[Midnightbsd-cvs] src [12235] trunk/crypto/openssh/umac128.c: update

laffer1 at midnightbsd.org laffer1 at midnightbsd.org
Thu Aug 8 20:35:39 EDT 2019


Revision: 12235
          http://svnweb.midnightbsd.org/src/?rev=12235
Author:   laffer1
Date:     2019-08-08 20:35:38 -0400 (Thu, 08 Aug 2019)
Log Message:
-----------
update

Modified Paths:
--------------
    trunk/crypto/openssh/umac128.c

Modified: trunk/crypto/openssh/umac128.c
===================================================================
--- trunk/crypto/openssh/umac128.c	2019-08-09 00:35:14 UTC (rev 12234)
+++ trunk/crypto/openssh/umac128.c	2019-08-09 00:35:38 UTC (rev 12235)
@@ -1,1287 +1,10 @@
-/* $OpenBSD: umac.c,v 1.8 2013/11/08 00:39:15 djm Exp $ */
-/* -----------------------------------------------------------------------
- * 
- * umac.c -- C Implementation UMAC Message Authentication
- *
- * Version 0.93b of rfc4418.txt -- 2006 July 18
- *
- * For a full description of UMAC message authentication see the UMAC
- * world-wide-web page at http://www.cs.ucdavis.edu/~rogaway/umac
- * Please report bugs and suggestions to the UMAC webpage.
- *
- * Copyright (c) 1999-2006 Ted Krovetz
- *                                                                 
- * Permission to use, copy, modify, and distribute this software and
- * its documentation for any purpose and with or without fee, is hereby
- * granted provided that the above copyright notice appears in all copies
- * and in supporting documentation, and that the name of the copyright
- * holder not be used in advertising or publicity pertaining to
- * distribution of the software without specific, written prior permission.
- *
- * Comments should be directed to Ted Krovetz (tdk at acm.org)                                        
- *                                                                   
- * ---------------------------------------------------------------------- */
- 
- /* ////////////////////// IMPORTANT NOTES /////////////////////////////////
-  *
-  * 1) This version does not work properly on messages larger than 16MB
-  *
-  * 2) If you set the switch to use SSE2, then all data must be 16-byte
-  *    aligned
-  *
-  * 3) When calling the function umac(), it is assumed that msg is in
-  * a writable buffer of length divisible by 32 bytes. The message itself
-  * does not have to fill the entire buffer, but bytes beyond msg may be
-  * zeroed.
-  *
-  * 4) Three free AES implementations are supported by this implementation of
-  * UMAC. Paulo Barreto's version is in the public domain and can be found
-  * at http://www.esat.kuleuven.ac.be/~rijmen/rijndael/ (search for
-  * "Barreto"). The only two files needed are rijndael-alg-fst.c and
-  * rijndael-alg-fst.h. Brian Gladman's version is distributed with the GNU
-  * Public lisence at http://fp.gladman.plus.com/AES/index.htm. It
-  * includes a fast IA-32 assembly version. The OpenSSL crypo library is
-  * the third.
-  *
-  * 5) With FORCE_C_ONLY flags set to 0, incorrect results are sometimes
-  * produced under gcc with optimizations set -O3 or higher. Dunno why.
-  *
-  /////////////////////////////////////////////////////////////////////// */
- 
-/* ---------------------------------------------------------------------- */
-/* --- User Switches ---------------------------------------------------- */
-/* ---------------------------------------------------------------------- */
+/* $OpenBSD: umac128.c,v 1.2 2018/02/08 04:12:32 dtucker Exp $ */
 
-#ifndef UMAC_OUTPUT_LEN
-#define UMAC_OUTPUT_LEN     16  /* Alowable: 4, 8, 12, 16                  */
-#endif
+#define UMAC_OUTPUT_LEN	16
+#define umac_new	umac128_new
+#define umac_update	umac128_update
+#define umac_final	umac128_final
+#define umac_delete	umac128_delete
+#define umac_ctx	umac128_ctx
 
-#if UMAC_OUTPUT_LEN != 4 && UMAC_OUTPUT_LEN != 8 && \
-    UMAC_OUTPUT_LEN != 12 && UMAC_OUTPUT_LEN != 16
-# error UMAC_OUTPUT_LEN must be defined to 4, 8, 12 or 16
-#endif
-
-/* #define FORCE_C_ONLY        1  ANSI C and 64-bit integers req'd        */
-/* #define AES_IMPLEMENTAION   1  1 = OpenSSL, 2 = Barreto, 3 = Gladman   */
-/* #define SSE2                0  Is SSE2 is available?                   */
-/* #define RUN_TESTS           0  Run basic correctness/speed tests       */
-/* #define UMAC_AE_SUPPORT     0  Enable auhthenticated encrytion         */
-
-/* ---------------------------------------------------------------------- */
-/* -- Global Includes --------------------------------------------------- */
-/* ---------------------------------------------------------------------- */
-
-#include "includes.h"
-#include <sys/types.h>
-
-#include "xmalloc.h"
-#include "umac.h"
-#include <string.h>
-#include <stdlib.h>
-#include <stddef.h>
-
-/* ---------------------------------------------------------------------- */
-/* --- Primitive Data Types ---                                           */
-/* ---------------------------------------------------------------------- */
-
-/* The following assumptions may need change on your system */
-typedef u_int8_t	UINT8;  /* 1 byte   */
-typedef u_int16_t	UINT16; /* 2 byte   */
-typedef u_int32_t	UINT32; /* 4 byte   */
-typedef u_int64_t	UINT64; /* 8 bytes  */
-typedef unsigned int	UWORD;  /* Register */
-
-/* ---------------------------------------------------------------------- */
-/* --- Constants -------------------------------------------------------- */
-/* ---------------------------------------------------------------------- */
-
-#define UMAC_KEY_LEN           16  /* UMAC takes 16 bytes of external key */
-
-/* Message "words" are read from memory in an endian-specific manner.     */
-/* For this implementation to behave correctly, __LITTLE_ENDIAN__ must    */
-/* be set true if the host computer is little-endian.                     */
-
-#if BYTE_ORDER == LITTLE_ENDIAN
-#define __LITTLE_ENDIAN__ 1
-#else
-#define __LITTLE_ENDIAN__ 0
-#endif
-
-/* ---------------------------------------------------------------------- */
-/* ---------------------------------------------------------------------- */
-/* ----- Architecture Specific ------------------------------------------ */
-/* ---------------------------------------------------------------------- */
-/* ---------------------------------------------------------------------- */
-
-
-/* ---------------------------------------------------------------------- */
-/* ---------------------------------------------------------------------- */
-/* ----- Primitive Routines --------------------------------------------- */
-/* ---------------------------------------------------------------------- */
-/* ---------------------------------------------------------------------- */
-
-
-/* ---------------------------------------------------------------------- */
-/* --- 32-bit by 32-bit to 64-bit Multiplication ------------------------ */
-/* ---------------------------------------------------------------------- */
-
-#define MUL64(a,b) ((UINT64)((UINT64)(UINT32)(a) * (UINT64)(UINT32)(b)))
-
-/* ---------------------------------------------------------------------- */
-/* --- Endian Conversion --- Forcing assembly on some platforms           */
-/* ---------------------------------------------------------------------- */
-
-#if HAVE_SWAP32
-#define LOAD_UINT32_REVERSED(p)		(swap32(*(const UINT32 *)(p)))
-#define STORE_UINT32_REVERSED(p,v) 	(*(UINT32 *)(p) = swap32(v))
-#else /* HAVE_SWAP32 */
-
-static UINT32 LOAD_UINT32_REVERSED(const void *ptr)
-{
-    UINT32 temp = *(const UINT32 *)ptr;
-    temp = (temp >> 24) | ((temp & 0x00FF0000) >> 8 )
-         | ((temp & 0x0000FF00) << 8 ) | (temp << 24);
-    return (UINT32)temp;
-}
-
-# if (__LITTLE_ENDIAN__)
-static void STORE_UINT32_REVERSED(void *ptr, UINT32 x)
-{
-    UINT32 i = (UINT32)x;
-    *(UINT32 *)ptr = (i >> 24) | ((i & 0x00FF0000) >> 8 )
-                   | ((i & 0x0000FF00) << 8 ) | (i << 24);
-}
-# endif /* __LITTLE_ENDIAN */
-#endif /* HAVE_SWAP32 */
-
-/* The following definitions use the above reversal-primitives to do the right
- * thing on endian specific load and stores.
- */
-
-#if (__LITTLE_ENDIAN__)
-#define LOAD_UINT32_LITTLE(ptr)     (*(const UINT32 *)(ptr))
-#define STORE_UINT32_BIG(ptr,x)     STORE_UINT32_REVERSED(ptr,x)
-#else
-#define LOAD_UINT32_LITTLE(ptr)     LOAD_UINT32_REVERSED(ptr)
-#define STORE_UINT32_BIG(ptr,x)     (*(UINT32 *)(ptr) = (UINT32)(x))
-#endif
-
-/* ---------------------------------------------------------------------- */
-/* ---------------------------------------------------------------------- */
-/* ----- Begin KDF & PDF Section ---------------------------------------- */
-/* ---------------------------------------------------------------------- */
-/* ---------------------------------------------------------------------- */
-
-/* UMAC uses AES with 16 byte block and key lengths */
-#define AES_BLOCK_LEN  16
-
-/* OpenSSL's AES */
-#include "openbsd-compat/openssl-compat.h"
-#ifndef USE_BUILTIN_RIJNDAEL
-# include <openssl/aes.h>
-#endif
-typedef AES_KEY aes_int_key[1];
-#define aes_encryption(in,out,int_key)                  \
-  AES_encrypt((u_char *)(in),(u_char *)(out),(AES_KEY *)int_key)
-#define aes_key_setup(key,int_key)                      \
-  AES_set_encrypt_key((const u_char *)(key),UMAC_KEY_LEN*8,int_key)
-
-/* The user-supplied UMAC key is stretched using AES in a counter
- * mode to supply all random bits needed by UMAC. The kdf function takes
- * an AES internal key representation 'key' and writes a stream of
- * 'nbytes' bytes to the memory pointed at by 'bufp'. Each distinct
- * 'ndx' causes a distinct byte stream.
- */
-static void kdf(void *bufp, aes_int_key key, UINT8 ndx, int nbytes)
-{
-    UINT8 in_buf[AES_BLOCK_LEN] = {0};
-    UINT8 out_buf[AES_BLOCK_LEN];
-    UINT8 *dst_buf = (UINT8 *)bufp;
-    int i;
-    
-    /* Setup the initial value */
-    in_buf[AES_BLOCK_LEN-9] = ndx;
-    in_buf[AES_BLOCK_LEN-1] = i = 1;
-        
-    while (nbytes >= AES_BLOCK_LEN) {
-        aes_encryption(in_buf, out_buf, key);
-        memcpy(dst_buf,out_buf,AES_BLOCK_LEN);
-        in_buf[AES_BLOCK_LEN-1] = ++i;
-        nbytes -= AES_BLOCK_LEN;
-        dst_buf += AES_BLOCK_LEN;
-    }
-    if (nbytes) {
-        aes_encryption(in_buf, out_buf, key);
-        memcpy(dst_buf,out_buf,nbytes);
-    }
-}
-
-/* The final UHASH result is XOR'd with the output of a pseudorandom
- * function. Here, we use AES to generate random output and 
- * xor the appropriate bytes depending on the last bits of nonce.
- * This scheme is optimized for sequential, increasing big-endian nonces.
- */
-
-typedef struct {
-    UINT8 cache[AES_BLOCK_LEN];  /* Previous AES output is saved      */
-    UINT8 nonce[AES_BLOCK_LEN];  /* The AES input making above cache  */
-    aes_int_key prf_key;         /* Expanded AES key for PDF          */
-} pdf_ctx;
-
-static void pdf_init(pdf_ctx *pc, aes_int_key prf_key)
-{
-    UINT8 buf[UMAC_KEY_LEN];
-    
-    kdf(buf, prf_key, 0, UMAC_KEY_LEN);
-    aes_key_setup(buf, pc->prf_key);
-    
-    /* Initialize pdf and cache */
-    memset(pc->nonce, 0, sizeof(pc->nonce));
-    aes_encryption(pc->nonce, pc->cache, pc->prf_key);
-}
-
-static void pdf_gen_xor(pdf_ctx *pc, const UINT8 nonce[8], UINT8 buf[8])
-{
-    /* 'ndx' indicates that we'll be using the 0th or 1st eight bytes
-     * of the AES output. If last time around we returned the ndx-1st
-     * element, then we may have the result in the cache already.
-     */
-     
-#if (UMAC_OUTPUT_LEN == 4)
-#define LOW_BIT_MASK 3
-#elif (UMAC_OUTPUT_LEN == 8)
-#define LOW_BIT_MASK 1
-#elif (UMAC_OUTPUT_LEN > 8)
-#define LOW_BIT_MASK 0
-#endif
-    union {
-        UINT8 tmp_nonce_lo[4];
-        UINT32 align;
-    } t;
-#if LOW_BIT_MASK != 0
-    int ndx = nonce[7] & LOW_BIT_MASK;
-#endif
-    *(UINT32 *)t.tmp_nonce_lo = ((const UINT32 *)nonce)[1];
-    t.tmp_nonce_lo[3] &= ~LOW_BIT_MASK; /* zero last bit */
-    
-    if ( (((UINT32 *)t.tmp_nonce_lo)[0] != ((UINT32 *)pc->nonce)[1]) ||
-         (((const UINT32 *)nonce)[0] != ((UINT32 *)pc->nonce)[0]) )
-    {
-        ((UINT32 *)pc->nonce)[0] = ((const UINT32 *)nonce)[0];
-        ((UINT32 *)pc->nonce)[1] = ((UINT32 *)t.tmp_nonce_lo)[0];
-        aes_encryption(pc->nonce, pc->cache, pc->prf_key);
-    }
-    
-#if (UMAC_OUTPUT_LEN == 4)
-    *((UINT32 *)buf) ^= ((UINT32 *)pc->cache)[ndx];
-#elif (UMAC_OUTPUT_LEN == 8)
-    *((UINT64 *)buf) ^= ((UINT64 *)pc->cache)[ndx];
-#elif (UMAC_OUTPUT_LEN == 12)
-    ((UINT64 *)buf)[0] ^= ((UINT64 *)pc->cache)[0];
-    ((UINT32 *)buf)[2] ^= ((UINT32 *)pc->cache)[2];
-#elif (UMAC_OUTPUT_LEN == 16)
-    ((UINT64 *)buf)[0] ^= ((UINT64 *)pc->cache)[0];
-    ((UINT64 *)buf)[1] ^= ((UINT64 *)pc->cache)[1];
-#endif
-}
-
-/* ---------------------------------------------------------------------- */
-/* ---------------------------------------------------------------------- */
-/* ----- Begin NH Hash Section ------------------------------------------ */
-/* ---------------------------------------------------------------------- */
-/* ---------------------------------------------------------------------- */
-
-/* The NH-based hash functions used in UMAC are described in the UMAC paper
- * and specification, both of which can be found at the UMAC website.     
- * The interface to this implementation has two         
- * versions, one expects the entire message being hashed to be passed
- * in a single buffer and returns the hash result immediately. The second
- * allows the message to be passed in a sequence of buffers. In the          
- * muliple-buffer interface, the client calls the routine nh_update() as     
- * many times as necessary. When there is no more data to be fed to the   
- * hash, the client calls nh_final() which calculates the hash output.    
- * Before beginning another hash calculation the nh_reset() routine       
- * must be called. The single-buffer routine, nh(), is equivalent to  
- * the sequence of calls nh_update() and nh_final(); however it is        
- * optimized and should be prefered whenever the multiple-buffer interface
- * is not necessary. When using either interface, it is the client's         
- * responsability to pass no more than L1_KEY_LEN bytes per hash result.            
- *                                                                        
- * The routine nh_init() initializes the nh_ctx data structure and        
- * must be called once, before any other PDF routine.                     
- */
- 
- /* The "nh_aux" routines do the actual NH hashing work. They
-  * expect buffers to be multiples of L1_PAD_BOUNDARY. These routines
-  * produce output for all STREAMS NH iterations in one call, 
-  * allowing the parallel implementation of the streams.
-  */
-
-#define STREAMS (UMAC_OUTPUT_LEN / 4) /* Number of times hash is applied  */
-#define L1_KEY_LEN         1024     /* Internal key bytes                 */
-#define L1_KEY_SHIFT         16     /* Toeplitz key shift between streams */
-#define L1_PAD_BOUNDARY      32     /* pad message to boundary multiple   */
-#define ALLOC_BOUNDARY       16     /* Keep buffers aligned to this       */
-#define HASH_BUF_BYTES       64     /* nh_aux_hb buffer multiple          */
-
-typedef struct {
-    UINT8  nh_key [L1_KEY_LEN + L1_KEY_SHIFT * (STREAMS - 1)]; /* NH Key */
-    UINT8  data   [HASH_BUF_BYTES];    /* Incoming data buffer           */
-    int next_data_empty;    /* Bookeeping variable for data buffer.       */
-    int bytes_hashed;        /* Bytes (out of L1_KEY_LEN) incorperated.   */
-    UINT64 state[STREAMS];               /* on-line state     */
-} nh_ctx;
-
-
-#if (UMAC_OUTPUT_LEN == 4)
-
-static void nh_aux(void *kp, const void *dp, void *hp, UINT32 dlen)
-/* NH hashing primitive. Previous (partial) hash result is loaded and     
-* then stored via hp pointer. The length of the data pointed at by "dp",
-* "dlen", is guaranteed to be divisible by L1_PAD_BOUNDARY (32).  Key
-* is expected to be endian compensated in memory at key setup.    
-*/
-{
-    UINT64 h;
-    UWORD c = dlen / 32;
-    UINT32 *k = (UINT32 *)kp;
-    const UINT32 *d = (const UINT32 *)dp;
-    UINT32 d0,d1,d2,d3,d4,d5,d6,d7;
-    UINT32 k0,k1,k2,k3,k4,k5,k6,k7;
-    
-    h = *((UINT64 *)hp);
-    do {
-        d0 = LOAD_UINT32_LITTLE(d+0); d1 = LOAD_UINT32_LITTLE(d+1);
-        d2 = LOAD_UINT32_LITTLE(d+2); d3 = LOAD_UINT32_LITTLE(d+3);
-        d4 = LOAD_UINT32_LITTLE(d+4); d5 = LOAD_UINT32_LITTLE(d+5);
-        d6 = LOAD_UINT32_LITTLE(d+6); d7 = LOAD_UINT32_LITTLE(d+7);
-        k0 = *(k+0); k1 = *(k+1); k2 = *(k+2); k3 = *(k+3);
-        k4 = *(k+4); k5 = *(k+5); k6 = *(k+6); k7 = *(k+7);
-        h += MUL64((k0 + d0), (k4 + d4));
-        h += MUL64((k1 + d1), (k5 + d5));
-        h += MUL64((k2 + d2), (k6 + d6));
-        h += MUL64((k3 + d3), (k7 + d7));
-        
-        d += 8;
-        k += 8;
-    } while (--c);
-  *((UINT64 *)hp) = h;
-}
-
-#elif (UMAC_OUTPUT_LEN == 8)
-
-static void nh_aux(void *kp, const void *dp, void *hp, UINT32 dlen)
-/* Same as previous nh_aux, but two streams are handled in one pass,
- * reading and writing 16 bytes of hash-state per call.
- */
-{
-  UINT64 h1,h2;
-  UWORD c = dlen / 32;
-  UINT32 *k = (UINT32 *)kp;
-  const UINT32 *d = (const UINT32 *)dp;
-  UINT32 d0,d1,d2,d3,d4,d5,d6,d7;
-  UINT32 k0,k1,k2,k3,k4,k5,k6,k7,
-        k8,k9,k10,k11;
-
-  h1 = *((UINT64 *)hp);
-  h2 = *((UINT64 *)hp + 1);
-  k0 = *(k+0); k1 = *(k+1); k2 = *(k+2); k3 = *(k+3);
-  do {
-    d0 = LOAD_UINT32_LITTLE(d+0); d1 = LOAD_UINT32_LITTLE(d+1);
-    d2 = LOAD_UINT32_LITTLE(d+2); d3 = LOAD_UINT32_LITTLE(d+3);
-    d4 = LOAD_UINT32_LITTLE(d+4); d5 = LOAD_UINT32_LITTLE(d+5);
-    d6 = LOAD_UINT32_LITTLE(d+6); d7 = LOAD_UINT32_LITTLE(d+7);
-    k4 = *(k+4); k5 = *(k+5); k6 = *(k+6); k7 = *(k+7);
-    k8 = *(k+8); k9 = *(k+9); k10 = *(k+10); k11 = *(k+11);
-
-    h1 += MUL64((k0 + d0), (k4 + d4));
-    h2 += MUL64((k4 + d0), (k8 + d4));
-
-    h1 += MUL64((k1 + d1), (k5 + d5));
-    h2 += MUL64((k5 + d1), (k9 + d5));
-
-    h1 += MUL64((k2 + d2), (k6 + d6));
-    h2 += MUL64((k6 + d2), (k10 + d6));
-
-    h1 += MUL64((k3 + d3), (k7 + d7));
-    h2 += MUL64((k7 + d3), (k11 + d7));
-
-    k0 = k8; k1 = k9; k2 = k10; k3 = k11;
-
-    d += 8;
-    k += 8;
-  } while (--c);
-  ((UINT64 *)hp)[0] = h1;
-  ((UINT64 *)hp)[1] = h2;
-}
-
-#elif (UMAC_OUTPUT_LEN == 12)
-
-static void nh_aux(void *kp, const void *dp, void *hp, UINT32 dlen)
-/* Same as previous nh_aux, but two streams are handled in one pass,
- * reading and writing 24 bytes of hash-state per call.
-*/
-{
-    UINT64 h1,h2,h3;
-    UWORD c = dlen / 32;
-    UINT32 *k = (UINT32 *)kp;
-    const UINT32 *d = (const UINT32 *)dp;
-    UINT32 d0,d1,d2,d3,d4,d5,d6,d7;
-    UINT32 k0,k1,k2,k3,k4,k5,k6,k7,
-        k8,k9,k10,k11,k12,k13,k14,k15;
-    
-    h1 = *((UINT64 *)hp);
-    h2 = *((UINT64 *)hp + 1);
-    h3 = *((UINT64 *)hp + 2);
-    k0 = *(k+0); k1 = *(k+1); k2 = *(k+2); k3 = *(k+3);
-    k4 = *(k+4); k5 = *(k+5); k6 = *(k+6); k7 = *(k+7);
-    do {
-        d0 = LOAD_UINT32_LITTLE(d+0); d1 = LOAD_UINT32_LITTLE(d+1);
-        d2 = LOAD_UINT32_LITTLE(d+2); d3 = LOAD_UINT32_LITTLE(d+3);
-        d4 = LOAD_UINT32_LITTLE(d+4); d5 = LOAD_UINT32_LITTLE(d+5);
-        d6 = LOAD_UINT32_LITTLE(d+6); d7 = LOAD_UINT32_LITTLE(d+7);
-        k8 = *(k+8); k9 = *(k+9); k10 = *(k+10); k11 = *(k+11);
-        k12 = *(k+12); k13 = *(k+13); k14 = *(k+14); k15 = *(k+15);
-        
-        h1 += MUL64((k0 + d0), (k4 + d4));
-        h2 += MUL64((k4 + d0), (k8 + d4));
-        h3 += MUL64((k8 + d0), (k12 + d4));
-        
-        h1 += MUL64((k1 + d1), (k5 + d5));
-        h2 += MUL64((k5 + d1), (k9 + d5));
-        h3 += MUL64((k9 + d1), (k13 + d5));
-        
-        h1 += MUL64((k2 + d2), (k6 + d6));
-        h2 += MUL64((k6 + d2), (k10 + d6));
-        h3 += MUL64((k10 + d2), (k14 + d6));
-        
-        h1 += MUL64((k3 + d3), (k7 + d7));
-        h2 += MUL64((k7 + d3), (k11 + d7));
-        h3 += MUL64((k11 + d3), (k15 + d7));
-        
-        k0 = k8; k1 = k9; k2 = k10; k3 = k11;
-        k4 = k12; k5 = k13; k6 = k14; k7 = k15;
-        
-        d += 8;
-        k += 8;
-    } while (--c);
-    ((UINT64 *)hp)[0] = h1;
-    ((UINT64 *)hp)[1] = h2;
-    ((UINT64 *)hp)[2] = h3;
-}
-
-#elif (UMAC_OUTPUT_LEN == 16)
-
-static void nh_aux(void *kp, const void *dp, void *hp, UINT32 dlen)
-/* Same as previous nh_aux, but two streams are handled in one pass,
- * reading and writing 24 bytes of hash-state per call.
-*/
-{
-    UINT64 h1,h2,h3,h4;
-    UWORD c = dlen / 32;
-    UINT32 *k = (UINT32 *)kp;
-    const UINT32 *d = (const UINT32 *)dp;
-    UINT32 d0,d1,d2,d3,d4,d5,d6,d7;
-    UINT32 k0,k1,k2,k3,k4,k5,k6,k7,
-        k8,k9,k10,k11,k12,k13,k14,k15,
-        k16,k17,k18,k19;
-    
-    h1 = *((UINT64 *)hp);
-    h2 = *((UINT64 *)hp + 1);
-    h3 = *((UINT64 *)hp + 2);
-    h4 = *((UINT64 *)hp + 3);
-    k0 = *(k+0); k1 = *(k+1); k2 = *(k+2); k3 = *(k+3);
-    k4 = *(k+4); k5 = *(k+5); k6 = *(k+6); k7 = *(k+7);
-    do {
-        d0 = LOAD_UINT32_LITTLE(d+0); d1 = LOAD_UINT32_LITTLE(d+1);
-        d2 = LOAD_UINT32_LITTLE(d+2); d3 = LOAD_UINT32_LITTLE(d+3);
-        d4 = LOAD_UINT32_LITTLE(d+4); d5 = LOAD_UINT32_LITTLE(d+5);
-        d6 = LOAD_UINT32_LITTLE(d+6); d7 = LOAD_UINT32_LITTLE(d+7);
-        k8 = *(k+8); k9 = *(k+9); k10 = *(k+10); k11 = *(k+11);
-        k12 = *(k+12); k13 = *(k+13); k14 = *(k+14); k15 = *(k+15);
-        k16 = *(k+16); k17 = *(k+17); k18 = *(k+18); k19 = *(k+19);
-        
-        h1 += MUL64((k0 + d0), (k4 + d4));
-        h2 += MUL64((k4 + d0), (k8 + d4));
-        h3 += MUL64((k8 + d0), (k12 + d4));
-        h4 += MUL64((k12 + d0), (k16 + d4));
-        
-        h1 += MUL64((k1 + d1), (k5 + d5));
-        h2 += MUL64((k5 + d1), (k9 + d5));
-        h3 += MUL64((k9 + d1), (k13 + d5));
-        h4 += MUL64((k13 + d1), (k17 + d5));
-        
-        h1 += MUL64((k2 + d2), (k6 + d6));
-        h2 += MUL64((k6 + d2), (k10 + d6));
-        h3 += MUL64((k10 + d2), (k14 + d6));
-        h4 += MUL64((k14 + d2), (k18 + d6));
-        
-        h1 += MUL64((k3 + d3), (k7 + d7));
-        h2 += MUL64((k7 + d3), (k11 + d7));
-        h3 += MUL64((k11 + d3), (k15 + d7));
-        h4 += MUL64((k15 + d3), (k19 + d7));
-        
-        k0 = k8; k1 = k9; k2 = k10; k3 = k11;
-        k4 = k12; k5 = k13; k6 = k14; k7 = k15;
-        k8 = k16; k9 = k17; k10 = k18; k11 = k19;
-        
-        d += 8;
-        k += 8;
-    } while (--c);
-    ((UINT64 *)hp)[0] = h1;
-    ((UINT64 *)hp)[1] = h2;
-    ((UINT64 *)hp)[2] = h3;
-    ((UINT64 *)hp)[3] = h4;
-}
-
-/* ---------------------------------------------------------------------- */
-#endif  /* UMAC_OUTPUT_LENGTH */
-/* ---------------------------------------------------------------------- */
-
-
-/* ---------------------------------------------------------------------- */
-
-static void nh_transform(nh_ctx *hc, const UINT8 *buf, UINT32 nbytes)
-/* This function is a wrapper for the primitive NH hash functions. It takes
- * as argument "hc" the current hash context and a buffer which must be a
- * multiple of L1_PAD_BOUNDARY. The key passed to nh_aux is offset
- * appropriately according to how much message has been hashed already.
- */
-{
-    UINT8 *key;
-  
-    key = hc->nh_key + hc->bytes_hashed;
-    nh_aux(key, buf, hc->state, nbytes);
-}
-
-/* ---------------------------------------------------------------------- */
-
-#if (__LITTLE_ENDIAN__)
-static void endian_convert(void *buf, UWORD bpw, UINT32 num_bytes)
-/* We endian convert the keys on little-endian computers to               */
-/* compensate for the lack of big-endian memory reads during hashing.     */
-{
-    UWORD iters = num_bytes / bpw;
-    if (bpw == 4) {
-        UINT32 *p = (UINT32 *)buf;
-        do {
-            *p = LOAD_UINT32_REVERSED(p);
-            p++;
-        } while (--iters);
-    } else if (bpw == 8) {
-        UINT32 *p = (UINT32 *)buf;
-        UINT32 t;
-        do {
-            t = LOAD_UINT32_REVERSED(p+1);
-            p[1] = LOAD_UINT32_REVERSED(p);
-            p[0] = t;
-            p += 2;
-        } while (--iters);
-    }
-}
-#define endian_convert_if_le(x,y,z) endian_convert((x),(y),(z))
-#else
-#define endian_convert_if_le(x,y,z) do{}while(0)  /* Do nothing */
-#endif
-
-/* ---------------------------------------------------------------------- */
-
-static void nh_reset(nh_ctx *hc)
-/* Reset nh_ctx to ready for hashing of new data */
-{
-    hc->bytes_hashed = 0;
-    hc->next_data_empty = 0;
-    hc->state[0] = 0;
-#if (UMAC_OUTPUT_LEN >= 8)
-    hc->state[1] = 0;
-#endif
-#if (UMAC_OUTPUT_LEN >= 12)
-    hc->state[2] = 0;
-#endif
-#if (UMAC_OUTPUT_LEN == 16)
-    hc->state[3] = 0;
-#endif
-
-}
-
-/* ---------------------------------------------------------------------- */
-
-static void nh_init(nh_ctx *hc, aes_int_key prf_key)
-/* Generate nh_key, endian convert and reset to be ready for hashing.   */
-{
-    kdf(hc->nh_key, prf_key, 1, sizeof(hc->nh_key));
-    endian_convert_if_le(hc->nh_key, 4, sizeof(hc->nh_key));
-    nh_reset(hc);
-}
-
-/* ---------------------------------------------------------------------- */
-
-static void nh_update(nh_ctx *hc, const UINT8 *buf, UINT32 nbytes)
-/* Incorporate nbytes of data into a nh_ctx, buffer whatever is not an    */
-/* even multiple of HASH_BUF_BYTES.                                       */
-{
-    UINT32 i,j;
-    
-    j = hc->next_data_empty;
-    if ((j + nbytes) >= HASH_BUF_BYTES) {
-        if (j) {
-            i = HASH_BUF_BYTES - j;
-            memcpy(hc->data+j, buf, i);
-            nh_transform(hc,hc->data,HASH_BUF_BYTES);
-            nbytes -= i;
-            buf += i;
-            hc->bytes_hashed += HASH_BUF_BYTES;
-        }
-        if (nbytes >= HASH_BUF_BYTES) {
-            i = nbytes & ~(HASH_BUF_BYTES - 1);
-            nh_transform(hc, buf, i);
-            nbytes -= i;
-            buf += i;
-            hc->bytes_hashed += i;
-        }
-        j = 0;
-    }
-    memcpy(hc->data + j, buf, nbytes);
-    hc->next_data_empty = j + nbytes;
-}
-
-/* ---------------------------------------------------------------------- */
-
-static void zero_pad(UINT8 *p, int nbytes)
-{
-/* Write "nbytes" of zeroes, beginning at "p" */
-    if (nbytes >= (int)sizeof(UWORD)) {
-        while ((ptrdiff_t)p % sizeof(UWORD)) {
-            *p = 0;
-            nbytes--;
-            p++;
-        }
-        while (nbytes >= (int)sizeof(UWORD)) {
-            *(UWORD *)p = 0;
-            nbytes -= sizeof(UWORD);
-            p += sizeof(UWORD);
-        }
-    }
-    while (nbytes) {
-        *p = 0;
-        nbytes--;
-        p++;
-    }
-}
-
-/* ---------------------------------------------------------------------- */
-
-static void nh_final(nh_ctx *hc, UINT8 *result)
-/* After passing some number of data buffers to nh_update() for integration
- * into an NH context, nh_final is called to produce a hash result. If any
- * bytes are in the buffer hc->data, incorporate them into the
- * NH context. Finally, add into the NH accumulation "state" the total number
- * of bits hashed. The resulting numbers are written to the buffer "result".
- * If nh_update was never called, L1_PAD_BOUNDARY zeroes are incorporated.
- */
-{
-    int nh_len, nbits;
-
-    if (hc->next_data_empty != 0) {
-        nh_len = ((hc->next_data_empty + (L1_PAD_BOUNDARY - 1)) &
-                                                ~(L1_PAD_BOUNDARY - 1));
-        zero_pad(hc->data + hc->next_data_empty, 
-                                          nh_len - hc->next_data_empty);
-        nh_transform(hc, hc->data, nh_len);
-        hc->bytes_hashed += hc->next_data_empty;
-    } else if (hc->bytes_hashed == 0) {
-    	nh_len = L1_PAD_BOUNDARY;
-        zero_pad(hc->data, L1_PAD_BOUNDARY);
-        nh_transform(hc, hc->data, nh_len);
-    }
-
-    nbits = (hc->bytes_hashed << 3);
-    ((UINT64 *)result)[0] = ((UINT64 *)hc->state)[0] + nbits;
-#if (UMAC_OUTPUT_LEN >= 8)
-    ((UINT64 *)result)[1] = ((UINT64 *)hc->state)[1] + nbits;
-#endif
-#if (UMAC_OUTPUT_LEN >= 12)
-    ((UINT64 *)result)[2] = ((UINT64 *)hc->state)[2] + nbits;
-#endif
-#if (UMAC_OUTPUT_LEN == 16)
-    ((UINT64 *)result)[3] = ((UINT64 *)hc->state)[3] + nbits;
-#endif
-    nh_reset(hc);
-}
-
-/* ---------------------------------------------------------------------- */
-
-static void nh(nh_ctx *hc, const UINT8 *buf, UINT32 padded_len,
-               UINT32 unpadded_len, UINT8 *result)
-/* All-in-one nh_update() and nh_final() equivalent.
- * Assumes that padded_len is divisible by L1_PAD_BOUNDARY and result is
- * well aligned
- */
-{
-    UINT32 nbits;
-    
-    /* Initialize the hash state */
-    nbits = (unpadded_len << 3);
-    
-    ((UINT64 *)result)[0] = nbits;
-#if (UMAC_OUTPUT_LEN >= 8)
-    ((UINT64 *)result)[1] = nbits;
-#endif
-#if (UMAC_OUTPUT_LEN >= 12)
-    ((UINT64 *)result)[2] = nbits;
-#endif
-#if (UMAC_OUTPUT_LEN == 16)
-    ((UINT64 *)result)[3] = nbits;
-#endif
-    
-    nh_aux(hc->nh_key, buf, result, padded_len);
-}
-
-/* ---------------------------------------------------------------------- */
-/* ---------------------------------------------------------------------- */
-/* ----- Begin UHASH Section -------------------------------------------- */
-/* ---------------------------------------------------------------------- */
-/* ---------------------------------------------------------------------- */
-
-/* UHASH is a multi-layered algorithm. Data presented to UHASH is first
- * hashed by NH. The NH output is then hashed by a polynomial-hash layer
- * unless the initial data to be hashed is short. After the polynomial-
- * layer, an inner-product hash is used to produce the final UHASH output.
- *
- * UHASH provides two interfaces, one all-at-once and another where data
- * buffers are presented sequentially. In the sequential interface, the
- * UHASH client calls the routine uhash_update() as many times as necessary.
- * When there is no more data to be fed to UHASH, the client calls
- * uhash_final() which          
- * calculates the UHASH output. Before beginning another UHASH calculation    
- * the uhash_reset() routine must be called. The all-at-once UHASH routine,   
- * uhash(), is equivalent to the sequence of calls uhash_update() and         
- * uhash_final(); however it is optimized and should be                     
- * used whenever the sequential interface is not necessary.              
- *                                                                        
- * The routine uhash_init() initializes the uhash_ctx data structure and    
- * must be called once, before any other UHASH routine.
- */                                                        
-
-/* ---------------------------------------------------------------------- */
-/* ----- Constants and uhash_ctx ---------------------------------------- */
-/* ---------------------------------------------------------------------- */
-
-/* ---------------------------------------------------------------------- */
-/* ----- Poly hash and Inner-Product hash Constants --------------------- */
-/* ---------------------------------------------------------------------- */
-
-/* Primes and masks */
-#define p36    ((UINT64)0x0000000FFFFFFFFBull)              /* 2^36 -  5 */
-#define p64    ((UINT64)0xFFFFFFFFFFFFFFC5ull)              /* 2^64 - 59 */
-#define m36    ((UINT64)0x0000000FFFFFFFFFull)  /* The low 36 of 64 bits */
-
-
-/* ---------------------------------------------------------------------- */
-
-typedef struct uhash_ctx {
-    nh_ctx hash;                          /* Hash context for L1 NH hash  */
-    UINT64 poly_key_8[STREAMS];           /* p64 poly keys                */
-    UINT64 poly_accum[STREAMS];           /* poly hash result             */
-    UINT64 ip_keys[STREAMS*4];            /* Inner-product keys           */
-    UINT32 ip_trans[STREAMS];             /* Inner-product translation    */
-    UINT32 msg_len;                       /* Total length of data passed  */
-                                          /* to uhash */
-} uhash_ctx;
-typedef struct uhash_ctx *uhash_ctx_t;
-
-/* ---------------------------------------------------------------------- */
-
-
-/* The polynomial hashes use Horner's rule to evaluate a polynomial one
- * word at a time. As described in the specification, poly32 and poly64
- * require keys from special domains. The following implementations exploit
- * the special domains to avoid overflow. The results are not guaranteed to
- * be within Z_p32 and Z_p64, but the Inner-Product hash implementation
- * patches any errant values.
- */
-
-static UINT64 poly64(UINT64 cur, UINT64 key, UINT64 data)
-{
-    UINT32 key_hi = (UINT32)(key >> 32),
-           key_lo = (UINT32)key,
-           cur_hi = (UINT32)(cur >> 32),
-           cur_lo = (UINT32)cur,
-           x_lo,
-           x_hi;
-    UINT64 X,T,res;
-    
-    X =  MUL64(key_hi, cur_lo) + MUL64(cur_hi, key_lo);
-    x_lo = (UINT32)X;
-    x_hi = (UINT32)(X >> 32);
-    
-    res = (MUL64(key_hi, cur_hi) + x_hi) * 59 + MUL64(key_lo, cur_lo);
-     
-    T = ((UINT64)x_lo << 32);
-    res += T;
-    if (res < T)
-        res += 59;
-
-    res += data;
-    if (res < data)
-        res += 59;
-
-    return res;
-}
-
-
-/* Although UMAC is specified to use a ramped polynomial hash scheme, this
- * implementation does not handle all ramp levels. Because we don't handle
- * the ramp up to p128 modulus in this implementation, we are limited to
- * 2^14 poly_hash() invocations per stream (for a total capacity of 2^24
- * bytes input to UMAC per tag, ie. 16MB).
- */
-static void poly_hash(uhash_ctx_t hc, UINT32 data_in[])
-{
-    int i;
-    UINT64 *data=(UINT64*)data_in;
-    
-    for (i = 0; i < STREAMS; i++) {
-        if ((UINT32)(data[i] >> 32) == 0xfffffffful) {
-            hc->poly_accum[i] = poly64(hc->poly_accum[i], 
-                                       hc->poly_key_8[i], p64 - 1);
-            hc->poly_accum[i] = poly64(hc->poly_accum[i],
-                                       hc->poly_key_8[i], (data[i] - 59));
-        } else {
-            hc->poly_accum[i] = poly64(hc->poly_accum[i],
-                                       hc->poly_key_8[i], data[i]);
-        }
-    }
-}
-
-
-/* ---------------------------------------------------------------------- */
-
-
-/* The final step in UHASH is an inner-product hash. The poly hash
- * produces a result not neccesarily WORD_LEN bytes long. The inner-
- * product hash breaks the polyhash output into 16-bit chunks and
- * multiplies each with a 36 bit key.
- */
-
-static UINT64 ip_aux(UINT64 t, UINT64 *ipkp, UINT64 data)
-{
-    t = t + ipkp[0] * (UINT64)(UINT16)(data >> 48);
-    t = t + ipkp[1] * (UINT64)(UINT16)(data >> 32);
-    t = t + ipkp[2] * (UINT64)(UINT16)(data >> 16);
-    t = t + ipkp[3] * (UINT64)(UINT16)(data);
-    
-    return t;
-}
-
-static UINT32 ip_reduce_p36(UINT64 t)
-{
-/* Divisionless modular reduction */
-    UINT64 ret;
-    
-    ret = (t & m36) + 5 * (t >> 36);
-    if (ret >= p36)
-        ret -= p36;
-
-    /* return least significant 32 bits */
-    return (UINT32)(ret);
-}
-
-
-/* If the data being hashed by UHASH is no longer than L1_KEY_LEN, then
- * the polyhash stage is skipped and ip_short is applied directly to the
- * NH output.
- */
-static void ip_short(uhash_ctx_t ahc, UINT8 *nh_res, u_char *res)
-{
-    UINT64 t;
-    UINT64 *nhp = (UINT64 *)nh_res;
-    
-    t  = ip_aux(0,ahc->ip_keys, nhp[0]);
-    STORE_UINT32_BIG((UINT32 *)res+0, ip_reduce_p36(t) ^ ahc->ip_trans[0]);
-#if (UMAC_OUTPUT_LEN >= 8)
-    t  = ip_aux(0,ahc->ip_keys+4, nhp[1]);
-    STORE_UINT32_BIG((UINT32 *)res+1, ip_reduce_p36(t) ^ ahc->ip_trans[1]);
-#endif
-#if (UMAC_OUTPUT_LEN >= 12)
-    t  = ip_aux(0,ahc->ip_keys+8, nhp[2]);
-    STORE_UINT32_BIG((UINT32 *)res+2, ip_reduce_p36(t) ^ ahc->ip_trans[2]);
-#endif
-#if (UMAC_OUTPUT_LEN == 16)
-    t  = ip_aux(0,ahc->ip_keys+12, nhp[3]);
-    STORE_UINT32_BIG((UINT32 *)res+3, ip_reduce_p36(t) ^ ahc->ip_trans[3]);
-#endif
-}
-
-/* If the data being hashed by UHASH is longer than L1_KEY_LEN, then
- * the polyhash stage is not skipped and ip_long is applied to the
- * polyhash output.
- */
-static void ip_long(uhash_ctx_t ahc, u_char *res)
-{
-    int i;
-    UINT64 t;
-
-    for (i = 0; i < STREAMS; i++) {
-        /* fix polyhash output not in Z_p64 */
-        if (ahc->poly_accum[i] >= p64)
-            ahc->poly_accum[i] -= p64;
-        t  = ip_aux(0,ahc->ip_keys+(i*4), ahc->poly_accum[i]);
-        STORE_UINT32_BIG((UINT32 *)res+i, 
-                         ip_reduce_p36(t) ^ ahc->ip_trans[i]);
-    }
-}
-
-
-/* ---------------------------------------------------------------------- */
-
-/* ---------------------------------------------------------------------- */
-
-/* Reset uhash context for next hash session */
-static int uhash_reset(uhash_ctx_t pc)
-{
-    nh_reset(&pc->hash);
-    pc->msg_len = 0;
-    pc->poly_accum[0] = 1;
-#if (UMAC_OUTPUT_LEN >= 8)
-    pc->poly_accum[1] = 1;
-#endif
-#if (UMAC_OUTPUT_LEN >= 12)
-    pc->poly_accum[2] = 1;
-#endif
-#if (UMAC_OUTPUT_LEN == 16)
-    pc->poly_accum[3] = 1;
-#endif
-    return 1;
-}
-
-/* ---------------------------------------------------------------------- */
-
-/* Given a pointer to the internal key needed by kdf() and a uhash context,
- * initialize the NH context and generate keys needed for poly and inner-
- * product hashing. All keys are endian adjusted in memory so that native
- * loads cause correct keys to be in registers during calculation.
- */
-static void uhash_init(uhash_ctx_t ahc, aes_int_key prf_key)
-{
-    int i;
-    UINT8 buf[(8*STREAMS+4)*sizeof(UINT64)];
-    
-    /* Zero the entire uhash context */
-    memset(ahc, 0, sizeof(uhash_ctx));
-
-    /* Initialize the L1 hash */
-    nh_init(&ahc->hash, prf_key);
-    
-    /* Setup L2 hash variables */
-    kdf(buf, prf_key, 2, sizeof(buf));    /* Fill buffer with index 1 key */
-    for (i = 0; i < STREAMS; i++) {
-        /* Fill keys from the buffer, skipping bytes in the buffer not
-         * used by this implementation. Endian reverse the keys if on a
-         * little-endian computer.
-         */
-        memcpy(ahc->poly_key_8+i, buf+24*i, 8);
-        endian_convert_if_le(ahc->poly_key_8+i, 8, 8);
-        /* Mask the 64-bit keys to their special domain */
-        ahc->poly_key_8[i] &= ((UINT64)0x01ffffffu << 32) + 0x01ffffffu;
-        ahc->poly_accum[i] = 1;  /* Our polyhash prepends a non-zero word */
-    }
-    
-    /* Setup L3-1 hash variables */
-    kdf(buf, prf_key, 3, sizeof(buf)); /* Fill buffer with index 2 key */
-    for (i = 0; i < STREAMS; i++)
-          memcpy(ahc->ip_keys+4*i, buf+(8*i+4)*sizeof(UINT64),
-                                                 4*sizeof(UINT64));
-    endian_convert_if_le(ahc->ip_keys, sizeof(UINT64), 
-                                                  sizeof(ahc->ip_keys));
-    for (i = 0; i < STREAMS*4; i++)
-        ahc->ip_keys[i] %= p36;  /* Bring into Z_p36 */
-    
-    /* Setup L3-2 hash variables    */
-    /* Fill buffer with index 4 key */
-    kdf(ahc->ip_trans, prf_key, 4, STREAMS * sizeof(UINT32));
-    endian_convert_if_le(ahc->ip_trans, sizeof(UINT32),
-                         STREAMS * sizeof(UINT32));
-}
-
-/* ---------------------------------------------------------------------- */
-
-#if 0
-static uhash_ctx_t uhash_alloc(u_char key[])
-{
-/* Allocate memory and force to a 16-byte boundary. */
-    uhash_ctx_t ctx;
-    u_char bytes_to_add;
-    aes_int_key prf_key;
-    
-    ctx = (uhash_ctx_t)malloc(sizeof(uhash_ctx)+ALLOC_BOUNDARY);
-    if (ctx) {
-        if (ALLOC_BOUNDARY) {
-            bytes_to_add = ALLOC_BOUNDARY -
-                              ((ptrdiff_t)ctx & (ALLOC_BOUNDARY -1));
-            ctx = (uhash_ctx_t)((u_char *)ctx + bytes_to_add);
-            *((u_char *)ctx - 1) = bytes_to_add;
-        }
-        aes_key_setup(key,prf_key);
-        uhash_init(ctx, prf_key);
-    }
-    return (ctx);
-}
-#endif
-
-/* ---------------------------------------------------------------------- */
-
-#if 0
-static int uhash_free(uhash_ctx_t ctx)
-{
-/* Free memory allocated by uhash_alloc */
-    u_char bytes_to_sub;
-    
-    if (ctx) {
-        if (ALLOC_BOUNDARY) {
-            bytes_to_sub = *((u_char *)ctx - 1);
-            ctx = (uhash_ctx_t)((u_char *)ctx - bytes_to_sub);
-        }
-        free(ctx);
-    }
-    return (1);
-}
-#endif
-/* ---------------------------------------------------------------------- */
-
-static int uhash_update(uhash_ctx_t ctx, const u_char *input, long len)
-/* Given len bytes of data, we parse it into L1_KEY_LEN chunks and
- * hash each one with NH, calling the polyhash on each NH output.
- */
-{
-    UWORD bytes_hashed, bytes_remaining;
-    UINT64 result_buf[STREAMS];
-    UINT8 *nh_result = (UINT8 *)&result_buf;
-    
-    if (ctx->msg_len + len <= L1_KEY_LEN) {
-        nh_update(&ctx->hash, (const UINT8 *)input, len);
-        ctx->msg_len += len;
-    } else {
-    
-         bytes_hashed = ctx->msg_len % L1_KEY_LEN;
-         if (ctx->msg_len == L1_KEY_LEN)
-             bytes_hashed = L1_KEY_LEN;
-
-         if (bytes_hashed + len >= L1_KEY_LEN) {
-
-             /* If some bytes have been passed to the hash function      */
-             /* then we want to pass at most (L1_KEY_LEN - bytes_hashed) */
-             /* bytes to complete the current nh_block.                  */
-             if (bytes_hashed) {
-                 bytes_remaining = (L1_KEY_LEN - bytes_hashed);
-                 nh_update(&ctx->hash, (const UINT8 *)input, bytes_remaining);
-                 nh_final(&ctx->hash, nh_result);
-                 ctx->msg_len += bytes_remaining;
-                 poly_hash(ctx,(UINT32 *)nh_result);
-                 len -= bytes_remaining;
-                 input += bytes_remaining;
-             }
-
-             /* Hash directly from input stream if enough bytes */
-             while (len >= L1_KEY_LEN) {
-                 nh(&ctx->hash, (const UINT8 *)input, L1_KEY_LEN,
-                                   L1_KEY_LEN, nh_result);
-                 ctx->msg_len += L1_KEY_LEN;
-                 len -= L1_KEY_LEN;
-                 input += L1_KEY_LEN;
-                 poly_hash(ctx,(UINT32 *)nh_result);
-             }
-         }
-
-         /* pass remaining < L1_KEY_LEN bytes of input data to NH */
-         if (len) {
-             nh_update(&ctx->hash, (const UINT8 *)input, len);
-             ctx->msg_len += len;
-         }
-     }
-
-    return (1);
-}
-
-/* ---------------------------------------------------------------------- */
-
-static int uhash_final(uhash_ctx_t ctx, u_char *res)
-/* Incorporate any pending data, pad, and generate tag */
-{
-    UINT64 result_buf[STREAMS];
-    UINT8 *nh_result = (UINT8 *)&result_buf;
-
-    if (ctx->msg_len > L1_KEY_LEN) {
-        if (ctx->msg_len % L1_KEY_LEN) {
-            nh_final(&ctx->hash, nh_result);
-            poly_hash(ctx,(UINT32 *)nh_result);
-        }
-        ip_long(ctx, res);
-    } else {
-        nh_final(&ctx->hash, nh_result);
-        ip_short(ctx,nh_result, res);
-    }
-    uhash_reset(ctx);
-    return (1);
-}
-
-/* ---------------------------------------------------------------------- */
-
-#if 0
-static int uhash(uhash_ctx_t ahc, u_char *msg, long len, u_char *res)
-/* assumes that msg is in a writable buffer of length divisible by */
-/* L1_PAD_BOUNDARY. Bytes beyond msg[len] may be zeroed.           */
-{
-    UINT8 nh_result[STREAMS*sizeof(UINT64)];
-    UINT32 nh_len;
-    int extra_zeroes_needed;
-        
-    /* If the message to be hashed is no longer than L1_HASH_LEN, we skip
-     * the polyhash.
-     */
-    if (len <= L1_KEY_LEN) {
-    	if (len == 0)                  /* If zero length messages will not */
-    		nh_len = L1_PAD_BOUNDARY;  /* be seen, comment out this case   */ 
-    	else
-        	nh_len = ((len + (L1_PAD_BOUNDARY - 1)) & ~(L1_PAD_BOUNDARY - 1));
-        extra_zeroes_needed = nh_len - len;
-        zero_pad((UINT8 *)msg + len, extra_zeroes_needed);
-        nh(&ahc->hash, (UINT8 *)msg, nh_len, len, nh_result);
-        ip_short(ahc,nh_result, res);
-    } else {
-        /* Otherwise, we hash each L1_KEY_LEN chunk with NH, passing the NH
-         * output to poly_hash().
-         */
-        do {
-            nh(&ahc->hash, (UINT8 *)msg, L1_KEY_LEN, L1_KEY_LEN, nh_result);
-            poly_hash(ahc,(UINT32 *)nh_result);
-            len -= L1_KEY_LEN;
-            msg += L1_KEY_LEN;
-        } while (len >= L1_KEY_LEN);
-        if (len) {
-            nh_len = ((len + (L1_PAD_BOUNDARY - 1)) & ~(L1_PAD_BOUNDARY - 1));
-            extra_zeroes_needed = nh_len - len;
-            zero_pad((UINT8 *)msg + len, extra_zeroes_needed);
-            nh(&ahc->hash, (UINT8 *)msg, nh_len, len, nh_result);
-            poly_hash(ahc,(UINT32 *)nh_result);
-        }
-
-        ip_long(ahc, res);
-    }
-    
-    uhash_reset(ahc);
-    return 1;
-}
-#endif
-
-/* ---------------------------------------------------------------------- */
-/* ---------------------------------------------------------------------- */
-/* ----- Begin UMAC Section --------------------------------------------- */
-/* ---------------------------------------------------------------------- */
-/* ---------------------------------------------------------------------- */
-
-/* The UMAC interface has two interfaces, an all-at-once interface where
- * the entire message to be authenticated is passed to UMAC in one buffer,
- * and a sequential interface where the message is presented a little at a   
- * time. The all-at-once is more optimaized than the sequential version and
- * should be preferred when the sequential interface is not required. 
- */
-struct umac_ctx {
-    uhash_ctx hash;          /* Hash function for message compression    */
-    pdf_ctx pdf;             /* PDF for hashed output                    */
-    void *free_ptr;          /* Address to free this struct via          */
-} umac_ctx;
-
-/* ---------------------------------------------------------------------- */
-
-#if 0
-int umac_reset(struct umac_ctx *ctx)
-/* Reset the hash function to begin a new authentication.        */
-{
-    uhash_reset(&ctx->hash);
-    return (1);
-}
-#endif
-
-/* ---------------------------------------------------------------------- */
-
-int umac128_delete(struct umac_ctx *ctx)
-/* Deallocate the ctx structure */
-{
-    if (ctx) {
-        if (ALLOC_BOUNDARY)
-            ctx = (struct umac_ctx *)ctx->free_ptr;
-        free(ctx);
-    }
-    return (1);
-}
-
-/* ---------------------------------------------------------------------- */
-
-struct umac_ctx *umac128_new(const u_char key[])
-/* Dynamically allocate a umac_ctx struct, initialize variables, 
- * generate subkeys from key. Align to 16-byte boundary.
- */
-{
-    struct umac_ctx *ctx, *octx;
-    size_t bytes_to_add;
-    aes_int_key prf_key;
-    
-    octx = ctx = xcalloc(1, sizeof(*ctx) + ALLOC_BOUNDARY);
-    if (ctx) {
-        if (ALLOC_BOUNDARY) {
-            bytes_to_add = ALLOC_BOUNDARY -
-                              ((ptrdiff_t)ctx & (ALLOC_BOUNDARY - 1));
-            ctx = (struct umac_ctx *)((u_char *)ctx + bytes_to_add);
-        }
-        ctx->free_ptr = octx;
-        aes_key_setup(key, prf_key);
-        pdf_init(&ctx->pdf, prf_key);
-        uhash_init(&ctx->hash, prf_key);
-    }
-        
-    return (ctx);
-}
-
-/* ---------------------------------------------------------------------- */
-
-int umac128_final(struct umac_ctx *ctx, u_char tag[], const u_char nonce[8])
-/* Incorporate any pending data, pad, and generate tag */
-{
-    uhash_final(&ctx->hash, (u_char *)tag);
-    pdf_gen_xor(&ctx->pdf, (const UINT8 *)nonce, (UINT8 *)tag);
-    
-    return (1);
-}
-
-/* ---------------------------------------------------------------------- */
-
-int umac128_update(struct umac_ctx *ctx, const u_char *input, long len)
-/* Given len bytes of data, we parse it into L1_KEY_LEN chunks and   */
-/* hash each one, calling the PDF on the hashed output whenever the hash- */
-/* output buffer is full.                                                 */
-{
-    uhash_update(&ctx->hash, input, len);
-    return (1);
-}
-
-/* ---------------------------------------------------------------------- */
-
-#if 0
-int umac(struct umac_ctx *ctx, u_char *input, 
-         long len, u_char tag[],
-         u_char nonce[8])
-/* All-in-one version simply calls umac_update() and umac_final().        */
-{
-    uhash(&ctx->hash, input, len, (u_char *)tag);
-    pdf_gen_xor(&ctx->pdf, (UINT8 *)nonce, (UINT8 *)tag);
-    
-    return (1);
-}
-#endif
-
-/* ---------------------------------------------------------------------- */
-/* ---------------------------------------------------------------------- */
-/* ----- End UMAC Section ----------------------------------------------- */
-/* ---------------------------------------------------------------------- */
-/* ---------------------------------------------------------------------- */
+#include "umac.c"



More information about the Midnightbsd-cvs mailing list