ViewVC Help
View File | Revision Log | Show Annotations | Download File | View Changeset | Root Listing
root/src/trunk/lib/libc/db/hash/hash_page.c
Revision: 10626
Committed: Sat Jun 9 16:21:32 2018 UTC (5 years, 10 months ago) by laffer1
Content type: text/plain
File size: 23499 byte(s)
Log Message:
tag

File Contents

# Content
1 /* $MidnightBSD$ */
2 /*-
3 * Copyright (c) 1990, 1993, 1994
4 * The Regents of the University of California. All rights reserved.
5 *
6 * This code is derived from software contributed to Berkeley by
7 * Margo Seltzer.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 * 4. Neither the name of the University nor the names of its contributors
18 * may be used to endorse or promote products derived from this software
19 * without specific prior written permission.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31 * SUCH DAMAGE.
32 */
33
34 #if defined(LIBC_SCCS) && !defined(lint)
35 static char sccsid[] = "@(#)hash_page.c 8.7 (Berkeley) 8/16/94";
36 #endif /* LIBC_SCCS and not lint */
37 #include <sys/cdefs.h>
38 __FBSDID("$FreeBSD: stable/10/lib/libc/db/hash/hash_page.c 313532 2017-02-10 06:34:52Z ngie $");
39
40 /*
41 * PACKAGE: hashing
42 *
43 * DESCRIPTION:
44 * Page manipulation for hashing package.
45 *
46 * ROUTINES:
47 *
48 * External
49 * __get_page
50 * __add_ovflpage
51 * Internal
52 * overflow_page
53 * open_temp
54 */
55
56 #include "namespace.h"
57 #include <sys/param.h>
58
59 #include <errno.h>
60 #include <fcntl.h>
61 #include <signal.h>
62 #include <stdio.h>
63 #include <stdlib.h>
64 #include <string.h>
65 #include <unistd.h>
66 #ifdef DEBUG
67 #include <assert.h>
68 #endif
69 #include "un-namespace.h"
70 #include "libc_private.h"
71
72 #include <db.h>
73 #include "hash.h"
74 #include "page.h"
75 #include "extern.h"
76
77 static u_int32_t *fetch_bitmap(HTAB *, int);
78 static u_int32_t first_free(u_int32_t);
79 static int open_temp(HTAB *);
80 static u_int16_t overflow_page(HTAB *);
81 static void putpair(char *, const DBT *, const DBT *);
82 static void squeeze_key(u_int16_t *, const DBT *, const DBT *);
83 static int ugly_split(HTAB *, u_int32_t, BUFHEAD *, BUFHEAD *, int, int);
84
85 #define PAGE_INIT(P) { \
86 ((u_int16_t *)(P))[0] = 0; \
87 ((u_int16_t *)(P))[1] = hashp->BSIZE - 3 * sizeof(u_int16_t); \
88 ((u_int16_t *)(P))[2] = hashp->BSIZE; \
89 }
90
91 /*
92 * This is called AFTER we have verified that there is room on the page for
93 * the pair (PAIRFITS has returned true) so we go right ahead and start moving
94 * stuff on.
95 */
96 static void
97 putpair(char *p, const DBT *key, const DBT *val)
98 {
99 u_int16_t *bp, n, off;
100
101 bp = (u_int16_t *)p;
102
103 /* Enter the key first. */
104 n = bp[0];
105
106 off = OFFSET(bp) - key->size;
107 memmove(p + off, key->data, key->size);
108 bp[++n] = off;
109
110 /* Now the data. */
111 off -= val->size;
112 memmove(p + off, val->data, val->size);
113 bp[++n] = off;
114
115 /* Adjust page info. */
116 bp[0] = n;
117 bp[n + 1] = off - ((n + 3) * sizeof(u_int16_t));
118 bp[n + 2] = off;
119 }
120
121 /*
122 * Returns:
123 * 0 OK
124 * -1 error
125 */
126 int
127 __delpair(HTAB *hashp, BUFHEAD *bufp, int ndx)
128 {
129 u_int16_t *bp, newoff, pairlen;
130 int n;
131
132 bp = (u_int16_t *)bufp->page;
133 n = bp[0];
134
135 if (bp[ndx + 1] < REAL_KEY)
136 return (__big_delete(hashp, bufp));
137 if (ndx != 1)
138 newoff = bp[ndx - 1];
139 else
140 newoff = hashp->BSIZE;
141 pairlen = newoff - bp[ndx + 1];
142
143 if (ndx != (n - 1)) {
144 /* Hard Case -- need to shuffle keys */
145 int i;
146 char *src = bufp->page + (int)OFFSET(bp);
147 char *dst = src + (int)pairlen;
148 memmove(dst, src, bp[ndx + 1] - OFFSET(bp));
149
150 /* Now adjust the pointers */
151 for (i = ndx + 2; i <= n; i += 2) {
152 if (bp[i + 1] == OVFLPAGE) {
153 bp[i - 2] = bp[i];
154 bp[i - 1] = bp[i + 1];
155 } else {
156 bp[i - 2] = bp[i] + pairlen;
157 bp[i - 1] = bp[i + 1] + pairlen;
158 }
159 }
160 if (ndx == hashp->cndx) {
161 /*
162 * We just removed pair we were "pointing" to.
163 * By moving back the cndx we ensure subsequent
164 * hash_seq() calls won't skip over any entries.
165 */
166 hashp->cndx -= 2;
167 }
168 }
169 /* Finally adjust the page data */
170 bp[n] = OFFSET(bp) + pairlen;
171 bp[n - 1] = bp[n + 1] + pairlen + 2 * sizeof(u_int16_t);
172 bp[0] = n - 2;
173 hashp->NKEYS--;
174
175 bufp->flags |= BUF_MOD;
176 return (0);
177 }
178 /*
179 * Returns:
180 * 0 ==> OK
181 * -1 ==> Error
182 */
183 int
184 __split_page(HTAB *hashp, u_int32_t obucket, u_int32_t nbucket)
185 {
186 BUFHEAD *new_bufp, *old_bufp;
187 u_int16_t *ino;
188 char *np;
189 DBT key, val;
190 int n, ndx, retval;
191 u_int16_t copyto, diff, off, moved;
192 char *op;
193
194 copyto = (u_int16_t)hashp->BSIZE;
195 off = (u_int16_t)hashp->BSIZE;
196 old_bufp = __get_buf(hashp, obucket, NULL, 0);
197 if (old_bufp == NULL)
198 return (-1);
199 new_bufp = __get_buf(hashp, nbucket, NULL, 0);
200 if (new_bufp == NULL)
201 return (-1);
202
203 old_bufp->flags |= (BUF_MOD | BUF_PIN);
204 new_bufp->flags |= (BUF_MOD | BUF_PIN);
205
206 ino = (u_int16_t *)(op = old_bufp->page);
207 np = new_bufp->page;
208
209 moved = 0;
210
211 for (n = 1, ndx = 1; n < ino[0]; n += 2) {
212 if (ino[n + 1] < REAL_KEY) {
213 retval = ugly_split(hashp, obucket, old_bufp, new_bufp,
214 (int)copyto, (int)moved);
215 old_bufp->flags &= ~BUF_PIN;
216 new_bufp->flags &= ~BUF_PIN;
217 return (retval);
218
219 }
220 key.data = (u_char *)op + ino[n];
221 key.size = off - ino[n];
222
223 if (__call_hash(hashp, key.data, key.size) == obucket) {
224 /* Don't switch page */
225 diff = copyto - off;
226 if (diff) {
227 copyto = ino[n + 1] + diff;
228 memmove(op + copyto, op + ino[n + 1],
229 off - ino[n + 1]);
230 ino[ndx] = copyto + ino[n] - ino[n + 1];
231 ino[ndx + 1] = copyto;
232 } else
233 copyto = ino[n + 1];
234 ndx += 2;
235 } else {
236 /* Switch page */
237 val.data = (u_char *)op + ino[n + 1];
238 val.size = ino[n] - ino[n + 1];
239 putpair(np, &key, &val);
240 moved += 2;
241 }
242
243 off = ino[n + 1];
244 }
245
246 /* Now clean up the page */
247 ino[0] -= moved;
248 FREESPACE(ino) = copyto - sizeof(u_int16_t) * (ino[0] + 3);
249 OFFSET(ino) = copyto;
250
251 #ifdef DEBUG3
252 (void)fprintf(stderr, "split %d/%d\n",
253 ((u_int16_t *)np)[0] / 2,
254 ((u_int16_t *)op)[0] / 2);
255 #endif
256 /* unpin both pages */
257 old_bufp->flags &= ~BUF_PIN;
258 new_bufp->flags &= ~BUF_PIN;
259 return (0);
260 }
261
262 /*
263 * Called when we encounter an overflow or big key/data page during split
264 * handling. This is special cased since we have to begin checking whether
265 * the key/data pairs fit on their respective pages and because we may need
266 * overflow pages for both the old and new pages.
267 *
268 * The first page might be a page with regular key/data pairs in which case
269 * we have a regular overflow condition and just need to go on to the next
270 * page or it might be a big key/data pair in which case we need to fix the
271 * big key/data pair.
272 *
273 * Returns:
274 * 0 ==> success
275 * -1 ==> failure
276 */
277 static int
278 ugly_split(HTAB *hashp,
279 u_int32_t obucket, /* Same as __split_page. */
280 BUFHEAD *old_bufp,
281 BUFHEAD *new_bufp,
282 int copyto, /* First byte on page which contains key/data values. */
283 int moved) /* Number of pairs moved to new page. */
284 {
285 BUFHEAD *bufp; /* Buffer header for ino */
286 u_int16_t *ino; /* Page keys come off of */
287 u_int16_t *np; /* New page */
288 u_int16_t *op; /* Page keys go on to if they aren't moving */
289
290 BUFHEAD *last_bfp; /* Last buf header OVFL needing to be freed */
291 DBT key, val;
292 SPLIT_RETURN ret;
293 u_int16_t n, off, ov_addr, scopyto;
294 char *cino; /* Character value of ino */
295
296 bufp = old_bufp;
297 ino = (u_int16_t *)old_bufp->page;
298 np = (u_int16_t *)new_bufp->page;
299 op = (u_int16_t *)old_bufp->page;
300 last_bfp = NULL;
301 scopyto = (u_int16_t)copyto; /* ANSI */
302
303 n = ino[0] - 1;
304 while (n < ino[0]) {
305 if (ino[2] < REAL_KEY && ino[2] != OVFLPAGE) {
306 if (__big_split(hashp, old_bufp,
307 new_bufp, bufp, bufp->addr, obucket, &ret))
308 return (-1);
309 old_bufp = ret.oldp;
310 if (!old_bufp)
311 return (-1);
312 op = (u_int16_t *)old_bufp->page;
313 new_bufp = ret.newp;
314 if (!new_bufp)
315 return (-1);
316 np = (u_int16_t *)new_bufp->page;
317 bufp = ret.nextp;
318 if (!bufp)
319 return (0);
320 cino = (char *)bufp->page;
321 ino = (u_int16_t *)cino;
322 last_bfp = ret.nextp;
323 } else if (ino[n + 1] == OVFLPAGE) {
324 ov_addr = ino[n];
325 /*
326 * Fix up the old page -- the extra 2 are the fields
327 * which contained the overflow information.
328 */
329 ino[0] -= (moved + 2);
330 FREESPACE(ino) =
331 scopyto - sizeof(u_int16_t) * (ino[0] + 3);
332 OFFSET(ino) = scopyto;
333
334 bufp = __get_buf(hashp, ov_addr, bufp, 0);
335 if (!bufp)
336 return (-1);
337
338 ino = (u_int16_t *)bufp->page;
339 n = 1;
340 scopyto = hashp->BSIZE;
341 moved = 0;
342
343 if (last_bfp)
344 __free_ovflpage(hashp, last_bfp);
345 last_bfp = bufp;
346 }
347 /* Move regular sized pairs of there are any */
348 off = hashp->BSIZE;
349 for (n = 1; (n < ino[0]) && (ino[n + 1] >= REAL_KEY); n += 2) {
350 cino = (char *)ino;
351 key.data = (u_char *)cino + ino[n];
352 key.size = off - ino[n];
353 val.data = (u_char *)cino + ino[n + 1];
354 val.size = ino[n] - ino[n + 1];
355 off = ino[n + 1];
356
357 if (__call_hash(hashp, key.data, key.size) == obucket) {
358 /* Keep on old page */
359 if (PAIRFITS(op, (&key), (&val)))
360 putpair((char *)op, &key, &val);
361 else {
362 old_bufp =
363 __add_ovflpage(hashp, old_bufp);
364 if (!old_bufp)
365 return (-1);
366 op = (u_int16_t *)old_bufp->page;
367 putpair((char *)op, &key, &val);
368 }
369 old_bufp->flags |= BUF_MOD;
370 } else {
371 /* Move to new page */
372 if (PAIRFITS(np, (&key), (&val)))
373 putpair((char *)np, &key, &val);
374 else {
375 new_bufp =
376 __add_ovflpage(hashp, new_bufp);
377 if (!new_bufp)
378 return (-1);
379 np = (u_int16_t *)new_bufp->page;
380 putpair((char *)np, &key, &val);
381 }
382 new_bufp->flags |= BUF_MOD;
383 }
384 }
385 }
386 if (last_bfp)
387 __free_ovflpage(hashp, last_bfp);
388 return (0);
389 }
390
391 /*
392 * Add the given pair to the page
393 *
394 * Returns:
395 * 0 ==> OK
396 * 1 ==> failure
397 */
398 int
399 __addel(HTAB *hashp, BUFHEAD *bufp, const DBT *key, const DBT *val)
400 {
401 u_int16_t *bp, *sop;
402 int do_expand;
403
404 bp = (u_int16_t *)bufp->page;
405 do_expand = 0;
406 while (bp[0] && (bp[2] < REAL_KEY || bp[bp[0]] < REAL_KEY))
407 /* Exception case */
408 if (bp[2] == FULL_KEY_DATA && bp[0] == 2)
409 /* This is the last page of a big key/data pair
410 and we need to add another page */
411 break;
412 else if (bp[2] < REAL_KEY && bp[bp[0]] != OVFLPAGE) {
413 bufp = __get_buf(hashp, bp[bp[0] - 1], bufp, 0);
414 if (!bufp)
415 return (-1);
416 bp = (u_int16_t *)bufp->page;
417 } else if (bp[bp[0]] != OVFLPAGE) {
418 /* Short key/data pairs, no more pages */
419 break;
420 } else {
421 /* Try to squeeze key on this page */
422 if (bp[2] >= REAL_KEY &&
423 FREESPACE(bp) >= PAIRSIZE(key, val)) {
424 squeeze_key(bp, key, val);
425 goto stats;
426 } else {
427 bufp = __get_buf(hashp, bp[bp[0] - 1], bufp, 0);
428 if (!bufp)
429 return (-1);
430 bp = (u_int16_t *)bufp->page;
431 }
432 }
433
434 if (PAIRFITS(bp, key, val))
435 putpair(bufp->page, key, val);
436 else {
437 do_expand = 1;
438 bufp = __add_ovflpage(hashp, bufp);
439 if (!bufp)
440 return (-1);
441 sop = (u_int16_t *)bufp->page;
442
443 if (PAIRFITS(sop, key, val))
444 putpair((char *)sop, key, val);
445 else
446 if (__big_insert(hashp, bufp, key, val))
447 return (-1);
448 }
449 stats:
450 bufp->flags |= BUF_MOD;
451 /*
452 * If the average number of keys per bucket exceeds the fill factor,
453 * expand the table.
454 */
455 hashp->NKEYS++;
456 if (do_expand ||
457 (hashp->NKEYS / (hashp->MAX_BUCKET + 1) > hashp->FFACTOR))
458 return (__expand_table(hashp));
459 return (0);
460 }
461
462 /*
463 *
464 * Returns:
465 * pointer on success
466 * NULL on error
467 */
468 BUFHEAD *
469 __add_ovflpage(HTAB *hashp, BUFHEAD *bufp)
470 {
471 u_int16_t *sp, ndx, ovfl_num;
472 #ifdef DEBUG1
473 int tmp1, tmp2;
474 #endif
475 sp = (u_int16_t *)bufp->page;
476
477 /* Check if we are dynamically determining the fill factor */
478 if (hashp->FFACTOR == DEF_FFACTOR) {
479 hashp->FFACTOR = sp[0] >> 1;
480 if (hashp->FFACTOR < MIN_FFACTOR)
481 hashp->FFACTOR = MIN_FFACTOR;
482 }
483 bufp->flags |= BUF_MOD;
484 ovfl_num = overflow_page(hashp);
485 #ifdef DEBUG1
486 tmp1 = bufp->addr;
487 tmp2 = bufp->ovfl ? bufp->ovfl->addr : 0;
488 #endif
489 if (!ovfl_num || !(bufp->ovfl = __get_buf(hashp, ovfl_num, bufp, 1)))
490 return (NULL);
491 bufp->ovfl->flags |= BUF_MOD;
492 #ifdef DEBUG1
493 (void)fprintf(stderr, "ADDOVFLPAGE: %d->ovfl was %d is now %d\n",
494 tmp1, tmp2, bufp->ovfl->addr);
495 #endif
496 ndx = sp[0];
497 /*
498 * Since a pair is allocated on a page only if there's room to add
499 * an overflow page, we know that the OVFL information will fit on
500 * the page.
501 */
502 sp[ndx + 4] = OFFSET(sp);
503 sp[ndx + 3] = FREESPACE(sp) - OVFLSIZE;
504 sp[ndx + 1] = ovfl_num;
505 sp[ndx + 2] = OVFLPAGE;
506 sp[0] = ndx + 2;
507 #ifdef HASH_STATISTICS
508 hash_overflows++;
509 #endif
510 return (bufp->ovfl);
511 }
512
513 /*
514 * Returns:
515 * 0 indicates SUCCESS
516 * -1 indicates FAILURE
517 */
518 int
519 __get_page(HTAB *hashp, char *p, u_int32_t bucket, int is_bucket, int is_disk,
520 int is_bitmap)
521 {
522 int fd, page, size, rsize;
523 u_int16_t *bp;
524
525 fd = hashp->fp;
526 size = hashp->BSIZE;
527
528 if ((fd == -1) || !is_disk) {
529 PAGE_INIT(p);
530 return (0);
531 }
532 if (is_bucket)
533 page = BUCKET_TO_PAGE(bucket);
534 else
535 page = OADDR_TO_PAGE(bucket);
536 if ((rsize = pread(fd, p, size, (off_t)page << hashp->BSHIFT)) == -1)
537 return (-1);
538 bp = (u_int16_t *)p;
539 if (!rsize)
540 bp[0] = 0; /* We hit the EOF, so initialize a new page */
541 else
542 if (rsize != size) {
543 errno = EFTYPE;
544 return (-1);
545 }
546 if (!is_bitmap && !bp[0]) {
547 PAGE_INIT(p);
548 } else
549 if (hashp->LORDER != BYTE_ORDER) {
550 int i, max;
551
552 if (is_bitmap) {
553 max = hashp->BSIZE >> 2; /* divide by 4 */
554 for (i = 0; i < max; i++)
555 M_32_SWAP(((int *)p)[i]);
556 } else {
557 M_16_SWAP(bp[0]);
558 max = bp[0] + 2;
559 for (i = 1; i <= max; i++)
560 M_16_SWAP(bp[i]);
561 }
562 }
563 return (0);
564 }
565
566 /*
567 * Write page p to disk
568 *
569 * Returns:
570 * 0 ==> OK
571 * -1 ==>failure
572 */
573 int
574 __put_page(HTAB *hashp, char *p, u_int32_t bucket, int is_bucket, int is_bitmap)
575 {
576 int fd, page, size;
577 ssize_t wsize;
578 char pbuf[MAX_BSIZE];
579
580 size = hashp->BSIZE;
581 if ((hashp->fp == -1) && open_temp(hashp))
582 return (-1);
583 fd = hashp->fp;
584
585 if (hashp->LORDER != BYTE_ORDER) {
586 int i, max;
587
588 memcpy(pbuf, p, size);
589 if (is_bitmap) {
590 max = hashp->BSIZE >> 2; /* divide by 4 */
591 for (i = 0; i < max; i++)
592 M_32_SWAP(((int *)pbuf)[i]);
593 } else {
594 uint16_t *bp = (uint16_t *)(void *)pbuf;
595 max = bp[0] + 2;
596 for (i = 0; i <= max; i++)
597 M_16_SWAP(bp[i]);
598 }
599 p = pbuf;
600 }
601 if (is_bucket)
602 page = BUCKET_TO_PAGE(bucket);
603 else
604 page = OADDR_TO_PAGE(bucket);
605 if ((wsize = pwrite(fd, p, size, (off_t)page << hashp->BSHIFT)) == -1)
606 /* Errno is set */
607 return (-1);
608 if (wsize != size) {
609 errno = EFTYPE;
610 return (-1);
611 }
612 return (0);
613 }
614
615 #define BYTE_MASK ((1 << INT_BYTE_SHIFT) -1)
616 /*
617 * Initialize a new bitmap page. Bitmap pages are left in memory
618 * once they are read in.
619 */
620 int
621 __ibitmap(HTAB *hashp, int pnum, int nbits, int ndx)
622 {
623 u_int32_t *ip;
624 int clearbytes, clearints;
625
626 if ((ip = (u_int32_t *)malloc(hashp->BSIZE)) == NULL)
627 return (1);
628 hashp->nmaps++;
629 clearints = ((nbits - 1) >> INT_BYTE_SHIFT) + 1;
630 clearbytes = clearints << INT_TO_BYTE;
631 (void)memset((char *)ip, 0, clearbytes);
632 (void)memset(((char *)ip) + clearbytes, 0xFF,
633 hashp->BSIZE - clearbytes);
634 ip[clearints - 1] = ALL_SET << (nbits & BYTE_MASK);
635 SETBIT(ip, 0);
636 hashp->BITMAPS[ndx] = (u_int16_t)pnum;
637 hashp->mapp[ndx] = ip;
638 return (0);
639 }
640
641 static u_int32_t
642 first_free(u_int32_t map)
643 {
644 u_int32_t i, mask;
645
646 mask = 0x1;
647 for (i = 0; i < BITS_PER_MAP; i++) {
648 if (!(mask & map))
649 return (i);
650 mask = mask << 1;
651 }
652 return (i);
653 }
654
655 static u_int16_t
656 overflow_page(HTAB *hashp)
657 {
658 u_int32_t *freep;
659 int max_free, offset, splitnum;
660 u_int16_t addr;
661 int bit, first_page, free_bit, free_page, i, in_use_bits, j;
662 #ifdef DEBUG2
663 int tmp1, tmp2;
664 #endif
665 splitnum = hashp->OVFL_POINT;
666 max_free = hashp->SPARES[splitnum];
667
668 free_page = (max_free - 1) >> (hashp->BSHIFT + BYTE_SHIFT);
669 free_bit = (max_free - 1) & ((hashp->BSIZE << BYTE_SHIFT) - 1);
670
671 /* Look through all the free maps to find the first free block */
672 first_page = hashp->LAST_FREED >>(hashp->BSHIFT + BYTE_SHIFT);
673 for ( i = first_page; i <= free_page; i++ ) {
674 if (!(freep = (u_int32_t *)hashp->mapp[i]) &&
675 !(freep = fetch_bitmap(hashp, i)))
676 return (0);
677 if (i == free_page)
678 in_use_bits = free_bit;
679 else
680 in_use_bits = (hashp->BSIZE << BYTE_SHIFT) - 1;
681
682 if (i == first_page) {
683 bit = hashp->LAST_FREED &
684 ((hashp->BSIZE << BYTE_SHIFT) - 1);
685 j = bit / BITS_PER_MAP;
686 bit = bit & ~(BITS_PER_MAP - 1);
687 } else {
688 bit = 0;
689 j = 0;
690 }
691 for (; bit <= in_use_bits; j++, bit += BITS_PER_MAP)
692 if (freep[j] != ALL_SET)
693 goto found;
694 }
695
696 /* No Free Page Found */
697 hashp->LAST_FREED = hashp->SPARES[splitnum];
698 hashp->SPARES[splitnum]++;
699 offset = hashp->SPARES[splitnum] -
700 (splitnum ? hashp->SPARES[splitnum - 1] : 0);
701
702 #define OVMSG "HASH: Out of overflow pages. Increase page size\n"
703 if (offset > SPLITMASK) {
704 if (++splitnum >= NCACHED) {
705 (void)_write(STDERR_FILENO, OVMSG, sizeof(OVMSG) - 1);
706 errno = EFBIG;
707 return (0);
708 }
709 hashp->OVFL_POINT = splitnum;
710 hashp->SPARES[splitnum] = hashp->SPARES[splitnum-1];
711 hashp->SPARES[splitnum-1]--;
712 offset = 1;
713 }
714
715 /* Check if we need to allocate a new bitmap page */
716 if (free_bit == (hashp->BSIZE << BYTE_SHIFT) - 1) {
717 free_page++;
718 if (free_page >= NCACHED) {
719 (void)_write(STDERR_FILENO, OVMSG, sizeof(OVMSG) - 1);
720 errno = EFBIG;
721 return (0);
722 }
723 /*
724 * This is tricky. The 1 indicates that you want the new page
725 * allocated with 1 clear bit. Actually, you are going to
726 * allocate 2 pages from this map. The first is going to be
727 * the map page, the second is the overflow page we were
728 * looking for. The init_bitmap routine automatically, sets
729 * the first bit of itself to indicate that the bitmap itself
730 * is in use. We would explicitly set the second bit, but
731 * don't have to if we tell init_bitmap not to leave it clear
732 * in the first place.
733 */
734 if (__ibitmap(hashp,
735 (int)OADDR_OF(splitnum, offset), 1, free_page))
736 return (0);
737 hashp->SPARES[splitnum]++;
738 #ifdef DEBUG2
739 free_bit = 2;
740 #endif
741 offset++;
742 if (offset > SPLITMASK) {
743 if (++splitnum >= NCACHED) {
744 (void)_write(STDERR_FILENO, OVMSG,
745 sizeof(OVMSG) - 1);
746 errno = EFBIG;
747 return (0);
748 }
749 hashp->OVFL_POINT = splitnum;
750 hashp->SPARES[splitnum] = hashp->SPARES[splitnum-1];
751 hashp->SPARES[splitnum-1]--;
752 offset = 0;
753 }
754 } else {
755 /*
756 * Free_bit addresses the last used bit. Bump it to address
757 * the first available bit.
758 */
759 free_bit++;
760 SETBIT(freep, free_bit);
761 }
762
763 /* Calculate address of the new overflow page */
764 addr = OADDR_OF(splitnum, offset);
765 #ifdef DEBUG2
766 (void)fprintf(stderr, "OVERFLOW_PAGE: ADDR: %d BIT: %d PAGE %d\n",
767 addr, free_bit, free_page);
768 #endif
769 return (addr);
770
771 found:
772 bit = bit + first_free(freep[j]);
773 SETBIT(freep, bit);
774 #ifdef DEBUG2
775 tmp1 = bit;
776 tmp2 = i;
777 #endif
778 /*
779 * Bits are addressed starting with 0, but overflow pages are addressed
780 * beginning at 1. Bit is a bit addressnumber, so we need to increment
781 * it to convert it to a page number.
782 */
783 bit = 1 + bit + (i * (hashp->BSIZE << BYTE_SHIFT));
784 if (bit >= hashp->LAST_FREED)
785 hashp->LAST_FREED = bit - 1;
786
787 /* Calculate the split number for this page */
788 for (i = 0; (i < splitnum) && (bit > hashp->SPARES[i]); i++);
789 offset = (i ? bit - hashp->SPARES[i - 1] : bit);
790 if (offset >= SPLITMASK) {
791 (void)_write(STDERR_FILENO, OVMSG, sizeof(OVMSG) - 1);
792 errno = EFBIG;
793 return (0); /* Out of overflow pages */
794 }
795 addr = OADDR_OF(i, offset);
796 #ifdef DEBUG2
797 (void)fprintf(stderr, "OVERFLOW_PAGE: ADDR: %d BIT: %d PAGE %d\n",
798 addr, tmp1, tmp2);
799 #endif
800
801 /* Allocate and return the overflow page */
802 return (addr);
803 }
804
805 /*
806 * Mark this overflow page as free.
807 */
808 void
809 __free_ovflpage(HTAB *hashp, BUFHEAD *obufp)
810 {
811 u_int16_t addr;
812 u_int32_t *freep;
813 int bit_address, free_page, free_bit;
814 u_int16_t ndx;
815
816 addr = obufp->addr;
817 #ifdef DEBUG1
818 (void)fprintf(stderr, "Freeing %d\n", addr);
819 #endif
820 ndx = (((u_int16_t)addr) >> SPLITSHIFT);
821 bit_address =
822 (ndx ? hashp->SPARES[ndx - 1] : 0) + (addr & SPLITMASK) - 1;
823 if (bit_address < hashp->LAST_FREED)
824 hashp->LAST_FREED = bit_address;
825 free_page = (bit_address >> (hashp->BSHIFT + BYTE_SHIFT));
826 free_bit = bit_address & ((hashp->BSIZE << BYTE_SHIFT) - 1);
827
828 if (!(freep = hashp->mapp[free_page]))
829 freep = fetch_bitmap(hashp, free_page);
830 #ifdef DEBUG
831 /*
832 * This had better never happen. It means we tried to read a bitmap
833 * that has already had overflow pages allocated off it, and we
834 * failed to read it from the file.
835 */
836 if (!freep)
837 assert(0);
838 #endif
839 CLRBIT(freep, free_bit);
840 #ifdef DEBUG2
841 (void)fprintf(stderr, "FREE_OVFLPAGE: ADDR: %d BIT: %d PAGE %d\n",
842 obufp->addr, free_bit, free_page);
843 #endif
844 __reclaim_buf(hashp, obufp);
845 }
846
847 /*
848 * Returns:
849 * 0 success
850 * -1 failure
851 */
852 static int
853 open_temp(HTAB *hashp)
854 {
855 sigset_t set, oset;
856 int len;
857 char *envtmp = NULL;
858 char path[MAXPATHLEN];
859
860 if (issetugid() == 0)
861 envtmp = getenv("TMPDIR");
862 len = snprintf(path,
863 sizeof(path), "%s/_hash.XXXXXX", envtmp ? envtmp : "/tmp");
864 if (len < 0 || len >= (int)sizeof(path)) {
865 errno = ENAMETOOLONG;
866 return (-1);
867 }
868
869 /* Block signals; make sure file goes away at process exit. */
870 (void)sigfillset(&set);
871 (void)__libc_sigprocmask(SIG_BLOCK, &set, &oset);
872 if ((hashp->fp = mkostemp(path, O_CLOEXEC)) != -1)
873 (void)unlink(path);
874 (void)__libc_sigprocmask(SIG_SETMASK, &oset, (sigset_t *)NULL);
875 return (hashp->fp != -1 ? 0 : -1);
876 }
877
878 /*
879 * We have to know that the key will fit, but the last entry on the page is
880 * an overflow pair, so we need to shift things.
881 */
882 static void
883 squeeze_key(u_int16_t *sp, const DBT *key, const DBT *val)
884 {
885 char *p;
886 u_int16_t free_space, n, off, pageno;
887
888 p = (char *)sp;
889 n = sp[0];
890 free_space = FREESPACE(sp);
891 off = OFFSET(sp);
892
893 pageno = sp[n - 1];
894 off -= key->size;
895 sp[n - 1] = off;
896 memmove(p + off, key->data, key->size);
897 off -= val->size;
898 sp[n] = off;
899 memmove(p + off, val->data, val->size);
900 sp[0] = n + 2;
901 sp[n + 1] = pageno;
902 sp[n + 2] = OVFLPAGE;
903 FREESPACE(sp) = free_space - PAIRSIZE(key, val);
904 OFFSET(sp) = off;
905 }
906
907 static u_int32_t *
908 fetch_bitmap(HTAB *hashp, int ndx)
909 {
910 if (ndx >= hashp->nmaps)
911 return (NULL);
912 if ((hashp->mapp[ndx] = (u_int32_t *)malloc(hashp->BSIZE)) == NULL)
913 return (NULL);
914 if (__get_page(hashp,
915 (char *)hashp->mapp[ndx], hashp->BITMAPS[ndx], 0, 1, 1)) {
916 free(hashp->mapp[ndx]);
917 return (NULL);
918 }
919 return (hashp->mapp[ndx]);
920 }
921
922 #ifdef DEBUG4
923 int
924 print_chain(int addr)
925 {
926 BUFHEAD *bufp;
927 short *bp, oaddr;
928
929 (void)fprintf(stderr, "%d ", addr);
930 bufp = __get_buf(hashp, addr, NULL, 0);
931 bp = (short *)bufp->page;
932 while (bp[0] && ((bp[bp[0]] == OVFLPAGE) ||
933 ((bp[0] > 2) && bp[2] < REAL_KEY))) {
934 oaddr = bp[bp[0] - 1];
935 (void)fprintf(stderr, "%d ", (int)oaddr);
936 bufp = __get_buf(hashp, (int)oaddr, bufp, 0);
937 bp = (short *)bufp->page;
938 }
939 (void)fprintf(stderr, "\n");
940 }
941 #endif

Properties

Name Value
svn:keywords MidnightBSD=%H