phy_data);
- if (ret_val)
- return ret_val;
-
- if (phy_data & MII_SR_LINK_STATUS) {
- hw->get_link_status = FALSE;
- /* Check if there was DownShift, must be checked immediately after
- * link-up */
- em_check_downshift(hw);
-
- /* If we are on 82544 or 82543 silicon and speed/duplex
- * are forced to 10H or 10F, then we will implement the polarity
- * reversal workaround. We disable interrupts first, and upon
- * returning, place the devices interrupt state to its previous
- * value except for the link status change interrupt which will
- * happen due to the execution of this workaround.
- */
-
- if ((hw->mac_type == em_82544 || hw->mac_type == em_82543) &&
- (!hw->autoneg) &&
- (hw->forced_speed_duplex == em_10_full ||
- hw->forced_speed_duplex == em_10_half)) {
- E1000_WRITE_REG(hw, IMC, 0xffffffff);
- ret_val = em_polarity_reversal_workaround(hw);
- icr = E1000_READ_REG(hw, ICR);
- E1000_WRITE_REG(hw, ICS, (icr & ~E1000_ICS_LSC));
- E1000_WRITE_REG(hw, IMS, IMS_ENABLE_MASK);
- }
-
- } else {
- /* No link detected */
- em_config_dsp_after_link_change(hw, FALSE);
- return 0;
- }
-
- /* If we are forcing speed/duplex, then we simply return since
- * we have already determined whether we have link or not.
- */
- if (!hw->autoneg) return -E1000_ERR_CONFIG;
-
- /* optimize the dsp settings for the igp phy */
- em_config_dsp_after_link_change(hw, TRUE);
-
- /* We have a M88E1000 PHY and Auto-Neg is enabled. If we
- * have Si on board that is 82544 or newer, Auto
- * Speed Detection takes care of MAC speed/duplex
- * configuration. So we only need to configure Collision
- * Distance in the MAC. Otherwise, we need to force
- * speed/duplex on the MAC to the current PHY speed/duplex
- * settings.
- */
- if (hw->mac_type >= em_82544)
- em_config_collision_dist(hw);
- else {
- ret_val = em_config_mac_to_phy(hw);
- if (ret_val) {
- DEBUGOUT("Error configuring MAC to PHY settings\n");
- return ret_val;
- }
- }
-
- /* Configure Flow Control now that Auto-Neg has completed. First, we
- * need to restore the desired flow control settings because we may
- * have had to re-autoneg with a different link partner.
- */
- ret_val = em_config_fc_after_link_up(hw);
- if (ret_val) {
- DEBUGOUT("Error configuring flow control\n");
- return ret_val;
- }
-
- /* At this point we know that we are on copper and we have
- * auto-negotiated link. These are conditions for checking the link
- * partner capability register. We use the link speed to determine if
- * TBI compatibility needs to be turned on or off. If the link is not
- * at gigabit speed, then TBI compatibility is not needed. If we are
- * at gigabit speed, we turn on TBI compatibility.
- */
- if (hw->tbi_compatibility_en) {
- uint16_t speed, duplex;
- ret_val = em_get_speed_and_duplex(hw, &speed, &duplex);
- if (ret_val) {
- DEBUGOUT("Error getting link speed and duplex\n");
- return ret_val;
- }
- if (speed != SPEED_1000) {
- /* If link speed is not set to gigabit speed, we do not need
- * to enable TBI compatibility.
- */
- if (hw->tbi_compatibility_on) {
- /* If we previously were in the mode, turn it off. */
- rctl = E1000_READ_REG(hw, RCTL);
- rctl &= ~E1000_RCTL_SBP;
- E1000_WRITE_REG(hw, RCTL, rctl);
- hw->tbi_compatibility_on = FALSE;
- }
- } else {
- /* If TBI compatibility is was previously off, turn it on. For
- * compatibility with a TBI link partner, we will store bad
- * packets. Some frames have an additional byte on the end and
- * will look like CRC errors to to the hardware.
- */
- if (!hw->tbi_compatibility_on) {
- hw->tbi_compatibility_on = TRUE;
- rctl = E1000_READ_REG(hw, RCTL);
- rctl |= E1000_RCTL_SBP;
- E1000_WRITE_REG(hw, RCTL, rctl);
- }
- }
- }
- }
- /* If we don't have link (auto-negotiation failed or link partner cannot
- * auto-negotiate), the cable is plugged in (we have signal), and our
- * link partner is not trying to auto-negotiate with us (we are receiving
- * idles or data), we need to force link up. We also need to give
- * auto-negotiation time to complete, in case the cable was just plugged
- * in. The autoneg_failed flag does this.
- */
- else if ((((hw->media_type == em_media_type_fiber) &&
- ((ctrl & E1000_CTRL_SWDPIN1) == signal)) ||
- (hw->media_type == em_media_type_internal_serdes)) &&
- (!(status & E1000_STATUS_LU)) &&
- (!(rxcw & E1000_RXCW_C))) {
- if (hw->autoneg_failed == 0) {
- hw->autoneg_failed = 1;
- return 0;
- }
- DEBUGOUT("NOT RXing /C/, disable AutoNeg and force link.\n");
-
- /* Disable auto-negotiation in the TXCW register */
- E1000_WRITE_REG(hw, TXCW, (hw->txcw & ~E1000_TXCW_ANE));
-
- /* Force link-up and also force full-duplex. */
- ctrl = E1000_READ_REG(hw, CTRL);
- ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD);
- E1000_WRITE_REG(hw, CTRL, ctrl);
-
- /* Configure Flow Control after forcing link up. */
- ret_val = em_config_fc_after_link_up(hw);
- if (ret_val) {
- DEBUGOUT("Error configuring flow control\n");
- return ret_val;
- }
- }
- /* If we are forcing link and we are receiving /C/ ordered sets, re-enable
- * auto-negotiation in the TXCW register and disable forced link in the
- * Device Control register in an attempt to auto-negotiate with our link
- * partner.
- */
- else if (((hw->media_type == em_media_type_fiber) ||
- (hw->media_type == em_media_type_internal_serdes)) &&
- (ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) {
- DEBUGOUT("RXing /C/, enable AutoNeg and stop forcing link.\n");
- E1000_WRITE_REG(hw, TXCW, hw->txcw);
- E1000_WRITE_REG(hw, CTRL, (ctrl & ~E1000_CTRL_SLU));
-
- hw->serdes_link_down = FALSE;
- }
- /* If we force link for non-auto-negotiation switch, check link status
- * based on MAC synchronization for internal serdes media type.
- */
- else if ((hw->media_type == em_media_type_internal_serdes) &&
- !(E1000_TXCW_ANE & E1000_READ_REG(hw, TXCW))) {
- /* SYNCH bit and IV bit are sticky. */
- usec_delay(10);
- if (E1000_RXCW_SYNCH & E1000_READ_REG(hw, RXCW)) {
- if (!(rxcw & E1000_RXCW_IV)) {
- hw->serdes_link_down = FALSE;
- DEBUGOUT("SERDES: Link is up.\n");
- }
- } else {
- hw->serdes_link_down = TRUE;
- DEBUGOUT("SERDES: Link is down.\n");
- }
- }
- if ((hw->media_type == em_media_type_internal_serdes) &&
- (E1000_TXCW_ANE & E1000_READ_REG(hw, TXCW))) {
- hw->serdes_link_down = !(E1000_STATUS_LU & E1000_READ_REG(hw, STATUS));
- }
- return E1000_SUCCESS;
-}
-
-/******************************************************************************
- * Detects the current speed and duplex settings of the hardware.
- *
- * hw - Struct containing variables accessed by shared code
- * speed - Speed of the connection
- * duplex - Duplex setting of the connection
- *****************************************************************************/
-int32_t
-em_get_speed_and_duplex(struct em_hw *hw,
- uint16_t *speed,
- uint16_t *duplex)
-{
- uint32_t status;
- int32_t ret_val;
- uint16_t phy_data;
-
- DEBUGFUNC("em_get_speed_and_duplex");
-
- if (hw->mac_type >= em_82543) {
- status = E1000_READ_REG(hw, STATUS);
- if (status & E1000_STATUS_SPEED_1000) {
- *speed = SPEED_1000;
- DEBUGOUT("1000 Mbs, ");
- } else if (status & E1000_STATUS_SPEED_100) {
- *speed = SPEED_100;
- DEBUGOUT("100 Mbs, ");
- } else {
- *speed = SPEED_10;
- DEBUGOUT("10 Mbs, ");
- }
-
- if (status & E1000_STATUS_FD) {
- *duplex = FULL_DUPLEX;
- DEBUGOUT("Full Duplex\n");
- } else {
- *duplex = HALF_DUPLEX;
- DEBUGOUT(" Half Duplex\n");
- }
- } else {
- DEBUGOUT("1000 Mbs, Full Duplex\n");
- *speed = SPEED_1000;
- *duplex = FULL_DUPLEX;
- }
-
- /* IGP01 PHY may advertise full duplex operation after speed downgrade even
- * if it is operating at half duplex. Here we set the duplex settings to
- * match the duplex in the link partner's capabilities.
- */
- if (hw->phy_type == em_phy_igp && hw->speed_downgraded) {
- ret_val = em_read_phy_reg(hw, PHY_AUTONEG_EXP, &phy_data);
- if (ret_val)
- return ret_val;
-
- if (!(phy_data & NWAY_ER_LP_NWAY_CAPS))
- *duplex = HALF_DUPLEX;
- else {
- ret_val = em_read_phy_reg(hw, PHY_LP_ABILITY, &phy_data);
- if (ret_val)
- return ret_val;
- if ((*speed == SPEED_100 && !(phy_data & NWAY_LPAR_100TX_FD_CAPS)) ||
- (*speed == SPEED_10 && !(phy_data & NWAY_LPAR_10T_FD_CAPS)))
- *duplex = HALF_DUPLEX;
- }
- }
-
- if ((hw->mac_type == em_80003es2lan) &&
- (hw->media_type == em_media_type_copper)) {
- if (*speed == SPEED_1000)
- ret_val = em_configure_kmrn_for_1000(hw);
- else
- ret_val = em_configure_kmrn_for_10_100(hw, *duplex);
- if (ret_val)
- return ret_val;
- }
-
- if ((hw->phy_type == em_phy_igp_3) && (*speed == SPEED_1000)) {
- ret_val = em_kumeran_lock_loss_workaround(hw);
- if (ret_val)
- return ret_val;
- }
-
- return E1000_SUCCESS;
-}
-
-/******************************************************************************
-* Blocks until autoneg completes or times out (~4.5 seconds)
-*
-* hw - Struct containing variables accessed by shared code
-******************************************************************************/
-int32_t
-em_wait_autoneg(struct em_hw *hw)
-{
- int32_t ret_val;
- uint16_t i;
- uint16_t phy_data;
-
- DEBUGFUNC("em_wait_autoneg");
- DEBUGOUT("Waiting for Auto-Neg to complete.\n");
-
- /* We will wait for autoneg to complete or 4.5 seconds to expire. */
- for (i = PHY_AUTO_NEG_TIME; i > 0; i--) {
- /* Read the MII Status Register and wait for Auto-Neg
- * Complete bit to be set.
- */
- ret_val = em_read_phy_reg(hw, PHY_STATUS, &phy_data);
- if (ret_val)
- return ret_val;
- ret_val = em_read_phy_reg(hw, PHY_STATUS, &phy_data);
- if (ret_val)
- return ret_val;
- if (phy_data & MII_SR_AUTONEG_COMPLETE) {
- return E1000_SUCCESS;
- }
- msec_delay(100);
- }
- return E1000_SUCCESS;
-}
-
-/******************************************************************************
-* Raises the Management Data Clock
-*
-* hw - Struct containing variables accessed by shared code
-* ctrl - Device control register's current value
-******************************************************************************/
-static void
-em_raise_mdi_clk(struct em_hw *hw,
- uint32_t *ctrl)
-{
- /* Raise the clock input to the Management Data Clock (by setting the MDC
- * bit), and then delay 10 microseconds.
- */
- E1000_WRITE_REG(hw, CTRL, (*ctrl | E1000_CTRL_MDC));
- E1000_WRITE_FLUSH(hw);
- usec_delay(10);
-}
-
-/******************************************************************************
-* Lowers the Management Data Clock
-*
-* hw - Struct containing variables accessed by shared code
-* ctrl - Device control register's current value
-******************************************************************************/
-static void
-em_lower_mdi_clk(struct em_hw *hw,
- uint32_t *ctrl)
-{
- /* Lower the clock input to the Management Data Clock (by clearing the MDC
- * bit), and then delay 10 microseconds.
- */
- E1000_WRITE_REG(hw, CTRL, (*ctrl & ~E1000_CTRL_MDC));
- E1000_WRITE_FLUSH(hw);
- usec_delay(10);
-}
-
-/******************************************************************************
-* Shifts data bits out to the PHY
-*
-* hw - Struct containing variables accessed by shared code
-* data - Data to send out to the PHY
-* count - Number of bits to shift out
-*
-* Bits are shifted out in MSB to LSB order.
-******************************************************************************/
-static void
-em_shift_out_mdi_bits(struct em_hw *hw,
- uint32_t data,
- uint16_t count)
-{
- uint32_t ctrl;
- uint32_t mask;
-
- /* We need to shift "count" number of bits out to the PHY. So, the value
- * in the "data" parameter will be shifted out to the PHY one bit at a
- * time. In order to do this, "data" must be broken down into bits.
- */
- mask = 0x01;
- mask <<= (count - 1);
-
- ctrl = E1000_READ_REG(hw, CTRL);
-
- /* Set MDIO_DIR and MDC_DIR direction bits to be used as output pins. */
- ctrl |= (E1000_CTRL_MDIO_DIR | E1000_CTRL_MDC_DIR);
-
- while (mask) {
- /* A "1" is shifted out to the PHY by setting the MDIO bit to "1" and
- * then raising and lowering the Management Data Clock. A "0" is
- * shifted out to the PHY by setting the MDIO bit to "0" and then
- * raising and lowering the clock.
- */
- if (data & mask)
- ctrl |= E1000_CTRL_MDIO;
- else
- ctrl &= ~E1000_CTRL_MDIO;
-
- E1000_WRITE_REG(hw, CTRL, ctrl);
- E1000_WRITE_FLUSH(hw);
-
- usec_delay(10);
-
- em_raise_mdi_clk(hw, &ctrl);
- em_lower_mdi_clk(hw, &ctrl);
-
- mask = mask >> 1;
- }
-}
-
-/******************************************************************************
-* Shifts data bits in from the PHY
-*
-* hw - Struct containing variables accessed by shared code
-*
-* Bits are shifted in in MSB to LSB order.
-******************************************************************************/
-static uint16_t
-em_shift_in_mdi_bits(struct em_hw *hw)
-{
- uint32_t ctrl;
- uint16_t data = 0;
- uint8_t i;
-
- /* In order to read a register from the PHY, we need to shift in a total
- * of 18 bits from the PHY. The first two bit (turnaround) times are used
- * to avoid contention on the MDIO pin when a read operation is performed.
- * These two bits are ignored by us and thrown away. Bits are "shifted in"
- * by raising the input to the Management Data Clock (setting the MDC bit),
- * and then reading the value of the MDIO bit.
- */
- ctrl = E1000_READ_REG(hw, CTRL);
-
- /* Clear MDIO_DIR (SWDPIO1) to indicate this bit is to be used as input. */
- ctrl &= ~E1000_CTRL_MDIO_DIR;
- ctrl &= ~E1000_CTRL_MDIO;
-
- E1000_WRITE_REG(hw, CTRL, ctrl);
- E1000_WRITE_FLUSH(hw);
-
- /* Raise and Lower the clock before reading in the data. This accounts for
- * the turnaround bits. The first clock occurred when we clocked out the
- * last bit of the Register Address.
- */
- em_raise_mdi_clk(hw, &ctrl);
- em_lower_mdi_clk(hw, &ctrl);
-
- for (data = 0, i = 0; i < 16; i++) {
- data = data << 1;
- em_raise_mdi_clk(hw, &ctrl);
- ctrl = E1000_READ_REG(hw, CTRL);
- /* Check to see if we shifted in a "1". */
- if (ctrl & E1000_CTRL_MDIO)
- data |= 1;
- em_lower_mdi_clk(hw, &ctrl);
- }
-
- em_raise_mdi_clk(hw, &ctrl);
- em_lower_mdi_clk(hw, &ctrl);
-
- return data;
-}
-
-int32_t
-em_swfw_sync_acquire(struct em_hw *hw, uint16_t mask)
-{
- uint32_t swfw_sync = 0;
- uint32_t swmask = mask;
- uint32_t fwmask = mask << 16;
- int32_t timeout = 200;
-
- DEBUGFUNC("em_swfw_sync_acquire");
-
- if (hw->swfwhw_semaphore_present)
- return em_get_software_flag(hw);
-
- if (!hw->swfw_sync_present)
- return em_get_hw_eeprom_semaphore(hw);
-
- while (timeout) {
- if (em_get_hw_eeprom_semaphore(hw))
- return -E1000_ERR_SWFW_SYNC;
-
- swfw_sync = E1000_READ_REG(hw, SW_FW_SYNC);
- if (!(swfw_sync & (fwmask | swmask))) {
- break;
- }
-
- /* firmware currently using resource (fwmask) */
- /* or other software thread currently using resource (swmask) */
- em_put_hw_eeprom_semaphore(hw);
- msec_delay_irq(5);
- timeout--;
- }
-
- if (!timeout) {
- DEBUGOUT("Driver can't access resource, SW_FW_SYNC timeout.\n");
- return -E1000_ERR_SWFW_SYNC;
- }
-
- swfw_sync |= swmask;
- E1000_WRITE_REG(hw, SW_FW_SYNC, swfw_sync);
-
- em_put_hw_eeprom_semaphore(hw);
- return E1000_SUCCESS;
-}
-
-void
-em_swfw_sync_release(struct em_hw *hw, uint16_t mask)
-{
- uint32_t swfw_sync;
- uint32_t swmask = mask;
-
- DEBUGFUNC("em_swfw_sync_release");
-
- if (hw->swfwhw_semaphore_present) {
- em_release_software_flag(hw);
- return;
- }
-
- if (!hw->swfw_sync_present) {
- em_put_hw_eeprom_semaphore(hw);
- return;
- }
-
- /* if (em_get_hw_eeprom_semaphore(hw))
- * return -E1000_ERR_SWFW_SYNC; */
- while (em_get_hw_eeprom_semaphore(hw) != E1000_SUCCESS);
- /* empty */
-
- swfw_sync = E1000_READ_REG(hw, SW_FW_SYNC);
- swfw_sync &= ~swmask;
- E1000_WRITE_REG(hw, SW_FW_SYNC, swfw_sync);
-
- em_put_hw_eeprom_semaphore(hw);
-}
-
-/*****************************************************************************
-* Reads the value from a PHY register, if the value is on a specific non zero
-* page, sets the page first.
-* hw - Struct containing variables accessed by shared code
-* reg_addr - address of the PHY register to read
-******************************************************************************/
-int32_t
-em_read_phy_reg(struct em_hw *hw,
- uint32_t reg_addr,
- uint16_t *phy_data)
-{
- uint32_t ret_val;
- uint16_t swfw;
-
- DEBUGFUNC("em_read_phy_reg");
-
- if ((hw->mac_type == em_80003es2lan) &&
- (E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1)) {
- swfw = E1000_SWFW_PHY1_SM;
- } else {
- swfw = E1000_SWFW_PHY0_SM;
- }
- if (em_swfw_sync_acquire(hw, swfw))
- return -E1000_ERR_SWFW_SYNC;
-
- if ((hw->phy_type == em_phy_igp ||
- hw->phy_type == em_phy_igp_3 ||
- hw->phy_type == em_phy_igp_2) &&
- (reg_addr > MAX_PHY_MULTI_PAGE_REG)) {
- ret_val = em_write_phy_reg_ex(hw, IGP01E1000_PHY_PAGE_SELECT,
- (uint16_t)reg_addr);
- if (ret_val) {
- em_swfw_sync_release(hw, swfw);
- return ret_val;
- }
- } else if (hw->phy_type == em_phy_gg82563) {
- if (((reg_addr & MAX_PHY_REG_ADDRESS) > MAX_PHY_MULTI_PAGE_REG) ||
- (hw->mac_type == em_80003es2lan)) {
- /* Select Configuration Page */
- if ((reg_addr & MAX_PHY_REG_ADDRESS) < GG82563_MIN_ALT_REG) {
- ret_val = em_write_phy_reg_ex(hw, GG82563_PHY_PAGE_SELECT,
- (uint16_t)((uint16_t)reg_addr >> GG82563_PAGE_SHIFT));
- } else {
- /* Use Alternative Page Select register to access
- * registers 30 and 31
- */
- ret_val = em_write_phy_reg_ex(hw,
- GG82563_PHY_PAGE_SELECT_ALT,
- (uint16_t)((uint16_t)reg_addr >> GG82563_PAGE_SHIFT));
- }
-
- if (ret_val) {
- em_swfw_sync_release(hw, swfw);
- return ret_val;
- }
- }
- }
-
- ret_val = em_read_phy_reg_ex(hw, MAX_PHY_REG_ADDRESS & reg_addr,
- phy_data);
-
- em_swfw_sync_release(hw, swfw);
- return ret_val;
-}
-
-int32_t
-em_read_phy_reg_ex(struct em_hw *hw,
- uint32_t reg_addr,
- uint16_t *phy_data)
-{
- uint32_t i;
- uint32_t mdic = 0;
- const uint32_t phy_addr = 1;
-
- DEBUGFUNC("em_read_phy_reg_ex");
-
- if (reg_addr > MAX_PHY_REG_ADDRESS) {
- DEBUGOUT1("PHY Address %d is out of range\n", reg_addr);
- return -E1000_ERR_PARAM;
- }
-
- if (hw->mac_type > em_82543) {
- /* Set up Op-code, Phy Address, and register address in the MDI
- * Control register. The MAC will take care of interfacing with the
- * PHY to retrieve the desired data.
- */
- mdic = ((reg_addr << E1000_MDIC_REG_SHIFT) |
- (phy_addr << E1000_MDIC_PHY_SHIFT) |
- (E1000_MDIC_OP_READ));
-
- E1000_WRITE_REG(hw, MDIC, mdic);
-
- /* Poll the ready bit to see if the MDI read completed */
- for (i = 0; i < 64; i++) {
- usec_delay(50);
- mdic = E1000_READ_REG(hw, MDIC);
- if (mdic & E1000_MDIC_READY) break;
- }
- if (!(mdic & E1000_MDIC_READY)) {
- DEBUGOUT("MDI Read did not complete\n");
- return -E1000_ERR_PHY;
- }
- if (mdic & E1000_MDIC_ERROR) {
- DEBUGOUT("MDI Error\n");
- return -E1000_ERR_PHY;
- }
- *phy_data = (uint16_t) mdic;
- } else {
- /* We must first send a preamble through the MDIO pin to signal the
- * beginning of an MII instruction. This is done by sending 32
- * consecutive "1" bits.
- */
- em_shift_out_mdi_bits(hw, PHY_PREAMBLE, PHY_PREAMBLE_SIZE);
-
- /* Now combine the next few fields that are required for a read
- * operation. We use this method instead of calling the
- * em_shift_out_mdi_bits routine five different times. The format of
- * a MII read instruction consists of a shift out of 14 bits and is
- * defined as follows:
- * <Preamble><SOF><Op Code><Phy Addr><Reg Addr>
- * followed by a shift in of 18 bits. This first two bits shifted in
- * are TurnAround bits used to avoid contention on the MDIO pin when a
- * READ operation is performed. These two bits are thrown away
- * followed by a shift in of 16 bits which contains the desired data.
- */
- mdic = ((reg_addr) | (phy_addr << 5) |
- (PHY_OP_READ << 10) | (PHY_SOF << 12));
-
- em_shift_out_mdi_bits(hw, mdic, 14);
-
- /* Now that we've shifted out the read command to the MII, we need to
- * "shift in" the 16-bit value (18 total bits) of the requested PHY
- * register address.
- */
- *phy_data = em_shift_in_mdi_bits(hw);
- }
- return E1000_SUCCESS;
-}
-
-/******************************************************************************
-* Writes a value to a PHY register
-*
-* hw - Struct containing variables accessed by shared code
-* reg_addr - address of the PHY register to write
-* data - data to write to the PHY
-******************************************************************************/
-int32_t
-em_write_phy_reg(struct em_hw *hw,
- uint32_t reg_addr,
- uint16_t phy_data)
-{
- uint32_t ret_val;
- uint16_t swfw;
-
- DEBUGFUNC("em_write_phy_reg");
-
- if ((hw->mac_type == em_80003es2lan) &&
- (E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1)) {
- swfw = E1000_SWFW_PHY1_SM;
- } else {
- swfw = E1000_SWFW_PHY0_SM;
- }
- if (em_swfw_sync_acquire(hw, swfw))
- return -E1000_ERR_SWFW_SYNC;
-
- if ((hw->phy_type == em_phy_igp ||
- hw->phy_type == em_phy_igp_3 ||
- hw->phy_type == em_phy_igp_2) &&
- (reg_addr > MAX_PHY_MULTI_PAGE_REG)) {
- ret_val = em_write_phy_reg_ex(hw, IGP01E1000_PHY_PAGE_SELECT,
- (uint16_t)reg_addr);
- if (ret_val) {
- em_swfw_sync_release(hw, swfw);
- return ret_val;
- }
- } else if (hw->phy_type == em_phy_gg82563) {
- if (((reg_addr & MAX_PHY_REG_ADDRESS) > MAX_PHY_MULTI_PAGE_REG) ||
- (hw->mac_type == em_80003es2lan)) {
- /* Select Configuration Page */
- if ((reg_addr & MAX_PHY_REG_ADDRESS) < GG82563_MIN_ALT_REG) {
- ret_val = em_write_phy_reg_ex(hw, GG82563_PHY_PAGE_SELECT,
- (uint16_t)((uint16_t)reg_addr >> GG82563_PAGE_SHIFT));
- } else {
- /* Use Alternative Page Select register to access
- * registers 30 and 31
- */
- ret_val = em_write_phy_reg_ex(hw,
- GG82563_PHY_PAGE_SELECT_ALT,
- (uint16_t)((uint16_t)reg_addr >> GG82563_PAGE_SHIFT));
- }
-
- if (ret_val) {
- em_swfw_sync_release(hw, swfw);
- return ret_val;
- }
- }
- }
-
- ret_val = em_write_phy_reg_ex(hw, MAX_PHY_REG_ADDRESS & reg_addr,
- phy_data);
-
- em_swfw_sync_release(hw, swfw);
- return ret_val;
-}
-
-int32_t
-em_write_phy_reg_ex(struct em_hw *hw,
- uint32_t reg_addr,
- uint16_t phy_data)
-{
- uint32_t i;
- uint32_t mdic = 0;
- const uint32_t phy_addr = 1;
-
- DEBUGFUNC("em_write_phy_reg_ex");
-
- if (reg_addr > MAX_PHY_REG_ADDRESS) {
- DEBUGOUT1("PHY Address %d is out of range\n", reg_addr);
- return -E1000_ERR_PARAM;
- }
-
- if (hw->mac_type > em_82543) {
- /* Set up Op-code, Phy Address, register address, and data intended
- * for the PHY register in the MDI Control register. The MAC will take
- * care of interfacing with the PHY to send the desired data.
- */
- mdic = (((uint32_t) phy_data) |
- (reg_addr << E1000_MDIC_REG_SHIFT) |
- (phy_addr << E1000_MDIC_PHY_SHIFT) |
- (E1000_MDIC_OP_WRITE));
-
- E1000_WRITE_REG(hw, MDIC, mdic);
-
- /* Poll the ready bit to see if the MDI read completed */
- for (i = 0; i < 641; i++) {
- usec_delay(5);
- mdic = E1000_READ_REG(hw, MDIC);
- if (mdic & E1000_MDIC_READY) break;
- }
- if (!(mdic & E1000_MDIC_READY)) {
- DEBUGOUT("MDI Write did not complete\n");
- return -E1000_ERR_PHY;
- }
- } else {
- /* We'll need to use the SW defined pins to shift the write command
- * out to the PHY. We first send a preamble to the PHY to signal the
- * beginning of the MII instruction. This is done by sending 32
- * consecutive "1" bits.
- */
- em_shift_out_mdi_bits(hw, PHY_PREAMBLE, PHY_PREAMBLE_SIZE);
-
- /* Now combine the remaining required fields that will indicate a
- * write operation. We use this method instead of calling the
- * em_shift_out_mdi_bits routine for each field in the command. The
- * format of a MII write instruction is as follows:
- * <Preamble><SOF><Op Code><Phy Addr><Reg Addr><Turnaround><Data>.
- */
- mdic = ((PHY_TURNAROUND) | (reg_addr << 2) | (phy_addr << 7) |
- (PHY_OP_WRITE << 12) | (PHY_SOF << 14));
- mdic <<= 16;
- mdic |= (uint32_t) phy_data;
-
- em_shift_out_mdi_bits(hw, mdic, 32);
- }
-
- return E1000_SUCCESS;
-}
-
-int32_t
-em_read_kmrn_reg(struct em_hw *hw,
- uint32_t reg_addr,
- uint16_t *data)
-{
- uint32_t reg_val;
- uint16_t swfw;
- DEBUGFUNC("em_read_kmrn_reg");
-
- if ((hw->mac_type == em_80003es2lan) &&
- (E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1)) {
- swfw = E1000_SWFW_PHY1_SM;
- } else {
- swfw = E1000_SWFW_PHY0_SM;
- }
- if (em_swfw_sync_acquire(hw, swfw))
- return -E1000_ERR_SWFW_SYNC;
-
- /* Write register address */
- reg_val = ((reg_addr << E1000_KUMCTRLSTA_OFFSET_SHIFT) &
- E1000_KUMCTRLSTA_OFFSET) |
- E1000_KUMCTRLSTA_REN;
- E1000_WRITE_REG(hw, KUMCTRLSTA, reg_val);
- usec_delay(2);
-
- /* Read the data returned */
- reg_val = E1000_READ_REG(hw, KUMCTRLSTA);
- *data = (uint16_t)reg_val;
-
- em_swfw_sync_release(hw, swfw);
- return E1000_SUCCESS;
-}
-
-int32_t
-em_write_kmrn_reg(struct em_hw *hw,
- uint32_t reg_addr,
- uint16_t data)
-{
- uint32_t reg_val;
- uint16_t swfw;
- DEBUGFUNC("em_write_kmrn_reg");
-
- if ((hw->mac_type == em_80003es2lan) &&
- (E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1)) {
- swfw = E1000_SWFW_PHY1_SM;
- } else {
- swfw = E1000_SWFW_PHY0_SM;
- }
- if (em_swfw_sync_acquire(hw, swfw))
- return -E1000_ERR_SWFW_SYNC;
-
- reg_val = ((reg_addr << E1000_KUMCTRLSTA_OFFSET_SHIFT) &
- E1000_KUMCTRLSTA_OFFSET) | data;
- E1000_WRITE_REG(hw, KUMCTRLSTA, reg_val);
- usec_delay(2);
-
- em_swfw_sync_release(hw, swfw);
- return E1000_SUCCESS;
-}
-
-/******************************************************************************
-* Returns the PHY to the power-on reset state
-*
-* hw - Struct containing variables accessed by shared code
-******************************************************************************/
-int32_t
-em_phy_hw_reset(struct em_hw *hw)
-{
- uint32_t ctrl, ctrl_ext;
- uint32_t led_ctrl;
- int32_t ret_val;
- uint16_t swfw;
-
- DEBUGFUNC("em_phy_hw_reset");
-
- /* In the case of the phy reset being blocked, it's not an error, we
- * simply return success without performing the reset. */
- ret_val = em_check_phy_reset_block(hw);
- if (ret_val)
- return E1000_SUCCESS;
-
- DEBUGOUT("Resetting Phy...\n");
-
- if (hw->mac_type > em_82543) {
- if ((hw->mac_type == em_80003es2lan) &&
- (E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1)) {
- swfw = E1000_SWFW_PHY1_SM;
- } else {
- swfw = E1000_SWFW_PHY0_SM;
- }
- if (em_swfw_sync_acquire(hw, swfw)) {
- em_release_software_semaphore(hw);
- return -E1000_ERR_SWFW_SYNC;
- }
- /* Read the device control register and assert the E1000_CTRL_PHY_RST
- * bit. Then, take it out of reset.
- * For pre-em_82571 hardware, we delay for 10ms between the assert
- * and deassert. For em_82571 hardware and later, we instead delay
- * for 50us between and 10ms after the deassertion.
- */
- ctrl = E1000_READ_REG(hw, CTRL);
- E1000_WRITE_REG(hw, CTRL, ctrl | E1000_CTRL_PHY_RST);
- E1000_WRITE_FLUSH(hw);
-
- if (hw->mac_type < em_82571)
- msec_delay(10);
- else
- usec_delay(100);
-
- E1000_WRITE_REG(hw, CTRL, ctrl);
- E1000_WRITE_FLUSH(hw);
-
- if (hw->mac_type >= em_82571)
- msec_delay_irq(10);
- em_swfw_sync_release(hw, swfw);
- } else {
- /* Read the Extended Device Control Register, assert the PHY_RESET_DIR
- * bit to put the PHY into reset. Then, take it out of reset.
- */
- ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
- ctrl_ext |= E1000_CTRL_EXT_SDP4_DIR;
- ctrl_ext &= ~E1000_CTRL_EXT_SDP4_DATA;
- E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
- E1000_WRITE_FLUSH(hw);
- msec_delay(10);
- ctrl_ext |= E1000_CTRL_EXT_SDP4_DATA;
- E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
- E1000_WRITE_FLUSH(hw);
- }
- usec_delay(150);
-
- if ((hw->mac_type == em_82541) || (hw->mac_type == em_82547)) {
- /* Configure activity LED after PHY reset */
- led_ctrl = E1000_READ_REG(hw, LEDCTL);
- led_ctrl &= IGP_ACTIVITY_LED_MASK;
- led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE);
- E1000_WRITE_REG(hw, LEDCTL, led_ctrl);
- }
-
- /* Wait for FW to finish PHY configuration. */
- ret_val = em_get_phy_cfg_done(hw);
- if (ret_val != E1000_SUCCESS)
- return ret_val;
- em_release_software_semaphore(hw);
-
- if ((hw->mac_type == em_ich8lan) && (hw->phy_type == em_phy_igp_3))
- ret_val = em_init_lcd_from_nvm(hw);
-
- return ret_val;
-}
-
-/******************************************************************************
-* Resets the PHY
-*
-* hw - Struct containing variables accessed by shared code
-*
-* Sets bit 15 of the MII Control regiser
-******************************************************************************/
-int32_t
-em_phy_reset(struct em_hw *hw)
-{
- int32_t ret_val;
- uint16_t phy_data;
-
- DEBUGFUNC("em_phy_reset");
-
- /* In the case of the phy reset being blocked, it's not an error, we
- * simply return success without performing the reset. */
- ret_val = em_check_phy_reset_block(hw);
- if (ret_val)
- return E1000_SUCCESS;
-
- switch (hw->mac_type) {
- case em_82541_rev_2:
- case em_82571:
- case em_82572:
- case em_ich8lan:
- ret_val = em_phy_hw_reset(hw);
- if (ret_val)
- return ret_val;
-
- break;
- default:
- ret_val = em_read_phy_reg(hw, PHY_CTRL, &phy_data);
- if (ret_val)
- return ret_val;
-
- phy_data |= MII_CR_RESET;
- ret_val = em_write_phy_reg(hw, PHY_CTRL, phy_data);
- if (ret_val)
- return ret_val;
-
- usec_delay(1);
- break;
- }
-
- if (hw->phy_type == em_phy_igp || hw->phy_type == em_phy_igp_2)
- em_phy_init_script(hw);
-
- return E1000_SUCCESS;
-}
-
-/******************************************************************************
-* Work-around for 82566 power-down: on D3 entry-
-* 1) disable gigabit link
-* 2) write VR power-down enable
-* 3) read it back
-* if successful continue, else issue LCD reset and repeat
-*
-* hw - struct containing variables accessed by shared code
-******************************************************************************/
-void
-em_phy_powerdown_workaround(struct em_hw *hw)
-{
- int32_t reg;
- uint16_t phy_data;
- int32_t retry = 0;
-
- DEBUGFUNC("em_phy_powerdown_workaround");
-
- if (hw->phy_type != em_phy_igp_3)
- return;
-
- do {
- /* Disable link */
- reg = E1000_READ_REG(hw, PHY_CTRL);
- E1000_WRITE_REG(hw, PHY_CTRL, reg | E1000_PHY_CTRL_GBE_DISABLE |
- E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
-
- /* Write VR power-down enable */
- em_read_phy_reg(hw, IGP3_VR_CTRL, &phy_data);
- em_write_phy_reg(hw, IGP3_VR_CTRL, phy_data |
- IGP3_VR_CTRL_MODE_SHUT);
-
- /* Read it back and test */
- em_read_phy_reg(hw, IGP3_VR_CTRL, &phy_data);
- if ((phy_data & IGP3_VR_CTRL_MODE_SHUT) || retry)
- break;
-
- /* Issue PHY reset and repeat at most one more time */
- reg = E1000_READ_REG(hw, CTRL);
- E1000_WRITE_REG(hw, CTRL, reg | E1000_CTRL_PHY_RST);
- retry++;
- } while (retry);
-
- return;
-
-}
-
-/******************************************************************************
-* Work-around for 82566 Kumeran PCS lock loss:
-* On link status change (i.e. PCI reset, speed change) and link is up and
-* speed is gigabit-
-* 0) if workaround is optionally disabled do nothing
-* 1) wait 1ms for Kumeran link to come up
-* 2) check Kumeran Diagnostic register PCS lock loss bit
-* 3) if not set the link is locked (all is good), otherwise...
-* 4) reset the PHY
-* 5) repeat up to 10 times
-* Note: this is only called for IGP3 copper when speed is 1gb.
-*
-* hw - struct containing variables accessed by shared code
-******************************************************************************/
-int32_t
-em_kumeran_lock_loss_workaround(struct em_hw *hw)
-{
- int32_t ret_val;
- int32_t reg;
- int32_t cnt;
- uint16_t phy_data;
-
- if (hw->kmrn_lock_loss_workaround_disabled)
- return E1000_SUCCESS;
-
- /* Make sure link is up before proceeding. If not just return.
- * Attempting this while link is negotiating fouled up link
- * stability */
- ret_val = em_read_phy_reg(hw, PHY_STATUS, &phy_data);
- ret_val = em_read_phy_reg(hw, PHY_STATUS, &phy_data);
-
- if (phy_data & MII_SR_LINK_STATUS) {
- for (cnt = 0; cnt < 10; cnt++) {
- /* read once to clear */
- ret_val = em_read_phy_reg(hw, IGP3_KMRN_DIAG, &phy_data);
- if (ret_val)
- return ret_val;
- /* and again to get new status */
- ret_val = em_read_phy_reg(hw, IGP3_KMRN_DIAG, &phy_data);
- if (ret_val)
- return ret_val;
-
- /* check for PCS lock */
- if (!(phy_data & IGP3_KMRN_DIAG_PCS_LOCK_LOSS))
- return E1000_SUCCESS;
-
- /* Issue PHY reset */
- em_phy_hw_reset(hw);
- msec_delay_irq(5);
- }
- /* Disable GigE link negotiation */
- reg = E1000_READ_REG(hw, PHY_CTRL);
- E1000_WRITE_REG(hw, PHY_CTRL, reg | E1000_PHY_CTRL_GBE_DISABLE |
- E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
-
- /* unable to acquire PCS lock */
- return E1000_ERR_PHY;
- }
-
- return E1000_SUCCESS;
-}
-
-/******************************************************************************
-* Probes the expected PHY address for known PHY IDs
-*
-* hw - Struct containing variables accessed by shared code
-******************************************************************************/
-int32_t
-em_detect_gig_phy(struct em_hw *hw)
-{
- int32_t phy_init_status, ret_val;
- uint16_t phy_id_high, phy_id_low;
- boolean_t match = FALSE;
-
- DEBUGFUNC("em_detect_gig_phy");
-
- /* The 82571 firmware may still be configuring the PHY. In this
- * case, we cannot access the PHY until the configuration is done. So
- * we explicitly set the PHY values. */
- if (hw->mac_type == em_82571 ||
- hw->mac_type == em_82572) {
- hw->phy_id = IGP01E1000_I_PHY_ID;
- hw->phy_type = em_phy_igp_2;
- return E1000_SUCCESS;
- }
-
- /* ESB-2 PHY reads require em_phy_gg82563 to be set because of a work-
- * around that forces PHY page 0 to be set or the reads fail. The rest of
- * the code in this routine uses em_read_phy_reg to read the PHY ID.
- * So for ESB-2 we need to have this set so our reads won't fail. If the
- * attached PHY is not a em_phy_gg82563, the routines below will figure
- * this out as well. */
- if (hw->mac_type == em_80003es2lan)
- hw->phy_type = em_phy_gg82563;
-
- /* Read the PHY ID Registers to identify which PHY is onboard. */
- ret_val = em_read_phy_reg(hw, PHY_ID1, &phy_id_high);
- if (ret_val)
- return ret_val;
-
- hw->phy_id = (uint32_t) (phy_id_high << 16);
- usec_delay(20);
- ret_val = em_read_phy_reg(hw, PHY_ID2, &phy_id_low);
- if (ret_val)
- return ret_val;
-
- hw->phy_id |= (uint32_t) (phy_id_low & PHY_REVISION_MASK);
- hw->phy_revision = (uint32_t) phy_id_low & ~PHY_REVISION_MASK;
-
- switch (hw->mac_type) {
- case em_82543:
- if (hw->phy_id == M88E1000_E_PHY_ID) match = TRUE;
- break;
- case em_82544:
- if (hw->phy_id == M88E1000_I_PHY_ID) match = TRUE;
- break;
- case em_82540:
- case em_82545:
- case em_82545_rev_3:
- case em_82546:
- case em_82546_rev_3:
- if (hw->phy_id == M88E1011_I_PHY_ID) match = TRUE;
- break;
- case em_82541:
- case em_82541_rev_2:
- case em_82547:
- case em_82547_rev_2:
- if (hw->phy_id == IGP01E1000_I_PHY_ID) match = TRUE;
- break;
- case em_82573:
- if (hw->phy_id == M88E1111_I_PHY_ID) match = TRUE;
- break;
- case em_80003es2lan:
- if (hw->phy_id == GG82563_E_PHY_ID) match = TRUE;
- break;
- case em_ich8lan:
- if (hw->phy_id == IGP03E1000_E_PHY_ID) match = TRUE;
- if (hw->phy_id == IFE_E_PHY_ID) match = TRUE;
- if (hw->phy_id == IFE_PLUS_E_PHY_ID) match = TRUE;
- if (hw->phy_id == IFE_C_E_PHY_ID) match = TRUE;
- break;
- default:
- DEBUGOUT1("Invalid MAC type %d\n", hw->mac_type);
- return -E1000_ERR_CONFIG;
- }
- phy_init_status = em_set_phy_type(hw);
-
- if ((match) && (phy_init_status == E1000_SUCCESS)) {
- DEBUGOUT1("PHY ID 0x%X detected\n", hw->phy_id);
- return E1000_SUCCESS;
- }
- DEBUGOUT1("Invalid PHY ID 0x%X\n", hw->phy_id);
- return -E1000_ERR_PHY;
-}
-
-/******************************************************************************
-* Resets the PHY's DSP
-*
-* hw - Struct containing variables accessed by shared code
-******************************************************************************/
-static int32_t
-em_phy_reset_dsp(struct em_hw *hw)
-{
- int32_t ret_val;
- DEBUGFUNC("em_phy_reset_dsp");
-
- do {
- if (hw->phy_type != em_phy_gg82563) {
- ret_val = em_write_phy_reg(hw, 29, 0x001d);
- if (ret_val) break;
- }
- ret_val = em_write_phy_reg(hw, 30, 0x00c1);
- if (ret_val) break;
- ret_val = em_write_phy_reg(hw, 30, 0x0000);
- if (ret_val) break;
- ret_val = E1000_SUCCESS;
- } while (0);
-
- return ret_val;
-}
-
-/******************************************************************************
-* Get PHY information from various PHY registers for igp PHY only.
-*
-* hw - Struct containing variables accessed by shared code
-* phy_info - PHY information structure
-******************************************************************************/
-int32_t
-em_phy_igp_get_info(struct em_hw *hw,
- struct em_phy_info *phy_info)
-{
- int32_t ret_val;
- uint16_t phy_data, polarity, min_length, max_length, average;
-
- DEBUGFUNC("em_phy_igp_get_info");
-
- /* The downshift status is checked only once, after link is established,
- * and it stored in the hw->speed_downgraded parameter. */
- phy_info->downshift = (em_downshift)hw->speed_downgraded;
-
- /* IGP01E1000 does not need to support it. */
- phy_info->extended_10bt_distance = em_10bt_ext_dist_enable_normal;
-
- /* IGP01E1000 always correct polarity reversal */
- phy_info->polarity_correction = em_polarity_reversal_enabled;
-
- /* Check polarity status */
- ret_val = em_check_polarity(hw, &polarity);
- if (ret_val)
- return ret_val;
-
- phy_info->cable_polarity = polarity;
-
- ret_val = em_read_phy_reg(hw, IGP01E1000_PHY_PORT_STATUS, &phy_data);
- if (ret_val)
- return ret_val;
-
- phy_info->mdix_mode = (phy_data & IGP01E1000_PSSR_MDIX) >>
- IGP01E1000_PSSR_MDIX_SHIFT;
-
- if ((phy_data & IGP01E1000_PSSR_SPEED_MASK) ==
- IGP01E1000_PSSR_SPEED_1000MBPS) {
- /* Local/Remote Receiver Information are only valid at 1000 Mbps */
- ret_val = em_read_phy_reg(hw, PHY_1000T_STATUS, &phy_data);
- if (ret_val)
- return ret_val;
-
- phy_info->local_rx = (phy_data & SR_1000T_LOCAL_RX_STATUS) >>
- SR_1000T_LOCAL_RX_STATUS_SHIFT;
- phy_info->remote_rx = (phy_data & SR_1000T_REMOTE_RX_STATUS) >>
- SR_1000T_REMOTE_RX_STATUS_SHIFT;
-
- /* Get cable length */
- ret_val = em_get_cable_length(hw, &min_length, &max_length);
- if (ret_val)
- return ret_val;
-
- /* Translate to old method */
- average = (max_length + min_length) / 2;
-
- if (average <= em_igp_cable_length_50)
- phy_info->cable_length = em_cable_length_50;
- else if (average <= em_igp_cable_length_80)
- phy_info->cable_length = em_cable_length_50_80;
- else if (average <= em_igp_cable_length_110)
- phy_info->cable_length = em_cable_length_80_110;
- else if (average <= em_igp_cable_length_140)
- phy_info->cable_length = em_cable_length_110_140;
- else
- phy_info->cable_length = em_cable_length_140;
- }
-
- return E1000_SUCCESS;
-}
-
-/******************************************************************************
-* Get PHY information from various PHY registers for ife PHY only.
-*
-* hw - Struct containing variables accessed by shared code
-* phy_info - PHY information structure
-******************************************************************************/
-int32_t
-em_phy_ife_get_info(struct em_hw *hw,
- struct em_phy_info *phy_info)
-{
- int32_t ret_val;
- uint16_t phy_data, polarity;
-
- DEBUGFUNC("em_phy_ife_get_info");
-
- phy_info->downshift = (em_downshift)hw->speed_downgraded;
- phy_info->extended_10bt_distance = em_10bt_ext_dist_enable_normal;
-
- ret_val = em_read_phy_reg(hw, IFE_PHY_SPECIAL_CONTROL, &phy_data);
- if (ret_val)
- return ret_val;
- phy_info->polarity_correction =
- (phy_data & IFE_PSC_AUTO_POLARITY_DISABLE) >>
- IFE_PSC_AUTO_POLARITY_DISABLE_SHIFT;
-
- if (phy_info->polarity_correction == em_polarity_reversal_enabled) {
- ret_val = em_check_polarity(hw, &polarity);
- if (ret_val)
- return ret_val;
- } else {
- /* Polarity is forced. */
- polarity = (phy_data & IFE_PSC_FORCE_POLARITY) >>
- IFE_PSC_FORCE_POLARITY_SHIFT;
- }
- phy_info->cable_polarity = polarity;
-
- ret_val = em_read_phy_reg(hw, IFE_PHY_MDIX_CONTROL, &phy_data);
- if (ret_val)
- return ret_val;
-
- phy_info->mdix_mode =
- (phy_data & (IFE_PMC_AUTO_MDIX | IFE_PMC_FORCE_MDIX)) >>
- IFE_PMC_MDIX_MODE_SHIFT;
-
- return E1000_SUCCESS;
-}
-
-/******************************************************************************
-* Get PHY information from various PHY registers fot m88 PHY only.
-*
-* hw - Struct containing variables accessed by shared code
-* phy_info - PHY information structure
-******************************************************************************/
-int32_t
-em_phy_m88_get_info(struct em_hw *hw,
- struct em_phy_info *phy_info)
-{
- int32_t ret_val;
- uint16_t phy_data, polarity;
-
- DEBUGFUNC("em_phy_m88_get_info");
-
- /* The downshift status is checked only once, after link is established,
- * and it stored in the hw->speed_downgraded parameter. */
- phy_info->downshift = (em_downshift)hw->speed_downgraded;
-
- ret_val = em_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
- if (ret_val)
- return ret_val;
-
- phy_info->extended_10bt_distance =
- (phy_data & M88E1000_PSCR_10BT_EXT_DIST_ENABLE) >>
- M88E1000_PSCR_10BT_EXT_DIST_ENABLE_SHIFT;
- phy_info->polarity_correction =
- (phy_data & M88E1000_PSCR_POLARITY_REVERSAL) >>
- M88E1000_PSCR_POLARITY_REVERSAL_SHIFT;
-
- /* Check polarity status */
- ret_val = em_check_polarity(hw, &polarity);
- if (ret_val)
- return ret_val;
- phy_info->cable_polarity = polarity;
-
- ret_val = em_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
- if (ret_val)
- return ret_val;
-
- phy_info->mdix_mode = (phy_data & M88E1000_PSSR_MDIX) >>
- M88E1000_PSSR_MDIX_SHIFT;
-
- if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS) {
- /* Cable Length Estimation and Local/Remote Receiver Information
- * are only valid at 1000 Mbps.
- */
- if (hw->phy_type != em_phy_gg82563) {
- phy_info->cable_length = ((phy_data & M88E1000_PSSR_CABLE_LENGTH) >>
- M88E1000_PSSR_CABLE_LENGTH_SHIFT);
- } else {
- ret_val = em_read_phy_reg(hw, GG82563_PHY_DSP_DISTANCE,
- &phy_data);
- if (ret_val)
- return ret_val;
-
- phy_info->cable_length = phy_data & GG82563_DSPD_CABLE_LENGTH;
- }
-
- ret_val = em_read_phy_reg(hw, PHY_1000T_STATUS, &phy_data);
- if (ret_val)
- return ret_val;
-
- phy_info->local_rx = (phy_data & SR_1000T_LOCAL_RX_STATUS) >>
- SR_1000T_LOCAL_RX_STATUS_SHIFT;
-
- phy_info->remote_rx = (phy_data & SR_1000T_REMOTE_RX_STATUS) >>
- SR_1000T_REMOTE_RX_STATUS_SHIFT;
- }
-
- return E1000_SUCCESS;
-}
-
-/******************************************************************************
-* Get PHY information from various PHY registers
-*
-* hw - Struct containing variables accessed by shared code
-* phy_info - PHY information structure
-******************************************************************************/
-int32_t
-em_phy_get_info(struct em_hw *hw,
- struct em_phy_info *phy_info)
-{
- int32_t ret_val;
- uint16_t phy_data;
-
- DEBUGFUNC("em_phy_get_info");
-
- phy_info->cable_length = em_cable_length_undefined;
- phy_info->extended_10bt_distance = em_10bt_ext_dist_enable_undefined;
- phy_info->cable_polarity = em_rev_polarity_undefined;
- phy_info->downshift = em_downshift_undefined;
- phy_info->polarity_correction = em_polarity_reversal_undefined;
- phy_info->mdix_mode = em_auto_x_mode_undefined;
- phy_info->local_rx = em_1000t_rx_status_undefined;
- phy_info->remote_rx = em_1000t_rx_status_undefined;
-
- if (hw->media_type != em_media_type_copper) {
- DEBUGOUT("PHY info is only valid for copper media\n");
- return -E1000_ERR_CONFIG;
- }
-
- ret_val = em_read_phy_reg(hw, PHY_STATUS, &phy_data);
- if (ret_val)
- return ret_val;
-
- ret_val = em_read_phy_reg(hw, PHY_STATUS, &phy_data);
- if (ret_val)
- return ret_val;
-
- if ((phy_data & MII_SR_LINK_STATUS) != MII_SR_LINK_STATUS) {
- DEBUGOUT("PHY info is only valid if link is up\n");
- return -E1000_ERR_CONFIG;
- }
-
- if (hw->phy_type == em_phy_igp ||
- hw->phy_type == em_phy_igp_3 ||
- hw->phy_type == em_phy_igp_2)
- return em_phy_igp_get_info(hw, phy_info);
- else if (hw->phy_type == em_phy_ife)
- return em_phy_ife_get_info(hw, phy_info);
- else
- return em_phy_m88_get_info(hw, phy_info);
-}
-
-int32_t
-em_validate_mdi_setting(struct em_hw *hw)
-{
- DEBUGFUNC("em_validate_mdi_settings");
-
- if (!hw->autoneg && (hw->mdix == 0 || hw->mdix == 3)) {
- DEBUGOUT("Invalid MDI setting detected\n");
- hw->mdix = 1;
- return -E1000_ERR_CONFIG;
- }
- return E1000_SUCCESS;
-}
-
-
-/******************************************************************************
- * Sets up eeprom variables in the hw struct. Must be called after mac_type
- * is configured. Additionally, if this is ICH8, the flash controller GbE
- * registers must be mapped, or this will crash.
- *
- * hw - Struct containing variables accessed by shared code
- *****************************************************************************/
-int32_t
-em_init_eeprom_params(struct em_hw *hw)
-{
- struct em_eeprom_info *eeprom = &hw->eeprom;
- uint32_t eecd = E1000_READ_REG(hw, EECD);
- int32_t ret_val = E1000_SUCCESS;
- uint16_t eeprom_size;
-
- DEBUGFUNC("em_init_eeprom_params");
-
- switch (hw->mac_type) {
- case em_82542_rev2_0:
- case em_82542_rev2_1:
- case em_82543:
- case em_82544:
- eeprom->type = em_eeprom_microwire;
- eeprom->word_size = 64;
- eeprom->opcode_bits = 3;
- eeprom->address_bits = 6;
- eeprom->delay_usec = 50;
- eeprom->use_eerd = FALSE;
- eeprom->use_eewr = FALSE;
- break;
- case em_82540:
- case em_82545:
- case em_82545_rev_3:
- case em_82546:
- case em_82546_rev_3:
- eeprom->type = em_eeprom_microwire;
- eeprom->opcode_bits = 3;
- eeprom->delay_usec = 50;
- if (eecd & E1000_EECD_SIZE) {
- eeprom->word_size = 256;
- eeprom->address_bits = 8;
- } else {
- eeprom->word_size = 64;
- eeprom->address_bits = 6;
- }
- eeprom->use_eerd = FALSE;
- eeprom->use_eewr = FALSE;
- break;
- case em_82541:
- case em_82541_rev_2:
- case em_82547:
- case em_82547_rev_2:
- if (eecd & E1000_EECD_TYPE) {
- eeprom->type = em_eeprom_spi;
- eeprom->opcode_bits = 8;
- eeprom->delay_usec = 1;
- if (eecd & E1000_EECD_ADDR_BITS) {
- eeprom->page_size = 32;
- eeprom->address_bits = 16;
- } else {
- eeprom->page_size = 8;
- eeprom->address_bits = 8;
- }
- } else {
- eeprom->type = em_eeprom_microwire;
- eeprom->opcode_bits = 3;
- eeprom->delay_usec = 50;
- if (eecd & E1000_EECD_ADDR_BITS) {
- eeprom->word_size = 256;
- eeprom->address_bits = 8;
- } else {
- eeprom->word_size = 64;
- eeprom->address_bits = 6;
- }
- }
- eeprom->use_eerd = FALSE;
- eeprom->use_eewr = FALSE;
- break;
- case em_82571:
- case em_82572:
- eeprom->type = em_eeprom_spi;
- eeprom->opcode_bits = 8;
- eeprom->delay_usec = 1;
- if (eecd & E1000_EECD_ADDR_BITS) {
- eeprom->page_size = 32;
- eeprom->address_bits = 16;
- } else {
- eeprom->page_size = 8;
- eeprom->address_bits = 8;
- }
- eeprom->use_eerd = FALSE;
- eeprom->use_eewr = FALSE;
- break;
- case em_82573:
- eeprom->type = em_eeprom_spi;
- eeprom->opcode_bits = 8;
- eeprom->delay_usec = 1;
- if (eecd & E1000_EECD_ADDR_BITS) {
- eeprom->page_size = 32;
- eeprom->address_bits = 16;
- } else {
- eeprom->page_size = 8;
- eeprom->address_bits = 8;
- }
- eeprom->use_eerd = TRUE;
- eeprom->use_eewr = TRUE;
- if (em_is_onboard_nvm_eeprom(hw) == FALSE) {
- eeprom->type = em_eeprom_flash;
- eeprom->word_size = 2048;
-
- /* Ensure that the Autonomous FLASH update bit is cleared due to
- * Flash update issue on parts which use a FLASH for NVM. */
- eecd &= ~E1000_EECD_AUPDEN;
- E1000_WRITE_REG(hw, EECD, eecd);
- }
- break;
- case em_80003es2lan:
- eeprom->type = em_eeprom_spi;
- eeprom->opcode_bits = 8;
- eeprom->delay_usec = 1;
- if (eecd & E1000_EECD_ADDR_BITS) {
- eeprom->page_size = 32;
- eeprom->address_bits = 16;
- } else {
- eeprom->page_size = 8;
- eeprom->address_bits = 8;
- }
- eeprom->use_eerd = TRUE;
- eeprom->use_eewr = FALSE;
- break;
- case em_ich8lan:
- {
- int32_t i = 0;
- uint32_t flash_size = E1000_READ_ICH8_REG(hw, ICH8_FLASH_GFPREG);
-
- eeprom->type = em_eeprom_ich8;
- eeprom->use_eerd = FALSE;
- eeprom->use_eewr = FALSE;
- eeprom->word_size = E1000_SHADOW_RAM_WORDS;
-
- /* Zero the shadow RAM structure. But don't load it from NVM
- * so as to save time for driver init */
- if (hw->eeprom_shadow_ram != NULL) {
- for (i = 0; i < E1000_SHADOW_RAM_WORDS; i++) {
- hw->eeprom_shadow_ram[i].modified = FALSE;
- hw->eeprom_shadow_ram[i].eeprom_word = 0xFFFF;
- }
- }
-
- hw->flash_base_addr = (flash_size & ICH8_GFPREG_BASE_MASK) *
- ICH8_FLASH_SECTOR_SIZE;
-
- hw->flash_bank_size = ((flash_size >> 16) & ICH8_GFPREG_BASE_MASK) + 1;
- hw->flash_bank_size -= (flash_size & ICH8_GFPREG_BASE_MASK);
- hw->flash_bank_size *= ICH8_FLASH_SECTOR_SIZE;
- hw->flash_bank_size /= 2 * sizeof(uint16_t);
-
- break;
- }
- default:
- break;
- }
-
- if (eeprom->type == em_eeprom_spi) {
- /* eeprom_size will be an enum [0..8] that maps to eeprom sizes 128B to
- * 32KB (incremented by powers of 2).
- */
- if (hw->mac_type <= em_82547_rev_2) {
- /* Set to default value for initial eeprom read. */
- eeprom->word_size = 64;
- ret_val = em_read_eeprom(hw, EEPROM_CFG, 1, &eeprom_size);
- if (ret_val)
- return ret_val;
- eeprom_size = (eeprom_size & EEPROM_SIZE_MASK) >> EEPROM_SIZE_SHIFT;
- /* 256B eeprom size was not supported in earlier hardware, so we
- * bump eeprom_size up one to ensure that "1" (which maps to 256B)
- * is never the result used in the shifting logic below. */
- if (eeprom_size)
- eeprom_size++;
- } else {
- eeprom_size = (uint16_t)((eecd & E1000_EECD_SIZE_EX_MASK) >>
- E1000_EECD_SIZE_EX_SHIFT);
- }
-
- eeprom->word_size = 1 << (eeprom_size + EEPROM_WORD_SIZE_SHIFT);
- }
- return ret_val;
-}
-
-/******************************************************************************
- * Raises the EEPROM's clock input.
- *
- * hw - Struct containing variables accessed by shared code
- * eecd - EECD's current value
- *****************************************************************************/
-static void
-em_raise_ee_clk(struct em_hw *hw,
- uint32_t *eecd)
-{
- /* Raise the clock input to the EEPROM (by setting the SK bit), and then
- * wait <delay> microseconds.
- */
- *eecd = *eecd | E1000_EECD_SK;
- E1000_WRITE_REG(hw, EECD, *eecd);
- E1000_WRITE_FLUSH(hw);
- usec_delay(hw->eeprom.delay_usec);
-}
-
-/******************************************************************************
- * Lowers the EEPROM's clock input.
- *
- * hw - Struct containing variables accessed by shared code
- * eecd - EECD's current value
- *****************************************************************************/
-static void
-em_lower_ee_clk(struct em_hw *hw,
- uint32_t *eecd)
-{
- /* Lower the clock input to the EEPROM (by clearing the SK bit), and then
- * wait 50 microseconds.
- */
- *eecd = *eecd & ~E1000_EECD_SK;
- E1000_WRITE_REG(hw, EECD, *eecd);
- E1000_WRITE_FLUSH(hw);
- usec_delay(hw->eeprom.delay_usec);
-}
-
-/******************************************************************************
- * Shift data bits out to the EEPROM.
- *
- * hw - Struct containing variables accessed by shared code
- * data - data to send to the EEPROM
- * count - number of bits to shift out
- *****************************************************************************/
-static void
-em_shift_out_ee_bits(struct em_hw *hw,
- uint16_t data,
- uint16_t count)
-{
- struct em_eeprom_info *eeprom = &hw->eeprom;
- uint32_t eecd;
- uint32_t mask;
-
- /* We need to shift "count" bits out to the EEPROM. So, value in the
- * "data" parameter will be shifted out to the EEPROM one bit at a time.
- * In order to do this, "data" must be broken down into bits.
- */
- mask = 0x01 << (count - 1);
- eecd = E1000_READ_REG(hw, EECD);
- if (eeprom->type == em_eeprom_microwire) {
- eecd &= ~E1000_EECD_DO;
- } else if (eeprom->type == em_eeprom_spi) {
- eecd |= E1000_EECD_DO;
- }
- do {
- /* A "1" is shifted out to the EEPROM by setting bit "DI" to a "1",
- * and then raising and then lowering the clock (the SK bit controls
- * the clock input to the EEPROM). A "0" is shifted out to the EEPROM
- * by setting "DI" to "0" and then raising and then lowering the clock.
- */
- eecd &= ~E1000_EECD_DI;
-
- if (data & mask)
- eecd |= E1000_EECD_DI;
-
- E1000_WRITE_REG(hw, EECD, eecd);
- E1000_WRITE_FLUSH(hw);
-
- usec_delay(eeprom->delay_usec);
-
- em_raise_ee_clk(hw, &eecd);
- em_lower_ee_clk(hw, &eecd);
-
- mask = mask >> 1;
-
- } while (mask);
-
- /* We leave the "DI" bit set to "0" when we leave this routine. */
- eecd &= ~E1000_EECD_DI;
- E1000_WRITE_REG(hw, EECD, eecd);
-}
-
-/******************************************************************************
- * Shift data bits in from the EEPROM
- *
- * hw - Struct containing variables accessed by shared code
- *****************************************************************************/
-static uint16_t
-em_shift_in_ee_bits(struct em_hw *hw,
- uint16_t count)
-{
- uint32_t eecd;
- uint32_t i;
- uint16_t data;
-
- /* In order to read a register from the EEPROM, we need to shift 'count'
- * bits in from the EEPROM. Bits are "shifted in" by raising the clock
- * input to the EEPROM (setting the SK bit), and then reading the value of
- * the "DO" bit. During this "shifting in" process the "DI" bit should
- * always be clear.
- */
-
- eecd = E1000_READ_REG(hw, EECD);
-
- eecd &= ~(E1000_EECD_DO | E1000_EECD_DI);
- data = 0;
-
- for (i = 0; i < count; i++) {
- data = data << 1;
- em_raise_ee_clk(hw, &eecd);
-
- eecd = E1000_READ_REG(hw, EECD);
-
- eecd &= ~(E1000_EECD_DI);
- if (eecd & E1000_EECD_DO)
- data |= 1;
-
- em_lower_ee_clk(hw, &eecd);
- }
-
- return data;
-}
-
-/******************************************************************************
- * Prepares EEPROM for access
- *
- * hw - Struct containing variables accessed by shared code
- *
- * Lowers EEPROM clock. Clears input pin. Sets the chip select pin. This
- * function should be called before issuing a command to the EEPROM.
- *****************************************************************************/
-static int32_t
-em_acquire_eeprom(struct em_hw *hw)
-{
- struct em_eeprom_info *eeprom = &hw->eeprom;
- uint32_t eecd, i=0;
-
- DEBUGFUNC("em_acquire_eeprom");
-
- if (em_swfw_sync_acquire(hw, E1000_SWFW_EEP_SM))
- return -E1000_ERR_SWFW_SYNC;
- eecd = E1000_READ_REG(hw, EECD);
-
- if (hw->mac_type != em_82573) {
- /* Request EEPROM Access */
- if (hw->mac_type > em_82544) {
- eecd |= E1000_EECD_REQ;
- E1000_WRITE_REG(hw, EECD, eecd);
- eecd = E1000_READ_REG(hw, EECD);
- while ((!(eecd & E1000_EECD_GNT)) &&
- (i < E1000_EEPROM_GRANT_ATTEMPTS)) {
- i++;
- usec_delay(5);
- eecd = E1000_READ_REG(hw, EECD);
- }
- if (!(eecd & E1000_EECD_GNT)) {
- eecd &= ~E1000_EECD_REQ;
- E1000_WRITE_REG(hw, EECD, eecd);
- DEBUGOUT("Could not acquire EEPROM grant\n");
- em_swfw_sync_release(hw, E1000_SWFW_EEP_SM);
- return -E1000_ERR_EEPROM;
- }
- }
- }
-
- /* Setup EEPROM for Read/Write */
-
- if (eeprom->type == em_eeprom_microwire) {
- /* Clear SK and DI */
- eecd &= ~(E1000_EECD_DI | E1000_EECD_SK);
- E1000_WRITE_REG(hw, EECD, eecd);
-
- /* Set CS */
- eecd |= E1000_EECD_CS;
- E1000_WRITE_REG(hw, EECD, eecd);
- } else if (eeprom->type == em_eeprom_spi) {
- /* Clear SK and CS */
- eecd &= ~(E1000_EECD_CS | E1000_EECD_SK);
- E1000_WRITE_REG(hw, EECD, eecd);
- usec_delay(1);
- }
-
- return E1000_SUCCESS;
-}
-
-/******************************************************************************
- * Returns EEPROM to a "standby" state
- *
- * hw - Struct containing variables accessed by shared code
- *****************************************************************************/
-static void
-em_standby_eeprom(struct em_hw *hw)
-{
- struct em_eeprom_info *eeprom = &hw->eeprom;
- uint32_t eecd;
-
- eecd = E1000_READ_REG(hw, EECD);
-
- if (eeprom->type == em_eeprom_microwire) {
- eecd &= ~(E1000_EECD_CS | E1000_EECD_SK);
- E1000_WRITE_REG(hw, EECD, eecd);
- E1000_WRITE_FLUSH(hw);
- usec_delay(eeprom->delay_usec);
-
- /* Clock high */
- eecd |= E1000_EECD_SK;
- E1000_WRITE_REG(hw, EECD, eecd);
- E1000_WRITE_FLUSH(hw);
- usec_delay(eeprom->delay_usec);
-
- /* Select EEPROM */
- eecd |= E1000_EECD_CS;
- E1000_WRITE_REG(hw, EECD, eecd);
- E1000_WRITE_FLUSH(hw);
- usec_delay(eeprom->delay_usec);
-
- /* Clock low */
- eecd &= ~E1000_EECD_SK;
- E1000_WRITE_REG(hw, EECD, eecd);
- E1000_WRITE_FLUSH(hw);
- usec_delay(eeprom->delay_usec);
- } else if (eeprom->type == em_eeprom_spi) {
- /* Toggle CS to flush commands */
- eecd |= E1000_EECD_CS;
- E1000_WRITE_REG(hw, EECD, eecd);
- E1000_WRITE_FLUSH(hw);
- usec_delay(eeprom->delay_usec);
- eecd &= ~E1000_EECD_CS;
- E1000_WRITE_REG(hw, EECD, eecd);
- E1000_WRITE_FLUSH(hw);
- usec_delay(eeprom->delay_usec);
- }
-}
-
-/******************************************************************************
- * Terminates a command by inverting the EEPROM's chip select pin
- *
- * hw - Struct containing variables accessed by shared code
- *****************************************************************************/
-static void
-em_release_eeprom(struct em_hw *hw)
-{
- uint32_t eecd;
-
- DEBUGFUNC("em_release_eeprom");
-
- eecd = E1000_READ_REG(hw, EECD);
-
- if (hw->eeprom.type == em_eeprom_spi) {
- eecd |= E1000_EECD_CS; /* Pull CS high */
- eecd &= ~E1000_EECD_SK; /* Lower SCK */
-
- E1000_WRITE_REG(hw, EECD, eecd);
-
- usec_delay(hw->eeprom.delay_usec);
- } else if (hw->eeprom.type == em_eeprom_microwire) {
- /* cleanup eeprom */
-
- /* CS on Microwire is active-high */
- eecd &= ~(E1000_EECD_CS | E1000_EECD_DI);
-
- E1000_WRITE_REG(hw, EECD, eecd);
-
- /* Rising edge of clock */
- eecd |= E1000_EECD_SK;
- E1000_WRITE_REG(hw, EECD, eecd);
- E1000_WRITE_FLUSH(hw);
- usec_delay(hw->eeprom.delay_usec);
-
- /* Falling edge of clock */
- eecd &= ~E1000_EECD_SK;
- E1000_WRITE_REG(hw, EECD, eecd);
- E1000_WRITE_FLUSH(hw);
- usec_delay(hw->eeprom.delay_usec);
- }
-
- /* Stop requesting EEPROM access */
- if (hw->mac_type > em_82544) {
- eecd &= ~E1000_EECD_REQ;
- E1000_WRITE_REG(hw, EECD, eecd);
- }
-
- em_swfw_sync_release(hw, E1000_SWFW_EEP_SM);
-}
-
-/******************************************************************************
- * Reads a 16 bit word from the EEPROM.
- *
- * hw - Struct containing variables accessed by shared code
- *****************************************************************************/
-int32_t
-em_spi_eeprom_ready(struct em_hw *hw)
-{
- uint16_t retry_count = 0;
- uint8_t spi_stat_reg;
-
- DEBUGFUNC("em_spi_eeprom_ready");
-
- /* Read "Status Register" repeatedly until the LSB is cleared. The
- * EEPROM will signal that the command has been completed by clearing
- * bit 0 of the internal status register. If it's not cleared within
- * 5 milliseconds, then error out.
- */
- retry_count = 0;
- do {
- em_shift_out_ee_bits(hw, EEPROM_RDSR_OPCODE_SPI,
- hw->eeprom.opcode_bits);
- spi_stat_reg = (uint8_t)em_shift_in_ee_bits(hw, 8);
- if (!(spi_stat_reg & EEPROM_STATUS_RDY_SPI))
- break;
-
- usec_delay(5);
- retry_count += 5;
-
- em_standby_eeprom(hw);
- } while (retry_count < EEPROM_MAX_RETRY_SPI);
-
- /* ATMEL SPI write time could vary from 0-20mSec on 3.3V devices (and
- * only 0-5mSec on 5V devices)
- */
- if (retry_count >= EEPROM_MAX_RETRY_SPI) {
- DEBUGOUT("SPI EEPROM Status error\n");
- return -E1000_ERR_EEPROM;
- }
-
- return E1000_SUCCESS;
-}
-
-/******************************************************************************
- * Reads a 16 bit word from the EEPROM.
- *
- * hw - Struct containing variables accessed by shared code
- * offset - offset of word in the EEPROM to read
- * data - word read from the EEPROM
- * words - number of words to read
- *****************************************************************************/
-int32_t
-em_read_eeprom(struct em_hw *hw,
- uint16_t offset,
- uint16_t words,
- uint16_t *data)
-{
- struct em_eeprom_info *eeprom = &hw->eeprom;
- uint32_t i = 0;
- int32_t ret_val;
-
- DEBUGFUNC("em_read_eeprom");
-
- /* A check for invalid values: offset too large, too many words, and not
- * enough words.
- */
- if ((offset >= eeprom->word_size) || (words > eeprom->word_size - offset) ||
- (words == 0)) {
- DEBUGOUT("\"words\" parameter out of bounds\n");
- return -E1000_ERR_EEPROM;
- }
-
- /* FLASH reads without acquiring the semaphore are safe */
- if (em_is_onboard_nvm_eeprom(hw) == TRUE &&
- hw->eeprom.use_eerd == FALSE) {
- switch (hw->mac_type) {
- case em_80003es2lan:
- break;
- default:
- /* Prepare the EEPROM for reading */
- if (em_acquire_eeprom(hw) != E1000_SUCCESS)
- return -E1000_ERR_EEPROM;
- break;
- }
- }
-
- if (eeprom->use_eerd == TRUE) {
- ret_val = em_read_eeprom_eerd(hw, offset, words, data);
- if ((em_is_onboard_nvm_eeprom(hw) == TRUE) ||
- (hw->mac_type != em_82573))
- em_release_eeprom(hw);
- return ret_val;
- }
-
- if (eeprom->type == em_eeprom_ich8)
- return em_read_eeprom_ich8(hw, offset, words, data);
-
- if (eeprom->type == em_eeprom_spi) {
- uint16_t word_in;
- uint8_t read_opcode = EEPROM_READ_OPCODE_SPI;
-
- if (em_spi_eeprom_ready(hw)) {
- em_release_eeprom(hw);
- return -E1000_ERR_EEPROM;
- }
-
- em_standby_eeprom(hw);
-
- /* Some SPI eeproms use the 8th address bit embedded in the opcode */
- if ((eeprom->address_bits == 8) && (offset >= 128))
- read_opcode |= EEPROM_A8_OPCODE_SPI;
-
- /* Send the READ command (opcode + addr) */
- em_shift_out_ee_bits(hw, read_opcode, eeprom->opcode_bits);
- em_shift_out_ee_bits(hw, (uint16_t)(offset*2), eeprom->address_bits);
-
- /* Read the data. The address of the eeprom internally increments with
- * each byte (spi) being read, saving on the overhead of eeprom setup
- * and tear-down. The address counter will roll over if reading beyond
- * the size of the eeprom, thus allowing the entire memory to be read
- * starting from any offset. */
- for (i = 0; i < words; i++) {
- word_in = em_shift_in_ee_bits(hw, 16);
- data[i] = (word_in >> 8) | (word_in << 8);
- }
- } else if (eeprom->type == em_eeprom_microwire) {
- for (i = 0; i < words; i++) {
- /* Send the READ command (opcode + addr) */
- em_shift_out_ee_bits(hw, EEPROM_READ_OPCODE_MICROWIRE,
- eeprom->opcode_bits);
- em_shift_out_ee_bits(hw, (uint16_t)(offset + i),
- eeprom->address_bits);
-
- /* Read the data. For microwire, each word requires the overhead
- * of eeprom setup and tear-down. */
- data[i] = em_shift_in_ee_bits(hw, 16);
- em_standby_eeprom(hw);
- }
- }
-
- /* End this read operation */
- em_release_eeprom(hw);
-
- return E1000_SUCCESS;
-}
-
-/******************************************************************************
- * Reads a 16 bit word from the EEPROM using the EERD register.
- *
- * hw - Struct containing variables accessed by shared code
- * offset - offset of word in the EEPROM to read
- * data - word read from the EEPROM
- * words - number of words to read
- *****************************************************************************/
-int32_t
-em_read_eeprom_eerd(struct em_hw *hw,
- uint16_t offset,
- uint16_t words,
- uint16_t *data)
-{
- uint32_t i, eerd = 0;
- int32_t error = 0;
-
- for (i = 0; i < words; i++) {
- eerd = ((offset+i) << E1000_EEPROM_RW_ADDR_SHIFT) +
- E1000_EEPROM_RW_REG_START;
-
- E1000_WRITE_REG(hw, EERD, eerd);
- error = em_poll_eerd_eewr_done(hw, E1000_EEPROM_POLL_READ);
-
- if (error) {
- break;
- }
- data[i] = (E1000_READ_REG(hw, EERD) >> E1000_EEPROM_RW_REG_DATA);
-
- }
-
- return error;
-}
-
-/******************************************************************************
- * Writes a 16 bit word from the EEPROM using the EEWR register.
- *
- * hw - Struct containing variables accessed by shared code
- * offset - offset of word in the EEPROM to read
- * data - word read from the EEPROM
- * words - number of words to read
- *****************************************************************************/
-int32_t
-em_write_eeprom_eewr(struct em_hw *hw,
- uint16_t offset,
- uint16_t words,
- uint16_t *data)
-{
- uint32_t register_value = 0;
- uint32_t i = 0;
- int32_t error = 0;
-
- if (em_swfw_sync_acquire(hw, E1000_SWFW_EEP_SM))
- return -E1000_ERR_SWFW_SYNC;
-
- for (i = 0; i < words; i++) {
- register_value = (data[i] << E1000_EEPROM_RW_REG_DATA) |
- ((offset+i) << E1000_EEPROM_RW_ADDR_SHIFT) |
- E1000_EEPROM_RW_REG_START;
-
- error = em_poll_eerd_eewr_done(hw, E1000_EEPROM_POLL_WRITE);
- if (error) {
- break;
- }
-
- E1000_WRITE_REG(hw, EEWR, register_value);
-
- error = em_poll_eerd_eewr_done(hw, E1000_EEPROM_POLL_WRITE);
-
- if (error) {
- break;
- }
- }
-
- em_swfw_sync_release(hw, E1000_SWFW_EEP_SM);
- return error;
-}
-
-/******************************************************************************
- * Polls the status bit (bit 1) of the EERD to determine when the read is done.
- *
- * hw - Struct containing variables accessed by shared code
- *****************************************************************************/
-int32_t
-em_poll_eerd_eewr_done(struct em_hw *hw, int eerd)
-{
- uint32_t attempts = 100000;
- uint32_t i, reg = 0;
- int32_t done = E1000_ERR_EEPROM;
-
- for (i = 0; i < attempts; i++) {
- if (eerd == E1000_EEPROM_POLL_READ)
- reg = E1000_READ_REG(hw, EERD);
- else
- reg = E1000_READ_REG(hw, EEWR);
-
- if (reg & E1000_EEPROM_RW_REG_DONE) {
- done = E1000_SUCCESS;
- break;
- }
- usec_delay(5);
- }
-
- return done;
-}
-
-/***************************************************************************
-* Description: Determines if the onboard NVM is FLASH or EEPROM.
-*
-* hw - Struct containing variables accessed by shared code
-****************************************************************************/
-boolean_t
-em_is_onboard_nvm_eeprom(struct em_hw *hw)
-{
- uint32_t eecd = 0;
-
- DEBUGFUNC("em_is_onboard_nvm_eeprom");
-
- if (hw->mac_type == em_ich8lan)
- return FALSE;
-
- if (hw->mac_type == em_82573) {
- eecd = E1000_READ_REG(hw, EECD);
-
- /* Isolate bits 15 & 16 */
- eecd = ((eecd >> 15) & 0x03);
-
- /* If both bits are set, device is Flash type */
- if (eecd == 0x03) {
- return FALSE;
- }
- }
- return TRUE;
-}
-
-/******************************************************************************
- * Verifies that the EEPROM has a valid checksum
- *
- * hw - Struct containing variables accessed by shared code
- *
- * Reads the first 64 16 bit words of the EEPROM and sums the values read.
- * If the the sum of the 64 16 bit words is 0xBABA, the EEPROM's checksum is
- * valid.
- *****************************************************************************/
-int32_t
-em_validate_eeprom_checksum(struct em_hw *hw)
-{
- uint16_t checksum = 0;
- uint16_t i, eeprom_data;
-
- DEBUGFUNC("em_validate_eeprom_checksum");
-
- if ((hw->mac_type == em_82573) &&
- (em_is_onboard_nvm_eeprom(hw) == FALSE)) {
- /* Check bit 4 of word 10h. If it is 0, firmware is done updating
- * 10h-12h. Checksum may need to be fixed. */
- em_read_eeprom(hw, 0x10, 1, &eeprom_data);
- if ((eeprom_data & 0x10) == 0) {
- /* Read 0x23 and check bit 15. This bit is a 1 when the checksum
- * has already been fixed. If the checksum is still wrong and this
- * bit is a 1, we need to return bad checksum. Otherwise, we need
- * to set this bit to a 1 and update the checksum. */
- em_read_eeprom(hw, 0x23, 1, &eeprom_data);
- if ((eeprom_data & 0x8000) == 0) {
- eeprom_data |= 0x8000;
- em_write_eeprom(hw, 0x23, 1, &eeprom_data);
- em_update_eeprom_checksum(hw);
- }
- }
- }
-
- if (hw->mac_type == em_ich8lan) {
- /* Drivers must allocate the shadow ram structure for the
- * EEPROM checksum to be updated. Otherwise, this bit as well
- * as the checksum must both be set correctly for this
- * validation to pass.
- */
- em_read_eeprom(hw, 0x19, 1, &eeprom_data);
- if ((eeprom_data & 0x40) == 0) {
- eeprom_data |= 0x40;
- em_write_eeprom(hw, 0x19, 1, &eeprom_data);
- em_update_eeprom_checksum(hw);
- }
- }
-
- for (i = 0; i < (EEPROM_CHECKSUM_REG + 1); i++) {
- if (em_read_eeprom(hw, i, 1, &eeprom_data) < 0) {
- DEBUGOUT("EEPROM Read Error\n");
- return -E1000_ERR_EEPROM;
- }
- checksum += eeprom_data;
- }
-
- if (checksum == (uint16_t) EEPROM_SUM)
- return E1000_SUCCESS;
- else {
- DEBUGOUT("EEPROM Checksum Invalid\n");
- return -E1000_ERR_EEPROM;
- }
-}
-
-/******************************************************************************
- * Calculates the EEPROM checksum and writes it to the EEPROM
- *
- * hw - Struct containing variables accessed by shared code
- *
- * Sums the first 63 16 bit words of the EEPROM. Subtracts the sum from 0xBABA.
- * Writes the difference to word offset 63 of the EEPROM.
- *****************************************************************************/
-int32_t
-em_update_eeprom_checksum(struct em_hw *hw)
-{
- uint32_t ctrl_ext;
- uint16_t checksum = 0;
- uint16_t i, eeprom_data;
-
- DEBUGFUNC("em_update_eeprom_checksum");
-
- for (i = 0; i < EEPROM_CHECKSUM_REG; i++) {
- if (em_read_eeprom(hw, i, 1, &eeprom_data) < 0) {
- DEBUGOUT("EEPROM Read Error\n");
- return -E1000_ERR_EEPROM;
- }
- checksum += eeprom_data;
- }
- checksum = (uint16_t) EEPROM_SUM - checksum;
- if (em_write_eeprom(hw, EEPROM_CHECKSUM_REG, 1, &checksum) < 0) {
- DEBUGOUT("EEPROM Write Error\n");
- return -E1000_ERR_EEPROM;
- } else if (hw->eeprom.type == em_eeprom_flash) {
- em_commit_shadow_ram(hw);
- } else if (hw->eeprom.type == em_eeprom_ich8) {
- em_commit_shadow_ram(hw);
- /* Reload the EEPROM, or else modifications will not appear
- * until after next adapter reset. */
- ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
- ctrl_ext |= E1000_CTRL_EXT_EE_RST;
- E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
- msec_delay(10);
- }
- return E1000_SUCCESS;
-}
-
-/******************************************************************************
- * Parent function for writing words to the different EEPROM types.
- *
- * hw - Struct containing variables accessed by shared code
- * offset - offset within the EEPROM to be written to
- * words - number of words to write
- * data - 16 bit word to be written to the EEPROM
- *
- * If em_update_eeprom_checksum is not called after this function, the
- * EEPROM will most likely contain an invalid checksum.
- *****************************************************************************/
-int32_t
-em_write_eeprom(struct em_hw *hw,
- uint16_t offset,
- uint16_t words,
- uint16_t *data)
-{
- struct em_eeprom_info *eeprom = &hw->eeprom;
- int32_t status = 0;
-
- DEBUGFUNC("em_write_eeprom");
-
- /* A check for invalid values: offset too large, too many words, and not
- * enough words.
- */
- if ((offset >= eeprom->word_size) || (words > eeprom->word_size - offset) ||
- (words == 0)) {
- DEBUGOUT("\"words\" parameter out of bounds\n");
- return -E1000_ERR_EEPROM;
- }
-
- /* 82573 writes only through eewr */
- if (eeprom->use_eewr == TRUE)
- return em_write_eeprom_eewr(hw, offset, words, data);
-
- if (eeprom->type == em_eeprom_ich8)
- return em_write_eeprom_ich8(hw, offset, words, data);
-
- /* Prepare the EEPROM for writing */
- if (em_acquire_eeprom(hw) != E1000_SUCCESS)
- return -E1000_ERR_EEPROM;
-
- if (eeprom->type == em_eeprom_microwire) {
- status = em_write_eeprom_microwire(hw, offset, words, data);
- } else {
- status = em_write_eeprom_spi(hw, offset, words, data);
- msec_delay(10);
- }
-
- /* Done with writing */
- em_release_eeprom(hw);
-
- return status;
-}
-
-/******************************************************************************
- * Writes a 16 bit word to a given offset in an SPI EEPROM.
- *
- * hw - Struct containing variables accessed by shared code
- * offset - offset within the EEPROM to be written to
- * words - number of words to write
- * data - pointer to array of 8 bit words to be written to the EEPROM
- *
- *****************************************************************************/
-int32_t
-em_write_eeprom_spi(struct em_hw *hw,
- uint16_t offset,
- uint16_t words,
- uint16_t *data)
-{
- struct em_eeprom_info *eeprom = &hw->eeprom;
- uint16_t widx = 0;
-
- DEBUGFUNC("em_write_eeprom_spi");
-
- while (widx < words) {
- uint8_t write_opcode = EEPROM_WRITE_OPCODE_SPI;
-
- if (em_spi_eeprom_ready(hw)) return -E1000_ERR_EEPROM;
-
- em_standby_eeprom(hw);
-
- /* Send the WRITE ENABLE command (8 bit opcode ) */
- em_shift_out_ee_bits(hw, EEPROM_WREN_OPCODE_SPI,
- eeprom->opcode_bits);
-
- em_standby_eeprom(hw);
-
- /* Some SPI eeproms use the 8th address bit embedded in the opcode */
- if ((eeprom->address_bits == 8) && (offset >= 128))
- write_opcode |= EEPROM_A8_OPCODE_SPI;
-
- /* Send the Write command (8-bit opcode + addr) */
- em_shift_out_ee_bits(hw, write_opcode, eeprom->opcode_bits);
-
- em_shift_out_ee_bits(hw, (uint16_t)((offset + widx)*2),
- eeprom->address_bits);
-
- /* Send the data */
-
- /* Loop to allow for up to whole page write (32 bytes) of eeprom */
- while (widx < words) {
- uint16_t word_out = data[widx];
- word_out = (word_out >> 8) | (word_out << 8);
- em_shift_out_ee_bits(hw, word_out, 16);
- widx++;
-
- /* Some larger eeprom sizes are capable of a 32-byte PAGE WRITE
- * operation, while the smaller eeproms are capable of an 8-byte
- * PAGE WRITE operation. Break the inner loop to pass new address
- */
- if ((((offset + widx)*2) % eeprom->page_size) == 0) {
- em_standby_eeprom(hw);
- break;
- }
- }
- }
-
- return E1000_SUCCESS;
-}
-
-/******************************************************************************
- * Writes a 16 bit word to a given offset in a Microwire EEPROM.
- *
- * hw - Struct containing variables accessed by shared code
- * offset - offset within the EEPROM to be written to
- * words - number of words to write
- * data - pointer to array of 16 bit words to be written to the EEPROM
- *
- *****************************************************************************/
-int32_t
-em_write_eeprom_microwire(struct em_hw *hw,
- uint16_t offset,
- uint16_t words,
- uint16_t *data)
-{
- struct em_eeprom_info *eeprom = &hw->eeprom;
- uint32_t eecd;
- uint16_t words_written = 0;
- uint16_t i = 0;
-
- DEBUGFUNC("em_write_eeprom_microwire");
-
- /* Send the write enable command to the EEPROM (3-bit opcode plus
- * 6/8-bit dummy address beginning with 11). It's less work to include
- * the 11 of the dummy address as part of the opcode than it is to shift
- * it over the correct number of bits for the address. This puts the
- * EEPROM into write/erase mode.
- */
- em_shift_out_ee_bits(hw, EEPROM_EWEN_OPCODE_MICROWIRE,
- (uint16_t)(eeprom->opcode_bits + 2));
-
- em_shift_out_ee_bits(hw, 0, (uint16_t)(eeprom->address_bits - 2));
-
- /* Prepare the EEPROM */
- em_standby_eeprom(hw);
-
- while (words_written < words) {
- /* Send the Write command (3-bit opcode + addr) */
- em_shift_out_ee_bits(hw, EEPROM_WRITE_OPCODE_MICROWIRE,
- eeprom->opcode_bits);
-
- em_shift_out_ee_bits(hw, (uint16_t)(offset + words_written),
- eeprom->address_bits);
-
- /* Send the data */
- em_shift_out_ee_bits(hw, data[words_written], 16);
-
- /* Toggle the CS line. This in effect tells the EEPROM to execute
- * the previous command.
- */
- em_standby_eeprom(hw);
-
- /* Read DO repeatedly until it is high (equal to '1'). The EEPROM will
- * signal that the command has been completed by raising the DO signal.
- * If DO does not go high in 10 milliseconds, then error out.
- */
- for (i = 0; i < 200; i++) {
- eecd = E1000_READ_REG(hw, EECD);
- if (eecd & E1000_EECD_DO) break;
- usec_delay(50);
- }
- if (i == 200) {
- DEBUGOUT("EEPROM Write did not complete\n");
- return -E1000_ERR_EEPROM;
- }
-
- /* Recover from write */
- em_standby_eeprom(hw);
-
- words_written++;
- }
-
- /* Send the write disable command to the EEPROM (3-bit opcode plus
- * 6/8-bit dummy address beginning with 10). It's less work to include
- * the 10 of the dummy address as part of the opcode than it is to shift
- * it over the correct number of bits for the address. This takes the
- * EEPROM out of write/erase mode.
- */
- em_shift_out_ee_bits(hw, EEPROM_EWDS_OPCODE_MICROWIRE,
- (uint16_t)(eeprom->opcode_bits + 2));
-
- em_shift_out_ee_bits(hw, 0, (uint16_t)(eeprom->address_bits - 2));
-
- return E1000_SUCCESS;
-}
-
-/******************************************************************************
- * Flushes the cached eeprom to NVM. This is done by saving the modified values
- * in the eeprom cache and the non modified values in the currently active bank
- * to the new bank.
- *
- * hw - Struct containing variables accessed by shared code
- * offset - offset of word in the EEPROM to read
- * data - word read from the EEPROM
- * words - number of words to read
- *****************************************************************************/
-int32_t
-em_commit_shadow_ram(struct em_hw *hw)
-{
- uint32_t attempts = 100000;
- uint32_t eecd = 0;
- uint32_t flop = 0;
- uint32_t i = 0;
- int32_t error = E1000_SUCCESS;
- uint32_t old_bank_offset = 0;
- uint32_t new_bank_offset = 0;
- uint32_t sector_retries = 0;
- uint8_t low_byte = 0;
- uint8_t high_byte = 0;
- uint8_t temp_byte = 0;
- boolean_t sector_write_failed = FALSE;
-
- if (hw->mac_type == em_82573) {
- /* The flop register will be used to determine if flash type is STM */
- flop = E1000_READ_REG(hw, FLOP);
- for (i=0; i < attempts; i++) {
- eecd = E1000_READ_REG(hw, EECD);
- if ((eecd & E1000_EECD_FLUPD) == 0) {
- break;
- }
- usec_delay(5);
- }
-
- if (i == attempts) {
- return -E1000_ERR_EEPROM;
- }
-
- /* If STM opcode located in bits 15:8 of flop, reset firmware */
- if ((flop & 0xFF00) == E1000_STM_OPCODE) {
- E1000_WRITE_REG(hw, HICR, E1000_HICR_FW_RESET);
- }
-
- /* Perform the flash update */
- E1000_WRITE_REG(hw, EECD, eecd | E1000_EECD_FLUPD);
-
- for (i=0; i < attempts; i++) {
- eecd = E1000_READ_REG(hw, EECD);
- if ((eecd & E1000_EECD_FLUPD) == 0) {
- break;
- }
- usec_delay(5);
- }
-
- if (i == attempts) {
- return -E1000_ERR_EEPROM;
- }
- }
-
- if (hw->mac_type == em_ich8lan && hw->eeprom_shadow_ram != NULL) {
- /* We're writing to the opposite bank so if we're on bank 1,
- * write to bank 0 etc. We also need to erase the segment that
- * is going to be written */
- if (!(E1000_READ_REG(hw, EECD) & E1000_EECD_SEC1VAL)) {
- new_bank_offset = hw->flash_bank_size * 2;
- old_bank_offset = 0;
- em_erase_ich8_4k_segment(hw, 1);
- } else {
- old_bank_offset = hw->flash_bank_size * 2;
- new_bank_offset = 0;
- em_erase_ich8_4k_segment(hw, 0);
- }
-
- do {
- sector_write_failed = FALSE;
- /* Loop for every byte in the shadow RAM,
- * which is in units of words. */
- for (i = 0; i < E1000_SHADOW_RAM_WORDS; i++) {
- /* Determine whether to write the value stored
- * in the other NVM bank or a modified value stored
- * in the shadow RAM */
- if (hw->eeprom_shadow_ram[i].modified == TRUE) {
- low_byte = (uint8_t)hw->eeprom_shadow_ram[i].eeprom_word;
- em_read_ich8_byte(hw, (i << 1) + old_bank_offset,
- &temp_byte);
- usec_delay(100);
- error = em_verify_write_ich8_byte(hw,
- (i << 1) + new_bank_offset,
- low_byte);
- if (error != E1000_SUCCESS)
- sector_write_failed = TRUE;
- high_byte =
- (uint8_t)(hw->eeprom_shadow_ram[i].eeprom_word >> 8);
- em_read_ich8_byte(hw, (i << 1) + old_bank_offset + 1,
- &temp_byte);
- usec_delay(100);
- } else {
- em_read_ich8_byte(hw, (i << 1) + old_bank_offset,
- &low_byte);
- usec_delay(100);
- error = em_verify_write_ich8_byte(hw,
- (i << 1) + new_bank_offset, low_byte);
- if (error != E1000_SUCCESS)
- sector_write_failed = TRUE;
- em_read_ich8_byte(hw, (i << 1) + old_bank_offset + 1,
- &high_byte);
- }
-
- /* If the word is 0x13, then make sure the signature bits
- * (15:14) are 11b until the commit has completed.
- * This will allow us to write 10b which indicates the
- * signature is valid. We want to do this after the write
- * has completed so that we don't mark the segment valid
- * while the write is still in progress */
- if (i == E1000_ICH8_NVM_SIG_WORD)
- high_byte = E1000_ICH8_NVM_SIG_MASK | high_byte;
-
- error = em_verify_write_ich8_byte(hw,
- (i << 1) + new_bank_offset + 1, high_byte);
- if (error != E1000_SUCCESS)
- sector_write_failed = TRUE;
-
- if (sector_write_failed == FALSE) {
- /* Clear the now not used entry in the cache */
- hw->eeprom_shadow_ram[i].modified = FALSE;
- hw->eeprom_shadow_ram[i].eeprom_word = 0xFFFF;
- }
- }
-
- /* Don't bother writing the segment valid bits if sector
- * programming failed. */
- if (sector_write_failed == FALSE) {
- /* Finally validate the new segment by setting bit 15:14
- * to 10b in word 0x13 , this can be done without an
- * erase as well since these bits are 11 to start with
- * and we need to change bit 14 to 0b */
- em_read_ich8_byte(hw,
- E1000_ICH8_NVM_SIG_WORD * 2 + 1 + new_bank_offset,
- &high_byte);
- high_byte &= 0xBF;
- error = em_verify_write_ich8_byte(hw,
- E1000_ICH8_NVM_SIG_WORD * 2 + 1 + new_bank_offset,
- high_byte);
- if (error != E1000_SUCCESS)
- sector_write_failed = TRUE;
-
- /* And invalidate the previously valid segment by setting
- * its signature word (0x13) high_byte to 0b. This can be
- * done without an erase because flash erase sets all bits
- * to 1's. We can write 1's to 0's without an erase */
- error = em_verify_write_ich8_byte(hw,
- E1000_ICH8_NVM_SIG_WORD * 2 + 1 + old_bank_offset,
- 0);
- if (error != E1000_SUCCESS)
- sector_write_failed = TRUE;
- }
- } while (++sector_retries < 10 && sector_write_failed == TRUE);
- }
-
- return error;
-}
-
-/******************************************************************************
- * Reads the adapter's part number from the EEPROM
- *
- * hw - Struct containing variables accessed by shared code
- * part_num - Adapter's part number
- *****************************************************************************/
-int32_t
-em_read_part_num(struct em_hw *hw,
- uint32_t *part_num)
-{
- uint16_t offset = EEPROM_PBA_BYTE_1;
- uint16_t eeprom_data;
-
- DEBUGFUNC("em_read_part_num");
-
- /* Get word 0 from EEPROM */
- if (em_read_eeprom(hw, offset, 1, &eeprom_data) < 0) {
- DEBUGOUT("EEPROM Read Error\n");
- return -E1000_ERR_EEPROM;
- }
- /* Save word 0 in upper half of part_num */
- *part_num = (uint32_t) (eeprom_data << 16);
-
- /* Get word 1 from EEPROM */
- if (em_read_eeprom(hw, ++offset, 1, &eeprom_data) < 0) {
- DEBUGOUT("EEPROM Read Error\n");
- return -E1000_ERR_EEPROM;
- }
- /* Save word 1 in lower half of part_num */
- *part_num |= eeprom_data;
-
- return E1000_SUCCESS;
-}
-
-/******************************************************************************
- * Reads the adapter's MAC address from the EEPROM and inverts the LSB for the
- * second function of dual function devices
- *
- * hw - Struct containing variables accessed by shared code
- *****************************************************************************/
-int32_t
-em_read_mac_addr(struct em_hw * hw)
-{
- uint16_t offset;
- uint16_t eeprom_data, i;
-
- DEBUGFUNC("em_read_mac_addr");
-
- for (i = 0; i < NODE_ADDRESS_SIZE; i += 2) {
- offset = i >> 1;
- if (em_read_eeprom(hw, offset, 1, &eeprom_data) < 0) {
- DEBUGOUT("EEPROM Read Error\n");
- return -E1000_ERR_EEPROM;
- }
- hw->perm_mac_addr[i] = (uint8_t) (eeprom_data & 0x00FF);
- hw->perm_mac_addr[i+1] = (uint8_t) (eeprom_data >> 8);
- }
-
- switch (hw->mac_type) {
- default:
- break;
- case em_82546:
- case em_82546_rev_3:
- case em_82571:
- case em_80003es2lan:
- if (E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1)
- hw->perm_mac_addr[5] ^= 0x01;
- break;
- }
-
- for (i = 0; i < NODE_ADDRESS_SIZE; i++)
- hw->mac_addr[i] = hw->perm_mac_addr[i];
- return E1000_SUCCESS;
-}
-
-/******************************************************************************
- * Initializes receive address filters.
- *
- * hw - Struct containing variables accessed by shared code
- *
- * Places the MAC address in receive address register 0 and clears the rest
- * of the receive addresss registers. Clears the multicast table. Assumes
- * the receiver is in reset when the routine is called.
- *****************************************************************************/
-void
-em_init_rx_addrs(struct em_hw *hw)
-{
- uint32_t i;
- uint32_t rar_num;
-
- DEBUGFUNC("em_init_rx_addrs");
-
- /* Setup the receive address. */
- DEBUGOUT("Programming MAC Address into RAR[0]\n");
-
- em_rar_set(hw, hw->mac_addr, 0);
-
- rar_num = E1000_RAR_ENTRIES;
-
- /* Reserve a spot for the Locally Administered Address to work around
- * an 82571 issue in which a reset on one port will reload the MAC on
- * the other port. */
- if ((hw->mac_type == em_82571) && (hw->laa_is_present == TRUE))
- rar_num -= 1;
- if (hw->mac_type == em_ich8lan)
- rar_num = E1000_RAR_ENTRIES_ICH8LAN;
-
- /* Zero out the other 15 receive addresses. */
- DEBUGOUT("Clearing RAR[1-15]\n");
- for (i = 1; i < rar_num; i++) {
- E1000_WRITE_REG_ARRAY(hw, RA, (i << 1), 0);
- E1000_WRITE_FLUSH(hw);
- E1000_WRITE_REG_ARRAY(hw, RA, ((i << 1) + 1), 0);
- E1000_WRITE_FLUSH(hw);
- }
-}
-
-/******************************************************************************
- * Updates the MAC's list of multicast addresses.
- *
- * hw - Struct containing variables accessed by shared code
- * mc_addr_list - the list of new multicast addresses
- * mc_addr_count - number of addresses
- * pad - number of bytes between addresses in the list
- * rar_used_count - offset where to start adding mc addresses into the RAR's
- *
- * The given list replaces any existing list. Clears the last 15 receive
- * address registers and the multicast table. Uses receive address registers
- * for the first 15 multicast addresses, and hashes the rest into the
- * multicast table.
- *****************************************************************************/
-void
-em_mc_addr_list_update(struct em_hw *hw,
- uint8_t *mc_addr_list,
- uint32_t mc_addr_count,
- uint32_t pad,
- uint32_t rar_used_count)
-{
- uint32_t hash_value;
- uint32_t i;
- uint32_t num_rar_entry;
- uint32_t num_mta_entry;
-
- DEBUGFUNC("em_mc_addr_list_update");
-
- /* Set the new number of MC addresses that we are being requested to use. */
- hw->num_mc_addrs = mc_addr_count;
-
- /* Clear RAR[1-15] */
- DEBUGOUT(" Clearing RAR[1-15]\n");
- num_rar_entry = E1000_RAR_ENTRIES;
- if (hw->mac_type == em_ich8lan)
- num_rar_entry = E1000_RAR_ENTRIES_ICH8LAN;
- /* Reserve a spot for the Locally Administered Address to work around
- * an 82571 issue in which a reset on one port will reload the MAC on
- * the other port. */
- if ((hw->mac_type == em_82571) && (hw->laa_is_present == TRUE))
- num_rar_entry -= 1;
-
- for (i = rar_used_count; i < num_rar_entry; i++) {
- E1000_WRITE_REG_ARRAY(hw, RA, (i << 1), 0);
- E1000_WRITE_FLUSH(hw);
- E1000_WRITE_REG_ARRAY(hw, RA, ((i << 1) + 1), 0);
- E1000_WRITE_FLUSH(hw);
- }
-
- /* Clear the MTA */
- DEBUGOUT(" Clearing MTA\n");
- num_mta_entry = E1000_NUM_MTA_REGISTERS;
- if (hw->mac_type == em_ich8lan)
- num_mta_entry = E1000_NUM_MTA_REGISTERS_ICH8LAN;
- for (i = 0; i < num_mta_entry; i++) {
- E1000_WRITE_REG_ARRAY(hw, MTA, i, 0);
- E1000_WRITE_FLUSH(hw);
- }
-
- /* Add the new addresses */
- for (i = 0; i < mc_addr_count; i++) {
- DEBUGOUT(" Adding the multicast addresses:\n");
- DEBUGOUT7(" MC Addr #%d =%.2X %.2X %.2X %.2X %.2X %.2X\n", i,
- mc_addr_list[i * (ETH_LENGTH_OF_ADDRESS + pad)],
- mc_addr_list[i * (ETH_LENGTH_OF_ADDRESS + pad) + 1],
- mc_addr_list[i * (ETH_LENGTH_OF_ADDRESS + pad) + 2],
- mc_addr_list[i * (ETH_LENGTH_OF_ADDRESS + pad) + 3],
- mc_addr_list[i * (ETH_LENGTH_OF_ADDRESS + pad) + 4],
- mc_addr_list[i * (ETH_LENGTH_OF_ADDRESS + pad) + 5]);
-
- hash_value = em_hash_mc_addr(hw,
- mc_addr_list +
- (i * (ETH_LENGTH_OF_ADDRESS + pad)));
-
- DEBUGOUT1(" Hash value = 0x%03X\n", hash_value);
-
- /* Place this multicast address in the RAR if there is room, *
- * else put it in the MTA
- */
- if (rar_used_count < num_rar_entry) {
- em_rar_set(hw,
- mc_addr_list + (i * (ETH_LENGTH_OF_ADDRESS + pad)),
- rar_used_count);
- rar_used_count++;
- } else {
- em_mta_set(hw, hash_value);
- }
- }
- DEBUGOUT("MC Update Complete\n");
-}
-
-/******************************************************************************
- * Hashes an address to determine its location in the multicast table
- *
- * hw - Struct containing variables accessed by shared code
- * mc_addr - the multicast address to hash
- *****************************************************************************/
-uint32_t
-em_hash_mc_addr(struct em_hw *hw,
- uint8_t *mc_addr)
-{
- uint32_t hash_value = 0;
-
- /* The portion of the address that is used for the hash table is
- * determined by the mc_filter_type setting.
- */
- switch (hw->mc_filter_type) {
- /* [0] [1] [2] [3] [4] [5]
- * 01 AA 00 12 34 56
- * LSB MSB
- */
- case 0:
- if (hw->mac_type == em_ich8lan) {
- /* [47:38] i.e. 0x158 for above example address */
- hash_value = ((mc_addr[4] >> 6) | (((uint16_t) mc_addr[5]) << 2));
- } else {
- /* [47:36] i.e. 0x563 for above example address */
- hash_value = ((mc_addr[4] >> 4) | (((uint16_t) mc_addr[5]) << 4));
- }
- break;
- case 1:
- if (hw->mac_type == em_ich8lan) {
- /* [46:37] i.e. 0x2B1 for above example address */
- hash_value = ((mc_addr[4] >> 5) | (((uint16_t) mc_addr[5]) << 3));
- } else {
- /* [46:35] i.e. 0xAC6 for above example address */
- hash_value = ((mc_addr[4] >> 3) | (((uint16_t) mc_addr[5]) << 5));
- }
- break;
- case 2:
- if (hw->mac_type == em_ich8lan) {
- /*[45:36] i.e. 0x163 for above example address */
- hash_value = ((mc_addr[4] >> 4) | (((uint16_t) mc_addr[5]) << 4));
- } else {
- /* [45:34] i.e. 0x5D8 for above example address */
- hash_value = ((mc_addr[4] >> 2) | (((uint16_t) mc_addr[5]) << 6));
- }
- break;
- case 3:
- if (hw->mac_type == em_ich8lan) {
- /* [43:34] i.e. 0x18D for above example address */
- hash_value = ((mc_addr[4] >> 2) | (((uint16_t) mc_addr[5]) << 6));
- } else {
- /* [43:32] i.e. 0x634 for above example address */
- hash_value = ((mc_addr[4]) | (((uint16_t) mc_addr[5]) << 8));
- }
- break;
- }
-
- hash_value &= 0xFFF;
- if (hw->mac_type == em_ich8lan)
- hash_value &= 0x3FF;
-
- return hash_value;
-}
-
-/******************************************************************************
- * Sets the bit in the multicast table corresponding to the hash value.
- *
- * hw - Struct containing variables accessed by shared code
- * hash_value - Multicast address hash value
- *****************************************************************************/
-void
-em_mta_set(struct em_hw *hw,
- uint32_t hash_value)
-{
- uint32_t hash_bit, hash_reg;
- uint32_t mta;
- uint32_t temp;
-
- /* The MTA is a register array of 128 32-bit registers.
- * It is treated like an array of 4096 bits. We want to set
- * bit BitArray[hash_value]. So we figure out what register
- * the bit is in, read it, OR in the new bit, then write
- * back the new value. The register is determined by the
- * upper 7 bits of the hash value and the bit within that
- * register are determined by the lower 5 bits of the value.
- */
- hash_reg = (hash_value >> 5) & 0x7F;
- if (hw->mac_type == em_ich8lan)
- hash_reg &= 0x1F;
- hash_bit = hash_value & 0x1F;
-
- mta = E1000_READ_REG_ARRAY(hw, MTA, hash_reg);
-
- mta |= (1 << hash_bit);
-
- /* If we are on an 82544 and we are trying to write an odd offset
- * in the MTA, save off the previous entry before writing and
- * restore the old value after writing.
- */
- if ((hw->mac_type == em_82544) && ((hash_reg & 0x1) == 1)) {
- temp = E1000_READ_REG_ARRAY(hw, MTA, (hash_reg - 1));
- E1000_WRITE_REG_ARRAY(hw, MTA, hash_reg, mta);
- E1000_WRITE_FLUSH(hw);
- E1000_WRITE_REG_ARRAY(hw, MTA, (hash_reg - 1), temp);
- E1000_WRITE_FLUSH(hw);
- } else {
- E1000_WRITE_REG_ARRAY(hw, MTA, hash_reg, mta);
- E1000_WRITE_FLUSH(hw);
- }
-}
-
-/******************************************************************************
- * Puts an ethernet address into a receive address register.
- *
- * hw - Struct containing variables accessed by shared code
- * addr - Address to put into receive address register
- * index - Receive address register to write
- *****************************************************************************/
-void
-em_rar_set(struct em_hw *hw,
- uint8_t *addr,
- uint32_t index)
-{
- uint32_t rar_low, rar_high;
-
- /* HW expects these in little endian so we reverse the byte order
- * from network order (big endian) to little endian
- */
- rar_low = ((uint32_t) addr[0] |
- ((uint32_t) addr[1] << 8) |
- ((uint32_t) addr[2] << 16) | ((uint32_t) addr[3] << 24));
- rar_high = ((uint32_t) addr[4] | ((uint32_t) addr[5] << 8));
-
- /* Disable Rx and flush all Rx frames before enabling RSS to avoid Rx
- * unit hang.
- *
- * Description:
- * If there are any Rx frames queued up or otherwise present in the HW
- * before RSS is enabled, and then we enable RSS, the HW Rx unit will
- * hang. To work around this issue, we have to disable receives and
- * flush out all Rx frames before we enable RSS. To do so, we modify we
- * redirect all Rx traffic to manageability and then reset the HW.
- * This flushes away Rx frames, and (since the redirections to
- * manageability persists across resets) keeps new ones from coming in
- * while we work. Then, we clear the Address Valid AV bit for all MAC
- * addresses and undo the re-direction to manageability.
- * Now, frames are coming in again, but the MAC won't accept them, so
- * far so good. We now proceed to initialize RSS (if necessary) and
- * configure the Rx unit. Last, we re-enable the AV bits and continue
- * on our merry way.
- */
- switch (hw->mac_type) {
- case em_82571:
- case em_82572:
- case em_80003es2lan:
- if (hw->leave_av_bit_off == TRUE)
- break;
- default:
- /* Indicate to hardware the Address is Valid. */
- rar_high |= E1000_RAH_AV;
- break;
- }
-
- E1000_WRITE_REG_ARRAY(hw, RA, (index << 1), rar_low);
- E1000_WRITE_FLUSH(hw);
- E1000_WRITE_REG_ARRAY(hw, RA, ((index << 1) + 1), rar_high);
- E1000_WRITE_FLUSH(hw);
-}
-
-/******************************************************************************
- * Writes a value to the specified offset in the VLAN filter table.
- *
- * hw - Struct containing variables accessed by shared code
- * offset - Offset in VLAN filer table to write
- * value - Value to write into VLAN filter table
- *****************************************************************************/
-void
-em_write_vfta(struct em_hw *hw,
- uint32_t offset,
- uint32_t value)
-{
- uint32_t temp;
-
- if (hw->mac_type == em_ich8lan)
- return;
-
- if ((hw->mac_type == em_82544) && ((offset & 0x1) == 1)) {
- temp = E1000_READ_REG_ARRAY(hw, VFTA, (offset - 1));
- E1000_WRITE_REG_ARRAY(hw, VFTA, offset, value);
- E1000_WRITE_FLUSH(hw);
- E1000_WRITE_REG_ARRAY(hw, VFTA, (offset - 1), temp);
- E1000_WRITE_FLUSH(hw);
- } else {
- E1000_WRITE_REG_ARRAY(hw, VFTA, offset, value);
- E1000_WRITE_FLUSH(hw);
- }
-}
-
-/******************************************************************************
- * Clears the VLAN filer table
- *
- * hw - Struct containing variables accessed by shared code
- *****************************************************************************/
-void
-em_clear_vfta(struct em_hw *hw)
-{
- uint32_t offset;
- uint32_t vfta_value = 0;
- uint32_t vfta_offset = 0;
- uint32_t vfta_bit_in_reg = 0;
-
- if (hw->mac_type == em_ich8lan)
- return;
-
- if (hw->mac_type == em_82573) {
- if (hw->mng_cookie.vlan_id != 0) {
- /* The VFTA is a 4096b bit-field, each identifying a single VLAN
- * ID. The following operations determine which 32b entry
- * (i.e. offset) into the array we want to set the VLAN ID
- * (i.e. bit) of the manageability unit. */
- vfta_offset = (hw->mng_cookie.vlan_id >>
- E1000_VFTA_ENTRY_SHIFT) &
- E1000_VFTA_ENTRY_MASK;
- vfta_bit_in_reg = 1 << (hw->mng_cookie.vlan_id &
- E1000_VFTA_ENTRY_BIT_SHIFT_MASK);
- }
- }
- for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) {
- /* If the offset we want to clear is the same offset of the
- * manageability VLAN ID, then clear all bits except that of the
- * manageability unit */
- vfta_value = (offset == vfta_offset) ? vfta_bit_in_reg : 0;
- E1000_WRITE_REG_ARRAY(hw, VFTA, offset, vfta_value);
- E1000_WRITE_FLUSH(hw);
- }
-}
-
-int32_t
-em_id_led_init(struct em_hw * hw)
-{
- uint32_t ledctl;
- const uint32_t ledctl_mask = 0x000000FF;
- const uint32_t ledctl_on = E1000_LEDCTL_MODE_LED_ON;
- const uint32_t ledctl_off = E1000_LEDCTL_MODE_LED_OFF;
- uint16_t eeprom_data, i, temp;
- const uint16_t led_mask = 0x0F;
-
- DEBUGFUNC("em_id_led_init");
-
- if (hw->mac_type < em_82540) {
- /* Nothing to do */
- return E1000_SUCCESS;
- }
-
- ledctl = E1000_READ_REG(hw, LEDCTL);
- hw->ledctl_default = ledctl;
- hw->ledctl_mode1 = hw->ledctl_default;
- hw->ledctl_mode2 = hw->ledctl_default;
-
- if (em_read_eeprom(hw, EEPROM_ID_LED_SETTINGS, 1, &eeprom_data) < 0) {
- DEBUGOUT("EEPROM Read Error\n");
- return -E1000_ERR_EEPROM;
- }
-
- if ((hw->mac_type == em_82573) &&
- (eeprom_data == ID_LED_RESERVED_82573))
- eeprom_data = ID_LED_DEFAULT_82573;
- else if ((eeprom_data == ID_LED_RESERVED_0000) ||
- (eeprom_data == ID_LED_RESERVED_FFFF)) {
- if (hw->mac_type == em_ich8lan)
- eeprom_data = ID_LED_DEFAULT_ICH8LAN;
- else
- eeprom_data = ID_LED_DEFAULT;
- }
- for (i = 0; i < 4; i++) {
- temp = (eeprom_data >> (i << 2)) & led_mask;
- switch (temp) {
- case ID_LED_ON1_DEF2:
- case ID_LED_ON1_ON2:
- case ID_LED_ON1_OFF2:
- hw->ledctl_mode1 &= ~(ledctl_mask << (i << 3));
- hw->ledctl_mode1 |= ledctl_on << (i << 3);
- break;
- case ID_LED_OFF1_DEF2:
- case ID_LED_OFF1_ON2:
- case ID_LED_OFF1_OFF2:
- hw->ledctl_mode1 &= ~(ledctl_mask << (i << 3));
- hw->ledctl_mode1 |= ledctl_off << (i << 3);
- break;
- default:
- /* Do nothing */
- break;
- }
- switch (temp) {
- case ID_LED_DEF1_ON2:
- case ID_LED_ON1_ON2:
- case ID_LED_OFF1_ON2:
- hw->ledctl_mode2 &= ~(ledctl_mask << (i << 3));
- hw->ledctl_mode2 |= ledctl_on << (i << 3);
- break;
- case ID_LED_DEF1_OFF2:
- case ID_LED_ON1_OFF2:
- case ID_LED_OFF1_OFF2:
- hw->ledctl_mode2 &= ~(ledctl_mask << (i << 3));
- hw->ledctl_mode2 |= ledctl_off << (i << 3);
- break;
- default:
- /* Do nothing */
- break;
- }
- }
- return E1000_SUCCESS;
-}
-
-/******************************************************************************
- * Prepares SW controlable LED for use and saves the current state of the LED.
- *
- * hw - Struct containing variables accessed by shared code
- *****************************************************************************/
-int32_t
-em_setup_led(struct em_hw *hw)
-{
- uint32_t ledctl;
- int32_t ret_val = E1000_SUCCESS;
-
- DEBUGFUNC("em_setup_led");
-
- switch (hw->mac_type) {
- case em_82542_rev2_0:
- case em_82542_rev2_1:
- case em_82543:
- case em_82544:
- /* No setup necessary */
- break;
- case em_82541:
- case em_82547:
- case em_82541_rev_2:
- case em_82547_rev_2:
- /* Turn off PHY Smart Power Down (if enabled) */
- ret_val = em_read_phy_reg(hw, IGP01E1000_GMII_FIFO,
- &hw->phy_spd_default);
- if (ret_val)
- return ret_val;
- ret_val = em_write_phy_reg(hw, IGP01E1000_GMII_FIFO,
- (uint16_t)(hw->phy_spd_default &
- ~IGP01E1000_GMII_SPD));
- if (ret_val)
- return ret_val;
- /* Fall Through */
- default:
- if (hw->media_type == em_media_type_fiber) {
- ledctl = E1000_READ_REG(hw, LEDCTL);
- /* Save current LEDCTL settings */
- hw->ledctl_default = ledctl;
- /* Turn off LED0 */
- ledctl &= ~(E1000_LEDCTL_LED0_IVRT |
- E1000_LEDCTL_LED0_BLINK |
- E1000_LEDCTL_LED0_MODE_MASK);
- ledctl |= (E1000_LEDCTL_MODE_LED_OFF <<
- E1000_LEDCTL_LED0_MODE_SHIFT);
- E1000_WRITE_REG(hw, LEDCTL, ledctl);
- } else if (hw->media_type == em_media_type_copper)
- E1000_WRITE_REG(hw, LEDCTL, hw->ledctl_mode1);
- break;
- }
-
- return E1000_SUCCESS;
-}
-
-
-/******************************************************************************
- * Used on 82571 and later Si that has LED blink bits.
- * Callers must use their own timer and should have already called
- * em_id_led_init()
- * Call em_cleanup led() to stop blinking
- *
- * hw - Struct containing variables accessed by shared code
- *****************************************************************************/
-int32_t
-em_blink_led_start(struct em_hw *hw)
-{
- int16_t i;
- uint32_t ledctl_blink = 0;
-
- DEBUGFUNC("em_id_led_blink_on");
-
- if (hw->mac_type < em_82571) {
- /* Nothing to do */
- return E1000_SUCCESS;
- }
- if (hw->media_type == em_media_type_fiber) {
- /* always blink LED0 for PCI-E fiber */
- ledctl_blink = E1000_LEDCTL_LED0_BLINK |
- (E1000_LEDCTL_MODE_LED_ON << E1000_LEDCTL_LED0_MODE_SHIFT);
- } else {
- /* set the blink bit for each LED that's "on" (0x0E) in ledctl_mode2 */
- ledctl_blink = hw->ledctl_mode2;
- for (i=0; i < 4; i++)
- if (((hw->ledctl_mode2 >> (i * 8)) & 0xFF) ==
- E1000_LEDCTL_MODE_LED_ON)
- ledctl_blink |= (E1000_LEDCTL_LED0_BLINK << (i * 8));
- }
-
- E1000_WRITE_REG(hw, LEDCTL, ledctl_blink);
-
- return E1000_SUCCESS;
-}
-
-/******************************************************************************
- * Restores the saved state of the SW controlable LED.
- *
- * hw - Struct containing variables accessed by shared code
- *****************************************************************************/
-int32_t
-em_cleanup_led(struct em_hw *hw)
-{
- int32_t ret_val = E1000_SUCCESS;
-
- DEBUGFUNC("em_cleanup_led");
-
- switch (hw->mac_type) {
- case em_82542_rev2_0:
- case em_82542_rev2_1:
- case em_82543:
- case em_82544:
- /* No cleanup necessary */
- break;
- case em_82541:
- case em_82547:
- case em_82541_rev_2:
- case em_82547_rev_2:
- /* Turn on PHY Smart Power Down (if previously enabled) */
- ret_val = em_write_phy_reg(hw, IGP01E1000_GMII_FIFO,
- hw->phy_spd_default);
- if (ret_val)
- return ret_val;
- /* Fall Through */
- default:
- if (hw->phy_type == em_phy_ife) {
- em_write_phy_reg(hw, IFE_PHY_SPECIAL_CONTROL_LED, 0);
- break;
- }
- /* Restore LEDCTL settings */
- E1000_WRITE_REG(hw, LEDCTL, hw->ledctl_default);
- break;
- }
-
- return E1000_SUCCESS;
-}
-
-/******************************************************************************
- * Turns on the software controllable LED
- *
- * hw - Struct containing variables accessed by shared code
- *****************************************************************************/
-int32_t
-em_led_on(struct em_hw *hw)
-{
- uint32_t ctrl = E1000_READ_REG(hw, CTRL);
-
- DEBUGFUNC("em_led_on");
-
- switch (hw->mac_type) {
- case em_82542_rev2_0:
- case em_82542_rev2_1:
- case em_82543:
- /* Set SW Defineable Pin 0 to turn on the LED */
- ctrl |= E1000_CTRL_SWDPIN0;
- ctrl |= E1000_CTRL_SWDPIO0;
- break;
- case em_82544:
- if (hw->media_type == em_media_type_fiber) {
- /* Set SW Defineable Pin 0 to turn on the LED */
- ctrl |= E1000_CTRL_SWDPIN0;
- ctrl |= E1000_CTRL_SWDPIO0;
- } else {
- /* Clear SW Defineable Pin 0 to turn on the LED */
- ctrl &= ~E1000_CTRL_SWDPIN0;
- ctrl |= E1000_CTRL_SWDPIO0;
- }
- break;
- default:
- if (hw->media_type == em_media_type_fiber) {
- /* Clear SW Defineable Pin 0 to turn on the LED */
- ctrl &= ~E1000_CTRL_SWDPIN0;
- ctrl |= E1000_CTRL_SWDPIO0;
- } else if (hw->phy_type == em_phy_ife) {
- em_write_phy_reg(hw, IFE_PHY_SPECIAL_CONTROL_LED,
- (IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_ON));
- } else if (hw->media_type == em_media_type_copper) {
- E1000_WRITE_REG(hw, LEDCTL, hw->ledctl_mode2);
- return E1000_SUCCESS;
- }
- break;
- }
-
- E1000_WRITE_REG(hw, CTRL, ctrl);
-
- return E1000_SUCCESS;
-}
-
-/******************************************************************************
- * Turns off the software controllable LED
- *
- * hw - Struct containing variables accessed by shared code
- *****************************************************************************/
-int32_t
-em_led_off(struct em_hw *hw)
-{
- uint32_t ctrl = E1000_READ_REG(hw, CTRL);
-
- DEBUGFUNC("em_led_off");
-
- switch (hw->mac_type) {
- case em_82542_rev2_0:
- case em_82542_rev2_1:
- case em_82543:
- /* Clear SW Defineable Pin 0 to turn off the LED */
- ctrl &= ~E1000_CTRL_SWDPIN0;
- ctrl |= E1000_CTRL_SWDPIO0;
- break;
- case em_82544:
- if (hw->media_type == em_media_type_fiber) {
- /* Clear SW Defineable Pin 0 to turn off the LED */
- ctrl &= ~E1000_CTRL_SWDPIN0;
- ctrl |= E1000_CTRL_SWDPIO0;
- } else {
- /* Set SW Defineable Pin 0 to turn off the LED */
- ctrl |= E1000_CTRL_SWDPIN0;
- ctrl |= E1000_CTRL_SWDPIO0;
- }
- break;
- default:
- if (hw->media_type == em_media_type_fiber) {
- /* Set SW Defineable Pin 0 to turn off the LED */
- ctrl |= E1000_CTRL_SWDPIN0;
- ctrl |= E1000_CTRL_SWDPIO0;
- } else if (hw->phy_type == em_phy_ife) {
- em_write_phy_reg(hw, IFE_PHY_SPECIAL_CONTROL_LED,
- (IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_OFF));
- } else if (hw->media_type == em_media_type_copper) {
- E1000_WRITE_REG(hw, LEDCTL, hw->ledctl_mode1);
- return E1000_SUCCESS;
- }
- break;
- }
-
- E1000_WRITE_REG(hw, CTRL, ctrl);
-
- return E1000_SUCCESS;
-}
-
-/******************************************************************************
- * Clears all hardware statistics counters.
- *
- * hw - Struct containing variables accessed by shared code
- *****************************************************************************/
-void
-em_clear_hw_cntrs(struct em_hw *hw)
-{
- volatile uint32_t temp;
-
- temp = E1000_READ_REG(hw, CRCERRS);
- temp = E1000_READ_REG(hw, SYMERRS);
- temp = E1000_READ_REG(hw, MPC);
- temp = E1000_READ_REG(hw, SCC);
- temp = E1000_READ_REG(hw, ECOL);
- temp = E1000_READ_REG(hw, MCC);
- temp = E1000_READ_REG(hw, LATECOL);
- temp = E1000_READ_REG(hw, COLC);
- temp = E1000_READ_REG(hw, DC);
- temp = E1000_READ_REG(hw, SEC);
- temp = E1000_READ_REG(hw, RLEC);
- temp = E1000_READ_REG(hw, XONRXC);
- temp = E1000_READ_REG(hw, XONTXC);
- temp = E1000_READ_REG(hw, XOFFRXC);
- temp = E1000_READ_REG(hw, XOFFTXC);
- temp = E1000_READ_REG(hw, FCRUC);
-
- if (hw->mac_type != em_ich8lan) {
- temp = E1000_READ_REG(hw, PRC64);
- temp = E1000_READ_REG(hw, PRC127);
- temp = E1000_READ_REG(hw, PRC255);
- temp = E1000_READ_REG(hw, PRC511);
- temp = E1000_READ_REG(hw, PRC1023);
- temp = E1000_READ_REG(hw, PRC1522);
- }
-
- temp = E1000_READ_REG(hw, GPRC);
- temp = E1000_READ_REG(hw, BPRC);
- temp = E1000_READ_REG(hw, MPRC);
- temp = E1000_READ_REG(hw, GPTC);
- temp = E1000_READ_REG(hw, GORCL);
- temp = E1000_READ_REG(hw, GORCH);
- temp = E1000_READ_REG(hw, GOTCL);
- temp = E1000_READ_REG(hw, GOTCH);
- temp = E1000_READ_REG(hw, RNBC);
- temp = E1000_READ_REG(hw, RUC);
- temp = E1000_READ_REG(hw, RFC);
- temp = E1000_READ_REG(hw, ROC);
- temp = E1000_READ_REG(hw, RJC);
- temp = E1000_READ_REG(hw, TORL);
- temp = E1000_READ_REG(hw, TORH);
- temp = E1000_READ_REG(hw, TOTL);
- temp = E1000_READ_REG(hw, TOTH);
- temp = E1000_READ_REG(hw, TPR);
- temp = E1000_READ_REG(hw, TPT);
-
- if (hw->mac_type != em_ich8lan) {
- temp = E1000_READ_REG(hw, PTC64);
- temp = E1000_READ_REG(hw, PTC127);
- temp = E1000_READ_REG(hw, PTC255);
- temp = E1000_READ_REG(hw, PTC511);
- temp = E1000_READ_REG(hw, PTC1023);
- temp = E1000_READ_REG(hw, PTC1522);
- }
-
- temp = E1000_READ_REG(hw, MPTC);
- temp = E1000_READ_REG(hw, BPTC);
-
- if (hw->mac_type < em_82543) return;
-
- temp = E1000_READ_REG(hw, ALGNERRC);
- temp = E1000_READ_REG(hw, RXERRC);
- temp = E1000_READ_REG(hw, TNCRS);
- temp = E1000_READ_REG(hw, CEXTERR);
- temp = E1000_READ_REG(hw, TSCTC);
- temp = E1000_READ_REG(hw, TSCTFC);
-
- if (hw->mac_type <= em_82544) return;
-
- temp = E1000_READ_REG(hw, MGTPRC);
- temp = E1000_READ_REG(hw, MGTPDC);
- temp = E1000_READ_REG(hw, MGTPTC);
-
- if (hw->mac_type <= em_82547_rev_2) return;
-
- temp = E1000_READ_REG(hw, IAC);
- temp = E1000_READ_REG(hw, ICRXOC);
-
- if (hw->mac_type == em_ich8lan) return;
-
- temp = E1000_READ_REG(hw, ICRXPTC);
- temp = E1000_READ_REG(hw, ICRXATC);
- temp = E1000_READ_REG(hw, ICTXPTC);
- temp = E1000_READ_REG(hw, ICTXATC);
- temp = E1000_READ_REG(hw, ICTXQEC);
- temp = E1000_READ_REG(hw, ICTXQMTC);
- temp = E1000_READ_REG(hw, ICRXDMTC);
-}
-
-/******************************************************************************
- * Resets Adaptive IFS to its default state.
- *
- * hw - Struct containing variables accessed by shared code
- *
- * Call this after em_init_hw. You may override the IFS defaults by setting
- * hw->ifs_params_forced to TRUE. However, you must initialize hw->
- * current_ifs_val, ifs_min_val, ifs_max_val, ifs_step_size, and ifs_ratio
- * before calling this function.
- *****************************************************************************/
-void
-em_reset_adaptive(struct em_hw *hw)
-{
- DEBUGFUNC("em_reset_adaptive");
-
- if (hw->adaptive_ifs) {
- if (!hw->ifs_params_forced) {
- hw->current_ifs_val = 0;
- hw->ifs_min_val = IFS_MIN;
- hw->ifs_max_val = IFS_MAX;
- hw->ifs_step_size = IFS_STEP;
- hw->ifs_ratio = IFS_RATIO;
- }
- hw->in_ifs_mode = FALSE;
- E1000_WRITE_REG(hw, AIT, 0);
- } else {
- DEBUGOUT("Not in Adaptive IFS mode!\n");
- }
-}
-
-/******************************************************************************
- * Called during the callback/watchdog routine to update IFS value based on
- * the ratio of transmits to collisions.
- *
- * hw - Struct containing variables accessed by shared code
- * tx_packets - Number of transmits since last callback
- * total_collisions - Number of collisions since last callback
- *****************************************************************************/
-void
-em_update_adaptive(struct em_hw *hw)
-{
- DEBUGFUNC("em_update_adaptive");
-
- if (hw->adaptive_ifs) {
- if ((hw->collision_delta * hw->ifs_ratio) > hw->tx_packet_delta) {
- if (hw->tx_packet_delta > MIN_NUM_XMITS) {
- hw->in_ifs_mode = TRUE;
- if (hw->current_ifs_val < hw->ifs_max_val) {
- if (hw->current_ifs_val == 0)
- hw->current_ifs_val = hw->ifs_min_val;
- else
- hw->current_ifs_val += hw->ifs_step_size;
- E1000_WRITE_REG(hw, AIT, hw->current_ifs_val);
- }
- }
- } else {
- if (hw->in_ifs_mode && (hw->tx_packet_delta <= MIN_NUM_XMITS)) {
- hw->current_ifs_val = 0;
- hw->in_ifs_mode = FALSE;
- E1000_WRITE_REG(hw, AIT, 0);
- }
- }
- } else {
- DEBUGOUT("Not in Adaptive IFS mode!\n");
- }
-}
-
-/******************************************************************************
- * Adjusts the statistic counters when a frame is accepted by TBI_ACCEPT
- *
- * hw - Struct containing variables accessed by shared code
- * frame_len - The length of the frame in question
- * mac_addr - The Ethernet destination address of the frame in question
- *****************************************************************************/
-void
-em_tbi_adjust_stats(struct em_hw *hw,
- struct em_hw_stats *stats,
- uint32_t frame_len,
- uint8_t *mac_addr)
-{
- uint64_t carry_bit;
-
- /* First adjust the frame length. */
- frame_len--;
- /* We need to adjust the statistics counters, since the hardware
- * counters overcount this packet as a CRC error and undercount
- * the packet as a good packet
- */
- /* This packet should not be counted as a CRC error. */
- stats->crcerrs--;
- /* This packet does count as a Good Packet Received. */
- stats->gprc++;
-
- /* Adjust the Good Octets received counters */
- carry_bit = 0x80000000 & stats->gorcl;
- stats->gorcl += frame_len;
- /* If the high bit of Gorcl (the low 32 bits of the Good Octets
- * Received Count) was one before the addition,
- * AND it is zero after, then we lost the carry out,
- * need to add one to Gorch (Good Octets Received Count High).
- * This could be simplified if all environments supported
- * 64-bit integers.
- */
- if (carry_bit && ((stats->gorcl & 0x80000000) == 0))
- stats->gorch++;
- /* Is this a broadcast or multicast? Check broadcast first,
- * since the test for a multicast frame will test positive on
- * a broadcast frame.
- */
- if ((mac_addr[0] == (uint8_t) 0xff) && (mac_addr[1] == (uint8_t) 0xff))
- /* Broadcast packet */
- stats->bprc++;
- else if (*mac_addr & 0x01)
- /* Multicast packet */
- stats->mprc++;
-
- if (frame_len == hw->max_frame_size) {
- /* In this case, the hardware has overcounted the number of
- * oversize frames.
- */
- if (stats->roc > 0)
- stats->roc--;
- }
-
- /* Adjust the bin counters when the extra byte put the frame in the
- * wrong bin. Remember that the frame_len was adjusted above.
- */
- if (frame_len == 64) {
- stats->prc64++;
- stats->prc127--;
- } else if (frame_len == 127) {
- stats->prc127++;
- stats->prc255--;
- } else if (frame_len == 255) {
- stats->prc255++;
- stats->prc511--;
- } else if (frame_len == 511) {
- stats->prc511++;
- stats->prc1023--;
- } else if (frame_len == 1023) {
- stats->prc1023++;
- stats->prc1522--;
- } else if (frame_len == 1522) {
- stats->prc1522++;
- }
-}
-
-/******************************************************************************
- * Gets the current PCI bus type, speed, and width of the hardware
- *
- * hw - Struct containing variables accessed by shared code
- *****************************************************************************/
-void
-em_get_bus_info(struct em_hw *hw)
-{
- uint32_t status;
-
- switch (hw->mac_type) {
- case em_82542_rev2_0:
- case em_82542_rev2_1:
- hw->bus_type = em_bus_type_unknown;
- hw->bus_speed = em_bus_speed_unknown;
- hw->bus_width = em_bus_width_unknown;
- break;
- case em_82572:
- case em_82573:
- hw->bus_type = em_bus_type_pci_express;
- hw->bus_speed = em_bus_speed_2500;
- hw->bus_width = em_bus_width_pciex_1;
- break;
- case em_82571:
- case em_ich8lan:
- case em_80003es2lan:
- hw->bus_type = em_bus_type_pci_express;
- hw->bus_speed = em_bus_speed_2500;
- hw->bus_width = em_bus_width_pciex_4;
- break;
- default:
- status = E1000_READ_REG(hw, STATUS);
- hw->bus_type = (status & E1000_STATUS_PCIX_MODE) ?
- em_bus_type_pcix : em_bus_type_pci;
-
- if (hw->device_id == E1000_DEV_ID_82546EB_QUAD_COPPER) {
- hw->bus_speed = (hw->bus_type == em_bus_type_pci) ?
- em_bus_speed_66 : em_bus_speed_120;
- } else if (hw->bus_type == em_bus_type_pci) {
- hw->bus_speed = (status & E1000_STATUS_PCI66) ?
- em_bus_speed_66 : em_bus_speed_33;
- } else {
- switch (status & E1000_STATUS_PCIX_SPEED) {
- case E1000_STATUS_PCIX_SPEED_66:
- hw->bus_speed = em_bus_speed_66;
- break;
- case E1000_STATUS_PCIX_SPEED_100:
- hw->bus_speed = em_bus_speed_100;
- break;
- case E1000_STATUS_PCIX_SPEED_133:
- hw->bus_speed = em_bus_speed_133;
- break;
- default:
- hw->bus_speed = em_bus_speed_reserved;
- break;
- }
- }
- hw->bus_width = (status & E1000_STATUS_BUS64) ?
- em_bus_width_64 : em_bus_width_32;
- break;
- }
-}
-/******************************************************************************
- * Reads a value from one of the devices registers using port I/O (as opposed
- * memory mapped I/O). Only 82544 and newer devices support port I/O.
- *
- * hw - Struct containing variables accessed by shared code
- * offset - offset to read from
- *****************************************************************************/
-uint32_t
-em_read_reg_io(struct em_hw *hw,
- uint32_t offset)
-{
- unsigned long io_addr = hw->io_base;
- unsigned long io_data = hw->io_base + 4;
-
- em_io_write(hw, io_addr, offset);
- return em_io_read(hw, io_data);
-}
-
-/******************************************************************************
- * Writes a value to one of the devices registers using port I/O (as opposed to
- * memory mapped I/O). Only 82544 and newer devices support port I/O.
- *
- * hw - Struct containing variables accessed by shared code
- * offset - offset to write to
- * value - value to write
- *****************************************************************************/
-void
-em_write_reg_io(struct em_hw *hw,
- uint32_t offset,
- uint32_t value)
-{
- unsigned long io_addr = hw->io_base;
- unsigned long io_data = hw->io_base + 4;
-
- em_io_write(hw, io_addr, offset);
- em_io_write(hw, io_data, value);
-}
-
-
-/******************************************************************************
- * Estimates the cable length.
- *
- * hw - Struct containing variables accessed by shared code
- * min_length - The estimated minimum length
- * max_length - The estimated maximum length
- *
- * returns: - E1000_ERR_XXX
- * E1000_SUCCESS
- *
- * This function always returns a ranged length (minimum & maximum).
- * So for M88 phy's, this function interprets the one value returned from the
- * register to the minimum and maximum range.
- * For IGP phy's, the function calculates the range by the AGC registers.
- *****************************************************************************/
-int32_t
-em_get_cable_length(struct em_hw *hw,
- uint16_t *min_length,
- uint16_t *max_length)
-{
- int32_t ret_val;
- uint16_t agc_value = 0;
- uint16_t i, phy_data;
- uint16_t cable_length;
-
- DEBUGFUNC("em_get_cable_length");
-
- *min_length = *max_length = 0;
-
- /* Use old method for Phy older than IGP */
- if (hw->phy_type == em_phy_m88) {
-
- ret_val = em_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS,
- &phy_data);
- if (ret_val)
- return ret_val;
- cable_length = (phy_data & M88E1000_PSSR_CABLE_LENGTH) >>
- M88E1000_PSSR_CABLE_LENGTH_SHIFT;
-
- /* Convert the enum value to ranged values */
- switch (cable_length) {
- case em_cable_length_50:
- *min_length = 0;
- *max_length = em_igp_cable_length_50;
- break;
- case em_cable_length_50_80:
- *min_length = em_igp_cable_length_50;
- *max_length = em_igp_cable_length_80;
- break;
- case em_cable_length_80_110:
- *min_length = em_igp_cable_length_80;
- *max_length = em_igp_cable_length_110;
- break;
- case em_cable_length_110_140:
- *min_length = em_igp_cable_length_110;
- *max_length = em_igp_cable_length_140;
- break;
- case em_cable_length_140:
- *min_length = em_igp_cable_length_140;
- *max_length = em_igp_cable_length_170;
- break;
- default:
- return -E1000_ERR_PHY;
- break;
- }
- } else if (hw->phy_type == em_phy_gg82563) {
- ret_val = em_read_phy_reg(hw, GG82563_PHY_DSP_DISTANCE,
- &phy_data);
- if (ret_val)
- return ret_val;
- cable_length = phy_data & GG82563_DSPD_CABLE_LENGTH;
-
- switch (cable_length) {
- case em_gg_cable_length_60:
- *min_length = 0;
- *max_length = em_igp_cable_length_60;
- break;
- case em_gg_cable_length_60_115:
- *min_length = em_igp_cable_length_60;
- *max_length = em_igp_cable_length_115;
- break;
- case em_gg_cable_length_115_150:
- *min_length = em_igp_cable_length_115;
- *max_length = em_igp_cable_length_150;
- break;
- case em_gg_cable_length_150:
- *min_length = em_igp_cable_length_150;
- *max_length = em_igp_cable_length_180;
- break;
- default:
- return -E1000_ERR_PHY;
- break;
- }
- } else if (hw->phy_type == em_phy_igp) { /* For IGP PHY */
- uint16_t cur_agc_value;
- uint16_t min_agc_value = IGP01E1000_AGC_LENGTH_TABLE_SIZE;
- uint16_t agc_reg_array[IGP01E1000_PHY_CHANNEL_NUM] =
- {IGP01E1000_PHY_AGC_A,
- IGP01E1000_PHY_AGC_B,
- IGP01E1000_PHY_AGC_C,
- IGP01E1000_PHY_AGC_D};
- /* Read the AGC registers for all channels */
- for (i = 0; i < IGP01E1000_PHY_CHANNEL_NUM; i++) {
-
- ret_val = em_read_phy_reg(hw, agc_reg_array[i], &phy_data);
- if (ret_val)
- return ret_val;
-
- cur_agc_value = phy_data >> IGP01E1000_AGC_LENGTH_SHIFT;
-
- /* Value bound check. */
- if ((cur_agc_value >= IGP01E1000_AGC_LENGTH_TABLE_SIZE - 1) ||
- (cur_agc_value == 0))
- return -E1000_ERR_PHY;
-
- agc_value += cur_agc_value;
-
- /* Update minimal AGC value. */
- if (min_agc_value > cur_agc_value)
- min_agc_value = cur_agc_value;
- }
-
- /* Remove the minimal AGC result for length < 50m */
- if (agc_value < IGP01E1000_PHY_CHANNEL_NUM * em_igp_cable_length_50) {
- agc_value -= min_agc_value;
-
- /* Get the average length of the remaining 3 channels */
- agc_value /= (IGP01E1000_PHY_CHANNEL_NUM - 1);
- } else {
- /* Get the average length of all the 4 channels. */
- agc_value /= IGP01E1000_PHY_CHANNEL_NUM;
- }
-
- /* Set the range of the calculated length. */
- *min_length = ((em_igp_cable_length_table[agc_value] -
- IGP01E1000_AGC_RANGE) > 0) ?
- (em_igp_cable_length_table[agc_value] -
- IGP01E1000_AGC_RANGE) : 0;
- *max_length = em_igp_cable_length_table[agc_value] +
- IGP01E1000_AGC_RANGE;
- } else if (hw->phy_type == em_phy_igp_2 ||
- hw->phy_type == em_phy_igp_3) {
- uint16_t cur_agc_index, max_agc_index = 0;
- uint16_t min_agc_index = IGP02E1000_AGC_LENGTH_TABLE_SIZE - 1;
- uint16_t agc_reg_array[IGP02E1000_PHY_CHANNEL_NUM] =
- {IGP02E1000_PHY_AGC_A,
- IGP02E1000_PHY_AGC_B,
- IGP02E1000_PHY_AGC_C,
- IGP02E1000_PHY_AGC_D};
- /* Read the AGC registers for all channels */
- for (i = 0; i < IGP02E1000_PHY_CHANNEL_NUM; i++) {
- ret_val = em_read_phy_reg(hw, agc_reg_array[i], &phy_data);
- if (ret_val)
- return ret_val;
-
- /* Getting bits 15:9, which represent the combination of course and
- * fine gain values. The result is a number that can be put into
- * the lookup table to obtain the approximate cable length. */
- cur_agc_index = (phy_data >> IGP02E1000_AGC_LENGTH_SHIFT) &
- IGP02E1000_AGC_LENGTH_MASK;
-
- /* Array index bound check. */
- if ((cur_agc_index >= IGP02E1000_AGC_LENGTH_TABLE_SIZE) ||
- (cur_agc_index == 0))
- return -E1000_ERR_PHY;
-
- /* Remove min & max AGC values from calculation. */
- if (em_igp_2_cable_length_table[min_agc_index] >
- em_igp_2_cable_length_table[cur_agc_index])
- min_agc_index = cur_agc_index;
- if (em_igp_2_cable_length_table[max_agc_index] <
- em_igp_2_cable_length_table[cur_agc_index])
- max_agc_index = cur_agc_index;
-
- agc_value += em_igp_2_cable_length_table[cur_agc_index];
- }
-
- agc_value -= (em_igp_2_cable_length_table[min_agc_index] +
- em_igp_2_cable_length_table[max_agc_index]);
- agc_value /= (IGP02E1000_PHY_CHANNEL_NUM - 2);
-
- /* Calculate cable length with the error range of +/- 10 meters. */
- *min_length = ((agc_value - IGP02E1000_AGC_RANGE) > 0) ?
- (agc_value - IGP02E1000_AGC_RANGE) : 0;
- *max_length = agc_value + IGP02E1000_AGC_RANGE;
- }
-
- return E1000_SUCCESS;
-}
-
-/******************************************************************************
- * Check the cable polarity
- *
- * hw - Struct containing variables accessed by shared code
- * polarity - output parameter : 0 - Polarity is not reversed
- * 1 - Polarity is reversed.
- *
- * returns: - E1000_ERR_XXX
- * E1000_SUCCESS
- *
- * For phy's older then IGP, this function simply reads the polarity bit in the
- * Phy Status register. For IGP phy's, this bit is valid only if link speed is
- * 10 Mbps. If the link speed is 100 Mbps there is no polarity so this bit will
- * return 0. If the link speed is 1000 Mbps the polarity status is in the
- * IGP01E1000_PHY_PCS_INIT_REG.
- *****************************************************************************/
-int32_t
-em_check_polarity(struct em_hw *hw,
- uint16_t *polarity)
-{
- int32_t ret_val;
- uint16_t phy_data;
-
- DEBUGFUNC("em_check_polarity");
-
- if ((hw->phy_type == em_phy_m88) ||
- (hw->phy_type == em_phy_gg82563)) {
- /* return the Polarity bit in the Status register. */
- ret_val = em_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS,
- &phy_data);
- if (ret_val)
- return ret_val;
- *polarity = (phy_data & M88E1000_PSSR_REV_POLARITY) >>
- M88E1000_PSSR_REV_POLARITY_SHIFT;
- } else if (hw->phy_type == em_phy_igp ||
- hw->phy_type == em_phy_igp_3 ||
- hw->phy_type == em_phy_igp_2) {
- /* Read the Status register to check the speed */
- ret_val = em_read_phy_reg(hw, IGP01E1000_PHY_PORT_STATUS,
- &phy_data);
- if (ret_val)
- return ret_val;
-
- /* If speed is 1000 Mbps, must read the IGP01E1000_PHY_PCS_INIT_REG to
- * find the polarity status */
- if ((phy_data & IGP01E1000_PSSR_SPEED_MASK) ==
- IGP01E1000_PSSR_SPEED_1000MBPS) {
-
- /* Read the GIG initialization PCS register (0x00B4) */
- ret_val = em_read_phy_reg(hw, IGP01E1000_PHY_PCS_INIT_REG,
- &phy_data);
- if (ret_val)
- return ret_val;
-
- /* Check the polarity bits */
- *polarity = (phy_data & IGP01E1000_PHY_POLARITY_MASK) ? 1 : 0;
- } else {
- /* For 10 Mbps, read the polarity bit in the status register. (for
- * 100 Mbps this bit is always 0) */
- *polarity = phy_data & IGP01E1000_PSSR_POLARITY_REVERSED;
- }
- } else if (hw->phy_type == em_phy_ife) {
- ret_val = em_read_phy_reg(hw, IFE_PHY_EXTENDED_STATUS_CONTROL,
- &phy_data);
- if (ret_val)
- return ret_val;
- *polarity = (phy_data & IFE_PESC_POLARITY_REVERSED) >>
- IFE_PESC_POLARITY_REVERSED_SHIFT;
- }
- return E1000_SUCCESS;
-}
-
-/******************************************************************************
- * Check if Downshift occured
- *
- * hw - Struct containing variables accessed by shared code
- * downshift - output parameter : 0 - No Downshift ocured.
- * 1 - Downshift ocured.
- *
- * returns: - E1000_ERR_XXX
- * E1000_SUCCESS
- *
- * For phy's older then IGP, this function reads the Downshift bit in the Phy
- * Specific Status register. For IGP phy's, it reads the Downgrade bit in the
- * Link Health register. In IGP this bit is latched high, so the driver must
- * read it immediately after link is established.
- *****************************************************************************/
-int32_t
-em_check_downshift(struct em_hw *hw)
-{
- int32_t ret_val;
- uint16_t phy_data;
-
- DEBUGFUNC("em_check_downshift");
-
- if (hw->phy_type == em_phy_igp ||
- hw->phy_type == em_phy_igp_3 ||
- hw->phy_type == em_phy_igp_2) {
- ret_val = em_read_phy_reg(hw, IGP01E1000_PHY_LINK_HEALTH,
- &phy_data);
- if (ret_val)
- return ret_val;
-
- hw->speed_downgraded = (phy_data & IGP01E1000_PLHR_SS_DOWNGRADE) ? 1 : 0;
- } else if ((hw->phy_type == em_phy_m88) ||
- (hw->phy_type == em_phy_gg82563)) {
- ret_val = em_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS,
- &phy_data);
- if (ret_val)
- return ret_val;
-
- hw->speed_downgraded = (phy_data & M88E1000_PSSR_DOWNSHIFT) >>
- M88E1000_PSSR_DOWNSHIFT_SHIFT;
- } else if (hw->phy_type == em_phy_ife) {
- /* em_phy_ife supports 10/100 speed only */
- hw->speed_downgraded = FALSE;
- }
-
- return E1000_SUCCESS;
-}
-
-/*****************************************************************************
- *
- * 82541_rev_2 & 82547_rev_2 have the capability to configure the DSP when a
- * gigabit link is achieved to improve link quality.
- *
- * hw: Struct containing variables accessed by shared code
- *
- * returns: - E1000_ERR_PHY if fail to read/write the PHY
- * E1000_SUCCESS at any other case.
- *
- ****************************************************************************/
-
-int32_t
-em_config_dsp_after_link_change(struct em_hw *hw,
- boolean_t link_up)
-{
- int32_t ret_val;
- uint16_t phy_data, phy_saved_data, speed, duplex, i;
- uint16_t dsp_reg_array[IGP01E1000_PHY_CHANNEL_NUM] =
- {IGP01E1000_PHY_AGC_PARAM_A,
- IGP01E1000_PHY_AGC_PARAM_B,
- IGP01E1000_PHY_AGC_PARAM_C,
- IGP01E1000_PHY_AGC_PARAM_D};
- uint16_t min_length, max_length;
-
- DEBUGFUNC("em_config_dsp_after_link_change");
-
- if (hw->phy_type != em_phy_igp)
- return E1000_SUCCESS;
-
- if (link_up) {
- ret_val = em_get_speed_and_duplex(hw, &speed, &duplex);
- if (ret_val) {
- DEBUGOUT("Error getting link speed and duplex\n");
- return ret_val;
- }
-
- if (speed == SPEED_1000) {
-
- ret_val = em_get_cable_length(hw, &min_length, &max_length);
- if (ret_val)
- return ret_val;
-
- if ((hw->dsp_config_state == em_dsp_config_enabled) &&
- min_length >= em_igp_cable_length_50) {
-
- for (i = 0; i < IGP01E1000_PHY_CHANNEL_NUM; i++) {
- ret_val = em_read_phy_reg(hw, dsp_reg_array[i],
- &phy_data);
- if (ret_val)
- return ret_val;
-
- phy_data &= ~IGP01E1000_PHY_EDAC_MU_INDEX;
-
- ret_val = em_write_phy_reg(hw, dsp_reg_array[i],
- phy_data);
- if (ret_val)
- return ret_val;
- }
- hw->dsp_config_state = em_dsp_config_activated;
- }
-
- if ((hw->ffe_config_state == em_ffe_config_enabled) &&
- (min_length < em_igp_cable_length_50)) {
-
- uint16_t ffe_idle_err_timeout = FFE_IDLE_ERR_COUNT_TIMEOUT_20;
- uint32_t idle_errs = 0;
-
- /* clear previous idle error counts */
- ret_val = em_read_phy_reg(hw, PHY_1000T_STATUS,
- &phy_data);
- if (ret_val)
- return ret_val;
-
- for (i = 0; i < ffe_idle_err_timeout; i++) {
- usec_delay(1000);
- ret_val = em_read_phy_reg(hw, PHY_1000T_STATUS,
- &phy_data);
- if (ret_val)
- return ret_val;
-
- idle_errs += (phy_data & SR_1000T_IDLE_ERROR_CNT);
- if (idle_errs > SR_1000T_PHY_EXCESSIVE_IDLE_ERR_COUNT) {
- hw->ffe_config_state = em_ffe_config_active;
-
- ret_val = em_write_phy_reg(hw,
- IGP01E1000_PHY_DSP_FFE,
- IGP01E1000_PHY_DSP_FFE_CM_CP);
- if (ret_val)
- return ret_val;
- break;
- }
-
- if (idle_errs)
- ffe_idle_err_timeout = FFE_IDLE_ERR_COUNT_TIMEOUT_100;
- }
- }
- }
- } else {
- if (hw->dsp_config_state == em_dsp_config_activated) {
- /* Save off the current value of register 0x2F5B to be restored at
- * the end of the routines. */
- ret_val = em_read_phy_reg(hw, 0x2F5B, &phy_saved_data);
-
- if (ret_val)
- return ret_val;
-
- /* Disable the PHY transmitter */
- ret_val = em_write_phy_reg(hw, 0x2F5B, 0x0003);
-
- if (ret_val)
- return ret_val;
-
- msec_delay_irq(20);
-
- ret_val = em_write_phy_reg(hw, 0x0000,
- IGP01E1000_IEEE_FORCE_GIGA);
- if (ret_val)
- return ret_val;
- for (i = 0; i < IGP01E1000_PHY_CHANNEL_NUM; i++) {
- ret_val = em_read_phy_reg(hw, dsp_reg_array[i], &phy_data);
- if (ret_val)
- return ret_val;
-
- phy_data &= ~IGP01E1000_PHY_EDAC_MU_INDEX;
- phy_data |= IGP01E1000_PHY_EDAC_SIGN_EXT_9_BITS;
-
- ret_val = em_write_phy_reg(hw,dsp_reg_array[i], phy_data);
- if (ret_val)
- return ret_val;
- }
-
- ret_val = em_write_phy_reg(hw, 0x0000,
- IGP01E1000_IEEE_RESTART_AUTONEG);
- if (ret_val)
- return ret_val;
-
- msec_delay_irq(20);
-
- /* Now enable the transmitter */
- ret_val = em_write_phy_reg(hw, 0x2F5B, phy_saved_data);
-
- if (ret_val)
- return ret_val;
-
- hw->dsp_config_state = em_dsp_config_enabled;
- }
-
- if (hw->ffe_config_state == em_ffe_config_active) {
- /* Save off the current value of register 0x2F5B to be restored at
- * the end of the routines. */
- ret_val = em_read_phy_reg(hw, 0x2F5B, &phy_saved_data);
-
- if (ret_val)
- return ret_val;
-
- /* Disable the PHY transmitter */
- ret_val = em_write_phy_reg(hw, 0x2F5B, 0x0003);
-
- if (ret_val)
- return ret_val;
-
- msec_delay_irq(20);
-
- ret_val = em_write_phy_reg(hw, 0x0000,
- IGP01E1000_IEEE_FORCE_GIGA);
- if (ret_val)
- return ret_val;
- ret_val = em_write_phy_reg(hw, IGP01E1000_PHY_DSP_FFE,
- IGP01E1000_PHY_DSP_FFE_DEFAULT);
- if (ret_val)
- return ret_val;
-
- ret_val = em_write_phy_reg(hw, 0x0000,
- IGP01E1000_IEEE_RESTART_AUTONEG);
- if (ret_val)
- return ret_val;
-
- msec_delay_irq(20);
-
- /* Now enable the transmitter */
- ret_val = em_write_phy_reg(hw, 0x2F5B, phy_saved_data);
-
- if (ret_val)
- return ret_val;
-
- hw->ffe_config_state = em_ffe_config_enabled;
- }
- }
- return E1000_SUCCESS;
-}
-
-/*****************************************************************************
- * Set PHY to class A mode
- * Assumes the following operations will follow to enable the new class mode.
- * 1. Do a PHY soft reset
- * 2. Restart auto-negotiation or force link.
- *
- * hw - Struct containing variables accessed by shared code
- ****************************************************************************/
-static int32_t
-em_set_phy_mode(struct em_hw *hw)
-{
- int32_t ret_val;
- uint16_t eeprom_data;
-
- DEBUGFUNC("em_set_phy_mode");
-
- if ((hw->mac_type == em_82545_rev_3) &&
- (hw->media_type == em_media_type_copper)) {
- ret_val = em_read_eeprom(hw, EEPROM_PHY_CLASS_WORD, 1, &eeprom_data);
- if (ret_val) {
- return ret_val;
- }
-
- if ((eeprom_data != EEPROM_RESERVED_WORD) &&
- (eeprom_data & EEPROM_PHY_CLASS_A)) {
- ret_val = em_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x000B);
- if (ret_val)
- return ret_val;
- ret_val = em_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0x8104);
- if (ret_val)
- return ret_val;
-
- hw->phy_reset_disable = FALSE;
- }
- }
-
- return E1000_SUCCESS;
-}
-
-/*****************************************************************************
- *
- * This function sets the lplu state according to the active flag. When
- * activating lplu this function also disables smart speed and vise versa.
- * lplu will not be activated unless the device autonegotiation advertisment
- * meets standards of either 10 or 10/100 or 10/100/1000 at all duplexes.
- * hw: Struct containing variables accessed by shared code
- * active - true to enable lplu false to disable lplu.
- *
- * returns: - E1000_ERR_PHY if fail to read/write the PHY
- * E1000_SUCCESS at any other case.
- *
- ****************************************************************************/
-
-int32_t
-em_set_d3_lplu_state(struct em_hw *hw,
- boolean_t active)
-{
- uint32_t phy_ctrl = 0;
- int32_t ret_val;
- uint16_t phy_data;
- DEBUGFUNC("em_set_d3_lplu_state");
-
- if (hw->phy_type != em_phy_igp && hw->phy_type != em_phy_igp_2
- && hw->phy_type != em_phy_igp_3)
- return E1000_SUCCESS;
-
- /* During driver activity LPLU should not be used or it will attain link
- * from the lowest speeds starting from 10Mbps. The capability is used for
- * Dx transitions and states */
- if (hw->mac_type == em_82541_rev_2 || hw->mac_type == em_82547_rev_2) {
- ret_val = em_read_phy_reg(hw, IGP01E1000_GMII_FIFO, &phy_data);
- if (ret_val)
- return ret_val;
- } else if (hw->mac_type == em_ich8lan) {
- /* MAC writes into PHY register based on the state transition
- * and start auto-negotiation. SW driver can overwrite the settings
- * in CSR PHY power control E1000_PHY_CTRL register. */
- phy_ctrl = E1000_READ_REG(hw, PHY_CTRL);
- } else {
- ret_val = em_read_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, &phy_data);
- if (ret_val)
- return ret_val;
- }
-
- if (!active) {
- if (hw->mac_type == em_82541_rev_2 ||
- hw->mac_type == em_82547_rev_2) {
- phy_data &= ~IGP01E1000_GMII_FLEX_SPD;
- ret_val = em_write_phy_reg(hw, IGP01E1000_GMII_FIFO, phy_data);
- if (ret_val)
- return ret_val;
- } else {
- if (hw->mac_type == em_ich8lan) {
- phy_ctrl &= ~E1000_PHY_CTRL_NOND0A_LPLU;
- E1000_WRITE_REG(hw, PHY_CTRL, phy_ctrl);
- } else {
- phy_data &= ~IGP02E1000_PM_D3_LPLU;
- ret_val = em_write_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT,
- phy_data);
- if (ret_val)
- return ret_val;
- }
- }
-
- /* LPLU and SmartSpeed are mutually exclusive. LPLU is used during
- * Dx states where the power conservation is most important. During
- * driver activity we should enable SmartSpeed, so performance is
- * maintained. */
- if (hw->smart_speed == em_smart_speed_on) {
- ret_val = em_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
- &phy_data);
- if (ret_val)
- return ret_val;
-
- phy_data |= IGP01E1000_PSCFR_SMART_SPEED;
- ret_val = em_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
- phy_data);
- if (ret_val)
- return ret_val;
- } else if (hw->smart_speed == em_smart_speed_off) {
- ret_val = em_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
- &phy_data);
- if (ret_val)
- return ret_val;
-
- phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
- ret_val = em_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
- phy_data);
- if (ret_val)
- return ret_val;
- }
-
- } else if ((hw->autoneg_advertised == AUTONEG_ADVERTISE_SPEED_DEFAULT) ||
- (hw->autoneg_advertised == AUTONEG_ADVERTISE_10_ALL ) ||
- (hw->autoneg_advertised == AUTONEG_ADVERTISE_10_100_ALL)) {
-
- if (hw->mac_type == em_82541_rev_2 ||
- hw->mac_type == em_82547_rev_2) {
- phy_data |= IGP01E1000_GMII_FLEX_SPD;
- ret_val = em_write_phy_reg(hw, IGP01E1000_GMII_FIFO, phy_data);
- if (ret_val)
- return ret_val;
- } else {
- if (hw->mac_type == em_ich8lan) {
- phy_ctrl |= E1000_PHY_CTRL_NOND0A_LPLU;
- E1000_WRITE_REG(hw, PHY_CTRL, phy_ctrl);
- } else {
- phy_data |= IGP02E1000_PM_D3_LPLU;
- ret_val = em_write_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT,
- phy_data);
- if (ret_val)
- return ret_val;
- }
- }
-
- /* When LPLU is enabled we should disable SmartSpeed */
- ret_val = em_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, &phy_data);
- if (ret_val)
- return ret_val;
-
- phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
- ret_val = em_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, phy_data);
- if (ret_val)
- return ret_val;
-
- }
- return E1000_SUCCESS;
-}
-
-/*****************************************************************************
- *
- * This function sets the lplu d0 state according to the active flag. When
- * activating lplu this function also disables smart speed and vise versa.
- * lplu will not be activated unless the device autonegotiation advertisment
- * meets standards of either 10 or 10/100 or 10/100/1000 at all duplexes.
- * hw: Struct containing variables accessed by shared code
- * active - true to enable lplu false to disable lplu.
- *
- * returns: - E1000_ERR_PHY if fail to read/write the PHY
- * E1000_SUCCESS at any other case.
- *
- ****************************************************************************/
-
-int32_t
-em_set_d0_lplu_state(struct em_hw *hw,
- boolean_t active)
-{
- uint32_t phy_ctrl = 0;
- int32_t ret_val;
- uint16_t phy_data;
- DEBUGFUNC("em_set_d0_lplu_state");
-
- if (hw->mac_type <= em_82547_rev_2)
- return E1000_SUCCESS;
-
- if (hw->mac_type == em_ich8lan) {
- phy_ctrl = E1000_READ_REG(hw, PHY_CTRL);
- } else {
- ret_val = em_read_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, &phy_data);
- if (ret_val)
- return ret_val;
- }
-
- if (!active) {
- if (hw->mac_type == em_ich8lan) {
- phy_ctrl &= ~E1000_PHY_CTRL_D0A_LPLU;
- E1000_WRITE_REG(hw, PHY_CTRL, phy_ctrl);
- } else {
- phy_data &= ~IGP02E1000_PM_D0_LPLU;
- ret_val = em_write_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, phy_data);
- if (ret_val)
- return ret_val;
- }
-
- /* LPLU and SmartSpeed are mutually exclusive. LPLU is used during
- * Dx states where the power conservation is most important. During
- * driver activity we should enable SmartSpeed, so performance is
- * maintained. */
- if (hw->smart_speed == em_smart_speed_on) {
- ret_val = em_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
- &phy_data);
- if (ret_val)
- return ret_val;
-
- phy_data |= IGP01E1000_PSCFR_SMART_SPEED;
- ret_val = em_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
- phy_data);
- if (ret_val)
- return ret_val;
- } else if (hw->smart_speed == em_smart_speed_off) {
- ret_val = em_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
- &phy_data);
- if (ret_val)
- return ret_val;
-
- phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
- ret_val = em_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
- phy_data);
- if (ret_val)
- return ret_val;
- }
-
-
- } else {
-
- if (hw->mac_type == em_ich8lan) {
- phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU;
- E1000_WRITE_REG(hw, PHY_CTRL, phy_ctrl);
- } else {
- phy_data |= IGP02E1000_PM_D0_LPLU;
- ret_val = em_write_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, phy_data);
- if (ret_val)
- return ret_val;
- }
-
- /* When LPLU is enabled we should disable SmartSpeed */
- ret_val = em_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, &phy_data);
- if (ret_val)
- return ret_val;
-
- phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
- ret_val = em_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, phy_data);
- if (ret_val)
- return ret_val;
-
- }
- return E1000_SUCCESS;
-}
-
-/******************************************************************************
- * Change VCO speed register to improve Bit Error Rate performance of SERDES.
- *
- * hw - Struct containing variables accessed by shared code
- *****************************************************************************/
-static int32_t
-em_set_vco_speed(struct em_hw *hw)
-{
- int32_t ret_val;
- uint16_t default_page = 0;
- uint16_t phy_data;
-
- DEBUGFUNC("em_set_vco_speed");
-
- switch (hw->mac_type) {
- case em_82545_rev_3:
- case em_82546_rev_3:
- break;
- default:
- return E1000_SUCCESS;
- }
-
- /* Set PHY register 30, page 5, bit 8 to 0 */
-
- ret_val = em_read_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, &default_page);
- if (ret_val)
- return ret_val;
-
- ret_val = em_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0005);
- if (ret_val)
- return ret_val;
-
- ret_val = em_read_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, &phy_data);
- if (ret_val)
- return ret_val;
-
- phy_data &= ~M88E1000_PHY_VCO_REG_BIT8;
- ret_val = em_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, phy_data);
- if (ret_val)
- return ret_val;
-
- /* Set PHY register 30, page 4, bit 11 to 1 */
-
- ret_val = em_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0004);
- if (ret_val)
- return ret_val;
-
- ret_val = em_read_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, &phy_data);
- if (ret_val)
- return ret_val;
-
- phy_data |= M88E1000_PHY_VCO_REG_BIT11;
- ret_val = em_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, phy_data);
- if (ret_val)
- return ret_val;
-
- ret_val = em_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, default_page);
- if (ret_val)
- return ret_val;
-
- return E1000_SUCCESS;
-}
-
-
-/*****************************************************************************
- * This function reads the cookie from ARC ram.
- *
- * returns: - E1000_SUCCESS .
- ****************************************************************************/
-int32_t
-em_host_if_read_cookie(struct em_hw * hw, uint8_t *buffer)
-{
- uint8_t i;
- uint32_t offset = E1000_MNG_DHCP_COOKIE_OFFSET;
- uint8_t length = E1000_MNG_DHCP_COOKIE_LENGTH;
-
- length = (length >> 2);
- offset = (offset >> 2);
-
- for (i = 0; i < length; i++) {
- *((uint32_t *) buffer + i) =
- E1000_READ_REG_ARRAY_DWORD(hw, HOST_IF, offset + i);
- }
- return E1000_SUCCESS;
-}
-
-
-/*****************************************************************************
- * This function checks whether the HOST IF is enabled for command operaton
- * and also checks whether the previous command is completed.
- * It busy waits in case of previous command is not completed.
- *
- * returns: - E1000_ERR_HOST_INTERFACE_COMMAND in case if is not ready or
- * timeout
- * - E1000_SUCCESS for success.
- ****************************************************************************/
-int32_t
-em_mng_enable_host_if(struct em_hw * hw)
-{
- uint32_t hicr;
- uint8_t i;
-
- /* Check that the host interface is enabled. */
- hicr = E1000_READ_REG(hw, HICR);
- if ((hicr & E1000_HICR_EN) == 0) {
- DEBUGOUT("E1000_HOST_EN bit disabled.\n");
- return -E1000_ERR_HOST_INTERFACE_COMMAND;
- }
- /* check the previous command is completed */
- for (i = 0; i < E1000_MNG_DHCP_COMMAND_TIMEOUT; i++) {
- hicr = E1000_READ_REG(hw, HICR);
- if (!(hicr & E1000_HICR_C))
- break;
- msec_delay_irq(1);
- }
-
- if (i == E1000_MNG_DHCP_COMMAND_TIMEOUT) {
- DEBUGOUT("Previous command timeout failed .\n");
- return -E1000_ERR_HOST_INTERFACE_COMMAND;
- }
- return E1000_SUCCESS;
-}
-
-/*****************************************************************************
- * This function writes the buffer content at the offset given on the host if.
- * It also does alignment considerations to do the writes in most efficient way.
- * Also fills up the sum of the buffer in *buffer parameter.
- *
- * returns - E1000_SUCCESS for success.
- ****************************************************************************/
-int32_t
-em_mng_host_if_write(struct em_hw * hw, uint8_t *buffer,
- uint16_t length, uint16_t offset, uint8_t *sum)
-{
- uint8_t *tmp;
- uint8_t *bufptr = buffer;
- uint32_t data = 0;
- uint16_t remaining, i, j, prev_bytes;
-
- /* sum = only sum of the data and it is not checksum */
-
- if (length == 0 || offset + length > E1000_HI_MAX_MNG_DATA_LENGTH) {
- return -E1000_ERR_PARAM;
- }
-
- tmp = (uint8_t *)&data;
- prev_bytes = offset & 0x3;
- offset &= 0xFFFC;
- offset >>= 2;
-
- if (prev_bytes) {
- data = E1000_READ_REG_ARRAY_DWORD(hw, HOST_IF, offset);
- for (j = prev_bytes; j < sizeof(uint32_t); j++) {
- *(tmp + j) = *bufptr++;
- *sum += *(tmp + j);
- }
- E1000_WRITE_REG_ARRAY_DWORD(hw, HOST_IF, offset, data);
- length -= j - prev_bytes;
- offset++;
- }
-
- remaining = length & 0x3;
- length -= remaining;
-
- /* Calculate length in DWORDs */
- length >>= 2;
-
- /* The device driver writes the relevant command block into the
- * ram area. */
- for (i = 0; i < length; i++) {
- for (j = 0; j < sizeof(uint32_t); j++) {
- *(tmp + j) = *bufptr++;
- *sum += *(tmp + j);
- }
-
- E1000_WRITE_REG_ARRAY_DWORD(hw, HOST_IF, offset + i, data);
- }
- if (remaining) {
- for (j = 0; j < sizeof(uint32_t); j++) {
- if (j < remaining)
- *(tmp + j) = *bufptr++;
- else
- *(tmp + j) = 0;
-
- *sum += *(tmp + j);
- }
- E1000_WRITE_REG_ARRAY_DWORD(hw, HOST_IF, offset + i, data);
- }
-
- return E1000_SUCCESS;
-}
-
-
-/*****************************************************************************
- * This function writes the command header after does the checksum calculation.
- *
- * returns - E1000_SUCCESS for success.
- ****************************************************************************/
-int32_t
-em_mng_write_cmd_header(struct em_hw * hw,
- struct em_host_mng_command_header * hdr)
-{
- uint16_t i;
- uint8_t sum;
- uint8_t *buffer;
-
- /* Write the whole command header structure which includes sum of
- * the buffer */
-
- uint16_t length = sizeof(struct em_host_mng_command_header);
-
- sum = hdr->checksum;
- hdr->checksum = 0;
-
- buffer = (uint8_t *) hdr;
- i = length;
- while (i--)
- sum += buffer[i];
-
- hdr->checksum = 0 - sum;
-
- length >>= 2;
- /* The device driver writes the relevant command block into the ram area. */
- for (i = 0; i < length; i++) {
- E1000_WRITE_REG_ARRAY_DWORD(hw, HOST_IF, i, *((uint32_t *) hdr + i));
- E1000_WRITE_FLUSH(hw);
- }
-
- return E1000_SUCCESS;
-}
-
-
-/*****************************************************************************
- * This function indicates to ARC that a new command is pending which completes
- * one write operation by the driver.
- *
- * returns - E1000_SUCCESS for success.
- ****************************************************************************/
-int32_t
-em_mng_write_commit(struct em_hw * hw)
-{
- uint32_t hicr;
-
- hicr = E1000_READ_REG(hw, HICR);
- /* Setting this bit tells the ARC that a new command is pending. */
- E1000_WRITE_REG(hw, HICR, hicr | E1000_HICR_C);
-
- return E1000_SUCCESS;
-}
-
-
-/*****************************************************************************
- * This function checks the mode of the firmware.
- *
- * returns - TRUE when the mode is IAMT or FALSE.
- ****************************************************************************/
-boolean_t
-em_check_mng_mode(struct em_hw *hw)
-{
- uint32_t fwsm;
-
- fwsm = E1000_READ_REG(hw, FWSM);
-
- if (hw->mac_type == em_ich8lan) {
- if ((fwsm & E1000_FWSM_MODE_MASK) ==
- (E1000_MNG_ICH_IAMT_MODE << E1000_FWSM_MODE_SHIFT))
- return TRUE;
- } else if ((fwsm & E1000_FWSM_MODE_MASK) ==
- (E1000_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT))
- return TRUE;
-
- return FALSE;
-}
-
-
-/*****************************************************************************
- * This function writes the dhcp info .
- ****************************************************************************/
-int32_t
-em_mng_write_dhcp_info(struct em_hw * hw, uint8_t *buffer,
- uint16_t length)
-{
- int32_t ret_val;
- struct em_host_mng_command_header hdr;
-
- hdr.command_id = E1000_MNG_DHCP_TX_PAYLOAD_CMD;
- hdr.command_length = length;
- hdr.reserved1 = 0;
- hdr.reserved2 = 0;
- hdr.checksum = 0;
-
- ret_val = em_mng_enable_host_if(hw);
- if (ret_val == E1000_SUCCESS) {
- ret_val = em_mng_host_if_write(hw, buffer, length, sizeof(hdr),
- &(hdr.checksum));
- if (ret_val == E1000_SUCCESS) {
- ret_val = em_mng_write_cmd_header(hw, &hdr);
- if (ret_val == E1000_SUCCESS)
- ret_val = em_mng_write_commit(hw);
- }
- }
- return ret_val;
-}
-
-
-/*****************************************************************************
- * This function calculates the checksum.
- *
- * returns - checksum of buffer contents.
- ****************************************************************************/
-uint8_t
-em_calculate_mng_checksum(char *buffer, uint32_t length)
-{
- uint8_t sum = 0;
- uint32_t i;
-
- if (!buffer)
- return 0;
-
- for (i=0; i < length; i++)
- sum += buffer[i];
-
- return (uint8_t) (0 - sum);
-}
-
-/*****************************************************************************
- * This function checks whether tx pkt filtering needs to be enabled or not.
- *
- * returns - TRUE for packet filtering or FALSE.
- ****************************************************************************/
-boolean_t
-em_enable_tx_pkt_filtering(struct em_hw *hw)
-{
- /* called in init as well as watchdog timer functions */
-
- int32_t ret_val, checksum;
- boolean_t tx_filter = FALSE;
- struct em_host_mng_dhcp_cookie *hdr = &(hw->mng_cookie);
- uint8_t *buffer = (uint8_t *) &(hw->mng_cookie);
-
- if (em_check_mng_mode(hw)) {
- ret_val = em_mng_enable_host_if(hw);
- if (ret_val == E1000_SUCCESS) {
- ret_val = em_host_if_read_cookie(hw, buffer);
- if (ret_val == E1000_SUCCESS) {
- checksum = hdr->checksum;
- hdr->checksum = 0;
- if ((hdr->signature == E1000_IAMT_SIGNATURE) &&
- checksum == em_calculate_mng_checksum((char *)buffer,
- E1000_MNG_DHCP_COOKIE_LENGTH)) {
- if (hdr->status &
- E1000_MNG_DHCP_COOKIE_STATUS_PARSING_SUPPORT)
- tx_filter = TRUE;
- } else
- tx_filter = TRUE;
- } else
- tx_filter = TRUE;
- }
- }
-
- hw->tx_pkt_filtering = tx_filter;
- return tx_filter;
-}
-
-/******************************************************************************
- * Verifies the hardware needs to allow ARPs to be processed by the host
- *
- * hw - Struct containing variables accessed by shared code
- *
- * returns: - TRUE/FALSE
- *
- *****************************************************************************/
-uint32_t
-em_enable_mng_pass_thru(struct em_hw *hw)
-{
- uint32_t manc;
- uint32_t fwsm, factps;
-
- if (hw->asf_firmware_present) {
- manc = E1000_READ_REG(hw, MANC);
-
- if (!(manc & E1000_MANC_RCV_TCO_EN) ||
- !(manc & E1000_MANC_EN_MAC_ADDR_FILTER))
- return FALSE;
- if (em_arc_subsystem_valid(hw) == TRUE) {
- fwsm = E1000_READ_REG(hw, FWSM);
- factps = E1000_READ_REG(hw, FACTPS);
-
- if (((fwsm & E1000_FWSM_MODE_MASK) ==
- (em_mng_mode_pt << E1000_FWSM_MODE_SHIFT)) &&
- (factps & E1000_FACTPS_MNGCG))
- return TRUE;
- } else
- if ((manc & E1000_MANC_SMBUS_EN) && !(manc & E1000_MANC_ASF_EN))
- return TRUE;
- }
- return FALSE;
-}
-
-static int32_t
-em_polarity_reversal_workaround(struct em_hw *hw)
-{
- int32_t ret_val;
- uint16_t mii_status_reg;
- uint16_t i;
-
- /* Polarity reversal workaround for forced 10F/10H links. */
-
- /* Disable the transmitter on the PHY */
-
- ret_val = em_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0019);
- if (ret_val)
- return ret_val;
- ret_val = em_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xFFFF);
- if (ret_val)
- return ret_val;
-
- ret_val = em_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0000);
- if (ret_val)
- return ret_val;
-
- /* This loop will early-out if the NO link condition has been met. */
- for (i = PHY_FORCE_TIME; i > 0; i--) {
- /* Read the MII Status Register and wait for Link Status bit
- * to be clear.
- */
-
- ret_val = em_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
- if (ret_val)
- return ret_val;
-
- ret_val = em_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
- if (ret_val)
- return ret_val;
-
- if ((mii_status_reg & ~MII_SR_LINK_STATUS) == 0) break;
- msec_delay_irq(100);
- }
-
- /* Recommended delay time after link has been lost */
- msec_delay_irq(1000);
-
- /* Now we will re-enable th transmitter on the PHY */
-
- ret_val = em_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0019);
- if (ret_val)
- return ret_val;
- msec_delay_irq(50);
- ret_val = em_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xFFF0);
- if (ret_val)
- return ret_val;
- msec_delay_irq(50);
- ret_val = em_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xFF00);
- if (ret_val)
- return ret_val;
- msec_delay_irq(50);
- ret_val = em_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0x0000);
- if (ret_val)
- return ret_val;
-
- ret_val = em_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0000);
- if (ret_val)
- return ret_val;
-
- /* This loop will early-out if the link condition has been met. */
- for (i = PHY_FORCE_TIME; i > 0; i--) {
- /* Read the MII Status Register and wait for Link Status bit
- * to be set.
- */
-
- ret_val = em_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
- if (ret_val)
- return ret_val;
-
- ret_val = em_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
- if (ret_val)
- return ret_val;
-
- if (mii_status_reg & MII_SR_LINK_STATUS) break;
- msec_delay_irq(100);
- }
- return E1000_SUCCESS;
-}
-
-/***************************************************************************
- *
- * Disables PCI-Express master access.
- *
- * hw: Struct containing variables accessed by shared code
- *
- * returns: - none.
- *
- ***************************************************************************/
-void
-em_set_pci_express_master_disable(struct em_hw *hw)
-{
- uint32_t ctrl;
-
- DEBUGFUNC("em_set_pci_express_master_disable");
-
- if (hw->bus_type != em_bus_type_pci_express)
- return;
-
- ctrl = E1000_READ_REG(hw, CTRL);
- ctrl |= E1000_CTRL_GIO_MASTER_DISABLE;
- E1000_WRITE_REG(hw, CTRL, ctrl);
-}
-
-/***************************************************************************
- *
- * Enables PCI-Express master access.
- *
- * hw: Struct containing variables accessed by shared code
- *
- * returns: - none.
- *
- ***************************************************************************/
-void
-em_enable_pciex_master(struct em_hw *hw)
-{
- uint32_t ctrl;
-
- DEBUGFUNC("em_enable_pciex_master");
-
- if (hw->bus_type != em_bus_type_pci_express)
- return;
-
- ctrl = E1000_READ_REG(hw, CTRL);
- ctrl &= ~E1000_CTRL_GIO_MASTER_DISABLE;
- E1000_WRITE_REG(hw, CTRL, ctrl);
-}
-
-/*******************************************************************************
- *
- * Disables PCI-Express master access and verifies there are no pending requests
- *
- * hw: Struct containing variables accessed by shared code
- *
- * returns: - E1000_ERR_MASTER_REQUESTS_PENDING if master disable bit hasn't
- * caused the master requests to be disabled.
- * E1000_SUCCESS master requests disabled.
- *
- ******************************************************************************/
-int32_t
-em_disable_pciex_master(struct em_hw *hw)
-{
- int32_t timeout = MASTER_DISABLE_TIMEOUT; /* 80ms */
-
- DEBUGFUNC("em_disable_pciex_master");
-
- if (hw->bus_type != em_bus_type_pci_express)
- return E1000_SUCCESS;
-
- em_set_pci_express_master_disable(hw);
-
- while (timeout) {
- if (!(E1000_READ_REG(hw, STATUS) & E1000_STATUS_GIO_MASTER_ENABLE))
- break;
- else
- usec_delay(100);
- timeout--;
- }
-
- if (!timeout) {
- DEBUGOUT("Master requests are pending.\n");
- return -E1000_ERR_MASTER_REQUESTS_PENDING;
- }
-
- return E1000_SUCCESS;
-}
-
-/*******************************************************************************
- *
- * Check for EEPROM Auto Read bit done.
- *
- * hw: Struct containing variables accessed by shared code
- *
- * returns: - E1000_ERR_RESET if fail to reset MAC
- * E1000_SUCCESS at any other case.
- *
- ******************************************************************************/
-int32_t
-em_get_auto_rd_done(struct em_hw *hw)
-{
- int32_t timeout = AUTO_READ_DONE_TIMEOUT;
-
- DEBUGFUNC("em_get_auto_rd_done");
-
- switch (hw->mac_type) {
- default:
- msec_delay(5);
- break;
- case em_82571:
- case em_82572:
- case em_82573:
- case em_80003es2lan:
- case em_ich8lan:
- while (timeout) {
- if (E1000_READ_REG(hw, EECD) & E1000_EECD_AUTO_RD)
- break;
- else msec_delay(1);
- timeout--;
- }
-
- if (!timeout) {
- DEBUGOUT("Auto read by HW from EEPROM has not completed.\n");
- return -E1000_ERR_RESET;
- }
- break;
- }
-
- /* PHY configuration from NVM just starts after EECD_AUTO_RD sets to high.
- * Need to wait for PHY configuration completion before accessing NVM
- * and PHY. */
- if (hw->mac_type == em_82573)
- msec_delay(25);
-
- return E1000_SUCCESS;
-}
-
-/***************************************************************************
- * Checks if the PHY configuration is done
- *
- * hw: Struct containing variables accessed by shared code
- *
- * returns: - E1000_ERR_RESET if fail to reset MAC
- * E1000_SUCCESS at any other case.
- *
- ***************************************************************************/
-int32_t
-em_get_phy_cfg_done(struct em_hw *hw)
-{
- int32_t timeout = PHY_CFG_TIMEOUT;
- uint32_t cfg_mask = E1000_EEPROM_CFG_DONE;
-
- DEBUGFUNC("em_get_phy_cfg_done");
-
- switch (hw->mac_type) {
- default:
- msec_delay_irq(10);
- break;
- case em_80003es2lan:
- /* Separate *_CFG_DONE_* bit for each port */
- if (E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1)
- cfg_mask = E1000_EEPROM_CFG_DONE_PORT_1;
- /* Fall Through */
- case em_82571:
- case em_82572:
- while (timeout) {
- if (E1000_READ_REG(hw, EEMNGCTL) & cfg_mask)
- break;
- else
- msec_delay(1);
- timeout--;
- }
-
- if (!timeout) {
- DEBUGOUT("MNG configuration cycle has not completed.\n");
- return -E1000_ERR_RESET;
- }
- break;
- }
-
- return E1000_SUCCESS;
-}
-
-/***************************************************************************
- *
- * Using the combination of SMBI and SWESMBI semaphore bits when resetting
- * adapter or Eeprom access.
- *
- * hw: Struct containing variables accessed by shared code
- *
- * returns: - E1000_ERR_EEPROM if fail to access EEPROM.
- * E1000_SUCCESS at any other case.
- *
- ***************************************************************************/
-int32_t
-em_get_hw_eeprom_semaphore(struct em_hw *hw)
-{
- int32_t timeout;
- uint32_t swsm;
-
- DEBUGFUNC("em_get_hw_eeprom_semaphore");
-
- if (!hw->eeprom_semaphore_present)
- return E1000_SUCCESS;
-
- if (hw->mac_type == em_80003es2lan) {
- /* Get the SW semaphore. */
- if (em_get_software_semaphore(hw) != E1000_SUCCESS)
- return -E1000_ERR_EEPROM;
- }
-
- /* Get the FW semaphore. */
- timeout = hw->eeprom.word_size + 1;
- while (timeout) {
- swsm = E1000_READ_REG(hw, SWSM);
- swsm |= E1000_SWSM_SWESMBI;
- E1000_WRITE_REG(hw, SWSM, swsm);
- /* if we managed to set the bit we got the semaphore. */
- swsm = E1000_READ_REG(hw, SWSM);
- if (swsm & E1000_SWSM_SWESMBI)
- break;
-
- usec_delay(50);
- timeout--;
- }
-
- if (!timeout) {
- /* Release semaphores */
- em_put_hw_eeprom_semaphore(hw);
- DEBUGOUT("Driver can't access the Eeprom - SWESMBI bit is set.\n");
- return -E1000_ERR_EEPROM;
- }
-
- return E1000_SUCCESS;
-}
-
-/***************************************************************************
- * This function clears HW semaphore bits.
- *
- * hw: Struct containing variables accessed by shared code
- *
- * returns: - None.
- *
- ***************************************************************************/
-void
-em_put_hw_eeprom_semaphore(struct em_hw *hw)
-{
- uint32_t swsm;
-
- DEBUGFUNC("em_put_hw_eeprom_semaphore");
-
- if (!hw->eeprom_semaphore_present)
- return;
-
- swsm = E1000_READ_REG(hw, SWSM);
- if (hw->mac_type == em_80003es2lan) {
- /* Release both semaphores. */
- swsm &= ~(E1000_SWSM_SMBI | E1000_SWSM_SWESMBI);
- } else
- swsm &= ~(E1000_SWSM_SWESMBI);
- E1000_WRITE_REG(hw, SWSM, swsm);
-}
-
-/***************************************************************************
- *
- * Obtaining software semaphore bit (SMBI) before resetting PHY.
- *
- * hw: Struct containing variables accessed by shared code
- *
- * returns: - E1000_ERR_RESET if fail to obtain semaphore.
- * E1000_SUCCESS at any other case.
- *
- ***************************************************************************/
-int32_t
-em_get_software_semaphore(struct em_hw *hw)
-{
- int32_t timeout = hw->eeprom.word_size + 1;
- uint32_t swsm;
-
- DEBUGFUNC("em_get_software_semaphore");
-
- if (hw->mac_type != em_80003es2lan)
- return E1000_SUCCESS;
-
- while (timeout) {
- swsm = E1000_READ_REG(hw, SWSM);
- /* If SMBI bit cleared, it is now set and we hold the semaphore */
- if (!(swsm & E1000_SWSM_SMBI))
- break;
- msec_delay_irq(1);
- timeout--;
- }
-
- if (!timeout) {
- DEBUGOUT("Driver can't access device - SMBI bit is set.\n");
- return -E1000_ERR_RESET;
- }
-
- return E1000_SUCCESS;
-}
-
-/***************************************************************************
- *
- * Release semaphore bit (SMBI).
- *
- * hw: Struct containing variables accessed by shared code
- *
- ***************************************************************************/
-void
-em_release_software_semaphore(struct em_hw *hw)
-{
- uint32_t swsm;
-
- DEBUGFUNC("em_release_software_semaphore");
-
- if (hw->mac_type != em_80003es2lan)
- return;
-
- swsm = E1000_READ_REG(hw, SWSM);
- /* Release the SW semaphores.*/
- swsm &= ~E1000_SWSM_SMBI;
- E1000_WRITE_REG(hw, SWSM, swsm);
-}
-
-/******************************************************************************
- * Checks if PHY reset is blocked due to SOL/IDER session, for example.
- * Returning E1000_BLK_PHY_RESET isn't necessarily an error. But it's up to
- * the caller to figure out how to deal with it.
- *
- * hw - Struct containing variables accessed by shared code
- *
- * returns: - E1000_BLK_PHY_RESET
- * E1000_SUCCESS
- *
- *****************************************************************************/
-int32_t
-em_check_phy_reset_block(struct em_hw *hw)
-{
- uint32_t manc = 0;
- uint32_t fwsm = 0;
-
- if (hw->mac_type == em_ich8lan) {
- fwsm = E1000_READ_REG(hw, FWSM);
- return (fwsm & E1000_FWSM_RSPCIPHY) ? E1000_SUCCESS
- : E1000_BLK_PHY_RESET;
- }
-
- if (hw->mac_type > em_82547_rev_2)
- manc = E1000_READ_REG(hw, MANC);
- return (manc & E1000_MANC_BLK_PHY_RST_ON_IDE) ?
- E1000_BLK_PHY_RESET : E1000_SUCCESS;
-}
-
-uint8_t
-em_arc_subsystem_valid(struct em_hw *hw)
-{
- uint32_t fwsm;
-
- /* On 8257x silicon, registers in the range of 0x8800 - 0x8FFC
- * may not be provided a DMA clock when no manageability features are
- * enabled. We do not want to perform any reads/writes to these registers
- * if this is the case. We read FWSM to determine the manageability mode.
- */
- switch (hw->mac_type) {
- case em_82571:
- case em_82572:
- case em_82573:
- case em_80003es2lan:
- fwsm = E1000_READ_REG(hw, FWSM);
- if ((fwsm & E1000_FWSM_MODE_MASK) != 0)
- return TRUE;
- break;
- case em_ich8lan:
- return TRUE;
- default:
- break;
- }
- return FALSE;
-}
-
-
-/******************************************************************************
- * Configure PCI-Ex no-snoop
- *
- * hw - Struct containing variables accessed by shared code.
- * no_snoop - Bitmap of no-snoop events.
- *
- * returns: E1000_SUCCESS
- *
- *****************************************************************************/
-int32_t
-em_set_pci_ex_no_snoop(struct em_hw *hw, uint32_t no_snoop)
-{
- uint32_t gcr_reg = 0;
-
- DEBUGFUNC("em_set_pci_ex_no_snoop");
-
- if (hw->bus_type == em_bus_type_unknown)
- em_get_bus_info(hw);
-
- if (hw->bus_type != em_bus_type_pci_express)
- return E1000_SUCCESS;
-
- if (no_snoop) {
- gcr_reg = E1000_READ_REG(hw, GCR);
- gcr_reg &= ~(PCI_EX_NO_SNOOP_ALL);
- gcr_reg |= no_snoop;
- E1000_WRITE_REG(hw, GCR, gcr_reg);
- }
- if (hw->mac_type == em_ich8lan) {
- uint32_t ctrl_ext;
-
- E1000_WRITE_REG(hw, GCR, PCI_EX_82566_SNOOP_ALL);
-
- ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
- ctrl_ext |= E1000_CTRL_EXT_RO_DIS;
- E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
- }
-
- return E1000_SUCCESS;
-}
-
-/***************************************************************************
- *
- * Get software semaphore FLAG bit (SWFLAG).
- * SWFLAG is used to synchronize the access to all shared resource between
- * SW, FW and HW.
- *
- * hw: Struct containing variables accessed by shared code
- *
- ***************************************************************************/
-int32_t
-em_get_software_flag(struct em_hw *hw)
-{
- int32_t timeout = PHY_CFG_TIMEOUT;
- uint32_t extcnf_ctrl;
-
- DEBUGFUNC("em_get_software_flag");
-
- if (hw->mac_type == em_ich8lan) {
- while (timeout) {
- extcnf_ctrl = E1000_READ_REG(hw, EXTCNF_CTRL);
- extcnf_ctrl |= E1000_EXTCNF_CTRL_SWFLAG;
- E1000_WRITE_REG(hw, EXTCNF_CTRL, extcnf_ctrl);
-
- extcnf_ctrl = E1000_READ_REG(hw, EXTCNF_CTRL);
- if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG)
- break;
- msec_delay_irq(1);
- timeout--;
- }
-
- if (!timeout) {
- DEBUGOUT("FW or HW locks the resource too long.\n");
- return -E1000_ERR_CONFIG;
- }
- }
-
- return E1000_SUCCESS;
-}
-
-/***************************************************************************
- *
- * Release software semaphore FLAG bit (SWFLAG).
- * SWFLAG is used to synchronize the access to all shared resource between
- * SW, FW and HW.
- *
- * hw: Struct containing variables accessed by shared code
- *
- ***************************************************************************/
-void
-em_release_software_flag(struct em_hw *hw)
-{
- uint32_t extcnf_ctrl;
-
- DEBUGFUNC("em_release_software_flag");
-
- if (hw->mac_type == em_ich8lan) {
- extcnf_ctrl= E1000_READ_REG(hw, EXTCNF_CTRL);
- extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
- E1000_WRITE_REG(hw, EXTCNF_CTRL, extcnf_ctrl);
- }
-
- return;
-}
-
-/***************************************************************************
- *
- * Disable dynamic power down mode in ife PHY.
- * It can be used to workaround band-gap problem.
- *
- * hw: Struct containing variables accessed by shared code
- *
- ***************************************************************************/
-int32_t
-em_ife_disable_dynamic_power_down(struct em_hw *hw)
-{
- uint16_t phy_data;
- int32_t ret_val = E1000_SUCCESS;
-
- DEBUGFUNC("em_ife_disable_dynamic_power_down");
-
- if (hw->phy_type == em_phy_ife) {
- ret_val = em_read_phy_reg(hw, IFE_PHY_SPECIAL_CONTROL, &phy_data);
- if (ret_val)
- return ret_val;
-
- phy_data |= IFE_PSC_DISABLE_DYNAMIC_POWER_DOWN;
- ret_val = em_write_phy_reg(hw, IFE_PHY_SPECIAL_CONTROL, phy_data);
- }
-
- return ret_val;
-}
-
-/***************************************************************************
- *
- * Enable dynamic power down mode in ife PHY.
- * It can be used to workaround band-gap problem.
- *
- * hw: Struct containing variables accessed by shared code
- *
- ***************************************************************************/
-int32_t
-em_ife_enable_dynamic_power_down(struct em_hw *hw)
-{
- uint16_t phy_data;
- int32_t ret_val = E1000_SUCCESS;
-
- DEBUGFUNC("em_ife_enable_dynamic_power_down");
-
- if (hw->phy_type == em_phy_ife) {
- ret_val = em_read_phy_reg(hw, IFE_PHY_SPECIAL_CONTROL, &phy_data);
- if (ret_val)
- return ret_val;
-
- phy_data &= ~IFE_PSC_DISABLE_DYNAMIC_POWER_DOWN;
- ret_val = em_write_phy_reg(hw, IFE_PHY_SPECIAL_CONTROL, phy_data);
- }
-
- return ret_val;
-}
-
-/******************************************************************************
- * Reads a 16 bit word or words from the EEPROM using the ICH8's flash access
- * register.
- *
- * hw - Struct containing variables accessed by shared code
- * offset - offset of word in the EEPROM to read
- * data - word read from the EEPROM
- * words - number of words to read
- *****************************************************************************/
-int32_t
-em_read_eeprom_ich8(struct em_hw *hw, uint16_t offset, uint16_t words,
- uint16_t *data)
-{
- int32_t error = E1000_SUCCESS;
- uint32_t flash_bank = 0;
- uint32_t act_offset = 0;
- uint32_t bank_offset = 0;
- uint16_t word = 0;
- uint16_t i = 0;
-
- /* We need to know which is the valid flash bank. In the event
- * that we didn't allocate eeprom_shadow_ram, we may not be
- * managing flash_bank. So it cannot be trusted and needs
- * to be updated with each read.
- */
- /* Value of bit 22 corresponds to the flash bank we're on. */
- flash_bank = (E1000_READ_REG(hw, EECD) & E1000_EECD_SEC1VAL) ? 1 : 0;
-
- /* Adjust offset appropriately if we're on bank 1 - adjust for word size */
- bank_offset = flash_bank * (hw->flash_bank_size * 2);
-
- error = em_get_software_flag(hw);
- if (error != E1000_SUCCESS)
- return error;
-
- for (i = 0; i < words; i++) {
- if (hw->eeprom_shadow_ram != NULL &&
- hw->eeprom_shadow_ram[offset+i].modified == TRUE) {
- data[i] = hw->eeprom_shadow_ram[offset+i].eeprom_word;
- } else {
- /* The NVM part needs a byte offset, hence * 2 */
- act_offset = bank_offset + ((offset + i) * 2);
- error = em_read_ich8_word(hw, act_offset, &word);
- if (error != E1000_SUCCESS)
- break;
- data[i] = word;
- }
- }
-
- em_release_software_flag(hw);
-
- return error;
-}
-
-/******************************************************************************
- * Writes a 16 bit word or words to the EEPROM using the ICH8's flash access
- * register. Actually, writes are written to the shadow ram cache in the hw
- * structure hw->em_shadow_ram. em_commit_shadow_ram flushes this to
- * the NVM, which occurs when the NVM checksum is updated.
- *
- * hw - Struct containing variables accessed by shared code
- * offset - offset of word in the EEPROM to write
- * words - number of words to write
- * data - words to write to the EEPROM
- *****************************************************************************/
-int32_t
-em_write_eeprom_ich8(struct em_hw *hw, uint16_t offset, uint16_t words,
- uint16_t *data)
-{
- uint32_t i = 0;
- int32_t error = E1000_SUCCESS;
-
- error = em_get_software_flag(hw);
- if (error != E1000_SUCCESS)
- return error;
-
- /* A driver can write to the NVM only if it has eeprom_shadow_ram
- * allocated. Subsequent reads to the modified words are read from
- * this cached structure as well. Writes will only go into this
- * cached structure unless it's followed by a call to
- * em_update_eeprom_checksum() where it will commit the changes
- * and clear the "modified" field.
- */
- if (hw->eeprom_shadow_ram != NULL) {
- for (i = 0; i < words; i++) {
- if ((offset + i) < E1000_SHADOW_RAM_WORDS) {
- hw->eeprom_shadow_ram[offset+i].modified = TRUE;
- hw->eeprom_shadow_ram[offset+i].eeprom_word = data[i];
- } else {
- error = -E1000_ERR_EEPROM;
- break;
- }
- }
- } else {
- /* Drivers have the option to not allocate eeprom_shadow_ram as long
- * as they don't perform any NVM writes. An attempt in doing so
- * will result in this error.
- */
- error = -E1000_ERR_EEPROM;
- }
-
- em_release_software_flag(hw);
-
- return error;
-}
-
-/******************************************************************************
- * This function does initial flash setup so that a new read/write/erase cycle
- * can be started.
- *
- * hw - The pointer to the hw structure
- ****************************************************************************/
-int32_t
-em_ich8_cycle_init(struct em_hw *hw)
-{
- union ich8_hws_flash_status hsfsts;
- int32_t error = E1000_ERR_EEPROM;
- int32_t i = 0;
-
- DEBUGFUNC("em_ich8_cycle_init");
-
- hsfsts.regval = E1000_READ_ICH8_REG16(hw, ICH8_FLASH_HSFSTS);
-
- /* May be check the Flash Des Valid bit in Hw status */
- if (hsfsts.hsf_status.fldesvalid == 0) {
- DEBUGOUT("Flash descriptor invalid. SW Sequencing must be used.");
- return error;
- }
-
- /* Clear FCERR in Hw status by writing 1 */
- /* Clear DAEL in Hw status by writing a 1 */
- hsfsts.hsf_status.flcerr = 1;
- hsfsts.hsf_status.dael = 1;
-
- E1000_WRITE_ICH8_REG16(hw, ICH8_FLASH_HSFSTS, hsfsts.regval);
-
- /* Either we should have a hardware SPI cycle in progress bit to check
- * against, in order to start a new cycle or FDONE bit should be changed
- * in the hardware so that it is 1 after harware reset, which can then be
- * used as an indication whether a cycle is in progress or has been
- * completed .. we should also have some software semaphore mechanism to
- * guard FDONE or the cycle in progress bit so that two threads access to
- * those bits can be sequentiallized or a way so that 2 threads dont
- * start the cycle at the same time */
-
- if (hsfsts.hsf_status.flcinprog == 0) {
- /* There is no cycle running at present, so we can start a cycle */
- /* Begin by setting Flash Cycle Done. */
- hsfsts.hsf_status.flcdone = 1;
- E1000_WRITE_ICH8_REG16(hw, ICH8_FLASH_HSFSTS, hsfsts.regval);
- error = E1000_SUCCESS;
- } else {
- /* otherwise poll for sometime so the current cycle has a chance
- * to end before giving up. */
- for (i = 0; i < ICH8_FLASH_COMMAND_TIMEOUT; i++) {
- hsfsts.regval = E1000_READ_ICH8_REG16(hw, ICH8_FLASH_HSFSTS);
- if (hsfsts.hsf_status.flcinprog == 0) {
- error = E1000_SUCCESS;
- break;
- }
- usec_delay(1);
- }
- if (error == E1000_SUCCESS) {
- /* Successful in waiting for previous cycle to timeout,
- * now set the Flash Cycle Done. */
- hsfsts.hsf_status.flcdone = 1;
- E1000_WRITE_ICH8_REG16(hw, ICH8_FLASH_HSFSTS, hsfsts.regval);
- } else {
- DEBUGOUT("Flash controller busy, cannot get access");
- }
- }
- return error;
-}
-
-/******************************************************************************
- * This function starts a flash cycle and waits for its completion
- *
- * hw - The pointer to the hw structure
- ****************************************************************************/
-int32_t
-em_ich8_flash_cycle(struct em_hw *hw, uint32_t timeout)
-{
- union ich8_hws_flash_ctrl hsflctl;
- union ich8_hws_flash_status hsfsts;
- int32_t error = E1000_ERR_EEPROM;
- uint32_t i = 0;
-
- /* Start a cycle by writing 1 in Flash Cycle Go in Hw Flash Control */
- hsflctl.regval = E1000_READ_ICH8_REG16(hw, ICH8_FLASH_HSFCTL);
- hsflctl.hsf_ctrl.flcgo = 1;
- E1000_WRITE_ICH8_REG16(hw, ICH8_FLASH_HSFCTL, hsflctl.regval);
-
- /* wait till FDONE bit is set to 1 */
- do {
- hsfsts.regval = E1000_READ_ICH8_REG16(hw, ICH8_FLASH_HSFSTS);
- if (hsfsts.hsf_status.flcdone == 1)
- break;
- usec_delay(1);
- i++;
- } while (i < timeout);
- if (hsfsts.hsf_status.flcdone == 1 && hsfsts.hsf_status.flcerr == 0) {
- error = E1000_SUCCESS;
- }
- return error;
-}
-
-/******************************************************************************
- * Reads a byte or word from the NVM using the ICH8 flash access registers.
- *
- * hw - The pointer to the hw structure
- * index - The index of the byte or word to read.
- * size - Size of data to read, 1=byte 2=word
- * data - Pointer to the word to store the value read.
- *****************************************************************************/
-int32_t
-em_read_ich8_data(struct em_hw *hw, uint32_t index,
- uint32_t size, uint16_t* data)
-{
- union ich8_hws_flash_status hsfsts;
- union ich8_hws_flash_ctrl hsflctl;
- uint32_t flash_linear_address;
- uint32_t flash_data = 0;
- int32_t error = -E1000_ERR_EEPROM;
- int32_t count = 0;
-
- DEBUGFUNC("em_read_ich8_data");
-
- if (size < 1 || size > 2 || data == 0x0 ||
- index > ICH8_FLASH_LINEAR_ADDR_MASK)
- return error;
-
- flash_linear_address = (ICH8_FLASH_LINEAR_ADDR_MASK & index) +
- hw->flash_base_addr;
-
- do {
- usec_delay(1);
- /* Steps */
- error = em_ich8_cycle_init(hw);
- if (error != E1000_SUCCESS)
- break;
-
- hsflctl.regval = E1000_READ_ICH8_REG16(hw, ICH8_FLASH_HSFCTL);
- /* 0b/1b corresponds to 1 or 2 byte size, respectively. */
- hsflctl.hsf_ctrl.fldbcount = size - 1;
- hsflctl.hsf_ctrl.flcycle = ICH8_CYCLE_READ;
- E1000_WRITE_ICH8_REG16(hw, ICH8_FLASH_HSFCTL, hsflctl.regval);
-
- /* Write the last 24 bits of index into Flash Linear address field in
- * Flash Address */
- /* TODO: TBD maybe check the index against the size of flash */
-
- E1000_WRITE_ICH8_REG(hw, ICH8_FLASH_FADDR, flash_linear_address);
-
- error = em_ich8_flash_cycle(hw, ICH8_FLASH_COMMAND_TIMEOUT);
-
- /* Check if FCERR is set to 1, if set to 1, clear it and try the whole
- * sequence a few more times, else read in (shift in) the Flash Data0,
- * the order is least significant byte first msb to lsb */
- if (error == E1000_SUCCESS) {
- flash_data = E1000_READ_ICH8_REG(hw, ICH8_FLASH_FDATA0);
- if (size == 1) {
- *data = (uint8_t)(flash_data & 0x000000FF);
- } else if (size == 2) {
- *data = (uint16_t)(flash_data & 0x0000FFFF);
- }
- break;
- } else {
- /* If we've gotten here, then things are probably completely hosed,
- * but if the error condition is detected, it won't hurt to give
- * it another try...ICH8_FLASH_CYCLE_REPEAT_COUNT times.
- */
- hsfsts.regval = E1000_READ_ICH8_REG16(hw, ICH8_FLASH_HSFSTS);
- if (hsfsts.hsf_status.flcerr == 1) {
- /* Repeat for some time before giving up. */
- continue;
- } else if (hsfsts.hsf_status.flcdone == 0) {
- DEBUGOUT("Timeout error - flash cycle did not complete.");
- break;
- }
- }
- } while (count++ < ICH8_FLASH_CYCLE_REPEAT_COUNT);
-
- return error;
-}
-
-/******************************************************************************
- * Writes One /two bytes to the NVM using the ICH8 flash access registers.
- *
- * hw - The pointer to the hw structure
- * index - The index of the byte/word to read.
- * size - Size of data to read, 1=byte 2=word
- * data - The byte(s) to write to the NVM.
- *****************************************************************************/
-int32_t
-em_write_ich8_data(struct em_hw *hw, uint32_t index, uint32_t size,
- uint16_t data)
-{
- union ich8_hws_flash_status hsfsts;
- union ich8_hws_flash_ctrl hsflctl;
- uint32_t flash_linear_address;
- uint32_t flash_data = 0;
- int32_t error = -E1000_ERR_EEPROM;
- int32_t count = 0;
-
- DEBUGFUNC("em_write_ich8_data");
-
- if (size < 1 || size > 2 || data > size * 0xff ||
- index > ICH8_FLASH_LINEAR_ADDR_MASK)
- return error;
-
- flash_linear_address = (ICH8_FLASH_LINEAR_ADDR_MASK & index) +
- hw->flash_base_addr;
-
- do {
- usec_delay(1);
- /* Steps */
- error = em_ich8_cycle_init(hw);
- if (error != E1000_SUCCESS)
- break;
-
- hsflctl.regval = E1000_READ_ICH8_REG16(hw, ICH8_FLASH_HSFCTL);
- /* 0b/1b corresponds to 1 or 2 byte size, respectively. */
- hsflctl.hsf_ctrl.fldbcount = size -1;
- hsflctl.hsf_ctrl.flcycle = ICH8_CYCLE_WRITE;
- E1000_WRITE_ICH8_REG16(hw, ICH8_FLASH_HSFCTL, hsflctl.regval);
-
- /* Write the last 24 bits of index into Flash Linear address field in
- * Flash Address */
- E1000_WRITE_ICH8_REG(hw, ICH8_FLASH_FADDR, flash_linear_address);
-
- if (size == 1)
- flash_data = (uint32_t)data & 0x00FF;
- else
- flash_data = (uint32_t)data;
-
- E1000_WRITE_ICH8_REG(hw, ICH8_FLASH_FDATA0, flash_data);
-
- /* check if FCERR is set to 1 , if set to 1, clear it and try the whole
- * sequence a few more times else done */
- error = em_ich8_flash_cycle(hw, ICH8_FLASH_COMMAND_TIMEOUT);
- if (error == E1000_SUCCESS) {
- break;
- } else {
- /* If we're here, then things are most likely completely hosed,
- * but if the error condition is detected, it won't hurt to give
- * it another try...ICH8_FLASH_CYCLE_REPEAT_COUNT times.
- */
- hsfsts.regval = E1000_READ_ICH8_REG16(hw, ICH8_FLASH_HSFSTS);
- if (hsfsts.hsf_status.flcerr == 1) {
- /* Repeat for some time before giving up. */
- continue;
- } else if (hsfsts.hsf_status.flcdone == 0) {
- DEBUGOUT("Timeout error - flash cycle did not complete.");
- break;
- }
- }
- } while (count++ < ICH8_FLASH_CYCLE_REPEAT_COUNT);
-
- return error;
-}
-
-/******************************************************************************
- * Reads a single byte from the NVM using the ICH8 flash access registers.
- *
- * hw - pointer to em_hw structure
- * index - The index of the byte to read.
- * data - Pointer to a byte to store the value read.
- *****************************************************************************/
-int32_t
-em_read_ich8_byte(struct em_hw *hw, uint32_t index, uint8_t* data)
-{
- int32_t status = E1000_SUCCESS;
- uint16_t word = 0;
-
- status = em_read_ich8_data(hw, index, 1, &word);
- if (status == E1000_SUCCESS) {
- *data = (uint8_t)word;
- }
-
- return status;
-}
-
-/******************************************************************************
- * Writes a single byte to the NVM using the ICH8 flash access registers.
- * Performs verification by reading back the value and then going through
- * a retry algorithm before giving up.
- *
- * hw - pointer to em_hw structure
- * index - The index of the byte to write.
- * byte - The byte to write to the NVM.
- *****************************************************************************/
-int32_t
-em_verify_write_ich8_byte(struct em_hw *hw, uint32_t index, uint8_t byte)
-{
- int32_t error = E1000_SUCCESS;
- int32_t program_retries;
- uint8_t temp_byte;
-
- em_write_ich8_byte(hw, index, byte);
- usec_delay(100);
-
- for (program_retries = 0; program_retries < 100; program_retries++) {
- em_read_ich8_byte(hw, index, &temp_byte);
- if (temp_byte == byte)
- break;
- usec_delay(10);
- em_write_ich8_byte(hw, index, byte);
- usec_delay(100);
- }
- if (program_retries == 100)
- error = E1000_ERR_EEPROM;
-
- return error;
-}
-
-/******************************************************************************
- * Writes a single byte to the NVM using the ICH8 flash access registers.
- *
- * hw - pointer to em_hw structure
- * index - The index of the byte to read.
- * data - The byte to write to the NVM.
- *****************************************************************************/
-int32_t
-em_write_ich8_byte(struct em_hw *hw, uint32_t index, uint8_t data)
-{
- int32_t status = E1000_SUCCESS;
- uint16_t word = (uint16_t)data;
-
- status = em_write_ich8_data(hw, index, 1, word);
-
- return status;
-}
-
-/******************************************************************************
- * Reads a word from the NVM using the ICH8 flash access registers.
- *
- * hw - pointer to em_hw structure
- * index - The starting byte index of the word to read.
- * data - Pointer to a word to store the value read.
- *****************************************************************************/
-int32_t
-em_read_ich8_word(struct em_hw *hw, uint32_t index, uint16_t *data)
-{
- int32_t status = E1000_SUCCESS;
- status = em_read_ich8_data(hw, index, 2, data);
- return status;
-}
-
-/******************************************************************************
- * Writes a word to the NVM using the ICH8 flash access registers.
- *
- * hw - pointer to em_hw structure
- * index - The starting byte index of the word to read.
- * data - The word to write to the NVM.
- *****************************************************************************/
-int32_t
-em_write_ich8_word(struct em_hw *hw, uint32_t index, uint16_t data)
-{
- int32_t status = E1000_SUCCESS;
- status = em_write_ich8_data(hw, index, 2, data);
- return status;
-}
-
-/******************************************************************************
- * Erases the bank specified. Each bank is a 4k block. Segments are 0 based.
- * segment N is 4096 * N + flash_reg_addr.
- *
- * hw - pointer to em_hw structure
- * segment - 0 for first segment, 1 for second segment, etc.
- *****************************************************************************/
-int32_t
-em_erase_ich8_4k_segment(struct em_hw *hw, uint32_t segment)
-{
- union ich8_hws_flash_status hsfsts;
- union ich8_hws_flash_ctrl hsflctl;
- uint32_t flash_linear_address;
- int32_t count = 0;
- int32_t error = E1000_ERR_EEPROM;
- int32_t iteration, seg_size;
- int32_t sector_size;
- int32_t j = 0;
- int32_t error_flag = 0;
-
- hsfsts.regval = E1000_READ_ICH8_REG16(hw, ICH8_FLASH_HSFSTS);
-
- /* Determine HW Sector size: Read BERASE bits of Hw flash Status register */
- /* 00: The Hw sector is 256 bytes, hence we need to erase 16
- * consecutive sectors. The start index for the nth Hw sector can be
- * calculated as = segment * 4096 + n * 256
- * 01: The Hw sector is 4K bytes, hence we need to erase 1 sector.
- * The start index for the nth Hw sector can be calculated
- * as = segment * 4096
- * 10: Error condition
- * 11: The Hw sector size is much bigger than the size asked to
- * erase...error condition */
- if (hsfsts.hsf_status.berasesz == 0x0) {
- /* Hw sector size 256 */
- sector_size = seg_size = ICH8_FLASH_SEG_SIZE_256;
- iteration = ICH8_FLASH_SECTOR_SIZE / ICH8_FLASH_SEG_SIZE_256;
- } else if (hsfsts.hsf_status.berasesz == 0x1) {
- sector_size = seg_size = ICH8_FLASH_SEG_SIZE_4K;
- iteration = 1;
- } else if (hsfsts.hsf_status.berasesz == 0x3) {
- sector_size = seg_size = ICH8_FLASH_SEG_SIZE_64K;
- iteration = 1;
- } else {
- return error;
- }
-
- for (j = 0; j < iteration ; j++) {
- do {
- count++;
- /* Steps */
- error = em_ich8_cycle_init(hw);
- if (error != E1000_SUCCESS) {
- error_flag = 1;
- break;
- }
-
- /* Write a value 11 (block Erase) in Flash Cycle field in Hw flash
- * Control */
- hsflctl.regval = E1000_READ_ICH8_REG16(hw, ICH8_FLASH_HSFCTL);
- hsflctl.hsf_ctrl.flcycle = ICH8_CYCLE_ERASE;
- E1000_WRITE_ICH8_REG16(hw, ICH8_FLASH_HSFCTL, hsflctl.regval);
-
- /* Write the last 24 bits of an index within the block into Flash
- * Linear address field in Flash Address. This probably needs to
- * be calculated here based off the on-chip segment size and the
- * software segment size assumed (4K) */
- /* TBD */
- flash_linear_address = segment * sector_size + j * seg_size;
- flash_linear_address &= ICH8_FLASH_LINEAR_ADDR_MASK;
- flash_linear_address += hw->flash_base_addr;
-
- E1000_WRITE_ICH8_REG(hw, ICH8_FLASH_FADDR, flash_linear_address);
-
- error = em_ich8_flash_cycle(hw, 1000000);
- /* Check if FCERR is set to 1. If 1, clear it and try the whole
- * sequence a few more times else Done */
- if (error == E1000_SUCCESS) {
- break;
- } else {
- hsfsts.regval = E1000_READ_ICH8_REG16(hw, ICH8_FLASH_HSFSTS);
- if (hsfsts.hsf_status.flcerr == 1) {
- /* repeat for some time before giving up */
- continue;
- } else if (hsfsts.hsf_status.flcdone == 0) {
- error_flag = 1;
- break;
- }
- }
- } while ((count < ICH8_FLASH_CYCLE_REPEAT_COUNT) && !error_flag);
- if (error_flag == 1)
- break;
- }
- if (error_flag != 1)
- error = E1000_SUCCESS;
- return error;
-}
-
-/******************************************************************************
- *
- * Reverse duplex setting without breaking the link.
- *
- * hw: Struct containing variables accessed by shared code
- *
- *****************************************************************************/
-int32_t
-em_duplex_reversal(struct em_hw *hw)
-{
- int32_t ret_val;
- uint16_t phy_data;
-
- if (hw->phy_type != em_phy_igp_3)
- return E1000_SUCCESS;
-
- ret_val = em_read_phy_reg(hw, PHY_CTRL, &phy_data);
- if (ret_val)
- return ret_val;
-
- phy_data ^= MII_CR_FULL_DUPLEX;
-
- ret_val = em_write_phy_reg(hw, PHY_CTRL, phy_data);
- if (ret_val)
- return ret_val;
-
- ret_val = em_read_phy_reg(hw, IGP3E1000_PHY_MISC_CTRL, &phy_data);
- if (ret_val)
- return ret_val;
-
- phy_data |= IGP3_PHY_MISC_DUPLEX_MANUAL_SET;
- ret_val = em_write_phy_reg(hw, IGP3E1000_PHY_MISC_CTRL, phy_data);
-
- return ret_val;
-}
-
-int32_t
-em_init_lcd_from_nvm_config_region(struct em_hw *hw,
- uint32_t cnf_base_addr, uint32_t cnf_size)
-{
- uint32_t ret_val = E1000_SUCCESS;
- uint16_t word_addr, reg_data, reg_addr;
- uint16_t i;
-
- /* cnf_base_addr is in DWORD */
- word_addr = (uint16_t)(cnf_base_addr << 1);
-
- /* cnf_size is returned in size of dwords */
- for (i = 0; i < cnf_size; i++) {
- ret_val = em_read_eeprom(hw, (word_addr + i*2), 1, ®_data);
- if (ret_val)
- return ret_val;
-
- ret_val = em_read_eeprom(hw, (word_addr + i*2 + 1), 1, ®_addr);
- if (ret_val)
- return ret_val;
-
- ret_val = em_get_software_flag(hw);
- if (ret_val != E1000_SUCCESS)
- return ret_val;
-
- ret_val = em_write_phy_reg_ex(hw, (uint32_t)reg_addr, reg_data);
-
- em_release_software_flag(hw);
- }
-
- return ret_val;
-}
-
-
-/******************************************************************************
- * This function initializes the PHY from the NVM on ICH8 platforms. This
- * is needed due to an issue where the NVM configuration is not properly
- * autoloaded after power transitions. Therefore, after each PHY reset, we
- * will load the configuration data out of the NVM manually.
- *
- * hw: Struct containing variables accessed by shared code
- *****************************************************************************/
-int32_t
-em_init_lcd_from_nvm(struct em_hw *hw)
-{
- uint32_t reg_data, cnf_base_addr, cnf_size, ret_val, loop;
-
- if (hw->phy_type != em_phy_igp_3)
- return E1000_SUCCESS;
-
- /* Check if SW needs configure the PHY */
- reg_data = E1000_READ_REG(hw, FEXTNVM);
- if (!(reg_data & FEXTNVM_SW_CONFIG))
- return E1000_SUCCESS;
-
- /* Wait for basic configuration completes before proceeding*/
- loop = 0;
- do {
- reg_data = E1000_READ_REG(hw, STATUS) & E1000_STATUS_LAN_INIT_DONE;
- usec_delay(100);
- loop++;
- } while ((!reg_data) && (loop < 50));
-
- /* Clear the Init Done bit for the next init event */
- reg_data = E1000_READ_REG(hw, STATUS);
- reg_data &= ~E1000_STATUS_LAN_INIT_DONE;
- E1000_WRITE_REG(hw, STATUS, reg_data);
-
- /* Make sure HW does not configure LCD from PHY extended configuration
- before SW configuration */
- reg_data = E1000_READ_REG(hw, EXTCNF_CTRL);
- if ((reg_data & E1000_EXTCNF_CTRL_LCD_WRITE_ENABLE) == 0x0000) {
- reg_data = E1000_READ_REG(hw, EXTCNF_SIZE);
- cnf_size = reg_data & E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH;
- cnf_size >>= 16;
- if (cnf_size) {
- reg_data = E1000_READ_REG(hw, EXTCNF_CTRL);
- cnf_base_addr = reg_data & E1000_EXTCNF_CTRL_EXT_CNF_POINTER;
- /* cnf_base_addr is in DWORD */
- cnf_base_addr >>= 16;
-
- /* Configure LCD from extended configuration region. */
- ret_val = em_init_lcd_from_nvm_config_region(hw, cnf_base_addr,
- cnf_size);
- if (ret_val)
- return ret_val;
- }
- }
-
- return E1000_SUCCESS;
-}
-
-
-
--- /dev/null
+++ sys/dev/em/e1000_82575.h
@@ -0,0 +1,316 @@
+/*******************************************************************************
+
+ Copyright (c) 2001-2007, Intel Corporation
+ All rights reserved.
+
+ Redistribution and use in source and binary forms, with or without
+ modification, are permitted provided that the following conditions are met:
+
+ 1. Redistributions of source code must retain the above copyright notice,
+ this list of conditions and the following disclaimer.
+
+ 2. Redistributions in binary form must reproduce the above copyright
+ notice, this list of conditions and the following disclaimer in the
+ documentation and/or other materials provided with the distribution.
+
+ 3. Neither the name of the Intel Corporation nor the names of its
+ contributors may be used to endorse or promote products derived from
+ this software without specific prior written permission.
+
+ THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
+ AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+ IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
+ LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
+ CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
+ SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
+ INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
+ CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
+ ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
+ POSSIBILITY OF SUCH DAMAGE.
+
+*******************************************************************************/
+/* $FreeBSD: src/sys/dev/em/e1000_82575.h,v 1.3.4.1 2007/11/28 23:24:37 jfv Exp $ */
+
+
+#ifndef _E1000_82575_H_
+#define _E1000_82575_H_
+
+/*
+ * Receive Address Register Count
+ * Number of high/low register pairs in the RAR. The RAR (Receive Address
+ * Registers) holds the directed and multicast addresses that we monitor.
+ * These entries are also used for MAC-based filtering.
+ */
+#define E1000_RAR_ENTRIES_82575 16
+
+#ifdef E1000_BIT_FIELDS
+struct e1000_adv_data_desc {
+ u64 buffer_addr; /* Address of the descriptor's data buffer */
+ union {
+ u32 data;
+ struct {
+ u32 datalen :16; /* Data buffer length */
+ u32 rsvd :4;
+ u32 dtyp :4; /* Descriptor type */
+ u32 dcmd :8; /* Descriptor command */
+ } config;
+ } lower;
+ union {
+ u32 data;
+ struct {
+ u32 status :4; /* Descriptor status */
+ u32 idx :4;
+ u32 popts :6; /* Packet Options */
+ u32 paylen :18; /* Payload length */
+ } options;
+ } upper;
+};
+
+#define E1000_TXD_DTYP_ADV_C 0x2 /* Advanced Context Descriptor */
+#define E1000_TXD_DTYP_ADV_D 0x3 /* Advanced Data Descriptor */
+#define E1000_ADV_TXD_CMD_DEXT 0x20 /* Descriptor extension (0 = legacy) */
+#define E1000_ADV_TUCMD_IPV4 0x2 /* IP Packet Type: 1=IPv4 */
+#define E1000_ADV_TUCMD_IPV6 0x0 /* IP Packet Type: 0=IPv6 */
+#define E1000_ADV_TUCMD_L4T_UDP 0x0 /* L4 Packet TYPE of UDP */
+#define E1000_ADV_TUCMD_L4T_TCP 0x4 /* L4 Packet TYPE of TCP */
+#define E1000_ADV_TUCMD_MKRREQ 0x10 /* Indicates markers are required */
+#define E1000_ADV_DCMD_EOP 0x1 /* End of Packet */
+#define E1000_ADV_DCMD_IFCS 0x2 /* Insert FCS (Ethernet CRC) */
+#define E1000_ADV_DCMD_RS 0x8 /* Report Status */
+#define E1000_ADV_DCMD_VLE 0x40 /* Add VLAN tag */
+#define E1000_ADV_DCMD_TSE 0x80 /* TCP Seg enable */
+
+struct e1000_adv_context_desc {
+ union {
+ u32 ip_config;
+ struct {
+ u32 iplen :9;
+ u32 maclen :7;
+ u32 vlan_tag :16;
+ } fields;
+ } ip_setup;
+ u32 seq_num;
+ union {
+ u64 l4_config;
+ struct {
+ u32 mkrloc :9;
+ u32 tucmd :11;
+ u32 dtyp :4;
+ u32 adv :8;
+ u32 rsvd :4;
+ u32 idx :4;
+ u32 l4len :8;
+ u32 mss :16;
+ } fields;
+ } l4_setup;
+};
+#endif
+
+/* SRRCTL bit definitions */
+#define E1000_SRRCTL_BSIZEPKT_SHIFT 10 /* Shift _right_ */
+#define E1000_SRRCTL_BSIZEHDRSIZE_MASK 0x00000F00
+#define E1000_SRRCTL_BSIZEHDRSIZE_SHIFT 2 /* Shift _left_ */
+#define E1000_SRRCTL_DESCTYPE_LEGACY 0x00000000
+#define E1000_SRRCTL_DESCTYPE_ADV_ONEBUF 0x02000000
+#define E1000_SRRCTL_DESCTYPE_HDR_SPLIT 0x04000000
+#define E1000_SRRCTL_DESCTYPE_HDR_SPLIT_ALWAYS 0x0A000000
+#define E1000_SRRCTL_DESCTYPE_HDR_REPLICATION 0x06000000
+#define E1000_SRRCTL_DESCTYPE_HDR_REPLICATION_LARGE_PKT 0x08000000
+#define E1000_SRRCTL_DESCTYPE_MASK 0x0E000000
+
+#define E1000_SRRCTL_BSIZEPKT_MASK 0x0000007F
+#define E1000_SRRCTL_BSIZEHDR_MASK 0x00003F00
+
+#define E1000_TX_HEAD_WB_ENABLE 0x1
+#define E1000_TX_SEQNUM_WB_ENABLE 0x2
+
+#define E1000_MRQC_ENABLE_RSS_4Q 0x00000002
+#define E1000_MRQC_RSS_FIELD_IPV4_UDP 0x00400000
+#define E1000_MRQC_RSS_FIELD_IPV6_UDP 0x00800000
+#define E1000_MRQC_RSS_FIELD_IPV6_UDP_EX 0x01000000
+
+#define E1000_EICR_TX_QUEUE ( \
+ E1000_EICR_TX_QUEUE0 | \
+ E1000_EICR_TX_QUEUE1 | \
+ E1000_EICR_TX_QUEUE2 | \
+ E1000_EICR_TX_QUEUE3)
+
+#define E1000_EICR_RX_QUEUE ( \
+ E1000_EICR_RX_QUEUE0 | \
+ E1000_EICR_RX_QUEUE1 | \
+ E1000_EICR_RX_QUEUE2 | \
+ E1000_EICR_RX_QUEUE3)
+
+#define E1000_EIMS_RX_QUEUE E1000_EICR_RX_QUEUE
+#define E1000_EIMS_TX_QUEUE E1000_EICR_TX_QUEUE
+
+#define EIMS_ENABLE_MASK ( \
+ E1000_EIMS_RX_QUEUE | \
+ E1000_EIMS_TX_QUEUE | \
+ E1000_EIMS_TCP_TIMER | \
+ E1000_EIMS_OTHER)
+
+/* Immediate Interrupt Rx (A.K.A. Low Latency Interrupt) */
+#define E1000_IMIR_PORT_IM_EN 0x00010000 /* TCP port enable */
+#define E1000_IMIR_PORT_BP 0x00020000 /* TCP port check bypass */
+#define E1000_IMIREXT_SIZE_BP 0x00001000 /* Packet size bypass */
+#define E1000_IMIREXT_CTRL_URG 0x00002000 /* Check URG bit in header */
+#define E1000_IMIREXT_CTRL_ACK 0x00004000 /* Check ACK bit in header */
+#define E1000_IMIREXT_CTRL_PSH 0x00008000 /* Check PSH bit in header */
+#define E1000_IMIREXT_CTRL_RST 0x00010000 /* Check RST bit in header */
+#define E1000_IMIREXT_CTRL_SYN 0x00020000 /* Check SYN bit in header */
+#define E1000_IMIREXT_CTRL_FIN 0x00040000 /* Check FIN bit in header */
+#define E1000_IMIREXT_CTRL_BP 0x00080000 /* Bypass check of control bits */
+
+/* Receive Descriptor - Advanced */
+union e1000_adv_rx_desc {
+ struct {
+ u64 pkt_addr; /* Packet buffer address */
+ u64 hdr_addr; /* Header buffer address */
+ } read;
+ struct {
+ struct {
+ struct {
+ u16 pkt_info; /* RSS type, Packet type */
+ u16 hdr_info; /* Split Header,
+ * header buffer length */
+ } lo_dword;
+ union {
+ u32 rss; /* RSS Hash */
+ struct {
+ u16 ip_id; /* IP id */
+ u16 csum; /* Packet Checksum */
+ } csum_ip;
+ } hi_dword;
+ } lower;
+ struct {
+ u32 status_error; /* ext status/error */
+ u16 length; /* Packet length */
+ u16 vlan; /* VLAN tag */
+ } upper;
+ } wb; /* writeback */
+};
+
+#define E1000_RXDADV_RSSTYPE_MASK 0x0000F000
+#define E1000_RXDADV_RSSTYPE_SHIFT 12
+#define E1000_RXDADV_HDRBUFLEN_MASK 0x7FE0
+#define E1000_RXDADV_HDRBUFLEN_SHIFT 5
+#define E1000_RXDADV_SPLITHEADER_EN 0x00001000
+#define E1000_RXDADV_SPH 0x8000
+#define E1000_RXDADV_HBO 0x00800000
+
+/* RSS Hash results */
+#define E1000_RXDADV_RSSTYPE_NONE 0x00000000
+#define E1000_RXDADV_RSSTYPE_IPV4_TCP 0x00000001
+#define E1000_RXDADV_RSSTYPE_IPV4 0x00000002
+#define E1000_RXDADV_RSSTYPE_IPV6_TCP 0x00000003
+#define E1000_RXDADV_RSSTYPE_IPV6_EX 0x00000004
+#define E1000_RXDADV_RSSTYPE_IPV6 0x00000005
+#define E1000_RXDADV_RSSTYPE_IPV6_TCP_EX 0x00000006
+#define E1000_RXDADV_RSSTYPE_IPV4_UDP 0x00000007
+#define E1000_RXDADV_RSSTYPE_IPV6_UDP 0x00000008
+#define E1000_RXDADV_RSSTYPE_IPV6_UDP_EX 0x00000009
+
+/* RSS Packet Types as indicated in the receive descriptor */
+#define E1000_RXDADV_PKTTYPE_NONE 0x00000000
+#define E1000_RXDADV_PKTTYPE_IPV4 0x00000010 /* IPV4 hdr present */
+#define E1000_RXDADV_PKTTYPE_IPV4_EX 0x00000020 /* IPV4 hdr + extensions */
+#define E1000_RXDADV_PKTTYPE_IPV6 0x00000040 /* IPV6 hdr present */
+#define E1000_RXDADV_PKTTYPE_IPV6_EX 0x00000080 /* IPV6 hdr + extensions */
+#define E1000_RXDADV_PKTTYPE_TCP 0x00000100 /* TCP hdr present */
+#define E1000_RXDADV_PKTTYPE_UDP 0x00000200 /* UDP hdr present */
+#define E1000_RXDADV_PKTTYPE_SCTP 0x00000400 /* SCTP hdr present */
+#define E1000_RXDADV_PKTTYPE_NFS 0x00000800 /* NFS hdr present */
+
+/* Transmit Descriptor - Advanced */
+union e1000_adv_tx_desc {
+ struct {
+ u64 buffer_addr; /* Address of descriptor's data buf */
+ u32 cmd_type_len;
+ u32 olinfo_status;
+ } read;
+ struct {
+ u64 rsvd; /* Reserved */
+ u32 nxtseq_seed;
+ u32 status;
+ } wb;
+};
+
+/* Adv Transmit Descriptor Config Masks */
+#define E1000_ADVTXD_DTYP_CTXT 0x00200000 /* Advanced Context Descriptor */
+#define E1000_ADVTXD_DTYP_DATA 0x00300000 /* Advanced Data Descriptor */
+#define E1000_ADVTXD_DCMD_EOP 0x01000000 /* End of Packet */
+#define E1000_ADVTXD_DCMD_IFCS 0x02000000 /* Insert FCS (Ethernet CRC) */
+#define E1000_ADVTXD_DCMD_RDMA 0x04000000 /* RDMA */
+#define E1000_ADVTXD_DCMD_RS 0x08000000 /* Report Status */
+#define E1000_ADVTXD_DCMD_DDTYP_ISCSI 0x10000000 /* DDP hdr type or iSCSI */
+#define E1000_ADVTXD_DCMD_DEXT 0x20000000 /* Descriptor extension (1=Adv) */
+#define E1000_ADVTXD_DCMD_VLE 0x40000000 /* VLAN pkt enable */
+#define E1000_ADVTXD_DCMD_TSE 0x80000000 /* TCP Seg enable */
+#define E1000_ADVTXD_MAC_LINKSEC 0x00040000 /* Apply LinkSec on packet */
+#define E1000_ADVTXD_MAC_TSTAMP 0x00080000 /* IEEE1588 Timestamp packet */
+#define E1000_ADVTXD_STAT_SN_CRC 0x00000002 /* NXTSEQ/SEED present in WB */
+#define E1000_ADVTXD_IDX_SHIFT 4 /* Adv desc Index shift */
+#define E1000_ADVTXD_POPTS_EOM 0x00000400 /* Enable L bit in RDMA DDP hdr */
+#define E1000_ADVTXD_POPTS_ISCO_1ST 0x00000000 /* 1st TSO of iSCSI PDU */
+#define E1000_ADVTXD_POPTS_ISCO_MDL 0x00000800 /* Middle TSO of iSCSI PDU */
+#define E1000_ADVTXD_POPTS_ISCO_LAST 0x00001000 /* Last TSO of iSCSI PDU */
+#define E1000_ADVTXD_POPTS_ISCO_FULL 0x00001800 /* 1st&Last TSO-full iSCSI PDU*/
+#define E1000_ADVTXD_POPTS_IPSEC 0x00000400 /* IPSec offload request */
+#define E1000_ADVTXD_PAYLEN_SHIFT 14 /* Adv desc PAYLEN shift */
+
+/* Context descriptors */
+struct e1000_adv_tx_context_desc {
+ u32 vlan_macip_lens;
+ u32 seqnum_seed;
+ u32 type_tucmd_mlhl;
+ u32 mss_l4len_idx;
+};
+
+#define E1000_ADVTXD_MACLEN_SHIFT 9 /* Adv ctxt desc mac len shift */
+#define E1000_ADVTXD_VLAN_SHIFT 16 /* Adv ctxt vlan tag shift */
+#define E1000_ADVTXD_TUCMD_IPV4 0x00000400 /* IP Packet Type: 1=IPv4 */
+#define E1000_ADVTXD_TUCMD_IPV6 0x00000000 /* IP Packet Type: 0=IPv6 */
+#define E1000_ADVTXD_TUCMD_L4T_UDP 0x00000000 /* L4 Packet TYPE of UDP */
+#define E1000_ADVTXD_TUCMD_L4T_TCP 0x00000800 /* L4 Packet TYPE of TCP */
+#define E1000_ADVTXD_TUCMD_IPSEC_TYPE_ESP 0x00002000 /* IPSec Type ESP */
+/* IPSec Encrypt Enable for ESP */
+#define E1000_ADVTXD_TUCMD_IPSEC_ENCRYPT_EN 0x00004000
+#define E1000_ADVTXD_TUCMD_MKRREQ 0x00002000 /* Req requires Markers and CRC */
+#define E1000_ADVTXD_L4LEN_SHIFT 8 /* Adv ctxt L4LEN shift */
+#define E1000_ADVTXD_MSS_SHIFT 16 /* Adv ctxt MSS shift */
+/* Adv ctxt IPSec SA IDX mask */
+#define E1000_ADVTXD_IPSEC_SA_INDEX_MASK 0x000000FF
+/* Adv ctxt IPSec ESP len mask */
+#define E1000_ADVTXD_IPSEC_ESP_LEN_MASK 0x000000FF
+
+/* Additional Transmit Descriptor Control definitions */
+#define E1000_TXDCTL_QUEUE_ENABLE 0x02000000 /* Enable specific Tx Queue */
+#define E1000_TXDCTL_SWFLSH 0x04000000 /* Tx Desc. write-back flushing */
+/* Tx Queue Arbitration Priority 0=low, 1=high */
+#define E1000_TXDCTL_PRIORITY 0x08000000
+
+/* Additional Receive Descriptor Control definitions */
+#define E1000_RXDCTL_QUEUE_ENABLE 0x02000000 /* Enable specific Rx Queue */
+#define E1000_RXDCTL_SWFLSH 0x04000000 /* Rx Desc. write-back flushing */
+
+/* Direct Cache Access (DCA) definitions */
+#define E1000_DCA_CTRL_DCA_ENABLE 0x00000000 /* DCA Enable */
+#define E1000_DCA_CTRL_DCA_DISABLE 0x00000001 /* DCA Disable */
+
+#define E1000_DCA_CTRL_DCA_MODE_CB1 0x00 /* DCA Mode CB1 */
+#define E1000_DCA_CTRL_DCA_MODE_CB2 0x02 /* DCA Mode CB2 */
+
+#define E1000_DCA_RXCTRL_CPUID_MASK 0x0000001F /* Rx CPUID Mask */
+#define E1000_DCA_RXCTRL_DESC_DCA_EN (1 << 5) /* DCA Rx Desc enable */
+#define E1000_DCA_RXCTRL_HEAD_DCA_EN (1 << 6) /* DCA Rx Desc header enable */
+#define E1000_DCA_RXCTRL_DATA_DCA_EN (1 << 7) /* DCA Rx Desc payload enable */
+
+#define E1000_DCA_TXCTRL_CPUID_MASK 0x0000001F /* Tx CPUID Mask */
+#define E1000_DCA_TXCTRL_DESC_DCA_EN (1 << 5) /* DCA Tx Desc enable */
+#define E1000_DCA_TXCTRL_TX_WB_RO_EN (1 << 11) /* Tx Desc writeback RO bit */
+
+
+
+#endif
--- /dev/null
+++ sys/dev/em/e1000_82540.c
@@ -0,0 +1,688 @@
+/*******************************************************************************
+
+ Copyright (c) 2001-2007, Intel Corporation
+ All rights reserved.
+
+ Redistribution and use in source and binary forms, with or without
+ modification, are permitted provided that the following conditions are met:
+
+ 1. Redistributions of source code must retain the above copyright notice,
+ this list of conditions and the following disclaimer.
+
+ 2. Redistributions in binary form must reproduce the above copyright
+ notice, this list of conditions and the following disclaimer in the
+ documentation and/or other materials provided with the distribution.
+
+ 3. Neither the name of the Intel Corporation nor the names of its
+ contributors may be used to endorse or promote products derived from
+ this software without specific prior written permission.
+
+ THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
+ AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+ IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
+ LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
+ CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
+ SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
+ INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
+ CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
+ ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
+ POSSIBILITY OF SUCH DAMAGE.
+
+*******************************************************************************/
+/* $FreeBSD: src/sys/dev/em/e1000_82540.c,v 1.3.4.1 2007/11/28 23:24:37 jfv Exp $ */
+
+/* e1000_82540
+ * e1000_82545
+ * e1000_82546
+ * e1000_82545_rev_3
+ * e1000_82546_rev_3
+ */
+
+#include "e1000_api.h"
+
+void e1000_init_function_pointers_82540(struct e1000_hw *hw);
+
+STATIC s32 e1000_init_phy_params_82540(struct e1000_hw *hw);
+STATIC s32 e1000_init_nvm_params_82540(struct e1000_hw *hw);
+STATIC s32 e1000_init_mac_params_82540(struct e1000_hw *hw);
+static s32 e1000_adjust_serdes_amplitude_82540(struct e1000_hw *hw);
+STATIC void e1000_clear_hw_cntrs_82540(struct e1000_hw *hw);
+STATIC s32 e1000_init_hw_82540(struct e1000_hw *hw);
+STATIC s32 e1000_reset_hw_82540(struct e1000_hw *hw);
+static s32 e1000_set_phy_mode_82540(struct e1000_hw *hw);
+static s32 e1000_set_vco_speed_82540(struct e1000_hw *hw);
+STATIC s32 e1000_setup_copper_link_82540(struct e1000_hw *hw);
+STATIC s32 e1000_setup_fiber_serdes_link_82540(struct e1000_hw *hw);
+STATIC void e1000_power_down_phy_copper_82540(struct e1000_hw *hw);
+
+/**
+ * e1000_init_phy_params_82540 - Init PHY func ptrs.
+ * @hw: pointer to the HW structure
+ *
+ * This is a function pointer entry point called by the api module.
+ **/
+STATIC s32 e1000_init_phy_params_82540(struct e1000_hw *hw)
+{
+ struct e1000_phy_info *phy = &hw->phy;
+ struct e1000_functions *func = &hw->func;
+ s32 ret_val = E1000_SUCCESS;
+
+ phy->addr = 1;
+ phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
+ phy->reset_delay_us = 10000;
+ phy->type = e1000_phy_m88;
+
+ /* Function Pointers */
+ func->check_polarity = e1000_check_polarity_m88;
+ func->commit_phy = e1000_phy_sw_reset_generic;
+ func->force_speed_duplex = e1000_phy_force_speed_duplex_m88;
+ func->get_cable_length = e1000_get_cable_length_m88;
+ func->get_cfg_done = e1000_get_cfg_done_generic;
+ func->read_phy_reg = e1000_read_phy_reg_m88;
+ func->reset_phy = e1000_phy_hw_reset_generic;
+ func->write_phy_reg = e1000_write_phy_reg_m88;
+ func->get_phy_info = e1000_get_phy_info_m88;
+ func->power_up_phy = e1000_power_up_phy_copper;
+ func->power_down_phy = e1000_power_down_phy_copper_82540;
+
+ ret_val = e1000_get_phy_id(hw);
+ if (ret_val)
+ goto out;
+
+ /* Verify phy id */
+ switch (hw->mac.type) {
+ case e1000_82540:
+ case e1000_82545:
+ case e1000_82545_rev_3:
+ case e1000_82546:
+ case e1000_82546_rev_3:
+ if (phy->id == M88E1011_I_PHY_ID)
+ break;
+ /* Fall Through */
+ default:
+ ret_val = -E1000_ERR_PHY;
+ goto out;
+ break;
+ }
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_init_nvm_params_82540 - Init NVM func ptrs.
+ * @hw: pointer to the HW structure
+ *
+ * This is a function pointer entry point called by the api module.
+ **/
+STATIC s32 e1000_init_nvm_params_82540(struct e1000_hw *hw)
+{
+ struct e1000_nvm_info *nvm = &hw->nvm;
+ struct e1000_functions *func = &hw->func;
+ u32 eecd = E1000_READ_REG(hw, E1000_EECD);
+
+ DEBUGFUNC("e1000_init_nvm_params_82540");
+
+ nvm->type = e1000_nvm_eeprom_microwire;
+ nvm->delay_usec = 50;
+ nvm->opcode_bits = 3;
+ switch (nvm->override) {
+ case e1000_nvm_override_microwire_large:
+ nvm->address_bits = 8;
+ nvm->word_size = 256;
+ break;
+ case e1000_nvm_override_microwire_small:
+ nvm->address_bits = 6;
+ nvm->word_size = 64;
+ break;
+ default:
+ nvm->address_bits = eecd & E1000_EECD_SIZE ? 8 : 6;
+ nvm->word_size = eecd & E1000_EECD_SIZE ? 256 : 64;
+ break;
+ }
+
+ /* Function Pointers */
+ func->acquire_nvm = e1000_acquire_nvm_generic;
+ func->read_nvm = e1000_read_nvm_microwire;
+ func->release_nvm = e1000_release_nvm_generic;
+ func->update_nvm = e1000_update_nvm_checksum_generic;
+ func->valid_led_default = e1000_valid_led_default_generic;
+ func->validate_nvm = e1000_validate_nvm_checksum_generic;
+ func->write_nvm = e1000_write_nvm_microwire;
+
+ return E1000_SUCCESS;
+}
+
+/**
+ * e1000_init_mac_params_82540 - Init MAC func ptrs.
+ * @hw: pointer to the HW structure
+ *
+ * This is a function pointer entry point called by the api module.
+ **/
+STATIC s32 e1000_init_mac_params_82540(struct e1000_hw *hw)
+{
+ struct e1000_mac_info *mac = &hw->mac;
+ struct e1000_functions *func = &hw->func;
+ s32 ret_val = E1000_SUCCESS;
+
+ DEBUGFUNC("e1000_init_mac_params_82540");
+
+ /* Set media type */
+ switch (hw->device_id) {
+ case E1000_DEV_ID_82545EM_FIBER:
+ case E1000_DEV_ID_82545GM_FIBER:
+ case E1000_DEV_ID_82546EB_FIBER:
+ case E1000_DEV_ID_82546GB_FIBER:
+ hw->phy.media_type = e1000_media_type_fiber;
+ break;
+ case E1000_DEV_ID_82545GM_SERDES:
+ case E1000_DEV_ID_82546GB_SERDES:
+ hw->phy.media_type = e1000_media_type_internal_serdes;
+ break;
+ default:
+ hw->phy.media_type = e1000_media_type_copper;
+ break;
+ }
+
+ /* Set mta register count */
+ mac->mta_reg_count = 128;
+ /* Set rar entry count */
+ mac->rar_entry_count = E1000_RAR_ENTRIES;
+
+ /* Function pointers */
+
+ /* bus type/speed/width */
+ func->get_bus_info = e1000_get_bus_info_pci_generic;
+ /* reset */
+ func->reset_hw = e1000_reset_hw_82540;
+ /* hw initialization */
+ func->init_hw = e1000_init_hw_82540;
+ /* link setup */
+ func->setup_link = e1000_setup_link_generic;
+ /* physical interface setup */
+ func->setup_physical_interface =
+ (hw->phy.media_type == e1000_media_type_copper)
+ ? e1000_setup_copper_link_82540
+ : e1000_setup_fiber_serdes_link_82540;
+ /* check for link */
+ switch (hw->phy.media_type) {
+ case e1000_media_type_copper:
+ func->check_for_link = e1000_check_for_copper_link_generic;
+ break;
+ case e1000_media_type_fiber:
+ func->check_for_link = e1000_check_for_fiber_link_generic;
+ break;
+ case e1000_media_type_internal_serdes:
+ func->check_for_link = e1000_check_for_serdes_link_generic;
+ break;
+ default:
+ ret_val = -E1000_ERR_CONFIG;
+ goto out;
+ break;
+ }
+ /* link info */
+ func->get_link_up_info =
+ (hw->phy.media_type == e1000_media_type_copper)
+ ? e1000_get_speed_and_duplex_copper_generic
+ : e1000_get_speed_and_duplex_fiber_serdes_generic;
+ /* multicast address update */
+ func->update_mc_addr_list = e1000_update_mc_addr_list_generic;
+ /* writing VFTA */
+ func->write_vfta = e1000_write_vfta_generic;
+ /* clearing VFTA */
+ func->clear_vfta = e1000_clear_vfta_generic;
+ /* setting MTA */
+ func->mta_set = e1000_mta_set_generic;
+ /* setup LED */
+ func->setup_led = e1000_setup_led_generic;
+ /* cleanup LED */
+ func->cleanup_led = e1000_cleanup_led_generic;
+ /* turn on/off LED */
+ func->led_on = e1000_led_on_generic;
+ func->led_off = e1000_led_off_generic;
+ /* clear hardware counters */
+ func->clear_hw_cntrs = e1000_clear_hw_cntrs_82540;
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_init_function_pointers_82540 - Init func ptrs.
+ * @hw: pointer to the HW structure
+ *
+ * The only function explicitly called by the api module to initialize
+ * all function pointers and parameters.
+ **/
+void e1000_init_function_pointers_82540(struct e1000_hw *hw)
+{
+ DEBUGFUNC("e1000_init_function_pointers_82540");
+
+ hw->func.init_mac_params = e1000_init_mac_params_82540;
+ hw->func.init_nvm_params = e1000_init_nvm_params_82540;
+ hw->func.init_phy_params = e1000_init_phy_params_82540;
+}
+
+/**
+ * e1000_reset_hw_82540 - Reset hardware
+ * @hw: pointer to the HW structure
+ *
+ * This resets the hardware into a known state. This is a
+ * function pointer entry point called by the api module.
+ **/
+STATIC s32 e1000_reset_hw_82540(struct e1000_hw *hw)
+{
+ u32 ctrl, icr, manc;
+ s32 ret_val = E1000_SUCCESS;
+
+ DEBUGFUNC("e1000_reset_hw_82540");
+
+ DEBUGOUT("Masking off all interrupts\n");
+ E1000_WRITE_REG(hw, E1000_IMC, 0xFFFFFFFF);
+
+ E1000_WRITE_REG(hw, E1000_RCTL, 0);
+ E1000_WRITE_REG(hw, E1000_TCTL, E1000_TCTL_PSP);
+ E1000_WRITE_FLUSH(hw);
+
+ /*
+ * Delay to allow any outstanding PCI transactions to complete
+ * before resetting the device.
+ */
+ msec_delay(10);
+
+ ctrl = E1000_READ_REG(hw, E1000_CTRL);
+
+ DEBUGOUT("Issuing a global reset to 82540/82545/82546 MAC\n");
+ switch (hw->mac.type) {
+ case e1000_82545_rev_3:
+ case e1000_82546_rev_3:
+ E1000_WRITE_REG(hw, E1000_CTRL_DUP, ctrl | E1000_CTRL_RST);
+ break;
+ default:
+ /*
+ * These controllers can't ack the 64-bit write when
+ * issuing the reset, so we use IO-mapping as a
+ * workaround to issue the reset.
+ */
+ E1000_WRITE_REG_IO(hw, E1000_CTRL, ctrl | E1000_CTRL_RST);
+ break;
+ }
+
+ /* Wait for EEPROM reload */
+ msec_delay(5);
+
+ /* Disable HW ARPs on ASF enabled adapters */
+ manc = E1000_READ_REG(hw, E1000_MANC);
+ manc &= ~E1000_MANC_ARP_EN;
+ E1000_WRITE_REG(hw, E1000_MANC, manc);
+
+ E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff);
+ icr = E1000_READ_REG(hw, E1000_ICR);
+
+ return ret_val;
+}
+
+/**
+ * e1000_init_hw_82540 - Initialize hardware
+ * @hw: pointer to the HW structure
+ *
+ * This inits the hardware readying it for operation. This is a
+ * function pointer entry point called by the api module.
+ **/
+STATIC s32 e1000_init_hw_82540(struct e1000_hw *hw)
+{
+ struct e1000_mac_info *mac = &hw->mac;
+ u32 txdctl, ctrl_ext;
+ s32 ret_val = E1000_SUCCESS;
+ u16 i;
+
+ DEBUGFUNC("e1000_init_hw_82540");
+
+ /* Initialize identification LED */
+ ret_val = e1000_id_led_init_generic(hw);
+ if (ret_val) {
+ DEBUGOUT("Error initializing identification LED\n");
+ /* This is not fatal and we should not stop init due to this */
+ }
+
+ /* Disabling VLAN filtering */
+ DEBUGOUT("Initializing the IEEE VLAN\n");
+ if (mac->type < e1000_82545_rev_3)
+ E1000_WRITE_REG(hw, E1000_VET, 0);
+
+ e1000_clear_vfta(hw);
+
+ /* Setup the receive address. */
+ e1000_init_rx_addrs_generic(hw, mac->rar_entry_count);
+
+ /* Zero out the Multicast HASH table */
+ DEBUGOUT("Zeroing the MTA\n");
+ for (i = 0; i < mac->mta_reg_count; i++) {
+ E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
+ /*
+ * Avoid back to back register writes by adding the register
+ * read (flush). This is to protect against some strange
+ * bridge configurations that may issue Memory Write Block
+ * (MWB) to our register space. The *_rev_3 hardware at
+ * least doesn't respond correctly to every other dword in an
+ * MWB to our register space.
+ */
+ E1000_WRITE_FLUSH(hw);
+ }
+
+ if (mac->type < e1000_82545_rev_3)
+ e1000_pcix_mmrbc_workaround_generic(hw);
+
+ /* Setup link and flow control */
+ ret_val = e1000_setup_link(hw);
+
+ txdctl = E1000_READ_REG(hw, E1000_TXDCTL(0));
+ txdctl = (txdctl & ~E1000_TXDCTL_WTHRESH) |
+ E1000_TXDCTL_FULL_TX_DESC_WB;
+ E1000_WRITE_REG(hw, E1000_TXDCTL(0), txdctl);
+
+ /*
+ * Clear all of the statistics registers (clear on read). It is
+ * important that we do this after we have tried to establish link
+ * because the symbol error count will increment wildly if there
+ * is no link.
+ */
+ e1000_clear_hw_cntrs_82540(hw);
+
+ if ((hw->device_id == E1000_DEV_ID_82546GB_QUAD_COPPER) ||
+ (hw->device_id == E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3)) {
+ ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
+ /*
+ * Relaxed ordering must be disabled to avoid a parity
+ * error crash in a PCI slot.
+ */
+ ctrl_ext |= E1000_CTRL_EXT_RO_DIS;
+ E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
+ }
+
+ return ret_val;
+}
+
+/**
+ * e1000_setup_copper_link_82540 - Configure copper link settings
+ * @hw: pointer to the HW structure
+ *
+ * Calls the appropriate function to configure the link for auto-neg or forced
+ * speed and duplex. Then we check for link, once link is established calls
+ * to configure collision distance and flow control are called. If link is
+ * not established, we return -E1000_ERR_PHY (-2). This is a function
+ * pointer entry point called by the api module.
+ **/
+STATIC s32 e1000_setup_copper_link_82540(struct e1000_hw *hw)
+{
+ u32 ctrl;
+ s32 ret_val = E1000_SUCCESS;
+ u16 data;
+
+ DEBUGFUNC("e1000_setup_copper_link_82540");
+
+ ctrl = E1000_READ_REG(hw, E1000_CTRL);
+ ctrl |= E1000_CTRL_SLU;
+ ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
+ E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
+
+ ret_val = e1000_set_phy_mode_82540(hw);
+ if (ret_val)
+ goto out;
+
+ if (hw->mac.type == e1000_82545_rev_3 ||
+ hw->mac.type == e1000_82546_rev_3) {
+ ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &data);
+ if (ret_val)
+ goto out;
+ data |= 0x00000008;
+ ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, data);
+ if (ret_val)
+ goto out;
+ }
+
+ ret_val = e1000_copper_link_setup_m88(hw);
+ if (ret_val)
+ goto out;
+
+ ret_val = e1000_setup_copper_link_generic(hw);
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_setup_fiber_serdes_link_82540 - Setup link for fiber/serdes
+ * @hw: pointer to the HW structure
+ *
+ * Set the output amplitude to the value in the EEPROM and adjust the VCO
+ * speed to improve Bit Error Rate (BER) performance. Configures collision
+ * distance and flow control for fiber and serdes links. Upon successful
+ * setup, poll for link. This is a function pointer entry point called by
+ * the api module.
+ **/
+STATIC s32 e1000_setup_fiber_serdes_link_82540(struct e1000_hw *hw)
+{
+ struct e1000_mac_info *mac = &hw->mac;
+ s32 ret_val = E1000_SUCCESS;
+
+ DEBUGFUNC("e1000_setup_fiber_serdes_link_82540");
+
+ switch (mac->type) {
+ case e1000_82545_rev_3:
+ case e1000_82546_rev_3:
+ if (hw->phy.media_type == e1000_media_type_internal_serdes) {
+ /*
+ * If we're on serdes media, adjust the output
+ * amplitude to value set in the EEPROM.
+ */
+ ret_val = e1000_adjust_serdes_amplitude_82540(hw);
+ if (ret_val)
+ goto out;
+ }
+ /* Adjust VCO speed to improve BER performance */
+ ret_val = e1000_set_vco_speed_82540(hw);
+ if (ret_val)
+ goto out;
+ default:
+ break;
+ }
+
+ ret_val = e1000_setup_fiber_serdes_link_generic(hw);
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_adjust_serdes_amplitude_82540 - Adjust amplitude based on EEPROM
+ * @hw: pointer to the HW structure
+ *
+ * Adjust the SERDES ouput amplitude based on the EEPROM settings.
+ **/
+static s32 e1000_adjust_serdes_amplitude_82540(struct e1000_hw *hw)
+{
+ s32 ret_val = E1000_SUCCESS;
+ u16 nvm_data;
+
+ DEBUGFUNC("e1000_adjust_serdes_amplitude_82540");
+
+ ret_val = e1000_read_nvm(hw, NVM_SERDES_AMPLITUDE, 1, &nvm_data);
+ if (ret_val)
+ goto out;
+
+ if (nvm_data != NVM_RESERVED_WORD) {
+ /* Adjust serdes output amplitude only. */
+ nvm_data &= NVM_SERDES_AMPLITUDE_MASK;
+ ret_val = e1000_write_phy_reg(hw,
+ M88E1000_PHY_EXT_CTRL,
+ nvm_data);
+ if (ret_val)
+ goto out;
+ }
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_set_vco_speed_82540 - Set VCO speed for better performance
+ * @hw: pointer to the HW structure
+ *
+ * Set the VCO speed to improve Bit Error Rate (BER) performance.
+ **/
+static s32 e1000_set_vco_speed_82540(struct e1000_hw *hw)
+{
+ s32 ret_val = E1000_SUCCESS;
+ u16 default_page = 0;
+ u16 phy_data;
+
+ DEBUGFUNC("e1000_set_vco_speed_82540");
+
+ /* Set PHY register 30, page 5, bit 8 to 0 */
+
+ ret_val = e1000_read_phy_reg(hw,
+ M88E1000_PHY_PAGE_SELECT,
+ &default_page);
+ if (ret_val)
+ goto out;
+
+ ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0005);
+ if (ret_val)
+ goto out;
+
+ ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, &phy_data);
+ if (ret_val)
+ goto out;
+
+ phy_data &= ~M88E1000_PHY_VCO_REG_BIT8;
+ ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, phy_data);
+ if (ret_val)
+ goto out;
+
+ /* Set PHY register 30, page 4, bit 11 to 1 */
+
+ ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0004);
+ if (ret_val)
+ goto out;
+
+ ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, &phy_data);
+ if (ret_val)
+ goto out;
+
+ phy_data |= M88E1000_PHY_VCO_REG_BIT11;
+ ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, phy_data);
+ if (ret_val)
+ goto out;
+
+ ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT,
+ default_page);
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_set_phy_mode_82540 - Set PHY to class A mode
+ * @hw: pointer to the HW structure
+ *
+ * Sets the PHY to class A mode and assumes the following operations will
+ * follow to enable the new class mode:
+ * 1. Do a PHY soft reset.
+ * 2. Restart auto-negotiation or force link.
+ **/
+static s32 e1000_set_phy_mode_82540(struct e1000_hw *hw)
+{
+ struct e1000_phy_info *phy = &hw->phy;
+ s32 ret_val = E1000_SUCCESS;
+ u16 nvm_data;
+
+ DEBUGFUNC("e1000_set_phy_mode_82540");
+
+ if (hw->mac.type != e1000_82545_rev_3)
+ goto out;
+
+ ret_val = e1000_read_nvm(hw, NVM_PHY_CLASS_WORD, 1, &nvm_data);
+ if (ret_val) {
+ ret_val = -E1000_ERR_PHY;
+ goto out;
+ }
+
+ if ((nvm_data != NVM_RESERVED_WORD) && (nvm_data & NVM_PHY_CLASS_A)) {
+ ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT,
+ 0x000B);
+ if (ret_val) {
+ ret_val = -E1000_ERR_PHY;
+ goto out;
+ }
+ ret_val = e1000_write_phy_reg(hw,
+ M88E1000_PHY_GEN_CONTROL,
+ 0x8104);
+ if (ret_val) {
+ ret_val = -E1000_ERR_PHY;
+ goto out;
+ }
+
+ phy->reset_disable = FALSE;
+ }
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_power_down_phy_copper_82540 - Remove link in case of PHY power down
+ * @hw: pointer to the HW structure
+ *
+ * In the case of a PHY power down to save power, or to turn off link during a
+ * driver unload, or wake on lan is not enabled, remove the link.
+ **/
+STATIC void e1000_power_down_phy_copper_82540(struct e1000_hw *hw)
+{
+ /* If the management interface is not enabled, then power down */
+ if (!(E1000_READ_REG(hw, E1000_MANC) & E1000_MANC_SMBUS_EN))
+ e1000_power_down_phy_copper(hw);
+
+ return;
+}
+
+/**
+ * e1000_clear_hw_cntrs_82540 - Clear device specific hardware counters
+ * @hw: pointer to the HW structure
+ *
+ * Clears the hardware counters by reading the counter registers.
+ **/
+STATIC void e1000_clear_hw_cntrs_82540(struct e1000_hw *hw)
+{
+ volatile u32 temp;
+
+ DEBUGFUNC("e1000_clear_hw_cntrs_82540");
+
+ e1000_clear_hw_cntrs_base_generic(hw);
+
+ temp = E1000_READ_REG(hw, E1000_PRC64);
+ temp = E1000_READ_REG(hw, E1000_PRC127);
+ temp = E1000_READ_REG(hw, E1000_PRC255);
+ temp = E1000_READ_REG(hw, E1000_PRC511);
+ temp = E1000_READ_REG(hw, E1000_PRC1023);
+ temp = E1000_READ_REG(hw, E1000_PRC1522);
+ temp = E1000_READ_REG(hw, E1000_PTC64);
+ temp = E1000_READ_REG(hw, E1000_PTC127);
+ temp = E1000_READ_REG(hw, E1000_PTC255);
+ temp = E1000_READ_REG(hw, E1000_PTC511);
+ temp = E1000_READ_REG(hw, E1000_PTC1023);
+ temp = E1000_READ_REG(hw, E1000_PTC1522);
+
+ temp = E1000_READ_REG(hw, E1000_ALGNERRC);
+ temp = E1000_READ_REG(hw, E1000_RXERRC);
+ temp = E1000_READ_REG(hw, E1000_TNCRS);
+ temp = E1000_READ_REG(hw, E1000_CEXTERR);
+ temp = E1000_READ_REG(hw, E1000_TSCTC);
+ temp = E1000_READ_REG(hw, E1000_TSCTFC);
+
+ temp = E1000_READ_REG(hw, E1000_MGTPRC);
+ temp = E1000_READ_REG(hw, E1000_MGTPDC);
+ temp = E1000_READ_REG(hw, E1000_MGTPTC);
+}
+
Index: LICENSE
===================================================================
RCS file: /home/cvs/src/sys/dev/em/LICENSE,v
retrieving revision 1.2
retrieving revision 1.3
diff -L sys/dev/em/LICENSE -L sys/dev/em/LICENSE -u -r1.2 -r1.3
--- sys/dev/em/LICENSE
+++ sys/dev/em/LICENSE
@@ -1,31 +1,31 @@
-$FreeBSD: src/sys/dev/em/LICENSE,v 1.3 2005/01/06 01:42:38 imp Exp $
-/*-
-Copyright (c) 2001-2005, Intel Corporation
-All rights reserved.
+$FreeBSD: src/sys/dev/em/LICENSE,v 1.6 2007/05/04 00:00:11 jfv Exp $
-Redistribution and use in source and binary forms, with or without
-modification, are permitted provided that the following conditions are met:
+ Copyright (c) 2001-2007, Intel Corporation
+ All rights reserved.
+
+ Redistribution and use in source and binary forms, with or without
+ modification, are permitted provided that the following conditions are met:
+
+ 1. Redistributions of source code must retain the above copyright notice,
+ this list of conditions and the following disclaimer.
+
+ 2. Redistributions in binary form must reproduce the above copyright
+ notice, this list of conditions and the following disclaimer in the
+ documentation and/or other materials provided with the distribution.
+
+ 3. Neither the name of the Intel Corporation nor the names of its
+ contributors may be used to endorse or promote products derived from
+ this software without specific prior written permission.
+
+ THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
+ AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+ IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
+ LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
+ CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
+ SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
+ INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
+ CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
+ ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
+ POSSIBILITY OF SUCH DAMAGE.
- 1. Redistributions of source code must retain the above copyright notice,
- this list of conditions and the following disclaimer.
-
- 2. Redistributions in binary form must reproduce the above copyright
- notice, this list of conditions and the following disclaimer in the
- documentation and/or other materials provided with the distribution.
-
- 3. Neither the name of the Intel Corporation nor the names of its
- contributors may be used to endorse or promote products derived from
- this software without specific prior written permission.
-
-THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
-AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
-IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
-ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
-LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
-CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
-SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
-INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
-CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
-ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
-POSSIBILITY OF SUCH DAMAGE.
-*/
Index: README
===================================================================
RCS file: /home/cvs/src/sys/dev/em/README,v
retrieving revision 1.2
retrieving revision 1.3
diff -L sys/dev/em/README -L sys/dev/em/README -u -r1.2 -r1.3
--- sys/dev/em/README
+++ sys/dev/em/README
@@ -1,8 +1,8 @@
-$FreeBSD: /repoman/r/ncvs/src/sys/dev/em/README,v 1.10.2.1 2006/08/08 09:20:26 glebius Exp $
-FreeBSD* Driver for the Intel(R) PRO/1000 Family of Adapters
-============================================================
+$FreeBSD: src/sys/dev/em/README,v 1.15 2007/05/30 23:32:21 jfv Exp $
+FreeBSD* Driver for Intel Network Connection
+=============================================
-May 2, 2006
+May 30, 2007
Contents
@@ -21,11 +21,11 @@
Overview
========
-This file describes the FreeBSD* driver for the Intel(R) PRO/1000 Family of
-Adapters. This driver has been developed for use with FreeBSD, Release 6.x.
+This file describes the FreeBSD* driver for Intel Network Connection.
+This driver has been developed for use with FreeBSD, Release 7.x.
For questions related to hardware requirements, refer to the documentation
-supplied with your Intel PRO/1000 adapter. All hardware requirements listed
+supplied with your Gigabit adapter. All hardware requirements listed
apply to use with FreeBSD.
@@ -62,7 +62,7 @@
2. Untar/unzip the archive:
- tar xvfz em-x.x.x.tar.gz
+ tar xzvf em-x.x.x.tar.gz
This will create an em-x.x.x directory.
@@ -74,7 +74,7 @@
cd em-x.x.x
make
- b. To install the compiled module in system directory:
+ b. To install the compiled module to the system directory:
make install
@@ -84,35 +84,19 @@
if_em_load="YES"
-4. To compile the driver into the kernel:
+4. To compile the driver into the kernel, enter:
cd em-x.x.x/src
+ cp *.[ch] /usr/src/sys/dev/em
- cp if_em* /usr/src/sys/dev/em
-
- cp Makefile.kernel /usr/src/sys/modules/em/Makefile
-
- Edit the /usr/src/sys/conf/files file, and add the following lines only if
- they don't already exist:
-
- dev/em/if_em.c optional em
-
- dev/em/if_em_hw.c optional em
-
- Remove the following lines from the /usr/src/sys/conf/files file,
- if they exist:
-
- dev/em/if_em_fxhw.c optional em
- dev/em/if_em_phy.c optional em
-
- Edit the kernel configuration file (i.e., GENERIC or MYKERNEL) in
- /usr/src/sys/i386/conf, and ensure the following line is present:
+ Edit the kernel configuration file (i.e., GENERIC or MYKERNEL) in
+ /usr/src/sys/i386/conf, and ensure the following line is present:
device em
- Compile and install the kernel. The system must be rebooted for the kernel
- updates to take effect. For additional information on compiling the
- kernel, consult the FreeBSD operating system documentation.
+ Compile and install the kernel. The system must be rebooted for the
+ kernel updates to take effect. For additional information on compiling
+ the kernel, consult the FreeBSD operating system documentation.
5. To assign an IP address to the interface, enter the following:
@@ -150,6 +134,12 @@
not specified and you are not running at gigabit speed, the driver
defaults to half-duplex.
+If the interface is currently forced to 100 full duplex, in order to change
+to half duplex you must use this command:
+
+ ifconfig em<interface_num> <IP_address> media 100baseTX -mediaopt
+ full-duplex
+
This driver supports the following media type options:
@@ -207,13 +197,15 @@
- Some Intel gigabit adapters that support Jumbo Frames have a frame size
limit of 9238 bytes, with a corresponding MTU size limit of 9216 bytes.
The adapters with this limitation are based on the Intel(R) 82571EB,
- 82572EI, 82573L and 80003ES2LAN controller. These correspond to the
- following product names:
+ 82572EI, 82573L, 82566, 82562, and 80003ES2LAN controller. These
+ correspond to the following product names:
Intel(R) PRO/1000 PT Server Adapter
Intel(R) PRO/1000 PT Desktop Adapter
Intel(R) PRO/1000 PT Network Connection
Intel(R) PRO/1000 PT Dual Port Server Adapter
Intel(R) PRO/1000 PT Dual Port Network Connection
+ Intel(R) PRO/1000 PT Quad Port Server Adapter
+ Intel(R) PRO/1000 PF Quad Port Server Adapter
Intel(R) PRO/1000 PF Server Adapter
Intel(R) PRO/1000 PF Network Connection
Intel(R) PRO/1000 PF Dual Port Server Adapter
@@ -221,6 +213,7 @@
Intel(R) PRO/1000 PL Network Connection
Intel(R) PRO/1000 EB Network Connection with I/O Acceleration
Intel(R) PRO/1000 EB Backplane Connection with I/O Acceleration
+ Intel(R) 82566DM-2 Gigabit Network Connection
- Adapters based on the Intel(R) 82542 and 82573V/E controller do not
support Jumbo Frames. These correspond to the following product names:
@@ -236,7 +229,12 @@
Intel(R) 82566DC Gigabit Network Connection
Intel(R) 82566MM Gigabit Network Connection
Intel(R) 82566MC Gigabit Network Connection
-
+ Intel(R) 82562GT 10/100 Network Connection
+ Intel(R) 82562G 10/100 Network Connection
+ Intel(R) 82566DC-2 Gigabit Network Connection
+ Intel(R) 82562V-2 10/100 Network Connection
+ Intel(R) 82562G-2 10/100 Network Connection
+ Intel(R) 82562GT-2 10/100 Network Connection
VLANs
-----
@@ -252,18 +250,19 @@
Example:
- ifconfig vlan10 10.0.0.1 netmask 255.255.255.0 vlan10 vlandev em0
+ ifconfig vlan10 10.0.0.1 netmask 255.255.255.0 vlan 10 vlandev em0
- In this example, all packets will be marked on egress with 802.1Q VLAN
+ In this example, all packets will be marked on egress with 802.1Q VLAN
tags, specifying a VLAN ID of 10.
To remove a VLAN interface:
- ifconfig <vlan_name> destroy
+ Intel Network Connection ifconfig <vlan_name> destroy
Polling
-------
+
To enable polling in the driver, add the following options to the kernel
configuration, and then recompile the kernel:
@@ -271,9 +270,9 @@
options HZ=1000
At runtime use:
- ifconfig em0 polling to turn polling on
- Use:
- ifconfig em0 -polling to turn polling off
+ ifconfig emX polling (to turn polling on)
+ and:
+ ifconfig emX -polling (to turn it off)
Checksum Offload
@@ -306,16 +305,49 @@
See the ifconfig man page for further information.
+ TSO
+ ---
+ The FreeBSD driver offers support for TSO (TCP Segmentation Offload).
+
+ You can enable/disable it in two ways/places:
+
+ - sysctl net.inet.tcp.tso=0 (or 1 to enable it)
+
+ Doing this disables TSO in the stack and will affect all adapters.
+
+ - ifconfig emX -tso
+
+ Doing this will disable TSO only for this adapter.
+
+ To enable:
+
+ - ifconfig emX tso
+
+ NOTES: By default only PCI-Express adapters are ENABLED to do TSO. Others
+ can be enabled by the user at their own risk
+ TSO is not supported on 82547 and 82544-based adapters, as well as older adapters.
+
+
Known Limitations
=================
- In FreeBSD version 4.x with Symmetric MultiProcessing (SMP), there is a known
- issue on some newer hardware. The problem is generic kernel and only in SMP
- mode. The workaround is to either use FreeBSD version 4.x in single processor
- mode, or use FreeBSD 5.4 or later.
+ Detected Tx Unit Hang in Quad Port Adapters
+ -------------------------------------------
+
+ In some cases ports 3 and 4 wont pass traffic. Ports 1 and 2 don't show
+ any errors and will pass traffic.
+
+ This issue MAY be resolved by updating to the latest BIOS. You can
+ check your system's BIOS by downloading the Linux Firmware Developer Kit
+ that can be obtained at http://www.linuxfirmwarekit.org/
+
There are known performance issues with this driver when running UDP traffic
with Jumbo Frames.
+ ----------------------------------------------------------------------------
+
+ 82541/82547 can't link or is slow to link with some link partners
+ -----------------------------------------------------------------
There is a known compatibility issue where time to link is slow or link is not
established between 82541/82547 controllers and some switches. Known switches
@@ -325,12 +357,12 @@
The driver can be compiled with the following changes:
- Edit ./em.x.x.x/src/if_em.h to uncomment the #define EM_MASTER_SLAVE
- from within the comments. For example, change from:
+ Edit ./em.x.x.x/src/if_em.h to change the #define EM_MASTER_SLAVE
+ For example, change from:
- /* #define EM_MASTER_SLAVE 2 */
+ #define EM_MASTER_SLAVE e1000_ms_hw_default
to:
- #define EM_MASTER_SLAVE 2
+ #define EM_MASTER_SLAVE 2
Use one of the following options:
1 = Master mode
More information about the Midnightbsd-cvs
mailing list