ViewVC Help
View File | Revision Log | Show Annotations | Download File | View Changeset | Root Listing
root/src/vendor/llvm/3.4/include/llvm/ADT/ilist.h
Revision: 9677
Committed: Sun Nov 26 20:05:56 2017 UTC (6 years, 5 months ago) by laffer1
Content type: text/plain
File size: 24396 byte(s)
Log Message:
tag 3.4

File Contents

# Content
1 //==-- llvm/ADT/ilist.h - Intrusive Linked List Template ---------*- C++ -*-==//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines classes to implement an intrusive doubly linked list class
11 // (i.e. each node of the list must contain a next and previous field for the
12 // list.
13 //
14 // The ilist_traits trait class is used to gain access to the next and previous
15 // fields of the node type that the list is instantiated with. If it is not
16 // specialized, the list defaults to using the getPrev(), getNext() method calls
17 // to get the next and previous pointers.
18 //
19 // The ilist class itself, should be a plug in replacement for list, assuming
20 // that the nodes contain next/prev pointers. This list replacement does not
21 // provide a constant time size() method, so be careful to use empty() when you
22 // really want to know if it's empty.
23 //
24 // The ilist class is implemented by allocating a 'tail' node when the list is
25 // created (using ilist_traits<>::createSentinel()). This tail node is
26 // absolutely required because the user must be able to compute end()-1. Because
27 // of this, users of the direct next/prev links will see an extra link on the
28 // end of the list, which should be ignored.
29 //
30 // Requirements for a user of this list:
31 //
32 // 1. The user must provide {g|s}et{Next|Prev} methods, or specialize
33 // ilist_traits to provide an alternate way of getting and setting next and
34 // prev links.
35 //
36 //===----------------------------------------------------------------------===//
37
38 #ifndef LLVM_ADT_ILIST_H
39 #define LLVM_ADT_ILIST_H
40
41 #include "llvm/Support/Compiler.h"
42 #include <algorithm>
43 #include <cassert>
44 #include <cstddef>
45 #include <iterator>
46
47 namespace llvm {
48
49 template<typename NodeTy, typename Traits> class iplist;
50 template<typename NodeTy> class ilist_iterator;
51
52 /// ilist_nextprev_traits - A fragment for template traits for intrusive list
53 /// that provides default next/prev implementations for common operations.
54 ///
55 template<typename NodeTy>
56 struct ilist_nextprev_traits {
57 static NodeTy *getPrev(NodeTy *N) { return N->getPrev(); }
58 static NodeTy *getNext(NodeTy *N) { return N->getNext(); }
59 static const NodeTy *getPrev(const NodeTy *N) { return N->getPrev(); }
60 static const NodeTy *getNext(const NodeTy *N) { return N->getNext(); }
61
62 static void setPrev(NodeTy *N, NodeTy *Prev) { N->setPrev(Prev); }
63 static void setNext(NodeTy *N, NodeTy *Next) { N->setNext(Next); }
64 };
65
66 template<typename NodeTy>
67 struct ilist_traits;
68
69 /// ilist_sentinel_traits - A fragment for template traits for intrusive list
70 /// that provides default sentinel implementations for common operations.
71 ///
72 /// ilist_sentinel_traits implements a lazy dynamic sentinel allocation
73 /// strategy. The sentinel is stored in the prev field of ilist's Head.
74 ///
75 template<typename NodeTy>
76 struct ilist_sentinel_traits {
77 /// createSentinel - create the dynamic sentinel
78 static NodeTy *createSentinel() { return new NodeTy(); }
79
80 /// destroySentinel - deallocate the dynamic sentinel
81 static void destroySentinel(NodeTy *N) { delete N; }
82
83 /// provideInitialHead - when constructing an ilist, provide a starting
84 /// value for its Head
85 /// @return null node to indicate that it needs to be allocated later
86 static NodeTy *provideInitialHead() { return 0; }
87
88 /// ensureHead - make sure that Head is either already
89 /// initialized or assigned a fresh sentinel
90 /// @return the sentinel
91 static NodeTy *ensureHead(NodeTy *&Head) {
92 if (!Head) {
93 Head = ilist_traits<NodeTy>::createSentinel();
94 ilist_traits<NodeTy>::noteHead(Head, Head);
95 ilist_traits<NodeTy>::setNext(Head, 0);
96 return Head;
97 }
98 return ilist_traits<NodeTy>::getPrev(Head);
99 }
100
101 /// noteHead - stash the sentinel into its default location
102 static void noteHead(NodeTy *NewHead, NodeTy *Sentinel) {
103 ilist_traits<NodeTy>::setPrev(NewHead, Sentinel);
104 }
105 };
106
107 /// ilist_node_traits - A fragment for template traits for intrusive list
108 /// that provides default node related operations.
109 ///
110 template<typename NodeTy>
111 struct ilist_node_traits {
112 static NodeTy *createNode(const NodeTy &V) { return new NodeTy(V); }
113 static void deleteNode(NodeTy *V) { delete V; }
114
115 void addNodeToList(NodeTy *) {}
116 void removeNodeFromList(NodeTy *) {}
117 void transferNodesFromList(ilist_node_traits & /*SrcTraits*/,
118 ilist_iterator<NodeTy> /*first*/,
119 ilist_iterator<NodeTy> /*last*/) {}
120 };
121
122 /// ilist_default_traits - Default template traits for intrusive list.
123 /// By inheriting from this, you can easily use default implementations
124 /// for all common operations.
125 ///
126 template<typename NodeTy>
127 struct ilist_default_traits : public ilist_nextprev_traits<NodeTy>,
128 public ilist_sentinel_traits<NodeTy>,
129 public ilist_node_traits<NodeTy> {
130 };
131
132 // Template traits for intrusive list. By specializing this template class, you
133 // can change what next/prev fields are used to store the links...
134 template<typename NodeTy>
135 struct ilist_traits : public ilist_default_traits<NodeTy> {};
136
137 // Const traits are the same as nonconst traits...
138 template<typename Ty>
139 struct ilist_traits<const Ty> : public ilist_traits<Ty> {};
140
141 //===----------------------------------------------------------------------===//
142 // ilist_iterator<Node> - Iterator for intrusive list.
143 //
144 template<typename NodeTy>
145 class ilist_iterator
146 : public std::iterator<std::bidirectional_iterator_tag, NodeTy, ptrdiff_t> {
147
148 public:
149 typedef ilist_traits<NodeTy> Traits;
150 typedef std::iterator<std::bidirectional_iterator_tag,
151 NodeTy, ptrdiff_t> super;
152
153 typedef typename super::value_type value_type;
154 typedef typename super::difference_type difference_type;
155 typedef typename super::pointer pointer;
156 typedef typename super::reference reference;
157 private:
158 pointer NodePtr;
159
160 // ilist_iterator is not a random-access iterator, but it has an
161 // implicit conversion to pointer-type, which is. Declare (but
162 // don't define) these functions as private to help catch
163 // accidental misuse.
164 void operator[](difference_type) const;
165 void operator+(difference_type) const;
166 void operator-(difference_type) const;
167 void operator+=(difference_type) const;
168 void operator-=(difference_type) const;
169 template<class T> void operator<(T) const;
170 template<class T> void operator<=(T) const;
171 template<class T> void operator>(T) const;
172 template<class T> void operator>=(T) const;
173 template<class T> void operator-(T) const;
174 public:
175
176 ilist_iterator(pointer NP) : NodePtr(NP) {}
177 ilist_iterator(reference NR) : NodePtr(&NR) {}
178 ilist_iterator() : NodePtr(0) {}
179
180 // This is templated so that we can allow constructing a const iterator from
181 // a nonconst iterator...
182 template<class node_ty>
183 ilist_iterator(const ilist_iterator<node_ty> &RHS)
184 : NodePtr(RHS.getNodePtrUnchecked()) {}
185
186 // This is templated so that we can allow assigning to a const iterator from
187 // a nonconst iterator...
188 template<class node_ty>
189 const ilist_iterator &operator=(const ilist_iterator<node_ty> &RHS) {
190 NodePtr = RHS.getNodePtrUnchecked();
191 return *this;
192 }
193
194 // Accessors...
195 operator pointer() const {
196 return NodePtr;
197 }
198
199 reference operator*() const {
200 return *NodePtr;
201 }
202 pointer operator->() const { return &operator*(); }
203
204 // Comparison operators
205 bool operator==(const ilist_iterator &RHS) const {
206 return NodePtr == RHS.NodePtr;
207 }
208 bool operator!=(const ilist_iterator &RHS) const {
209 return NodePtr != RHS.NodePtr;
210 }
211
212 // Increment and decrement operators...
213 ilist_iterator &operator--() { // predecrement - Back up
214 NodePtr = Traits::getPrev(NodePtr);
215 assert(NodePtr && "--'d off the beginning of an ilist!");
216 return *this;
217 }
218 ilist_iterator &operator++() { // preincrement - Advance
219 NodePtr = Traits::getNext(NodePtr);
220 return *this;
221 }
222 ilist_iterator operator--(int) { // postdecrement operators...
223 ilist_iterator tmp = *this;
224 --*this;
225 return tmp;
226 }
227 ilist_iterator operator++(int) { // postincrement operators...
228 ilist_iterator tmp = *this;
229 ++*this;
230 return tmp;
231 }
232
233 // Internal interface, do not use...
234 pointer getNodePtrUnchecked() const { return NodePtr; }
235 };
236
237 // These are to catch errors when people try to use them as random access
238 // iterators.
239 template<typename T>
240 void operator-(int, ilist_iterator<T>) LLVM_DELETED_FUNCTION;
241 template<typename T>
242 void operator-(ilist_iterator<T>,int) LLVM_DELETED_FUNCTION;
243
244 template<typename T>
245 void operator+(int, ilist_iterator<T>) LLVM_DELETED_FUNCTION;
246 template<typename T>
247 void operator+(ilist_iterator<T>,int) LLVM_DELETED_FUNCTION;
248
249 // operator!=/operator== - Allow mixed comparisons without dereferencing
250 // the iterator, which could very likely be pointing to end().
251 template<typename T>
252 bool operator!=(const T* LHS, const ilist_iterator<const T> &RHS) {
253 return LHS != RHS.getNodePtrUnchecked();
254 }
255 template<typename T>
256 bool operator==(const T* LHS, const ilist_iterator<const T> &RHS) {
257 return LHS == RHS.getNodePtrUnchecked();
258 }
259 template<typename T>
260 bool operator!=(T* LHS, const ilist_iterator<T> &RHS) {
261 return LHS != RHS.getNodePtrUnchecked();
262 }
263 template<typename T>
264 bool operator==(T* LHS, const ilist_iterator<T> &RHS) {
265 return LHS == RHS.getNodePtrUnchecked();
266 }
267
268
269 // Allow ilist_iterators to convert into pointers to a node automatically when
270 // used by the dyn_cast, cast, isa mechanisms...
271
272 template<typename From> struct simplify_type;
273
274 template<typename NodeTy> struct simplify_type<ilist_iterator<NodeTy> > {
275 typedef NodeTy* SimpleType;
276
277 static SimpleType getSimplifiedValue(ilist_iterator<NodeTy> &Node) {
278 return &*Node;
279 }
280 };
281 template<typename NodeTy> struct simplify_type<const ilist_iterator<NodeTy> > {
282 typedef /*const*/ NodeTy* SimpleType;
283
284 static SimpleType getSimplifiedValue(const ilist_iterator<NodeTy> &Node) {
285 return &*Node;
286 }
287 };
288
289
290 //===----------------------------------------------------------------------===//
291 //
292 /// iplist - The subset of list functionality that can safely be used on nodes
293 /// of polymorphic types, i.e. a heterogeneous list with a common base class that
294 /// holds the next/prev pointers. The only state of the list itself is a single
295 /// pointer to the head of the list.
296 ///
297 /// This list can be in one of three interesting states:
298 /// 1. The list may be completely unconstructed. In this case, the head
299 /// pointer is null. When in this form, any query for an iterator (e.g.
300 /// begin() or end()) causes the list to transparently change to state #2.
301 /// 2. The list may be empty, but contain a sentinel for the end iterator. This
302 /// sentinel is created by the Traits::createSentinel method and is a link
303 /// in the list. When the list is empty, the pointer in the iplist points
304 /// to the sentinel. Once the sentinel is constructed, it
305 /// is not destroyed until the list is.
306 /// 3. The list may contain actual objects in it, which are stored as a doubly
307 /// linked list of nodes. One invariant of the list is that the predecessor
308 /// of the first node in the list always points to the last node in the list,
309 /// and the successor pointer for the sentinel (which always stays at the
310 /// end of the list) is always null.
311 ///
312 template<typename NodeTy, typename Traits=ilist_traits<NodeTy> >
313 class iplist : public Traits {
314 mutable NodeTy *Head;
315
316 // Use the prev node pointer of 'head' as the tail pointer. This is really a
317 // circularly linked list where we snip the 'next' link from the sentinel node
318 // back to the first node in the list (to preserve assertions about going off
319 // the end of the list).
320 NodeTy *getTail() { return this->ensureHead(Head); }
321 const NodeTy *getTail() const { return this->ensureHead(Head); }
322 void setTail(NodeTy *N) const { this->noteHead(Head, N); }
323
324 /// CreateLazySentinel - This method verifies whether the sentinel for the
325 /// list has been created and lazily makes it if not.
326 void CreateLazySentinel() const {
327 this->ensureHead(Head);
328 }
329
330 static bool op_less(NodeTy &L, NodeTy &R) { return L < R; }
331 static bool op_equal(NodeTy &L, NodeTy &R) { return L == R; }
332
333 // No fundamental reason why iplist can't be copyable, but the default
334 // copy/copy-assign won't do.
335 iplist(const iplist &) LLVM_DELETED_FUNCTION;
336 void operator=(const iplist &) LLVM_DELETED_FUNCTION;
337
338 public:
339 typedef NodeTy *pointer;
340 typedef const NodeTy *const_pointer;
341 typedef NodeTy &reference;
342 typedef const NodeTy &const_reference;
343 typedef NodeTy value_type;
344 typedef ilist_iterator<NodeTy> iterator;
345 typedef ilist_iterator<const NodeTy> const_iterator;
346 typedef size_t size_type;
347 typedef ptrdiff_t difference_type;
348 typedef std::reverse_iterator<const_iterator> const_reverse_iterator;
349 typedef std::reverse_iterator<iterator> reverse_iterator;
350
351 iplist() : Head(this->provideInitialHead()) {}
352 ~iplist() {
353 if (!Head) return;
354 clear();
355 Traits::destroySentinel(getTail());
356 }
357
358 // Iterator creation methods.
359 iterator begin() {
360 CreateLazySentinel();
361 return iterator(Head);
362 }
363 const_iterator begin() const {
364 CreateLazySentinel();
365 return const_iterator(Head);
366 }
367 iterator end() {
368 CreateLazySentinel();
369 return iterator(getTail());
370 }
371 const_iterator end() const {
372 CreateLazySentinel();
373 return const_iterator(getTail());
374 }
375
376 // reverse iterator creation methods.
377 reverse_iterator rbegin() { return reverse_iterator(end()); }
378 const_reverse_iterator rbegin() const{ return const_reverse_iterator(end()); }
379 reverse_iterator rend() { return reverse_iterator(begin()); }
380 const_reverse_iterator rend() const { return const_reverse_iterator(begin());}
381
382
383 // Miscellaneous inspection routines.
384 size_type max_size() const { return size_type(-1); }
385 bool LLVM_ATTRIBUTE_UNUSED_RESULT empty() const {
386 return Head == 0 || Head == getTail();
387 }
388
389 // Front and back accessor functions...
390 reference front() {
391 assert(!empty() && "Called front() on empty list!");
392 return *Head;
393 }
394 const_reference front() const {
395 assert(!empty() && "Called front() on empty list!");
396 return *Head;
397 }
398 reference back() {
399 assert(!empty() && "Called back() on empty list!");
400 return *this->getPrev(getTail());
401 }
402 const_reference back() const {
403 assert(!empty() && "Called back() on empty list!");
404 return *this->getPrev(getTail());
405 }
406
407 void swap(iplist &RHS) {
408 assert(0 && "Swap does not use list traits callback correctly yet!");
409 std::swap(Head, RHS.Head);
410 }
411
412 iterator insert(iterator where, NodeTy *New) {
413 NodeTy *CurNode = where.getNodePtrUnchecked();
414 NodeTy *PrevNode = this->getPrev(CurNode);
415 this->setNext(New, CurNode);
416 this->setPrev(New, PrevNode);
417
418 if (CurNode != Head) // Is PrevNode off the beginning of the list?
419 this->setNext(PrevNode, New);
420 else
421 Head = New;
422 this->setPrev(CurNode, New);
423
424 this->addNodeToList(New); // Notify traits that we added a node...
425 return New;
426 }
427
428 iterator insertAfter(iterator where, NodeTy *New) {
429 if (empty())
430 return insert(begin(), New);
431 else
432 return insert(++where, New);
433 }
434
435 NodeTy *remove(iterator &IT) {
436 assert(IT != end() && "Cannot remove end of list!");
437 NodeTy *Node = &*IT;
438 NodeTy *NextNode = this->getNext(Node);
439 NodeTy *PrevNode = this->getPrev(Node);
440
441 if (Node != Head) // Is PrevNode off the beginning of the list?
442 this->setNext(PrevNode, NextNode);
443 else
444 Head = NextNode;
445 this->setPrev(NextNode, PrevNode);
446 IT = NextNode;
447 this->removeNodeFromList(Node); // Notify traits that we removed a node...
448
449 // Set the next/prev pointers of the current node to null. This isn't
450 // strictly required, but this catches errors where a node is removed from
451 // an ilist (and potentially deleted) with iterators still pointing at it.
452 // When those iterators are incremented or decremented, they will assert on
453 // the null next/prev pointer instead of "usually working".
454 this->setNext(Node, 0);
455 this->setPrev(Node, 0);
456 return Node;
457 }
458
459 NodeTy *remove(const iterator &IT) {
460 iterator MutIt = IT;
461 return remove(MutIt);
462 }
463
464 // erase - remove a node from the controlled sequence... and delete it.
465 iterator erase(iterator where) {
466 this->deleteNode(remove(where));
467 return where;
468 }
469
470 /// Remove all nodes from the list like clear(), but do not call
471 /// removeNodeFromList() or deleteNode().
472 ///
473 /// This should only be used immediately before freeing nodes in bulk to
474 /// avoid traversing the list and bringing all the nodes into cache.
475 void clearAndLeakNodesUnsafely() {
476 if (Head) {
477 Head = getTail();
478 this->setPrev(Head, Head);
479 }
480 }
481
482 private:
483 // transfer - The heart of the splice function. Move linked list nodes from
484 // [first, last) into position.
485 //
486 void transfer(iterator position, iplist &L2, iterator first, iterator last) {
487 assert(first != last && "Should be checked by callers");
488 // Position cannot be contained in the range to be transferred.
489 // Check for the most common mistake.
490 assert(position != first &&
491 "Insertion point can't be one of the transferred nodes");
492
493 if (position != last) {
494 // Note: we have to be careful about the case when we move the first node
495 // in the list. This node is the list sentinel node and we can't move it.
496 NodeTy *ThisSentinel = getTail();
497 setTail(0);
498 NodeTy *L2Sentinel = L2.getTail();
499 L2.setTail(0);
500
501 // Remove [first, last) from its old position.
502 NodeTy *First = &*first, *Prev = this->getPrev(First);
503 NodeTy *Next = last.getNodePtrUnchecked(), *Last = this->getPrev(Next);
504 if (Prev)
505 this->setNext(Prev, Next);
506 else
507 L2.Head = Next;
508 this->setPrev(Next, Prev);
509
510 // Splice [first, last) into its new position.
511 NodeTy *PosNext = position.getNodePtrUnchecked();
512 NodeTy *PosPrev = this->getPrev(PosNext);
513
514 // Fix head of list...
515 if (PosPrev)
516 this->setNext(PosPrev, First);
517 else
518 Head = First;
519 this->setPrev(First, PosPrev);
520
521 // Fix end of list...
522 this->setNext(Last, PosNext);
523 this->setPrev(PosNext, Last);
524
525 this->transferNodesFromList(L2, First, PosNext);
526
527 // Now that everything is set, restore the pointers to the list sentinels.
528 L2.setTail(L2Sentinel);
529 setTail(ThisSentinel);
530 }
531 }
532
533 public:
534
535 //===----------------------------------------------------------------------===
536 // Functionality derived from other functions defined above...
537 //
538
539 size_type LLVM_ATTRIBUTE_UNUSED_RESULT size() const {
540 if (Head == 0) return 0; // Don't require construction of sentinel if empty.
541 return std::distance(begin(), end());
542 }
543
544 iterator erase(iterator first, iterator last) {
545 while (first != last)
546 first = erase(first);
547 return last;
548 }
549
550 void clear() { if (Head) erase(begin(), end()); }
551
552 // Front and back inserters...
553 void push_front(NodeTy *val) { insert(begin(), val); }
554 void push_back(NodeTy *val) { insert(end(), val); }
555 void pop_front() {
556 assert(!empty() && "pop_front() on empty list!");
557 erase(begin());
558 }
559 void pop_back() {
560 assert(!empty() && "pop_back() on empty list!");
561 iterator t = end(); erase(--t);
562 }
563
564 // Special forms of insert...
565 template<class InIt> void insert(iterator where, InIt first, InIt last) {
566 for (; first != last; ++first) insert(where, *first);
567 }
568
569 // Splice members - defined in terms of transfer...
570 void splice(iterator where, iplist &L2) {
571 if (!L2.empty())
572 transfer(where, L2, L2.begin(), L2.end());
573 }
574 void splice(iterator where, iplist &L2, iterator first) {
575 iterator last = first; ++last;
576 if (where == first || where == last) return; // No change
577 transfer(where, L2, first, last);
578 }
579 void splice(iterator where, iplist &L2, iterator first, iterator last) {
580 if (first != last) transfer(where, L2, first, last);
581 }
582
583
584
585 //===----------------------------------------------------------------------===
586 // High-Level Functionality that shouldn't really be here, but is part of list
587 //
588
589 // These two functions are actually called remove/remove_if in list<>, but
590 // they actually do the job of erase, rename them accordingly.
591 //
592 void erase(const NodeTy &val) {
593 for (iterator I = begin(), E = end(); I != E; ) {
594 iterator next = I; ++next;
595 if (*I == val) erase(I);
596 I = next;
597 }
598 }
599 template<class Pr1> void erase_if(Pr1 pred) {
600 for (iterator I = begin(), E = end(); I != E; ) {
601 iterator next = I; ++next;
602 if (pred(*I)) erase(I);
603 I = next;
604 }
605 }
606
607 template<class Pr2> void unique(Pr2 pred) {
608 if (empty()) return;
609 for (iterator I = begin(), E = end(), Next = begin(); ++Next != E;) {
610 if (pred(*I))
611 erase(Next);
612 else
613 I = Next;
614 Next = I;
615 }
616 }
617 void unique() { unique(op_equal); }
618
619 template<class Pr3> void merge(iplist &right, Pr3 pred) {
620 iterator first1 = begin(), last1 = end();
621 iterator first2 = right.begin(), last2 = right.end();
622 while (first1 != last1 && first2 != last2)
623 if (pred(*first2, *first1)) {
624 iterator next = first2;
625 transfer(first1, right, first2, ++next);
626 first2 = next;
627 } else {
628 ++first1;
629 }
630 if (first2 != last2) transfer(last1, right, first2, last2);
631 }
632 void merge(iplist &right) { return merge(right, op_less); }
633
634 template<class Pr3> void sort(Pr3 pred);
635 void sort() { sort(op_less); }
636 };
637
638
639 template<typename NodeTy>
640 struct ilist : public iplist<NodeTy> {
641 typedef typename iplist<NodeTy>::size_type size_type;
642 typedef typename iplist<NodeTy>::iterator iterator;
643
644 ilist() {}
645 ilist(const ilist &right) {
646 insert(this->begin(), right.begin(), right.end());
647 }
648 explicit ilist(size_type count) {
649 insert(this->begin(), count, NodeTy());
650 }
651 ilist(size_type count, const NodeTy &val) {
652 insert(this->begin(), count, val);
653 }
654 template<class InIt> ilist(InIt first, InIt last) {
655 insert(this->begin(), first, last);
656 }
657
658 // bring hidden functions into scope
659 using iplist<NodeTy>::insert;
660 using iplist<NodeTy>::push_front;
661 using iplist<NodeTy>::push_back;
662
663 // Main implementation here - Insert for a node passed by value...
664 iterator insert(iterator where, const NodeTy &val) {
665 return insert(where, this->createNode(val));
666 }
667
668
669 // Front and back inserters...
670 void push_front(const NodeTy &val) { insert(this->begin(), val); }
671 void push_back(const NodeTy &val) { insert(this->end(), val); }
672
673 void insert(iterator where, size_type count, const NodeTy &val) {
674 for (; count != 0; --count) insert(where, val);
675 }
676
677 // Assign special forms...
678 void assign(size_type count, const NodeTy &val) {
679 iterator I = this->begin();
680 for (; I != this->end() && count != 0; ++I, --count)
681 *I = val;
682 if (count != 0)
683 insert(this->end(), val, val);
684 else
685 erase(I, this->end());
686 }
687 template<class InIt> void assign(InIt first1, InIt last1) {
688 iterator first2 = this->begin(), last2 = this->end();
689 for ( ; first1 != last1 && first2 != last2; ++first1, ++first2)
690 *first1 = *first2;
691 if (first2 == last2)
692 erase(first1, last1);
693 else
694 insert(last1, first2, last2);
695 }
696
697
698 // Resize members...
699 void resize(size_type newsize, NodeTy val) {
700 iterator i = this->begin();
701 size_type len = 0;
702 for ( ; i != this->end() && len < newsize; ++i, ++len) /* empty*/ ;
703
704 if (len == newsize)
705 erase(i, this->end());
706 else // i == end()
707 insert(this->end(), newsize - len, val);
708 }
709 void resize(size_type newsize) { resize(newsize, NodeTy()); }
710 };
711
712 } // End llvm namespace
713
714 namespace std {
715 // Ensure that swap uses the fast list swap...
716 template<class Ty>
717 void swap(llvm::iplist<Ty> &Left, llvm::iplist<Ty> &Right) {
718 Left.swap(Right);
719 }
720 } // End 'std' extensions...
721
722 #endif // LLVM_ADT_ILIST_H