ViewVC Help
View File | Revision Log | Show Annotations | Download File | View Changeset | Root Listing
root/src/vendor/xz/dist/src/liblzma/lzma/lzma_decoder.c
Revision: 11013
Committed: Fri Jun 15 22:33:27 2018 UTC (5 years, 10 months ago) by laffer1
Content type: text/plain
File size: 27113 byte(s)
Log Message:
xz 5.2.3

File Contents

# Content
1 ///////////////////////////////////////////////////////////////////////////////
2 //
3 /// \file lzma_decoder.c
4 /// \brief LZMA decoder
5 ///
6 // Authors: Igor Pavlov
7 // Lasse Collin
8 //
9 // This file has been put into the public domain.
10 // You can do whatever you want with this file.
11 //
12 ///////////////////////////////////////////////////////////////////////////////
13
14 #include "lz_decoder.h"
15 #include "lzma_common.h"
16 #include "lzma_decoder.h"
17 #include "range_decoder.h"
18
19
20 #ifdef HAVE_SMALL
21
22 // Macros for (somewhat) size-optimized code.
23 #define seq_4(seq) seq
24
25 #define seq_6(seq) seq
26
27 #define seq_8(seq) seq
28
29 #define seq_len(seq) \
30 seq ## _CHOICE, \
31 seq ## _CHOICE2, \
32 seq ## _BITTREE
33
34 #define len_decode(target, ld, pos_state, seq) \
35 do { \
36 case seq ## _CHOICE: \
37 rc_if_0(ld.choice, seq ## _CHOICE) { \
38 rc_update_0(ld.choice); \
39 probs = ld.low[pos_state];\
40 limit = LEN_LOW_SYMBOLS; \
41 target = MATCH_LEN_MIN; \
42 } else { \
43 rc_update_1(ld.choice); \
44 case seq ## _CHOICE2: \
45 rc_if_0(ld.choice2, seq ## _CHOICE2) { \
46 rc_update_0(ld.choice2); \
47 probs = ld.mid[pos_state]; \
48 limit = LEN_MID_SYMBOLS; \
49 target = MATCH_LEN_MIN + LEN_LOW_SYMBOLS; \
50 } else { \
51 rc_update_1(ld.choice2); \
52 probs = ld.high; \
53 limit = LEN_HIGH_SYMBOLS; \
54 target = MATCH_LEN_MIN + LEN_LOW_SYMBOLS \
55 + LEN_MID_SYMBOLS; \
56 } \
57 } \
58 symbol = 1; \
59 case seq ## _BITTREE: \
60 do { \
61 rc_bit(probs[symbol], , , seq ## _BITTREE); \
62 } while (symbol < limit); \
63 target += symbol - limit; \
64 } while (0)
65
66 #else // HAVE_SMALL
67
68 // Unrolled versions
69 #define seq_4(seq) \
70 seq ## 0, \
71 seq ## 1, \
72 seq ## 2, \
73 seq ## 3
74
75 #define seq_6(seq) \
76 seq ## 0, \
77 seq ## 1, \
78 seq ## 2, \
79 seq ## 3, \
80 seq ## 4, \
81 seq ## 5
82
83 #define seq_8(seq) \
84 seq ## 0, \
85 seq ## 1, \
86 seq ## 2, \
87 seq ## 3, \
88 seq ## 4, \
89 seq ## 5, \
90 seq ## 6, \
91 seq ## 7
92
93 #define seq_len(seq) \
94 seq ## _CHOICE, \
95 seq ## _LOW0, \
96 seq ## _LOW1, \
97 seq ## _LOW2, \
98 seq ## _CHOICE2, \
99 seq ## _MID0, \
100 seq ## _MID1, \
101 seq ## _MID2, \
102 seq ## _HIGH0, \
103 seq ## _HIGH1, \
104 seq ## _HIGH2, \
105 seq ## _HIGH3, \
106 seq ## _HIGH4, \
107 seq ## _HIGH5, \
108 seq ## _HIGH6, \
109 seq ## _HIGH7
110
111 #define len_decode(target, ld, pos_state, seq) \
112 do { \
113 symbol = 1; \
114 case seq ## _CHOICE: \
115 rc_if_0(ld.choice, seq ## _CHOICE) { \
116 rc_update_0(ld.choice); \
117 rc_bit_case(ld.low[pos_state][symbol], , , seq ## _LOW0); \
118 rc_bit_case(ld.low[pos_state][symbol], , , seq ## _LOW1); \
119 rc_bit_case(ld.low[pos_state][symbol], , , seq ## _LOW2); \
120 target = symbol - LEN_LOW_SYMBOLS + MATCH_LEN_MIN; \
121 } else { \
122 rc_update_1(ld.choice); \
123 case seq ## _CHOICE2: \
124 rc_if_0(ld.choice2, seq ## _CHOICE2) { \
125 rc_update_0(ld.choice2); \
126 rc_bit_case(ld.mid[pos_state][symbol], , , \
127 seq ## _MID0); \
128 rc_bit_case(ld.mid[pos_state][symbol], , , \
129 seq ## _MID1); \
130 rc_bit_case(ld.mid[pos_state][symbol], , , \
131 seq ## _MID2); \
132 target = symbol - LEN_MID_SYMBOLS \
133 + MATCH_LEN_MIN + LEN_LOW_SYMBOLS; \
134 } else { \
135 rc_update_1(ld.choice2); \
136 rc_bit_case(ld.high[symbol], , , seq ## _HIGH0); \
137 rc_bit_case(ld.high[symbol], , , seq ## _HIGH1); \
138 rc_bit_case(ld.high[symbol], , , seq ## _HIGH2); \
139 rc_bit_case(ld.high[symbol], , , seq ## _HIGH3); \
140 rc_bit_case(ld.high[symbol], , , seq ## _HIGH4); \
141 rc_bit_case(ld.high[symbol], , , seq ## _HIGH5); \
142 rc_bit_case(ld.high[symbol], , , seq ## _HIGH6); \
143 rc_bit_case(ld.high[symbol], , , seq ## _HIGH7); \
144 target = symbol - LEN_HIGH_SYMBOLS \
145 + MATCH_LEN_MIN \
146 + LEN_LOW_SYMBOLS + LEN_MID_SYMBOLS; \
147 } \
148 } \
149 } while (0)
150
151 #endif // HAVE_SMALL
152
153
154 /// Length decoder probabilities; see comments in lzma_common.h.
155 typedef struct {
156 probability choice;
157 probability choice2;
158 probability low[POS_STATES_MAX][LEN_LOW_SYMBOLS];
159 probability mid[POS_STATES_MAX][LEN_MID_SYMBOLS];
160 probability high[LEN_HIGH_SYMBOLS];
161 } lzma_length_decoder;
162
163
164 typedef struct {
165 ///////////////////
166 // Probabilities //
167 ///////////////////
168
169 /// Literals; see comments in lzma_common.h.
170 probability literal[LITERAL_CODERS_MAX][LITERAL_CODER_SIZE];
171
172 /// If 1, it's a match. Otherwise it's a single 8-bit literal.
173 probability is_match[STATES][POS_STATES_MAX];
174
175 /// If 1, it's a repeated match. The distance is one of rep0 .. rep3.
176 probability is_rep[STATES];
177
178 /// If 0, distance of a repeated match is rep0.
179 /// Otherwise check is_rep1.
180 probability is_rep0[STATES];
181
182 /// If 0, distance of a repeated match is rep1.
183 /// Otherwise check is_rep2.
184 probability is_rep1[STATES];
185
186 /// If 0, distance of a repeated match is rep2. Otherwise it is rep3.
187 probability is_rep2[STATES];
188
189 /// If 1, the repeated match has length of one byte. Otherwise
190 /// the length is decoded from rep_len_decoder.
191 probability is_rep0_long[STATES][POS_STATES_MAX];
192
193 /// Probability tree for the highest two bits of the match distance.
194 /// There is a separate probability tree for match lengths of
195 /// 2 (i.e. MATCH_LEN_MIN), 3, 4, and [5, 273].
196 probability dist_slot[DIST_STATES][DIST_SLOTS];
197
198 /// Probability trees for additional bits for match distance when the
199 /// distance is in the range [4, 127].
200 probability pos_special[FULL_DISTANCES - DIST_MODEL_END];
201
202 /// Probability tree for the lowest four bits of a match distance
203 /// that is equal to or greater than 128.
204 probability pos_align[ALIGN_SIZE];
205
206 /// Length of a normal match
207 lzma_length_decoder match_len_decoder;
208
209 /// Length of a repeated match
210 lzma_length_decoder rep_len_decoder;
211
212 ///////////////////
213 // Decoder state //
214 ///////////////////
215
216 // Range coder
217 lzma_range_decoder rc;
218
219 // Types of the most recently seen LZMA symbols
220 lzma_lzma_state state;
221
222 uint32_t rep0; ///< Distance of the latest match
223 uint32_t rep1; ///< Distance of second latest match
224 uint32_t rep2; ///< Distance of third latest match
225 uint32_t rep3; ///< Distance of fourth latest match
226
227 uint32_t pos_mask; // (1U << pb) - 1
228 uint32_t literal_context_bits;
229 uint32_t literal_pos_mask;
230
231 /// Uncompressed size as bytes, or LZMA_VLI_UNKNOWN if end of
232 /// payload marker is expected.
233 lzma_vli uncompressed_size;
234
235 ////////////////////////////////
236 // State of incomplete symbol //
237 ////////////////////////////////
238
239 /// Position where to continue the decoder loop
240 enum {
241 SEQ_NORMALIZE,
242 SEQ_IS_MATCH,
243 seq_8(SEQ_LITERAL),
244 seq_8(SEQ_LITERAL_MATCHED),
245 SEQ_LITERAL_WRITE,
246 SEQ_IS_REP,
247 seq_len(SEQ_MATCH_LEN),
248 seq_6(SEQ_DIST_SLOT),
249 SEQ_DIST_MODEL,
250 SEQ_DIRECT,
251 seq_4(SEQ_ALIGN),
252 SEQ_EOPM,
253 SEQ_IS_REP0,
254 SEQ_SHORTREP,
255 SEQ_IS_REP0_LONG,
256 SEQ_IS_REP1,
257 SEQ_IS_REP2,
258 seq_len(SEQ_REP_LEN),
259 SEQ_COPY,
260 } sequence;
261
262 /// Base of the current probability tree
263 probability *probs;
264
265 /// Symbol being decoded. This is also used as an index variable in
266 /// bittree decoders: probs[symbol]
267 uint32_t symbol;
268
269 /// Used as a loop termination condition on bittree decoders and
270 /// direct bits decoder.
271 uint32_t limit;
272
273 /// Matched literal decoder: 0x100 or 0 to help avoiding branches.
274 /// Bittree reverse decoders: Offset of the next bit: 1 << offset
275 uint32_t offset;
276
277 /// If decoding a literal: match byte.
278 /// If decoding a match: length of the match.
279 uint32_t len;
280 } lzma_lzma1_decoder;
281
282
283 static lzma_ret
284 lzma_decode(void *coder_ptr, lzma_dict *restrict dictptr,
285 const uint8_t *restrict in,
286 size_t *restrict in_pos, size_t in_size)
287 {
288 lzma_lzma1_decoder *restrict coder = coder_ptr;
289
290 ////////////////////
291 // Initialization //
292 ////////////////////
293
294 {
295 const lzma_ret ret = rc_read_init(
296 &coder->rc, in, in_pos, in_size);
297 if (ret != LZMA_STREAM_END)
298 return ret;
299 }
300
301 ///////////////
302 // Variables //
303 ///////////////
304
305 // Making local copies of often-used variables improves both
306 // speed and readability.
307
308 lzma_dict dict = *dictptr;
309
310 const size_t dict_start = dict.pos;
311
312 // Range decoder
313 rc_to_local(coder->rc, *in_pos);
314
315 // State
316 uint32_t state = coder->state;
317 uint32_t rep0 = coder->rep0;
318 uint32_t rep1 = coder->rep1;
319 uint32_t rep2 = coder->rep2;
320 uint32_t rep3 = coder->rep3;
321
322 const uint32_t pos_mask = coder->pos_mask;
323
324 // These variables are actually needed only if we last time ran
325 // out of input in the middle of the decoder loop.
326 probability *probs = coder->probs;
327 uint32_t symbol = coder->symbol;
328 uint32_t limit = coder->limit;
329 uint32_t offset = coder->offset;
330 uint32_t len = coder->len;
331
332 const uint32_t literal_pos_mask = coder->literal_pos_mask;
333 const uint32_t literal_context_bits = coder->literal_context_bits;
334
335 // Temporary variables
336 uint32_t pos_state = dict.pos & pos_mask;
337
338 lzma_ret ret = LZMA_OK;
339
340 // If uncompressed size is known, there must be no end of payload
341 // marker.
342 const bool no_eopm = coder->uncompressed_size
343 != LZMA_VLI_UNKNOWN;
344 if (no_eopm && coder->uncompressed_size < dict.limit - dict.pos)
345 dict.limit = dict.pos + (size_t)(coder->uncompressed_size);
346
347 // The main decoder loop. The "switch" is used to restart the decoder at
348 // correct location. Once restarted, the "switch" is no longer used.
349 switch (coder->sequence)
350 while (true) {
351 // Calculate new pos_state. This is skipped on the first loop
352 // since we already calculated it when setting up the local
353 // variables.
354 pos_state = dict.pos & pos_mask;
355
356 case SEQ_NORMALIZE:
357 case SEQ_IS_MATCH:
358 if (unlikely(no_eopm && dict.pos == dict.limit))
359 break;
360
361 rc_if_0(coder->is_match[state][pos_state], SEQ_IS_MATCH) {
362 rc_update_0(coder->is_match[state][pos_state]);
363
364 // It's a literal i.e. a single 8-bit byte.
365
366 probs = literal_subcoder(coder->literal,
367 literal_context_bits, literal_pos_mask,
368 dict.pos, dict_get(&dict, 0));
369 symbol = 1;
370
371 if (is_literal_state(state)) {
372 // Decode literal without match byte.
373 #ifdef HAVE_SMALL
374 case SEQ_LITERAL:
375 do {
376 rc_bit(probs[symbol], , , SEQ_LITERAL);
377 } while (symbol < (1 << 8));
378 #else
379 rc_bit_case(probs[symbol], , , SEQ_LITERAL0);
380 rc_bit_case(probs[symbol], , , SEQ_LITERAL1);
381 rc_bit_case(probs[symbol], , , SEQ_LITERAL2);
382 rc_bit_case(probs[symbol], , , SEQ_LITERAL3);
383 rc_bit_case(probs[symbol], , , SEQ_LITERAL4);
384 rc_bit_case(probs[symbol], , , SEQ_LITERAL5);
385 rc_bit_case(probs[symbol], , , SEQ_LITERAL6);
386 rc_bit_case(probs[symbol], , , SEQ_LITERAL7);
387 #endif
388 } else {
389 // Decode literal with match byte.
390 //
391 // We store the byte we compare against
392 // ("match byte") to "len" to minimize the
393 // number of variables we need to store
394 // between decoder calls.
395 len = dict_get(&dict, rep0) << 1;
396
397 // The usage of "offset" allows omitting some
398 // branches, which should give tiny speed
399 // improvement on some CPUs. "offset" gets
400 // set to zero if match_bit didn't match.
401 offset = 0x100;
402
403 #ifdef HAVE_SMALL
404 case SEQ_LITERAL_MATCHED:
405 do {
406 const uint32_t match_bit
407 = len & offset;
408 const uint32_t subcoder_index
409 = offset + match_bit
410 + symbol;
411
412 rc_bit(probs[subcoder_index],
413 offset &= ~match_bit,
414 offset &= match_bit,
415 SEQ_LITERAL_MATCHED);
416
417 // It seems to be faster to do this
418 // here instead of putting it to the
419 // beginning of the loop and then
420 // putting the "case" in the middle
421 // of the loop.
422 len <<= 1;
423
424 } while (symbol < (1 << 8));
425 #else
426 // Unroll the loop.
427 uint32_t match_bit;
428 uint32_t subcoder_index;
429
430 # define d(seq) \
431 case seq: \
432 match_bit = len & offset; \
433 subcoder_index = offset + match_bit + symbol; \
434 rc_bit(probs[subcoder_index], \
435 offset &= ~match_bit, \
436 offset &= match_bit, \
437 seq)
438
439 d(SEQ_LITERAL_MATCHED0);
440 len <<= 1;
441 d(SEQ_LITERAL_MATCHED1);
442 len <<= 1;
443 d(SEQ_LITERAL_MATCHED2);
444 len <<= 1;
445 d(SEQ_LITERAL_MATCHED3);
446 len <<= 1;
447 d(SEQ_LITERAL_MATCHED4);
448 len <<= 1;
449 d(SEQ_LITERAL_MATCHED5);
450 len <<= 1;
451 d(SEQ_LITERAL_MATCHED6);
452 len <<= 1;
453 d(SEQ_LITERAL_MATCHED7);
454 # undef d
455 #endif
456 }
457
458 //update_literal(state);
459 // Use a lookup table to update to literal state,
460 // since compared to other state updates, this would
461 // need two branches.
462 static const lzma_lzma_state next_state[] = {
463 STATE_LIT_LIT,
464 STATE_LIT_LIT,
465 STATE_LIT_LIT,
466 STATE_LIT_LIT,
467 STATE_MATCH_LIT_LIT,
468 STATE_REP_LIT_LIT,
469 STATE_SHORTREP_LIT_LIT,
470 STATE_MATCH_LIT,
471 STATE_REP_LIT,
472 STATE_SHORTREP_LIT,
473 STATE_MATCH_LIT,
474 STATE_REP_LIT
475 };
476 state = next_state[state];
477
478 case SEQ_LITERAL_WRITE:
479 if (unlikely(dict_put(&dict, symbol))) {
480 coder->sequence = SEQ_LITERAL_WRITE;
481 goto out;
482 }
483
484 continue;
485 }
486
487 // Instead of a new byte we are going to get a byte range
488 // (distance and length) which will be repeated from our
489 // output history.
490
491 rc_update_1(coder->is_match[state][pos_state]);
492
493 case SEQ_IS_REP:
494 rc_if_0(coder->is_rep[state], SEQ_IS_REP) {
495 // Not a repeated match
496 rc_update_0(coder->is_rep[state]);
497 update_match(state);
498
499 // The latest three match distances are kept in
500 // memory in case there are repeated matches.
501 rep3 = rep2;
502 rep2 = rep1;
503 rep1 = rep0;
504
505 // Decode the length of the match.
506 len_decode(len, coder->match_len_decoder,
507 pos_state, SEQ_MATCH_LEN);
508
509 // Prepare to decode the highest two bits of the
510 // match distance.
511 probs = coder->dist_slot[get_dist_state(len)];
512 symbol = 1;
513
514 #ifdef HAVE_SMALL
515 case SEQ_DIST_SLOT:
516 do {
517 rc_bit(probs[symbol], , , SEQ_DIST_SLOT);
518 } while (symbol < DIST_SLOTS);
519 #else
520 rc_bit_case(probs[symbol], , , SEQ_DIST_SLOT0);
521 rc_bit_case(probs[symbol], , , SEQ_DIST_SLOT1);
522 rc_bit_case(probs[symbol], , , SEQ_DIST_SLOT2);
523 rc_bit_case(probs[symbol], , , SEQ_DIST_SLOT3);
524 rc_bit_case(probs[symbol], , , SEQ_DIST_SLOT4);
525 rc_bit_case(probs[symbol], , , SEQ_DIST_SLOT5);
526 #endif
527 // Get rid of the highest bit that was needed for
528 // indexing of the probability array.
529 symbol -= DIST_SLOTS;
530 assert(symbol <= 63);
531
532 if (symbol < DIST_MODEL_START) {
533 // Match distances [0, 3] have only two bits.
534 rep0 = symbol;
535 } else {
536 // Decode the lowest [1, 29] bits of
537 // the match distance.
538 limit = (symbol >> 1) - 1;
539 assert(limit >= 1 && limit <= 30);
540 rep0 = 2 + (symbol & 1);
541
542 if (symbol < DIST_MODEL_END) {
543 // Prepare to decode the low bits for
544 // a distance of [4, 127].
545 assert(limit <= 5);
546 rep0 <<= limit;
547 assert(rep0 <= 96);
548 // -1 is fine, because we start
549 // decoding at probs[1], not probs[0].
550 // NOTE: This violates the C standard,
551 // since we are doing pointer
552 // arithmetic past the beginning of
553 // the array.
554 assert((int32_t)(rep0 - symbol - 1)
555 >= -1);
556 assert((int32_t)(rep0 - symbol - 1)
557 <= 82);
558 probs = coder->pos_special + rep0
559 - symbol - 1;
560 symbol = 1;
561 offset = 0;
562 case SEQ_DIST_MODEL:
563 #ifdef HAVE_SMALL
564 do {
565 rc_bit(probs[symbol], ,
566 rep0 += 1 << offset,
567 SEQ_DIST_MODEL);
568 } while (++offset < limit);
569 #else
570 switch (limit) {
571 case 5:
572 assert(offset == 0);
573 rc_bit(probs[symbol], ,
574 rep0 += 1,
575 SEQ_DIST_MODEL);
576 ++offset;
577 --limit;
578 case 4:
579 rc_bit(probs[symbol], ,
580 rep0 += 1 << offset,
581 SEQ_DIST_MODEL);
582 ++offset;
583 --limit;
584 case 3:
585 rc_bit(probs[symbol], ,
586 rep0 += 1 << offset,
587 SEQ_DIST_MODEL);
588 ++offset;
589 --limit;
590 case 2:
591 rc_bit(probs[symbol], ,
592 rep0 += 1 << offset,
593 SEQ_DIST_MODEL);
594 ++offset;
595 --limit;
596 case 1:
597 // We need "symbol" only for
598 // indexing the probability
599 // array, thus we can use
600 // rc_bit_last() here to omit
601 // the unneeded updating of
602 // "symbol".
603 rc_bit_last(probs[symbol], ,
604 rep0 += 1 << offset,
605 SEQ_DIST_MODEL);
606 }
607 #endif
608 } else {
609 // The distance is >= 128. Decode the
610 // lower bits without probabilities
611 // except the lowest four bits.
612 assert(symbol >= 14);
613 assert(limit >= 6);
614 limit -= ALIGN_BITS;
615 assert(limit >= 2);
616 case SEQ_DIRECT:
617 // Not worth manual unrolling
618 do {
619 rc_direct(rep0, SEQ_DIRECT);
620 } while (--limit > 0);
621
622 // Decode the lowest four bits using
623 // probabilities.
624 rep0 <<= ALIGN_BITS;
625 symbol = 1;
626 #ifdef HAVE_SMALL
627 offset = 0;
628 case SEQ_ALIGN:
629 do {
630 rc_bit(coder->pos_align[
631 symbol], ,
632 rep0 += 1 << offset,
633 SEQ_ALIGN);
634 } while (++offset < ALIGN_BITS);
635 #else
636 case SEQ_ALIGN0:
637 rc_bit(coder->pos_align[symbol], ,
638 rep0 += 1, SEQ_ALIGN0);
639 case SEQ_ALIGN1:
640 rc_bit(coder->pos_align[symbol], ,
641 rep0 += 2, SEQ_ALIGN1);
642 case SEQ_ALIGN2:
643 rc_bit(coder->pos_align[symbol], ,
644 rep0 += 4, SEQ_ALIGN2);
645 case SEQ_ALIGN3:
646 // Like in SEQ_DIST_MODEL, we don't
647 // need "symbol" for anything else
648 // than indexing the probability array.
649 rc_bit_last(coder->pos_align[symbol], ,
650 rep0 += 8, SEQ_ALIGN3);
651 #endif
652
653 if (rep0 == UINT32_MAX) {
654 // End of payload marker was
655 // found. It must not be
656 // present if uncompressed
657 // size is known.
658 if (coder->uncompressed_size
659 != LZMA_VLI_UNKNOWN) {
660 ret = LZMA_DATA_ERROR;
661 goto out;
662 }
663
664 case SEQ_EOPM:
665 // LZMA1 stream with
666 // end-of-payload marker.
667 rc_normalize(SEQ_EOPM);
668 ret = LZMA_STREAM_END;
669 goto out;
670 }
671 }
672 }
673
674 // Validate the distance we just decoded.
675 if (unlikely(!dict_is_distance_valid(&dict, rep0))) {
676 ret = LZMA_DATA_ERROR;
677 goto out;
678 }
679
680 } else {
681 rc_update_1(coder->is_rep[state]);
682
683 // Repeated match
684 //
685 // The match distance is a value that we have had
686 // earlier. The latest four match distances are
687 // available as rep0, rep1, rep2 and rep3. We will
688 // now decode which of them is the new distance.
689 //
690 // There cannot be a match if we haven't produced
691 // any output, so check that first.
692 if (unlikely(!dict_is_distance_valid(&dict, 0))) {
693 ret = LZMA_DATA_ERROR;
694 goto out;
695 }
696
697 case SEQ_IS_REP0:
698 rc_if_0(coder->is_rep0[state], SEQ_IS_REP0) {
699 rc_update_0(coder->is_rep0[state]);
700 // The distance is rep0.
701
702 case SEQ_IS_REP0_LONG:
703 rc_if_0(coder->is_rep0_long[state][pos_state],
704 SEQ_IS_REP0_LONG) {
705 rc_update_0(coder->is_rep0_long[
706 state][pos_state]);
707
708 update_short_rep(state);
709
710 case SEQ_SHORTREP:
711 if (unlikely(dict_put(&dict, dict_get(
712 &dict, rep0)))) {
713 coder->sequence = SEQ_SHORTREP;
714 goto out;
715 }
716
717 continue;
718 }
719
720 // Repeating more than one byte at
721 // distance of rep0.
722 rc_update_1(coder->is_rep0_long[
723 state][pos_state]);
724
725 } else {
726 rc_update_1(coder->is_rep0[state]);
727
728 case SEQ_IS_REP1:
729 // The distance is rep1, rep2 or rep3. Once
730 // we find out which one of these three, it
731 // is stored to rep0 and rep1, rep2 and rep3
732 // are updated accordingly.
733 rc_if_0(coder->is_rep1[state], SEQ_IS_REP1) {
734 rc_update_0(coder->is_rep1[state]);
735
736 const uint32_t distance = rep1;
737 rep1 = rep0;
738 rep0 = distance;
739
740 } else {
741 rc_update_1(coder->is_rep1[state]);
742 case SEQ_IS_REP2:
743 rc_if_0(coder->is_rep2[state],
744 SEQ_IS_REP2) {
745 rc_update_0(coder->is_rep2[
746 state]);
747
748 const uint32_t distance = rep2;
749 rep2 = rep1;
750 rep1 = rep0;
751 rep0 = distance;
752
753 } else {
754 rc_update_1(coder->is_rep2[
755 state]);
756
757 const uint32_t distance = rep3;
758 rep3 = rep2;
759 rep2 = rep1;
760 rep1 = rep0;
761 rep0 = distance;
762 }
763 }
764 }
765
766 update_long_rep(state);
767
768 // Decode the length of the repeated match.
769 len_decode(len, coder->rep_len_decoder,
770 pos_state, SEQ_REP_LEN);
771 }
772
773 /////////////////////////////////
774 // Repeat from history buffer. //
775 /////////////////////////////////
776
777 // The length is always between these limits. There is no way
778 // to trigger the algorithm to set len outside this range.
779 assert(len >= MATCH_LEN_MIN);
780 assert(len <= MATCH_LEN_MAX);
781
782 case SEQ_COPY:
783 // Repeat len bytes from distance of rep0.
784 if (unlikely(dict_repeat(&dict, rep0, &len))) {
785 coder->sequence = SEQ_COPY;
786 goto out;
787 }
788 }
789
790 rc_normalize(SEQ_NORMALIZE);
791 coder->sequence = SEQ_IS_MATCH;
792
793 out:
794 // Save state
795
796 // NOTE: Must not copy dict.limit.
797 dictptr->pos = dict.pos;
798 dictptr->full = dict.full;
799
800 rc_from_local(coder->rc, *in_pos);
801
802 coder->state = state;
803 coder->rep0 = rep0;
804 coder->rep1 = rep1;
805 coder->rep2 = rep2;
806 coder->rep3 = rep3;
807
808 coder->probs = probs;
809 coder->symbol = symbol;
810 coder->limit = limit;
811 coder->offset = offset;
812 coder->len = len;
813
814 // Update the remaining amount of uncompressed data if uncompressed
815 // size was known.
816 if (coder->uncompressed_size != LZMA_VLI_UNKNOWN) {
817 coder->uncompressed_size -= dict.pos - dict_start;
818
819 // Since there cannot be end of payload marker if the
820 // uncompressed size was known, we check here if we
821 // finished decoding.
822 if (coder->uncompressed_size == 0 && ret == LZMA_OK
823 && coder->sequence != SEQ_NORMALIZE)
824 ret = coder->sequence == SEQ_IS_MATCH
825 ? LZMA_STREAM_END : LZMA_DATA_ERROR;
826 }
827
828 // We can do an additional check in the range decoder to catch some
829 // corrupted files.
830 if (ret == LZMA_STREAM_END) {
831 if (!rc_is_finished(coder->rc))
832 ret = LZMA_DATA_ERROR;
833
834 // Reset the range decoder so that it is ready to reinitialize
835 // for a new LZMA2 chunk.
836 rc_reset(coder->rc);
837 }
838
839 return ret;
840 }
841
842
843
844 static void
845 lzma_decoder_uncompressed(void *coder_ptr, lzma_vli uncompressed_size)
846 {
847 lzma_lzma1_decoder *coder = coder_ptr;
848 coder->uncompressed_size = uncompressed_size;
849 }
850
851
852 static void
853 lzma_decoder_reset(void *coder_ptr, const void *opt)
854 {
855 lzma_lzma1_decoder *coder = coder_ptr;
856 const lzma_options_lzma *options = opt;
857
858 // NOTE: We assume that lc/lp/pb are valid since they were
859 // successfully decoded with lzma_lzma_decode_properties().
860
861 // Calculate pos_mask. We don't need pos_bits as is for anything.
862 coder->pos_mask = (1U << options->pb) - 1;
863
864 // Initialize the literal decoder.
865 literal_init(coder->literal, options->lc, options->lp);
866
867 coder->literal_context_bits = options->lc;
868 coder->literal_pos_mask = (1U << options->lp) - 1;
869
870 // State
871 coder->state = STATE_LIT_LIT;
872 coder->rep0 = 0;
873 coder->rep1 = 0;
874 coder->rep2 = 0;
875 coder->rep3 = 0;
876 coder->pos_mask = (1U << options->pb) - 1;
877
878 // Range decoder
879 rc_reset(coder->rc);
880
881 // Bit and bittree decoders
882 for (uint32_t i = 0; i < STATES; ++i) {
883 for (uint32_t j = 0; j <= coder->pos_mask; ++j) {
884 bit_reset(coder->is_match[i][j]);
885 bit_reset(coder->is_rep0_long[i][j]);
886 }
887
888 bit_reset(coder->is_rep[i]);
889 bit_reset(coder->is_rep0[i]);
890 bit_reset(coder->is_rep1[i]);
891 bit_reset(coder->is_rep2[i]);
892 }
893
894 for (uint32_t i = 0; i < DIST_STATES; ++i)
895 bittree_reset(coder->dist_slot[i], DIST_SLOT_BITS);
896
897 for (uint32_t i = 0; i < FULL_DISTANCES - DIST_MODEL_END; ++i)
898 bit_reset(coder->pos_special[i]);
899
900 bittree_reset(coder->pos_align, ALIGN_BITS);
901
902 // Len decoders (also bit/bittree)
903 const uint32_t num_pos_states = 1U << options->pb;
904 bit_reset(coder->match_len_decoder.choice);
905 bit_reset(coder->match_len_decoder.choice2);
906 bit_reset(coder->rep_len_decoder.choice);
907 bit_reset(coder->rep_len_decoder.choice2);
908
909 for (uint32_t pos_state = 0; pos_state < num_pos_states; ++pos_state) {
910 bittree_reset(coder->match_len_decoder.low[pos_state],
911 LEN_LOW_BITS);
912 bittree_reset(coder->match_len_decoder.mid[pos_state],
913 LEN_MID_BITS);
914
915 bittree_reset(coder->rep_len_decoder.low[pos_state],
916 LEN_LOW_BITS);
917 bittree_reset(coder->rep_len_decoder.mid[pos_state],
918 LEN_MID_BITS);
919 }
920
921 bittree_reset(coder->match_len_decoder.high, LEN_HIGH_BITS);
922 bittree_reset(coder->rep_len_decoder.high, LEN_HIGH_BITS);
923
924 coder->sequence = SEQ_IS_MATCH;
925 coder->probs = NULL;
926 coder->symbol = 0;
927 coder->limit = 0;
928 coder->offset = 0;
929 coder->len = 0;
930
931 return;
932 }
933
934
935 extern lzma_ret
936 lzma_lzma_decoder_create(lzma_lz_decoder *lz, const lzma_allocator *allocator,
937 const void *opt, lzma_lz_options *lz_options)
938 {
939 if (lz->coder == NULL) {
940 lz->coder = lzma_alloc(sizeof(lzma_lzma1_decoder), allocator);
941 if (lz->coder == NULL)
942 return LZMA_MEM_ERROR;
943
944 lz->code = &lzma_decode;
945 lz->reset = &lzma_decoder_reset;
946 lz->set_uncompressed = &lzma_decoder_uncompressed;
947 }
948
949 // All dictionary sizes are OK here. LZ decoder will take care of
950 // the special cases.
951 const lzma_options_lzma *options = opt;
952 lz_options->dict_size = options->dict_size;
953 lz_options->preset_dict = options->preset_dict;
954 lz_options->preset_dict_size = options->preset_dict_size;
955
956 return LZMA_OK;
957 }
958
959
960 /// Allocate and initialize LZMA decoder. This is used only via LZ
961 /// initialization (lzma_lzma_decoder_init() passes function pointer to
962 /// the LZ initialization).
963 static lzma_ret
964 lzma_decoder_init(lzma_lz_decoder *lz, const lzma_allocator *allocator,
965 const void *options, lzma_lz_options *lz_options)
966 {
967 if (!is_lclppb_valid(options))
968 return LZMA_PROG_ERROR;
969
970 return_if_error(lzma_lzma_decoder_create(
971 lz, allocator, options, lz_options));
972
973 lzma_decoder_reset(lz->coder, options);
974 lzma_decoder_uncompressed(lz->coder, LZMA_VLI_UNKNOWN);
975
976 return LZMA_OK;
977 }
978
979
980 extern lzma_ret
981 lzma_lzma_decoder_init(lzma_next_coder *next, const lzma_allocator *allocator,
982 const lzma_filter_info *filters)
983 {
984 // LZMA can only be the last filter in the chain. This is enforced
985 // by the raw_decoder initialization.
986 assert(filters[1].init == NULL);
987
988 return lzma_lz_decoder_init(next, allocator, filters,
989 &lzma_decoder_init);
990 }
991
992
993 extern bool
994 lzma_lzma_lclppb_decode(lzma_options_lzma *options, uint8_t byte)
995 {
996 if (byte > (4 * 5 + 4) * 9 + 8)
997 return true;
998
999 // See the file format specification to understand this.
1000 options->pb = byte / (9 * 5);
1001 byte -= options->pb * 9 * 5;
1002 options->lp = byte / 9;
1003 options->lc = byte - options->lp * 9;
1004
1005 return options->lc + options->lp > LZMA_LCLP_MAX;
1006 }
1007
1008
1009 extern uint64_t
1010 lzma_lzma_decoder_memusage_nocheck(const void *options)
1011 {
1012 const lzma_options_lzma *const opt = options;
1013 return sizeof(lzma_lzma1_decoder)
1014 + lzma_lz_decoder_memusage(opt->dict_size);
1015 }
1016
1017
1018 extern uint64_t
1019 lzma_lzma_decoder_memusage(const void *options)
1020 {
1021 if (!is_lclppb_valid(options))
1022 return UINT64_MAX;
1023
1024 return lzma_lzma_decoder_memusage_nocheck(options);
1025 }
1026
1027
1028 extern lzma_ret
1029 lzma_lzma_props_decode(void **options, const lzma_allocator *allocator,
1030 const uint8_t *props, size_t props_size)
1031 {
1032 if (props_size != 5)
1033 return LZMA_OPTIONS_ERROR;
1034
1035 lzma_options_lzma *opt
1036 = lzma_alloc(sizeof(lzma_options_lzma), allocator);
1037 if (opt == NULL)
1038 return LZMA_MEM_ERROR;
1039
1040 if (lzma_lzma_lclppb_decode(opt, props[0]))
1041 goto error;
1042
1043 // All dictionary sizes are accepted, including zero. LZ decoder
1044 // will automatically use a dictionary at least a few KiB even if
1045 // a smaller dictionary is requested.
1046 opt->dict_size = unaligned_read32le(props + 1);
1047
1048 opt->preset_dict = NULL;
1049 opt->preset_dict_size = 0;
1050
1051 *options = opt;
1052
1053 return LZMA_OK;
1054
1055 error:
1056 lzma_free(opt, allocator);
1057 return LZMA_OPTIONS_ERROR;
1058 }