ViewVC Help
View File | Revision Log | Show Annotations | Download File | View Changeset | Root Listing
root/src/trunk/crypto/openssl/crypto/sha/asm/sha1-586.pl
Revision: 11620
Committed: Sun Jul 8 16:40:18 2018 UTC (5 years, 9 months ago) by laffer1
Content type: text/plain
File size: 37239 byte(s)
Log Message:
fix merge issues

File Contents

# Content
1 #!/usr/bin/env perl
2
3 # ====================================================================
4 # [Re]written by Andy Polyakov <appro@fy.chalmers.se> for the OpenSSL
5 # project. The module is, however, dual licensed under OpenSSL and
6 # CRYPTOGAMS licenses depending on where you obtain it. For further
7 # details see http://www.openssl.org/~appro/cryptogams/.
8 # ====================================================================
9
10 # "[Re]written" was achieved in two major overhauls. In 2004 BODY_*
11 # functions were re-implemented to address P4 performance issue [see
12 # commentary below], and in 2006 the rest was rewritten in order to
13 # gain freedom to liberate licensing terms.
14
15 # January, September 2004.
16 #
17 # It was noted that Intel IA-32 C compiler generates code which
18 # performs ~30% *faster* on P4 CPU than original *hand-coded*
19 # SHA1 assembler implementation. To address this problem (and
20 # prove that humans are still better than machines:-), the
21 # original code was overhauled, which resulted in following
22 # performance changes:
23 #
24 # compared with original compared with Intel cc
25 # assembler impl. generated code
26 # Pentium -16% +48%
27 # PIII/AMD +8% +16%
28 # P4 +85%(!) +45%
29 #
30 # As you can see Pentium came out as looser:-( Yet I reckoned that
31 # improvement on P4 outweights the loss and incorporate this
32 # re-tuned code to 0.9.7 and later.
33 # ----------------------------------------------------------------
34 # <appro@fy.chalmers.se>
35
36 # August 2009.
37 #
38 # George Spelvin has tipped that F_40_59(b,c,d) can be rewritten as
39 # '(c&d) + (b&(c^d))', which allows to accumulate partial results
40 # and lighten "pressure" on scratch registers. This resulted in
41 # >12% performance improvement on contemporary AMD cores (with no
42 # degradation on other CPUs:-). Also, the code was revised to maximize
43 # "distance" between instructions producing input to 'lea' instruction
44 # and the 'lea' instruction itself, which is essential for Intel Atom
45 # core and resulted in ~15% improvement.
46
47 # October 2010.
48 #
49 # Add SSSE3, Supplemental[!] SSE3, implementation. The idea behind it
50 # is to offload message schedule denoted by Wt in NIST specification,
51 # or Xupdate in OpenSSL source, to SIMD unit. The idea is not novel,
52 # and in SSE2 context was first explored by Dean Gaudet in 2004, see
53 # http://arctic.org/~dean/crypto/sha1.html. Since then several things
54 # have changed that made it interesting again:
55 #
56 # a) XMM units became faster and wider;
57 # b) instruction set became more versatile;
58 # c) an important observation was made by Max Locktykhin, which made
59 # it possible to reduce amount of instructions required to perform
60 # the operation in question, for further details see
61 # http://software.intel.com/en-us/articles/improving-the-performance-of-the-secure-hash-algorithm-1/.
62
63 # April 2011.
64 #
65 # Add AVX code path, probably most controversial... The thing is that
66 # switch to AVX alone improves performance by as little as 4% in
67 # comparison to SSSE3 code path. But below result doesn't look like
68 # 4% improvement... Trouble is that Sandy Bridge decodes 'ro[rl]' as
69 # pair of µ-ops, and it's the additional µ-ops, two per round, that
70 # make it run slower than Core2 and Westmere. But 'sh[rl]d' is decoded
71 # as single µ-op by Sandy Bridge and it's replacing 'ro[rl]' with
72 # equivalent 'sh[rl]d' that is responsible for the impressive 5.1
73 # cycles per processed byte. But 'sh[rl]d' is not something that used
74 # to be fast, nor does it appear to be fast in upcoming Bulldozer
75 # [according to its optimization manual]. Which is why AVX code path
76 # is guarded by *both* AVX and synthetic bit denoting Intel CPUs.
77 # One can argue that it's unfair to AMD, but without 'sh[rl]d' it
78 # makes no sense to keep the AVX code path. If somebody feels that
79 # strongly, it's probably more appropriate to discuss possibility of
80 # using vector rotate XOP on AMD...
81
82 ######################################################################
83 # Current performance is summarized in following table. Numbers are
84 # CPU clock cycles spent to process single byte (less is better).
85 #
86 # x86 SSSE3 AVX
87 # Pentium 15.7 -
88 # PIII 11.5 -
89 # P4 10.6 -
90 # AMD K8 7.1 -
91 # Core2 7.3 6.1/+20% -
92 # Atom 12.5 9.5(*)/+32% -
93 # Westmere 7.3 5.6/+30% -
94 # Sandy Bridge 8.8 6.2/+40% 5.1(**)/+70%
95 #
96 # (*) Loop is 1056 instructions long and expected result is ~8.25.
97 # It remains mystery [to me] why ILP is limited to 1.7.
98 #
99 # (**) As per above comment, the result is for AVX *plus* sh[rl]d.
100
101 $0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1;
102 push(@INC,"${dir}","${dir}../../perlasm");
103 require "x86asm.pl";
104
105 &asm_init($ARGV[0],"sha1-586.pl",$ARGV[$#ARGV] eq "386");
106
107 $xmm=$ymm=0;
108 for (@ARGV) { $xmm=1 if (/-DOPENSSL_IA32_SSE2/); }
109
110 $ymm=1 if ($xmm &&
111 `$ENV{CC} -Wa,-v -c -o /dev/null -x assembler /dev/null 2>&1`
112 =~ /GNU assembler version ([2-9]\.[0-9]+)/ &&
113 $1>=2.19); # first version supporting AVX
114
115 $ymm=1 if ($xmm && !$ymm && $ARGV[0] eq "win32n" &&
116 `nasm -v 2>&1` =~ /NASM version ([2-9]\.[0-9]+)/ &&
117 $1>=2.03); # first version supporting AVX
118
119 $ymm=1 if ($xmm && !$ymm && `$ENV{CC} -v 2>&1` =~ /(^clang version|based on LLVM) ([3-9]\.[0-9]+)/ &&
120 $2>=3.0); # first version supporting AVX
121
122 &external_label("OPENSSL_ia32cap_P") if ($xmm);
123
124
125 $A="eax";
126 $B="ebx";
127 $C="ecx";
128 $D="edx";
129 $E="edi";
130 $T="esi";
131 $tmp1="ebp";
132
133 @V=($A,$B,$C,$D,$E,$T);
134
135 $alt=0; # 1 denotes alternative IALU implementation, which performs
136 # 8% *worse* on P4, same on Westmere and Atom, 2% better on
137 # Sandy Bridge...
138
139 sub BODY_00_15
140 {
141 local($n,$a,$b,$c,$d,$e,$f)=@_;
142
143 &comment("00_15 $n");
144
145 &mov($f,$c); # f to hold F_00_19(b,c,d)
146 if ($n==0) { &mov($tmp1,$a); }
147 else { &mov($a,$tmp1); }
148 &rotl($tmp1,5); # tmp1=ROTATE(a,5)
149 &xor($f,$d);
150 &add($tmp1,$e); # tmp1+=e;
151 &mov($e,&swtmp($n%16)); # e becomes volatile and is loaded
152 # with xi, also note that e becomes
153 # f in next round...
154 &and($f,$b);
155 &rotr($b,2); # b=ROTATE(b,30)
156 &xor($f,$d); # f holds F_00_19(b,c,d)
157 &lea($tmp1,&DWP(0x5a827999,$tmp1,$e)); # tmp1+=K_00_19+xi
158
159 if ($n==15) { &mov($e,&swtmp(($n+1)%16));# pre-fetch f for next round
160 &add($f,$tmp1); } # f+=tmp1
161 else { &add($tmp1,$f); } # f becomes a in next round
162 &mov($tmp1,$a) if ($alt && $n==15);
163 }
164
165 sub BODY_16_19
166 {
167 local($n,$a,$b,$c,$d,$e,$f)=@_;
168
169 &comment("16_19 $n");
170
171 if ($alt) {
172 &xor($c,$d);
173 &xor($f,&swtmp(($n+2)%16)); # f to hold Xupdate(xi,xa,xb,xc,xd)
174 &and($tmp1,$c); # tmp1 to hold F_00_19(b,c,d), b&=c^d
175 &xor($f,&swtmp(($n+8)%16));
176 &xor($tmp1,$d); # tmp1=F_00_19(b,c,d)
177 &xor($f,&swtmp(($n+13)%16)); # f holds xa^xb^xc^xd
178 &rotl($f,1); # f=ROTATE(f,1)
179 &add($e,$tmp1); # e+=F_00_19(b,c,d)
180 &xor($c,$d); # restore $c
181 &mov($tmp1,$a); # b in next round
182 &rotr($b,$n==16?2:7); # b=ROTATE(b,30)
183 &mov(&swtmp($n%16),$f); # xi=f
184 &rotl($a,5); # ROTATE(a,5)
185 &lea($f,&DWP(0x5a827999,$f,$e));# f+=F_00_19(b,c,d)+e
186 &mov($e,&swtmp(($n+1)%16)); # pre-fetch f for next round
187 &add($f,$a); # f+=ROTATE(a,5)
188 } else {
189 &mov($tmp1,$c); # tmp1 to hold F_00_19(b,c,d)
190 &xor($f,&swtmp(($n+2)%16)); # f to hold Xupdate(xi,xa,xb,xc,xd)
191 &xor($tmp1,$d);
192 &xor($f,&swtmp(($n+8)%16));
193 &and($tmp1,$b);
194 &xor($f,&swtmp(($n+13)%16)); # f holds xa^xb^xc^xd
195 &rotl($f,1); # f=ROTATE(f,1)
196 &xor($tmp1,$d); # tmp1=F_00_19(b,c,d)
197 &add($e,$tmp1); # e+=F_00_19(b,c,d)
198 &mov($tmp1,$a);
199 &rotr($b,2); # b=ROTATE(b,30)
200 &mov(&swtmp($n%16),$f); # xi=f
201 &rotl($tmp1,5); # ROTATE(a,5)
202 &lea($f,&DWP(0x5a827999,$f,$e));# f+=F_00_19(b,c,d)+e
203 &mov($e,&swtmp(($n+1)%16)); # pre-fetch f for next round
204 &add($f,$tmp1); # f+=ROTATE(a,5)
205 }
206 }
207
208 sub BODY_20_39
209 {
210 local($n,$a,$b,$c,$d,$e,$f)=@_;
211 local $K=($n<40)?0x6ed9eba1:0xca62c1d6;
212
213 &comment("20_39 $n");
214
215 if ($alt) {
216 &xor($tmp1,$c); # tmp1 to hold F_20_39(b,c,d), b^=c
217 &xor($f,&swtmp(($n+2)%16)); # f to hold Xupdate(xi,xa,xb,xc,xd)
218 &xor($tmp1,$d); # tmp1 holds F_20_39(b,c,d)
219 &xor($f,&swtmp(($n+8)%16));
220 &add($e,$tmp1); # e+=F_20_39(b,c,d)
221 &xor($f,&swtmp(($n+13)%16)); # f holds xa^xb^xc^xd
222 &rotl($f,1); # f=ROTATE(f,1)
223 &mov($tmp1,$a); # b in next round
224 &rotr($b,7); # b=ROTATE(b,30)
225 &mov(&swtmp($n%16),$f) if($n<77);# xi=f
226 &rotl($a,5); # ROTATE(a,5)
227 &xor($b,$c) if($n==39);# warm up for BODY_40_59
228 &and($tmp1,$b) if($n==39);
229 &lea($f,&DWP($K,$f,$e)); # f+=e+K_XX_YY
230 &mov($e,&swtmp(($n+1)%16)) if($n<79);# pre-fetch f for next round
231 &add($f,$a); # f+=ROTATE(a,5)
232 &rotr($a,5) if ($n==79);
233 } else {
234 &mov($tmp1,$b); # tmp1 to hold F_20_39(b,c,d)
235 &xor($f,&swtmp(($n+2)%16)); # f to hold Xupdate(xi,xa,xb,xc,xd)
236 &xor($tmp1,$c);
237 &xor($f,&swtmp(($n+8)%16));
238 &xor($tmp1,$d); # tmp1 holds F_20_39(b,c,d)
239 &xor($f,&swtmp(($n+13)%16)); # f holds xa^xb^xc^xd
240 &rotl($f,1); # f=ROTATE(f,1)
241 &add($e,$tmp1); # e+=F_20_39(b,c,d)
242 &rotr($b,2); # b=ROTATE(b,30)
243 &mov($tmp1,$a);
244 &rotl($tmp1,5); # ROTATE(a,5)
245 &mov(&swtmp($n%16),$f) if($n<77);# xi=f
246 &lea($f,&DWP($K,$f,$e)); # f+=e+K_XX_YY
247 &mov($e,&swtmp(($n+1)%16)) if($n<79);# pre-fetch f for next round
248 &add($f,$tmp1); # f+=ROTATE(a,5)
249 }
250 }
251
252 sub BODY_40_59
253 {
254 local($n,$a,$b,$c,$d,$e,$f)=@_;
255
256 &comment("40_59 $n");
257
258 if ($alt) {
259 &add($e,$tmp1); # e+=b&(c^d)
260 &xor($f,&swtmp(($n+2)%16)); # f to hold Xupdate(xi,xa,xb,xc,xd)
261 &mov($tmp1,$d);
262 &xor($f,&swtmp(($n+8)%16));
263 &xor($c,$d); # restore $c
264 &xor($f,&swtmp(($n+13)%16)); # f holds xa^xb^xc^xd
265 &rotl($f,1); # f=ROTATE(f,1)
266 &and($tmp1,$c);
267 &rotr($b,7); # b=ROTATE(b,30)
268 &add($e,$tmp1); # e+=c&d
269 &mov($tmp1,$a); # b in next round
270 &mov(&swtmp($n%16),$f); # xi=f
271 &rotl($a,5); # ROTATE(a,5)
272 &xor($b,$c) if ($n<59);
273 &and($tmp1,$b) if ($n<59);# tmp1 to hold F_40_59(b,c,d)
274 &lea($f,&DWP(0x8f1bbcdc,$f,$e));# f+=K_40_59+e+(b&(c^d))
275 &mov($e,&swtmp(($n+1)%16)); # pre-fetch f for next round
276 &add($f,$a); # f+=ROTATE(a,5)
277 } else {
278 &mov($tmp1,$c); # tmp1 to hold F_40_59(b,c,d)
279 &xor($f,&swtmp(($n+2)%16)); # f to hold Xupdate(xi,xa,xb,xc,xd)
280 &xor($tmp1,$d);
281 &xor($f,&swtmp(($n+8)%16));
282 &and($tmp1,$b);
283 &xor($f,&swtmp(($n+13)%16)); # f holds xa^xb^xc^xd
284 &rotl($f,1); # f=ROTATE(f,1)
285 &add($tmp1,$e); # b&(c^d)+=e
286 &rotr($b,2); # b=ROTATE(b,30)
287 &mov($e,$a); # e becomes volatile
288 &rotl($e,5); # ROTATE(a,5)
289 &mov(&swtmp($n%16),$f); # xi=f
290 &lea($f,&DWP(0x8f1bbcdc,$f,$tmp1));# f+=K_40_59+e+(b&(c^d))
291 &mov($tmp1,$c);
292 &add($f,$e); # f+=ROTATE(a,5)
293 &and($tmp1,$d);
294 &mov($e,&swtmp(($n+1)%16)); # pre-fetch f for next round
295 &add($f,$tmp1); # f+=c&d
296 }
297 }
298
299 &function_begin("sha1_block_data_order");
300 if ($xmm) {
301 &static_label("ssse3_shortcut");
302 &static_label("avx_shortcut") if ($ymm);
303 &static_label("K_XX_XX");
304
305 &call (&label("pic_point")); # make it PIC!
306 &set_label("pic_point");
307 &blindpop($tmp1);
308 &picmeup($T,"OPENSSL_ia32cap_P",$tmp1,&label("pic_point"));
309 &lea ($tmp1,&DWP(&label("K_XX_XX")."-".&label("pic_point"),$tmp1));
310
311 &mov ($A,&DWP(0,$T));
312 &mov ($D,&DWP(4,$T));
313 &test ($D,1<<9); # check SSSE3 bit
314 &jz (&label("x86"));
315 &test ($A,1<<24); # check FXSR bit
316 &jz (&label("x86"));
317 if ($ymm) {
318 &and ($D,1<<28); # mask AVX bit
319 &and ($A,1<<30); # mask "Intel CPU" bit
320 &or ($A,$D);
321 &cmp ($A,1<<28|1<<30);
322 &je (&label("avx_shortcut"));
323 }
324 &jmp (&label("ssse3_shortcut"));
325 &set_label("x86",16);
326 }
327 &mov($tmp1,&wparam(0)); # SHA_CTX *c
328 &mov($T,&wparam(1)); # const void *input
329 &mov($A,&wparam(2)); # size_t num
330 &stack_push(16+3); # allocate X[16]
331 &shl($A,6);
332 &add($A,$T);
333 &mov(&wparam(2),$A); # pointer beyond the end of input
334 &mov($E,&DWP(16,$tmp1));# pre-load E
335 &jmp(&label("loop"));
336
337 &set_label("loop",16);
338
339 # copy input chunk to X, but reversing byte order!
340 for ($i=0; $i<16; $i+=4)
341 {
342 &mov($A,&DWP(4*($i+0),$T));
343 &mov($B,&DWP(4*($i+1),$T));
344 &mov($C,&DWP(4*($i+2),$T));
345 &mov($D,&DWP(4*($i+3),$T));
346 &bswap($A);
347 &bswap($B);
348 &bswap($C);
349 &bswap($D);
350 &mov(&swtmp($i+0),$A);
351 &mov(&swtmp($i+1),$B);
352 &mov(&swtmp($i+2),$C);
353 &mov(&swtmp($i+3),$D);
354 }
355 &mov(&wparam(1),$T); # redundant in 1st spin
356
357 &mov($A,&DWP(0,$tmp1)); # load SHA_CTX
358 &mov($B,&DWP(4,$tmp1));
359 &mov($C,&DWP(8,$tmp1));
360 &mov($D,&DWP(12,$tmp1));
361 # E is pre-loaded
362
363 for($i=0;$i<16;$i++) { &BODY_00_15($i,@V); unshift(@V,pop(@V)); }
364 for(;$i<20;$i++) { &BODY_16_19($i,@V); unshift(@V,pop(@V)); }
365 for(;$i<40;$i++) { &BODY_20_39($i,@V); unshift(@V,pop(@V)); }
366 for(;$i<60;$i++) { &BODY_40_59($i,@V); unshift(@V,pop(@V)); }
367 for(;$i<80;$i++) { &BODY_20_39($i,@V); unshift(@V,pop(@V)); }
368
369 (($V[5] eq $D) and ($V[0] eq $E)) or die; # double-check
370
371 &mov($tmp1,&wparam(0)); # re-load SHA_CTX*
372 &mov($D,&wparam(1)); # D is last "T" and is discarded
373
374 &add($E,&DWP(0,$tmp1)); # E is last "A"...
375 &add($T,&DWP(4,$tmp1));
376 &add($A,&DWP(8,$tmp1));
377 &add($B,&DWP(12,$tmp1));
378 &add($C,&DWP(16,$tmp1));
379
380 &mov(&DWP(0,$tmp1),$E); # update SHA_CTX
381 &add($D,64); # advance input pointer
382 &mov(&DWP(4,$tmp1),$T);
383 &cmp($D,&wparam(2)); # have we reached the end yet?
384 &mov(&DWP(8,$tmp1),$A);
385 &mov($E,$C); # C is last "E" which needs to be "pre-loaded"
386 &mov(&DWP(12,$tmp1),$B);
387 &mov($T,$D); # input pointer
388 &mov(&DWP(16,$tmp1),$C);
389 &jb(&label("loop"));
390
391 &stack_pop(16+3);
392 &function_end("sha1_block_data_order");
393
394 if ($xmm) {
395 ######################################################################
396 # The SSSE3 implementation.
397 #
398 # %xmm[0-7] are used as ring @X[] buffer containing quadruples of last
399 # 32 elements of the message schedule or Xupdate outputs. First 4
400 # quadruples are simply byte-swapped input, next 4 are calculated
401 # according to method originally suggested by Dean Gaudet (modulo
402 # being implemented in SSSE3). Once 8 quadruples or 32 elements are
403 # collected, it switches to routine proposed by Max Locktyukhin.
404 #
405 # Calculations inevitably require temporary reqisters, and there are
406 # no %xmm registers left to spare. For this reason part of the ring
407 # buffer, X[2..4] to be specific, is offloaded to 3 quadriples ring
408 # buffer on the stack. Keep in mind that X[2] is alias X[-6], X[3] -
409 # X[-5], and X[4] - X[-4]...
410 #
411 # Another notable optimization is aggressive stack frame compression
412 # aiming to minimize amount of 9-byte instructions...
413 #
414 # Yet another notable optimization is "jumping" $B variable. It means
415 # that there is no register permanently allocated for $B value. This
416 # allowed to eliminate one instruction from body_20_39...
417 #
418 my $Xi=4; # 4xSIMD Xupdate round, start pre-seeded
419 my @X=map("xmm$_",(4..7,0..3)); # pre-seeded for $Xi=4
420 my @V=($A,$B,$C,$D,$E);
421 my $j=0; # hash round
422 my @T=($T,$tmp1);
423 my $inp;
424
425 my $_rol=sub { &rol(@_) };
426 my $_ror=sub { &ror(@_) };
427
428 &function_begin("_sha1_block_data_order_ssse3");
429 &call (&label("pic_point")); # make it PIC!
430 &set_label("pic_point");
431 &blindpop($tmp1);
432 &lea ($tmp1,&DWP(&label("K_XX_XX")."-".&label("pic_point"),$tmp1));
433 &set_label("ssse3_shortcut");
434
435 &movdqa (@X[3],&QWP(0,$tmp1)); # K_00_19
436 &movdqa (@X[4],&QWP(16,$tmp1)); # K_20_39
437 &movdqa (@X[5],&QWP(32,$tmp1)); # K_40_59
438 &movdqa (@X[6],&QWP(48,$tmp1)); # K_60_79
439 &movdqa (@X[2],&QWP(64,$tmp1)); # pbswap mask
440
441 &mov ($E,&wparam(0)); # load argument block
442 &mov ($inp=@T[1],&wparam(1));
443 &mov ($D,&wparam(2));
444 &mov (@T[0],"esp");
445
446 # stack frame layout
447 #
448 # +0 X[0]+K X[1]+K X[2]+K X[3]+K # XMM->IALU xfer area
449 # X[4]+K X[5]+K X[6]+K X[7]+K
450 # X[8]+K X[9]+K X[10]+K X[11]+K
451 # X[12]+K X[13]+K X[14]+K X[15]+K
452 #
453 # +64 X[0] X[1] X[2] X[3] # XMM->XMM backtrace area
454 # X[4] X[5] X[6] X[7]
455 # X[8] X[9] X[10] X[11] # even borrowed for K_00_19
456 #
457 # +112 K_20_39 K_20_39 K_20_39 K_20_39 # constants
458 # K_40_59 K_40_59 K_40_59 K_40_59
459 # K_60_79 K_60_79 K_60_79 K_60_79
460 # K_00_19 K_00_19 K_00_19 K_00_19
461 # pbswap mask
462 #
463 # +192 ctx # argument block
464 # +196 inp
465 # +200 end
466 # +204 esp
467 &sub ("esp",208);
468 &and ("esp",-64);
469
470 &movdqa (&QWP(112+0,"esp"),@X[4]); # copy constants
471 &movdqa (&QWP(112+16,"esp"),@X[5]);
472 &movdqa (&QWP(112+32,"esp"),@X[6]);
473 &shl ($D,6); # len*64
474 &movdqa (&QWP(112+48,"esp"),@X[3]);
475 &add ($D,$inp); # end of input
476 &movdqa (&QWP(112+64,"esp"),@X[2]);
477 &add ($inp,64);
478 &mov (&DWP(192+0,"esp"),$E); # save argument block
479 &mov (&DWP(192+4,"esp"),$inp);
480 &mov (&DWP(192+8,"esp"),$D);
481 &mov (&DWP(192+12,"esp"),@T[0]); # save original %esp
482
483 &mov ($A,&DWP(0,$E)); # load context
484 &mov ($B,&DWP(4,$E));
485 &mov ($C,&DWP(8,$E));
486 &mov ($D,&DWP(12,$E));
487 &mov ($E,&DWP(16,$E));
488 &mov (@T[0],$B); # magic seed
489
490 &movdqu (@X[-4&7],&QWP(-64,$inp)); # load input to %xmm[0-3]
491 &movdqu (@X[-3&7],&QWP(-48,$inp));
492 &movdqu (@X[-2&7],&QWP(-32,$inp));
493 &movdqu (@X[-1&7],&QWP(-16,$inp));
494 &pshufb (@X[-4&7],@X[2]); # byte swap
495 &pshufb (@X[-3&7],@X[2]);
496 &pshufb (@X[-2&7],@X[2]);
497 &movdqa (&QWP(112-16,"esp"),@X[3]); # borrow last backtrace slot
498 &pshufb (@X[-1&7],@X[2]);
499 &paddd (@X[-4&7],@X[3]); # add K_00_19
500 &paddd (@X[-3&7],@X[3]);
501 &paddd (@X[-2&7],@X[3]);
502 &movdqa (&QWP(0,"esp"),@X[-4&7]); # X[]+K xfer to IALU
503 &psubd (@X[-4&7],@X[3]); # restore X[]
504 &movdqa (&QWP(0+16,"esp"),@X[-3&7]);
505 &psubd (@X[-3&7],@X[3]);
506 &movdqa (&QWP(0+32,"esp"),@X[-2&7]);
507 &psubd (@X[-2&7],@X[3]);
508 &movdqa (@X[0],@X[-3&7]);
509 &jmp (&label("loop"));
510
511 ######################################################################
512 # SSE instruction sequence is first broken to groups of indepentent
513 # instructions, independent in respect to their inputs and shifter
514 # (not all architectures have more than one). Then IALU instructions
515 # are "knitted in" between the SSE groups. Distance is maintained for
516 # SSE latency of 2 in hope that it fits better upcoming AMD Bulldozer
517 # [which allegedly also implements SSSE3]...
518 #
519 # Temporary registers usage. X[2] is volatile at the entry and at the
520 # end is restored from backtrace ring buffer. X[3] is expected to
521 # contain current K_XX_XX constant and is used to caclulate X[-1]+K
522 # from previous round, it becomes volatile the moment the value is
523 # saved to stack for transfer to IALU. X[4] becomes volatile whenever
524 # X[-4] is accumulated and offloaded to backtrace ring buffer, at the
525 # end it is loaded with next K_XX_XX [which becomes X[3] in next
526 # round]...
527 #
528 sub Xupdate_ssse3_16_31() # recall that $Xi starts wtih 4
529 { use integer;
530 my $body = shift;
531 my @insns = (&$body,&$body,&$body,&$body); # 40 instructions
532 my ($a,$b,$c,$d,$e);
533
534 eval(shift(@insns));
535 eval(shift(@insns));
536 &palignr(@X[0],@X[-4&7],8); # compose "X[-14]" in "X[0]"
537 &movdqa (@X[2],@X[-1&7]);
538 eval(shift(@insns));
539 eval(shift(@insns));
540
541 &paddd (@X[3],@X[-1&7]);
542 &movdqa (&QWP(64+16*(($Xi-4)%3),"esp"),@X[-4&7]);# save X[] to backtrace buffer
543 eval(shift(@insns));
544 eval(shift(@insns));
545 &psrldq (@X[2],4); # "X[-3]", 3 dwords
546 eval(shift(@insns));
547 eval(shift(@insns));
548 &pxor (@X[0],@X[-4&7]); # "X[0]"^="X[-16]"
549 eval(shift(@insns));
550 eval(shift(@insns));
551
552 &pxor (@X[2],@X[-2&7]); # "X[-3]"^"X[-8]"
553 eval(shift(@insns));
554 eval(shift(@insns));
555 eval(shift(@insns));
556 eval(shift(@insns));
557
558 &pxor (@X[0],@X[2]); # "X[0]"^="X[-3]"^"X[-8]"
559 eval(shift(@insns));
560 eval(shift(@insns));
561 &movdqa (&QWP(0+16*(($Xi-1)&3),"esp"),@X[3]); # X[]+K xfer to IALU
562 eval(shift(@insns));
563 eval(shift(@insns));
564
565 &movdqa (@X[4],@X[0]);
566 &movdqa (@X[2],@X[0]);
567 eval(shift(@insns));
568 eval(shift(@insns));
569 eval(shift(@insns));
570 eval(shift(@insns));
571
572 &pslldq (@X[4],12); # "X[0]"<<96, extract one dword
573 &paddd (@X[0],@X[0]);
574 eval(shift(@insns));
575 eval(shift(@insns));
576 eval(shift(@insns));
577 eval(shift(@insns));
578
579 &psrld (@X[2],31);
580 eval(shift(@insns));
581 eval(shift(@insns));
582 &movdqa (@X[3],@X[4]);
583 eval(shift(@insns));
584 eval(shift(@insns));
585
586 &psrld (@X[4],30);
587 &por (@X[0],@X[2]); # "X[0]"<<<=1
588 eval(shift(@insns));
589 eval(shift(@insns));
590 &movdqa (@X[2],&QWP(64+16*(($Xi-6)%3),"esp")) if ($Xi>5); # restore X[] from backtrace buffer
591 eval(shift(@insns));
592 eval(shift(@insns));
593
594 &pslld (@X[3],2);
595 &pxor (@X[0],@X[4]);
596 eval(shift(@insns));
597 eval(shift(@insns));
598 &movdqa (@X[4],&QWP(112-16+16*(($Xi)/5),"esp")); # K_XX_XX
599 eval(shift(@insns));
600 eval(shift(@insns));
601
602 &pxor (@X[0],@X[3]); # "X[0]"^=("X[0]"<<96)<<<2
603 &movdqa (@X[1],@X[-2&7]) if ($Xi<7);
604 eval(shift(@insns));
605 eval(shift(@insns));
606
607 foreach (@insns) { eval; } # remaining instructions [if any]
608
609 $Xi++; push(@X,shift(@X)); # "rotate" X[]
610 }
611
612 sub Xupdate_ssse3_32_79()
613 { use integer;
614 my $body = shift;
615 my @insns = (&$body,&$body,&$body,&$body); # 32 to 48 instructions
616 my ($a,$b,$c,$d,$e);
617
618 &movdqa (@X[2],@X[-1&7]) if ($Xi==8);
619 eval(shift(@insns)); # body_20_39
620 &pxor (@X[0],@X[-4&7]); # "X[0]"="X[-32]"^"X[-16]"
621 &palignr(@X[2],@X[-2&7],8); # compose "X[-6]"
622 eval(shift(@insns));
623 eval(shift(@insns));
624 eval(shift(@insns)); # rol
625
626 &pxor (@X[0],@X[-7&7]); # "X[0]"^="X[-28]"
627 &movdqa (&QWP(64+16*(($Xi-4)%3),"esp"),@X[-4&7]); # save X[] to backtrace buffer
628 eval(shift(@insns));
629 eval(shift(@insns));
630 if ($Xi%5) {
631 &movdqa (@X[4],@X[3]); # "perpetuate" K_XX_XX...
632 } else { # ... or load next one
633 &movdqa (@X[4],&QWP(112-16+16*($Xi/5),"esp"));
634 }
635 &paddd (@X[3],@X[-1&7]);
636 eval(shift(@insns)); # ror
637 eval(shift(@insns));
638
639 &pxor (@X[0],@X[2]); # "X[0]"^="X[-6]"
640 eval(shift(@insns)); # body_20_39
641 eval(shift(@insns));
642 eval(shift(@insns));
643 eval(shift(@insns)); # rol
644
645 &movdqa (@X[2],@X[0]);
646 &movdqa (&QWP(0+16*(($Xi-1)&3),"esp"),@X[3]); # X[]+K xfer to IALU
647 eval(shift(@insns));
648 eval(shift(@insns));
649 eval(shift(@insns)); # ror
650 eval(shift(@insns));
651
652 &pslld (@X[0],2);
653 eval(shift(@insns)); # body_20_39
654 eval(shift(@insns));
655 &psrld (@X[2],30);
656 eval(shift(@insns));
657 eval(shift(@insns)); # rol
658 eval(shift(@insns));
659 eval(shift(@insns));
660 eval(shift(@insns)); # ror
661 eval(shift(@insns));
662
663 &por (@X[0],@X[2]); # "X[0]"<<<=2
664 eval(shift(@insns)); # body_20_39
665 eval(shift(@insns));
666 &movdqa (@X[2],&QWP(64+16*(($Xi-6)%3),"esp")) if($Xi<19); # restore X[] from backtrace buffer
667 eval(shift(@insns));
668 eval(shift(@insns)); # rol
669 eval(shift(@insns));
670 eval(shift(@insns));
671 eval(shift(@insns)); # ror
672 &movdqa (@X[3],@X[0]) if ($Xi<19);
673 eval(shift(@insns));
674
675 foreach (@insns) { eval; } # remaining instructions
676
677 $Xi++; push(@X,shift(@X)); # "rotate" X[]
678 }
679
680 sub Xuplast_ssse3_80()
681 { use integer;
682 my $body = shift;
683 my @insns = (&$body,&$body,&$body,&$body); # 32 instructions
684 my ($a,$b,$c,$d,$e);
685
686 eval(shift(@insns));
687 &paddd (@X[3],@X[-1&7]);
688 eval(shift(@insns));
689 eval(shift(@insns));
690 eval(shift(@insns));
691 eval(shift(@insns));
692
693 &movdqa (&QWP(0+16*(($Xi-1)&3),"esp"),@X[3]); # X[]+K xfer IALU
694
695 foreach (@insns) { eval; } # remaining instructions
696
697 &mov ($inp=@T[1],&DWP(192+4,"esp"));
698 &cmp ($inp,&DWP(192+8,"esp"));
699 &je (&label("done"));
700
701 &movdqa (@X[3],&QWP(112+48,"esp")); # K_00_19
702 &movdqa (@X[2],&QWP(112+64,"esp")); # pbswap mask
703 &movdqu (@X[-4&7],&QWP(0,$inp)); # load input
704 &movdqu (@X[-3&7],&QWP(16,$inp));
705 &movdqu (@X[-2&7],&QWP(32,$inp));
706 &movdqu (@X[-1&7],&QWP(48,$inp));
707 &add ($inp,64);
708 &pshufb (@X[-4&7],@X[2]); # byte swap
709 &mov (&DWP(192+4,"esp"),$inp);
710 &movdqa (&QWP(112-16,"esp"),@X[3]); # borrow last backtrace slot
711
712 $Xi=0;
713 }
714
715 sub Xloop_ssse3()
716 { use integer;
717 my $body = shift;
718 my @insns = (&$body,&$body,&$body,&$body); # 32 instructions
719 my ($a,$b,$c,$d,$e);
720
721 eval(shift(@insns));
722 eval(shift(@insns));
723 &pshufb (@X[($Xi-3)&7],@X[2]);
724 eval(shift(@insns));
725 eval(shift(@insns));
726 &paddd (@X[($Xi-4)&7],@X[3]);
727 eval(shift(@insns));
728 eval(shift(@insns));
729 eval(shift(@insns));
730 eval(shift(@insns));
731 &movdqa (&QWP(0+16*$Xi,"esp"),@X[($Xi-4)&7]); # X[]+K xfer to IALU
732 eval(shift(@insns));
733 eval(shift(@insns));
734 &psubd (@X[($Xi-4)&7],@X[3]);
735
736 foreach (@insns) { eval; }
737 $Xi++;
738 }
739
740 sub Xtail_ssse3()
741 { use integer;
742 my $body = shift;
743 my @insns = (&$body,&$body,&$body,&$body); # 32 instructions
744 my ($a,$b,$c,$d,$e);
745
746 foreach (@insns) { eval; }
747 }
748
749 sub body_00_19 () {
750 (
751 '($a,$b,$c,$d,$e)=@V;'.
752 '&add ($e,&DWP(4*($j&15),"esp"));', # X[]+K xfer
753 '&xor ($c,$d);',
754 '&mov (@T[1],$a);', # $b in next round
755 '&$_rol ($a,5);',
756 '&and (@T[0],$c);', # ($b&($c^$d))
757 '&xor ($c,$d);', # restore $c
758 '&xor (@T[0],$d);',
759 '&add ($e,$a);',
760 '&$_ror ($b,$j?7:2);', # $b>>>2
761 '&add ($e,@T[0]);' .'$j++; unshift(@V,pop(@V)); unshift(@T,pop(@T));'
762 );
763 }
764
765 sub body_20_39 () {
766 (
767 '($a,$b,$c,$d,$e)=@V;'.
768 '&add ($e,&DWP(4*($j++&15),"esp"));', # X[]+K xfer
769 '&xor (@T[0],$d);', # ($b^$d)
770 '&mov (@T[1],$a);', # $b in next round
771 '&$_rol ($a,5);',
772 '&xor (@T[0],$c);', # ($b^$d^$c)
773 '&add ($e,$a);',
774 '&$_ror ($b,7);', # $b>>>2
775 '&add ($e,@T[0]);' .'unshift(@V,pop(@V)); unshift(@T,pop(@T));'
776 );
777 }
778
779 sub body_40_59 () {
780 (
781 '($a,$b,$c,$d,$e)=@V;'.
782 '&mov (@T[1],$c);',
783 '&xor ($c,$d);',
784 '&add ($e,&DWP(4*($j++&15),"esp"));', # X[]+K xfer
785 '&and (@T[1],$d);',
786 '&and (@T[0],$c);', # ($b&($c^$d))
787 '&$_ror ($b,7);', # $b>>>2
788 '&add ($e,@T[1]);',
789 '&mov (@T[1],$a);', # $b in next round
790 '&$_rol ($a,5);',
791 '&add ($e,@T[0]);',
792 '&xor ($c,$d);', # restore $c
793 '&add ($e,$a);' .'unshift(@V,pop(@V)); unshift(@T,pop(@T));'
794 );
795 }
796
797 &set_label("loop",16);
798 &Xupdate_ssse3_16_31(\&body_00_19);
799 &Xupdate_ssse3_16_31(\&body_00_19);
800 &Xupdate_ssse3_16_31(\&body_00_19);
801 &Xupdate_ssse3_16_31(\&body_00_19);
802 &Xupdate_ssse3_32_79(\&body_00_19);
803 &Xupdate_ssse3_32_79(\&body_20_39);
804 &Xupdate_ssse3_32_79(\&body_20_39);
805 &Xupdate_ssse3_32_79(\&body_20_39);
806 &Xupdate_ssse3_32_79(\&body_20_39);
807 &Xupdate_ssse3_32_79(\&body_20_39);
808 &Xupdate_ssse3_32_79(\&body_40_59);
809 &Xupdate_ssse3_32_79(\&body_40_59);
810 &Xupdate_ssse3_32_79(\&body_40_59);
811 &Xupdate_ssse3_32_79(\&body_40_59);
812 &Xupdate_ssse3_32_79(\&body_40_59);
813 &Xupdate_ssse3_32_79(\&body_20_39);
814 &Xuplast_ssse3_80(\&body_20_39); # can jump to "done"
815
816 $saved_j=$j; @saved_V=@V;
817
818 &Xloop_ssse3(\&body_20_39);
819 &Xloop_ssse3(\&body_20_39);
820 &Xloop_ssse3(\&body_20_39);
821
822 &mov (@T[1],&DWP(192,"esp")); # update context
823 &add ($A,&DWP(0,@T[1]));
824 &add (@T[0],&DWP(4,@T[1])); # $b
825 &add ($C,&DWP(8,@T[1]));
826 &mov (&DWP(0,@T[1]),$A);
827 &add ($D,&DWP(12,@T[1]));
828 &mov (&DWP(4,@T[1]),@T[0]);
829 &add ($E,&DWP(16,@T[1]));
830 &mov (&DWP(8,@T[1]),$C);
831 &mov ($B,@T[0]);
832 &mov (&DWP(12,@T[1]),$D);
833 &mov (&DWP(16,@T[1]),$E);
834 &movdqa (@X[0],@X[-3&7]);
835
836 &jmp (&label("loop"));
837
838 &set_label("done",16); $j=$saved_j; @V=@saved_V;
839
840 &Xtail_ssse3(\&body_20_39);
841 &Xtail_ssse3(\&body_20_39);
842 &Xtail_ssse3(\&body_20_39);
843
844 &mov (@T[1],&DWP(192,"esp")); # update context
845 &add ($A,&DWP(0,@T[1]));
846 &mov ("esp",&DWP(192+12,"esp")); # restore %esp
847 &add (@T[0],&DWP(4,@T[1])); # $b
848 &add ($C,&DWP(8,@T[1]));
849 &mov (&DWP(0,@T[1]),$A);
850 &add ($D,&DWP(12,@T[1]));
851 &mov (&DWP(4,@T[1]),@T[0]);
852 &add ($E,&DWP(16,@T[1]));
853 &mov (&DWP(8,@T[1]),$C);
854 &mov (&DWP(12,@T[1]),$D);
855 &mov (&DWP(16,@T[1]),$E);
856
857 &function_end("_sha1_block_data_order_ssse3");
858
859 if ($ymm) {
860 my $Xi=4; # 4xSIMD Xupdate round, start pre-seeded
861 my @X=map("xmm$_",(4..7,0..3)); # pre-seeded for $Xi=4
862 my @V=($A,$B,$C,$D,$E);
863 my $j=0; # hash round
864 my @T=($T,$tmp1);
865 my $inp;
866
867 my $_rol=sub { &shld(@_[0],@_) };
868 my $_ror=sub { &shrd(@_[0],@_) };
869
870 &function_begin("_sha1_block_data_order_avx");
871 &call (&label("pic_point")); # make it PIC!
872 &set_label("pic_point");
873 &blindpop($tmp1);
874 &lea ($tmp1,&DWP(&label("K_XX_XX")."-".&label("pic_point"),$tmp1));
875 &set_label("avx_shortcut");
876 &vzeroall();
877
878 &vmovdqa(@X[3],&QWP(0,$tmp1)); # K_00_19
879 &vmovdqa(@X[4],&QWP(16,$tmp1)); # K_20_39
880 &vmovdqa(@X[5],&QWP(32,$tmp1)); # K_40_59
881 &vmovdqa(@X[6],&QWP(48,$tmp1)); # K_60_79
882 &vmovdqa(@X[2],&QWP(64,$tmp1)); # pbswap mask
883
884 &mov ($E,&wparam(0)); # load argument block
885 &mov ($inp=@T[1],&wparam(1));
886 &mov ($D,&wparam(2));
887 &mov (@T[0],"esp");
888
889 # stack frame layout
890 #
891 # +0 X[0]+K X[1]+K X[2]+K X[3]+K # XMM->IALU xfer area
892 # X[4]+K X[5]+K X[6]+K X[7]+K
893 # X[8]+K X[9]+K X[10]+K X[11]+K
894 # X[12]+K X[13]+K X[14]+K X[15]+K
895 #
896 # +64 X[0] X[1] X[2] X[3] # XMM->XMM backtrace area
897 # X[4] X[5] X[6] X[7]
898 # X[8] X[9] X[10] X[11] # even borrowed for K_00_19
899 #
900 # +112 K_20_39 K_20_39 K_20_39 K_20_39 # constants
901 # K_40_59 K_40_59 K_40_59 K_40_59
902 # K_60_79 K_60_79 K_60_79 K_60_79
903 # K_00_19 K_00_19 K_00_19 K_00_19
904 # pbswap mask
905 #
906 # +192 ctx # argument block
907 # +196 inp
908 # +200 end
909 # +204 esp
910 &sub ("esp",208);
911 &and ("esp",-64);
912
913 &vmovdqa(&QWP(112+0,"esp"),@X[4]); # copy constants
914 &vmovdqa(&QWP(112+16,"esp"),@X[5]);
915 &vmovdqa(&QWP(112+32,"esp"),@X[6]);
916 &shl ($D,6); # len*64
917 &vmovdqa(&QWP(112+48,"esp"),@X[3]);
918 &add ($D,$inp); # end of input
919 &vmovdqa(&QWP(112+64,"esp"),@X[2]);
920 &add ($inp,64);
921 &mov (&DWP(192+0,"esp"),$E); # save argument block
922 &mov (&DWP(192+4,"esp"),$inp);
923 &mov (&DWP(192+8,"esp"),$D);
924 &mov (&DWP(192+12,"esp"),@T[0]); # save original %esp
925
926 &mov ($A,&DWP(0,$E)); # load context
927 &mov ($B,&DWP(4,$E));
928 &mov ($C,&DWP(8,$E));
929 &mov ($D,&DWP(12,$E));
930 &mov ($E,&DWP(16,$E));
931 &mov (@T[0],$B); # magic seed
932
933 &vmovdqu(@X[-4&7],&QWP(-64,$inp)); # load input to %xmm[0-3]
934 &vmovdqu(@X[-3&7],&QWP(-48,$inp));
935 &vmovdqu(@X[-2&7],&QWP(-32,$inp));
936 &vmovdqu(@X[-1&7],&QWP(-16,$inp));
937 &vpshufb(@X[-4&7],@X[-4&7],@X[2]); # byte swap
938 &vpshufb(@X[-3&7],@X[-3&7],@X[2]);
939 &vpshufb(@X[-2&7],@X[-2&7],@X[2]);
940 &vmovdqa(&QWP(112-16,"esp"),@X[3]); # borrow last backtrace slot
941 &vpshufb(@X[-1&7],@X[-1&7],@X[2]);
942 &vpaddd (@X[0],@X[-4&7],@X[3]); # add K_00_19
943 &vpaddd (@X[1],@X[-3&7],@X[3]);
944 &vpaddd (@X[2],@X[-2&7],@X[3]);
945 &vmovdqa(&QWP(0,"esp"),@X[0]); # X[]+K xfer to IALU
946 &vmovdqa(&QWP(0+16,"esp"),@X[1]);
947 &vmovdqa(&QWP(0+32,"esp"),@X[2]);
948 &jmp (&label("loop"));
949
950 sub Xupdate_avx_16_31() # recall that $Xi starts wtih 4
951 { use integer;
952 my $body = shift;
953 my @insns = (&$body,&$body,&$body,&$body); # 40 instructions
954 my ($a,$b,$c,$d,$e);
955
956 eval(shift(@insns));
957 eval(shift(@insns));
958 &vpalignr(@X[0],@X[-3&7],@X[-4&7],8); # compose "X[-14]" in "X[0]"
959 eval(shift(@insns));
960 eval(shift(@insns));
961
962 &vpaddd (@X[3],@X[3],@X[-1&7]);
963 &vmovdqa (&QWP(64+16*(($Xi-4)%3),"esp"),@X[-4&7]);# save X[] to backtrace buffer
964 eval(shift(@insns));
965 eval(shift(@insns));
966 &vpsrldq(@X[2],@X[-1&7],4); # "X[-3]", 3 dwords
967 eval(shift(@insns));
968 eval(shift(@insns));
969 &vpxor (@X[0],@X[0],@X[-4&7]); # "X[0]"^="X[-16]"
970 eval(shift(@insns));
971 eval(shift(@insns));
972
973 &vpxor (@X[2],@X[2],@X[-2&7]); # "X[-3]"^"X[-8]"
974 eval(shift(@insns));
975 eval(shift(@insns));
976 &vmovdqa (&QWP(0+16*(($Xi-1)&3),"esp"),@X[3]); # X[]+K xfer to IALU
977 eval(shift(@insns));
978 eval(shift(@insns));
979
980 &vpxor (@X[0],@X[0],@X[2]); # "X[0]"^="X[-3]"^"X[-8]"
981 eval(shift(@insns));
982 eval(shift(@insns));
983 eval(shift(@insns));
984 eval(shift(@insns));
985
986 &vpsrld (@X[2],@X[0],31);
987 eval(shift(@insns));
988 eval(shift(@insns));
989 eval(shift(@insns));
990 eval(shift(@insns));
991
992 &vpslldq(@X[4],@X[0],12); # "X[0]"<<96, extract one dword
993 &vpaddd (@X[0],@X[0],@X[0]);
994 eval(shift(@insns));
995 eval(shift(@insns));
996 eval(shift(@insns));
997 eval(shift(@insns));
998
999 &vpsrld (@X[3],@X[4],30);
1000 &vpor (@X[0],@X[0],@X[2]); # "X[0]"<<<=1
1001 eval(shift(@insns));
1002 eval(shift(@insns));
1003 eval(shift(@insns));
1004 eval(shift(@insns));
1005
1006 &vpslld (@X[4],@X[4],2);
1007 &vmovdqa (@X[2],&QWP(64+16*(($Xi-6)%3),"esp")) if ($Xi>5); # restore X[] from backtrace buffer
1008 eval(shift(@insns));
1009 eval(shift(@insns));
1010 &vpxor (@X[0],@X[0],@X[3]);
1011 eval(shift(@insns));
1012 eval(shift(@insns));
1013 eval(shift(@insns));
1014 eval(shift(@insns));
1015
1016 &vpxor (@X[0],@X[0],@X[4]); # "X[0]"^=("X[0]"<<96)<<<2
1017 eval(shift(@insns));
1018 eval(shift(@insns));
1019 &vmovdqa (@X[4],&QWP(112-16+16*(($Xi)/5),"esp")); # K_XX_XX
1020 eval(shift(@insns));
1021 eval(shift(@insns));
1022
1023 foreach (@insns) { eval; } # remaining instructions [if any]
1024
1025 $Xi++; push(@X,shift(@X)); # "rotate" X[]
1026 }
1027
1028 sub Xupdate_avx_32_79()
1029 { use integer;
1030 my $body = shift;
1031 my @insns = (&$body,&$body,&$body,&$body); # 32 to 48 instructions
1032 my ($a,$b,$c,$d,$e);
1033
1034 &vpalignr(@X[2],@X[-1&7],@X[-2&7],8); # compose "X[-6]"
1035 &vpxor (@X[0],@X[0],@X[-4&7]); # "X[0]"="X[-32]"^"X[-16]"
1036 eval(shift(@insns)); # body_20_39
1037 eval(shift(@insns));
1038 eval(shift(@insns));
1039 eval(shift(@insns)); # rol
1040
1041 &vpxor (@X[0],@X[0],@X[-7&7]); # "X[0]"^="X[-28]"
1042 &vmovdqa (&QWP(64+16*(($Xi-4)%3),"esp"),@X[-4&7]); # save X[] to backtrace buffer
1043 eval(shift(@insns));
1044 eval(shift(@insns));
1045 if ($Xi%5) {
1046 &vmovdqa (@X[4],@X[3]); # "perpetuate" K_XX_XX...
1047 } else { # ... or load next one
1048 &vmovdqa (@X[4],&QWP(112-16+16*($Xi/5),"esp"));
1049 }
1050 &vpaddd (@X[3],@X[3],@X[-1&7]);
1051 eval(shift(@insns)); # ror
1052 eval(shift(@insns));
1053
1054 &vpxor (@X[0],@X[0],@X[2]); # "X[0]"^="X[-6]"
1055 eval(shift(@insns)); # body_20_39
1056 eval(shift(@insns));
1057 eval(shift(@insns));
1058 eval(shift(@insns)); # rol
1059
1060 &vpsrld (@X[2],@X[0],30);
1061 &vmovdqa (&QWP(0+16*(($Xi-1)&3),"esp"),@X[3]); # X[]+K xfer to IALU
1062 eval(shift(@insns));
1063 eval(shift(@insns));
1064 eval(shift(@insns)); # ror
1065 eval(shift(@insns));
1066
1067 &vpslld (@X[0],@X[0],2);
1068 eval(shift(@insns)); # body_20_39
1069 eval(shift(@insns));
1070 eval(shift(@insns));
1071 eval(shift(@insns)); # rol
1072 eval(shift(@insns));
1073 eval(shift(@insns));
1074 eval(shift(@insns)); # ror
1075 eval(shift(@insns));
1076
1077 &vpor (@X[0],@X[0],@X[2]); # "X[0]"<<<=2
1078 eval(shift(@insns)); # body_20_39
1079 eval(shift(@insns));
1080 &vmovdqa (@X[2],&QWP(64+16*(($Xi-6)%3),"esp")) if($Xi<19); # restore X[] from backtrace buffer
1081 eval(shift(@insns));
1082 eval(shift(@insns)); # rol
1083 eval(shift(@insns));
1084 eval(shift(@insns));
1085 eval(shift(@insns)); # ror
1086 eval(shift(@insns));
1087
1088 foreach (@insns) { eval; } # remaining instructions
1089
1090 $Xi++; push(@X,shift(@X)); # "rotate" X[]
1091 }
1092
1093 sub Xuplast_avx_80()
1094 { use integer;
1095 my $body = shift;
1096 my @insns = (&$body,&$body,&$body,&$body); # 32 instructions
1097 my ($a,$b,$c,$d,$e);
1098
1099 eval(shift(@insns));
1100 &vpaddd (@X[3],@X[3],@X[-1&7]);
1101 eval(shift(@insns));
1102 eval(shift(@insns));
1103 eval(shift(@insns));
1104 eval(shift(@insns));
1105
1106 &vmovdqa (&QWP(0+16*(($Xi-1)&3),"esp"),@X[3]); # X[]+K xfer IALU
1107
1108 foreach (@insns) { eval; } # remaining instructions
1109
1110 &mov ($inp=@T[1],&DWP(192+4,"esp"));
1111 &cmp ($inp,&DWP(192+8,"esp"));
1112 &je (&label("done"));
1113
1114 &vmovdqa(@X[3],&QWP(112+48,"esp")); # K_00_19
1115 &vmovdqa(@X[2],&QWP(112+64,"esp")); # pbswap mask
1116 &vmovdqu(@X[-4&7],&QWP(0,$inp)); # load input
1117 &vmovdqu(@X[-3&7],&QWP(16,$inp));
1118 &vmovdqu(@X[-2&7],&QWP(32,$inp));
1119 &vmovdqu(@X[-1&7],&QWP(48,$inp));
1120 &add ($inp,64);
1121 &vpshufb(@X[-4&7],@X[-4&7],@X[2]); # byte swap
1122 &mov (&DWP(192+4,"esp"),$inp);
1123 &vmovdqa(&QWP(112-16,"esp"),@X[3]); # borrow last backtrace slot
1124
1125 $Xi=0;
1126 }
1127
1128 sub Xloop_avx()
1129 { use integer;
1130 my $body = shift;
1131 my @insns = (&$body,&$body,&$body,&$body); # 32 instructions
1132 my ($a,$b,$c,$d,$e);
1133
1134 eval(shift(@insns));
1135 eval(shift(@insns));
1136 &vpshufb (@X[($Xi-3)&7],@X[($Xi-3)&7],@X[2]);
1137 eval(shift(@insns));
1138 eval(shift(@insns));
1139 &vpaddd (@X[$Xi&7],@X[($Xi-4)&7],@X[3]);
1140 eval(shift(@insns));
1141 eval(shift(@insns));
1142 eval(shift(@insns));
1143 eval(shift(@insns));
1144 &vmovdqa (&QWP(0+16*$Xi,"esp"),@X[$Xi&7]); # X[]+K xfer to IALU
1145 eval(shift(@insns));
1146 eval(shift(@insns));
1147
1148 foreach (@insns) { eval; }
1149 $Xi++;
1150 }
1151
1152 sub Xtail_avx()
1153 { use integer;
1154 my $body = shift;
1155 my @insns = (&$body,&$body,&$body,&$body); # 32 instructions
1156 my ($a,$b,$c,$d,$e);
1157
1158 foreach (@insns) { eval; }
1159 }
1160
1161 &set_label("loop",16);
1162 &Xupdate_avx_16_31(\&body_00_19);
1163 &Xupdate_avx_16_31(\&body_00_19);
1164 &Xupdate_avx_16_31(\&body_00_19);
1165 &Xupdate_avx_16_31(\&body_00_19);
1166 &Xupdate_avx_32_79(\&body_00_19);
1167 &Xupdate_avx_32_79(\&body_20_39);
1168 &Xupdate_avx_32_79(\&body_20_39);
1169 &Xupdate_avx_32_79(\&body_20_39);
1170 &Xupdate_avx_32_79(\&body_20_39);
1171 &Xupdate_avx_32_79(\&body_20_39);
1172 &Xupdate_avx_32_79(\&body_40_59);
1173 &Xupdate_avx_32_79(\&body_40_59);
1174 &Xupdate_avx_32_79(\&body_40_59);
1175 &Xupdate_avx_32_79(\&body_40_59);
1176 &Xupdate_avx_32_79(\&body_40_59);
1177 &Xupdate_avx_32_79(\&body_20_39);
1178 &Xuplast_avx_80(\&body_20_39); # can jump to "done"
1179
1180 $saved_j=$j; @saved_V=@V;
1181
1182 &Xloop_avx(\&body_20_39);
1183 &Xloop_avx(\&body_20_39);
1184 &Xloop_avx(\&body_20_39);
1185
1186 &mov (@T[1],&DWP(192,"esp")); # update context
1187 &add ($A,&DWP(0,@T[1]));
1188 &add (@T[0],&DWP(4,@T[1])); # $b
1189 &add ($C,&DWP(8,@T[1]));
1190 &mov (&DWP(0,@T[1]),$A);
1191 &add ($D,&DWP(12,@T[1]));
1192 &mov (&DWP(4,@T[1]),@T[0]);
1193 &add ($E,&DWP(16,@T[1]));
1194 &mov (&DWP(8,@T[1]),$C);
1195 &mov ($B,@T[0]);
1196 &mov (&DWP(12,@T[1]),$D);
1197 &mov (&DWP(16,@T[1]),$E);
1198
1199 &jmp (&label("loop"));
1200
1201 &set_label("done",16); $j=$saved_j; @V=@saved_V;
1202
1203 &Xtail_avx(\&body_20_39);
1204 &Xtail_avx(\&body_20_39);
1205 &Xtail_avx(\&body_20_39);
1206
1207 &vzeroall();
1208
1209 &mov (@T[1],&DWP(192,"esp")); # update context
1210 &add ($A,&DWP(0,@T[1]));
1211 &mov ("esp",&DWP(192+12,"esp")); # restore %esp
1212 &add (@T[0],&DWP(4,@T[1])); # $b
1213 &add ($C,&DWP(8,@T[1]));
1214 &mov (&DWP(0,@T[1]),$A);
1215 &add ($D,&DWP(12,@T[1]));
1216 &mov (&DWP(4,@T[1]),@T[0]);
1217 &add ($E,&DWP(16,@T[1]));
1218 &mov (&DWP(8,@T[1]),$C);
1219 &mov (&DWP(12,@T[1]),$D);
1220 &mov (&DWP(16,@T[1]),$E);
1221 &function_end("_sha1_block_data_order_avx");
1222 }
1223 &set_label("K_XX_XX",64);
1224 &data_word(0x5a827999,0x5a827999,0x5a827999,0x5a827999); # K_00_19
1225 &data_word(0x6ed9eba1,0x6ed9eba1,0x6ed9eba1,0x6ed9eba1); # K_20_39
1226 &data_word(0x8f1bbcdc,0x8f1bbcdc,0x8f1bbcdc,0x8f1bbcdc); # K_40_59
1227 &data_word(0xca62c1d6,0xca62c1d6,0xca62c1d6,0xca62c1d6); # K_60_79
1228 &data_word(0x00010203,0x04050607,0x08090a0b,0x0c0d0e0f); # pbswap mask
1229 }
1230 &asciz("SHA1 block transform for x86, CRYPTOGAMS by <appro\@openssl.org>");
1231
1232 &asm_finish();

Properties

Name Value
mnbsd:nokeywords MidnightBSD=%H